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Abstract

Ultra relativistic heavy-ion collisions at Large Hadron Collider (LHC) create

strongly interacting particles. As a result of these strong interactions and initial

anisotropic geometry anisotropic flow phenomena takes place: Outgoing parti-

cles are correlated with reaction plane. Analysis of the flow phenomena depends

on so-called flow harmonics vn. In this thesis two and multi-particle correlations

techniques have been utilized to determine the harmonics. Since these techniques

are sensitive to non-flow, we have used a precise method Q-Cumulant to suppress

it. Q-Cumulant is biased even if the absence of non-flow due to flow fluctuations

which are cable of creating any type of harmonics. Recently symmetric cumu-

lants SC(m,n) have been introduce to investigate the correlation between two

different harmonics (vm,vn), in this thesis Monte Carlo simulations of SC(4, 2)

and SC(3, 2) have been presented and they were also calculated from data col-

lected by ALICE detector in 2010 from Pb–Pb collisions at center-of-mass energy
√
sNN = 2.76 TeV . Finally, we generalized the symmetric cumulants to three

harmonics SC(1, 2, 3) and examined the generalization in terms of constant, in-

dependent, two and three correlated harmonics.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics

We may claim that every human being, at least once in his or her life, wonders

about the edge or size of the Universe and the smallest part of the matter which

can not be divided any more. The answer to the latter might be found in particle

physics which is probing into fundamental constituents of matter and the inter-

actions among them. It is very well known that atoms are composed of electrons

orbiting around a nucleus consisting of neutrons and protons. Independently in
′60s, it has been proposed by Zweig and Gell-Mann that protons, neutrons and

all other hadrons are composed of some elementary particles which are called

quark: [1]. There are six flavors of quarks up(u), down(d), strange(s), charm(c),

top(t), and bottom(b). With their intrinsic properties (charge, mass and spin),

they are depicted in standard model as in Fig. (1.1). For each quark, there is a

corresponding antiquark with the same mass and different sign of charges. All

mesons are composed of a quark and an antiquark, all baryons are composed of

three quarks. Antiparticles of hadrons have constituents which own correspond-

ing antiparticle and vice versa. Quark model in this state violates Pauli exclusion

principle: two fermions can not occupy the same quantum state. Since quarks

carry spin one-half, exclusion principle applies to quarks as well. At this stage it

has been suggested that each quark has an additional intrinsic property: redness,

greenness or blueness. When a quark owns a type of color, its antiquark carries

one unit of corresponding anti-color. In this regard, there are two possibilities:

either hadrons’ total amount of color is zero or they posses the same amount of

the colors. For instance a meson has a quark and an antiquark, let’s suppose one

is red the other one has to be minus/anti red; a baryon owns three quarks, all

have to posses a different color and it is the same for antibaryon which has to

be composed of three different and minus/anti colors. It means natural particles

1
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Figure 1.1: Standard model of elementary particles (Fermilab, Office of Science, United States
Department of Energy).

are colorless which is corresponding to both situations which has been described

and like charge, color is conserved. This phenomena is called as color confinement

which explain why an isolated quark can not be observed. According to the quan-

tum chromodynamics (QCD) strong force, which is responsible for binding quarks

and keeping nucleons inside the nucleus against repulsive electromagnetic force,

is mediated by gluons. Fundamental process of strong interaction is q → q+ g, a

quark emits or absorbs a gluon. In this process color of quark might be changed,

according to the color conservation incoming quark’s color is equal to the total

color of outgoing particles. For instance incoming quark is red and outgoing is

blue, it means gluon carry red and anti blue. It is clear from this example that

gluons are bicolored. Since gluons also carry color, unlike photon which is neu-

tral, they are also subject to strong interactions as well as being mediators, this

situation makes the strong interactions harder to analyze.

According to QCD, similar to color confinement, strong interaction prevents

to observe an isolated quark. Potential for strong force, which is dominated by

linear term at large distance, is given by

V (r) = −4

3

αs
r

+ κr. (1.1.0.1)

In above equation r is the distance among a quark and an antiquark, κ the
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string tension and αs the coupling strength. Linear term in the equation shows

that when distance is increased among the particles, as a result attractive force

becomes stronger. As it is simply depicted in Fig. (1.2), when we exert energy

to pull apart one of the quark from a hadron, at some point a quark and an

antiquark pair are created from the vacuum because it is energetically favorable.

At the end, the process results in two new hadrons. Whenever we try to pull

Figure 1.2: As energy is exerted to separate the quark u from proton, a quark pair (d, d̄) is
created. Instead of having an isolated quark we have a neutron and pion at the end [2].

away one of the quarks the same process takes place and each time we have new

hadrons in which quarks are confined.

1.2 Quark Gluon Plasma

According to QCD, asymptotic freedom implies that unlike in quantum electrody-

namics (QED), coupling constant is not constant but depends on distance between

two interacting particles. At short distance, coupling is asymptotically weaker

meaning in this case quarks within a hadron do not interact strongly. This implies

that at short distance (equivalently at high energy) interaction among quarks is

weak and they are nearly free. So in this regime quarks behave like free particles.

Based on asymptotic freedom, it is expected that at extremely high tempera-

ture and/or densities quarks and gluons are in a different phase which is called

quark-gluon plasma (QGP ). In this phase quarks and gluons are deconfined.

One way of creating QGP is by increasing hadron density to a critical point

which is around 0.16 GeV/fm3, ten times the matter density in nuclei. We see

a representation of this process in Fig. (1.3). Another way of forming QGP is

reaching the critical temperature which is around 175 MeV , 100000 times higher

than center of Sun temperature. In Fig. (1.4), we show both of these situations on
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Figure 1.3: Formation of quark-gluon plasma with increment of hadron density [3].

phase-diagram expected in QCD. Vertical axis is temperature and horizontal axis

is net quark density implying the difference between quarks and antiquarks. Ar-

row of expansion of the early Universe is showing that the Universe just after the

Big Bang was in phase of quark-gluon plasma with extremely high temperature.

In a short period, temperature drops sharply because of rapid expansion of the

early Universe; as a result matter passes into hadronic phase where quarks and

gluons are confined in baryons. Heavy ion collisions are following the opposite di-

rection of the early Universe. We collide nucleons in which quarks and gluons are

confined at high energy. If thermalization occurs at temperature which exceeds

the critical point, deconfinement of partons (quarks and gluons) takes place. At

this stage partons form the quark-gluon plasma for a short time; because of the

fast expansion, plasma cools down rapidly and partons undergo hadronization.

As we see in Fig. (1.4), in both of them; expansion of early Universe and heavy

ion collisions, net baryon density do not play an important role. When early

Universe was very hot, the difference among quarks and antiquarks was small. In

case of heavy ion collisions, although before the collision we have a few hundreds

of nucleons, this value is still small compared to the number of hadrons obtained

at the end of final state [4]. QGP may exist in the core of neutron stars as it is

depicted on the figure.

In Fig. (1.5), we see representation of two colliding nuclei. Vertical axis is

proper time and horizontal axis is beam line. At first stage, nuclei undergo

Lorentz contraction along the beam line and collide at t = 0 and z = 0. Just after

the collision, a bulk quark-gluon is released which is in non-equilibrium state and

has ten times higher density compared to hadrons in Pb–Pb collisions at the LHC.

In later stage, if there were no interactions among partons, they would separately

evolve to hadronization. But at LHC with collision of Pb–Pb, we observe the
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Figure 1.4: Schematic representation of the phase diagram [4].

opposite, collective flow: At this stage partons interact with each other, quite

strongly. As a result of this strong interaction the partonic matter quickly reaches

the thermal equilibrium. As a consequence of this thermalization, process ends

up in quark-gluon plasma. With expansion of the plasma, temperature starts

decreasing and partons start creating colorless hadrons after temperature drops

to the critical point. At the next stage which is shown as hadrons in Fig. (1.5), we

have still high density and local equilibrium. In the last stage hadrons have low

density and they are no longer interacting. As a result, expansion rate becomes

higher than collision rate. The transition between many interactions to the free

particles is called freeze-out, at this stage particles without any interaction move

towards detector.

1.3 Centrality Determination

Collective flow is sensitive to the initial geometry, that is why it is crucial to

sort out all collisions in terms of initial geometries, which can be achieved with

the centrality. In Fig. (1.6), there are three different collision geometries of the

same type of nuclei which are depicted on transverse plane. Impact parameter

b on the figures connects the centers of the nuclei, it may have value between

zero and diameter of the nucleus. In Fig. (1.6A) a central collision which is
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Figure 1.5: Space-time picture of heavy-ion collision for various stages [4].

represented with impact parameter nearly zero corresponds roughly to centrality

class 0 − 5% and in Fig. (1.6C) a peripheral collision, which is corresponding

roughly to centrality class 70−80%, is represented with impact parameter around

diameter of the nucleus. In Fig. (1.6B), we see a representation of mid-central

collision corresponding roughly to centrality class 30 − 40%, impact parameter

is among the values for central and peripheral collisions. The azimuthal angle

of the impact parameter in a heavy ion collision is random, any value is equally

probable.

Figure 1.6: Representations of central, mid-central and peripheral collisions.

The impact parameter and the collision geometry can not be controlled by ex-

periment and they are not recorded by detectors directly. But there is a relation

between multiplicity, transverse energy, number of spectator nucleons which do

not participate in the collisions and the centrality. Easily we may assume there

is positive correlation between number of participating nucleons and released en-

ergy, also among the multiplicity and participating nucleons. So we can conclude
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that energy released in the collision and multiplicity have a positive correlation.

Central collisions result in higher values of multiplicity or transverse energy and

contrarily peripheral collisions yield lower values of multiplicity and release less

energy. That is why multiplicity or transverse energy distribution might be ex-

ploited to determine centrality. More precisely, Glauber-type Monte Carlo calcu-

lations, which depends on idea we just mentioned and utilize the Woods–Saxon

nuclear density distributions, is used to define centralities [5].

Figure 1.7: The uncorrected multiplicity distribution of charged particles in the TPC [6].

In Fig. (1.7), published by ALICE Collaboration [6], we see multiplicity dis-

tribution of charged particles in the time projection chamber (TPC) with 45K

collisions. As it can be seen from the figure, more central collisions correspond

to higher multiplicities and vice verse [7].

1.4 Experimental Setup

The Large Hadron Collider (LHC) is located at France–Switzerland border near

Geneva, Switzerland and built by the European Organization for Nuclear Re-

search (CERN). LHC’s tunnel which is buried on average 100m underground has

27 kilometers circumference. To be able to reach out aimed center of mass energy,

which is 7 TeV per beam for p − p collisions and 2.76 TeV per nucleon pair for

Pb–Pb collisions, particles are accelerated very close to the speed of light.

LHC hosts seven experiments. A Toroidal LHC ApparatuS (ATLAS) is the

largest detector ever built. Mainly it is probing into physics beyond the standard

model and search for Higgs boson, in 2012 ATLAS collaboration has announced

that a new particle consistent with Higgs boson was discovered [8]. The Compact

Muon Solenoid (CMS) has similar aims as ATLAS with different technical de-

sign, discovery of Higgs boson was reported by CMS as well [9]. Both ATLAS and

CMS play also an important role in the heavy-ion program. The Large Hadron
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Collider beauty (LHCb) experiment is working on asymmetry between matter

and antimatter in the Universe. The Large Hadron Collider forward (LHCf) ex-

periment has a primary aim to test models used to estimate the primary energy

of the ultra high-energy cosmic ray. The TOTal Elastic and diffractive cross sec-

tion Measurement (TOTEM) experiment has goal to measure the cross section

of proton. Monopole and Exotics Detector at the LHC (MoEDAL) is making re-

search on hypothetical highly ionising particles. And finally A Large Ion Collider

Experiment (ALICE) which is the only dedicated heavy-ion experiment at LHC.

Figure 1.8: ALICE detector.

ALICE is specialized on analyzing Pb–Pb collisions at a center of mass energy

of 2.76 TeV per nucleon pair in Run 1 and 5.02 TeV per nucleon pair in Run

2 to be able to understand properties of quark-gluon plasma which has been de-

scribed in previous sections. As shown in Fig. (1.8), the ALICE detector owns 18

operational subdetectors, some of them are the Inner Tracking System, the cylin-

drical Time Projection Chamber, the Time-of-Flight, High Momentum Particle

Identification Detector, the Transition Radiation detectors, the electromagnetic

calorimeters which are the PHOS and the EMCal, forward muon spectrometer

that examines heavy quarkonium states which are sensitive to quark-gluon plasma

formation, also several smaller detectors (ACORDE, ZDC, PMD, FMD, T0, V0).

For the purpose of this research four of them will be examined here.

Time Projection Chamber (TPC) is the main tracking detector, a cylinder
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filled with gas, utilizing electric and magnetic field with ionized gas to determine

trajectories of the particles. Gas is ionized with charged particles traversing

the TPC, by releasing electrons drifting towards the end plates of the cylinder.

Analysis of the process gives information about z, r and ϕ coordinates. The

transverse momentum range 0.1 < pT < 100 GeV/c can be detected by TPC with

a resolution of about 6% for pT < 20 GeV/c in central Pb–Pb collisions. TPC

azimuthal acceptance is full with exception of dead zones corresponding to about

10%. That is why TPC is an ideal detector for our analysis which is requiring

full azimuthal acceptance. TPC’s azimuthal resolution is about δϕ = 0.7 mrad

and has a pseudorapidity coverage of η < |0.9|. TPC also serves for particle

identification and centrality determination with a resolution of about 0.5% in the

most central collisions [7] [10].

The ALICE Inner Tracking System is located inside the inner TPC radius

and it is the closest detector to beam line. With a resolution better than 100

µm, it is used to determine the primary vertex. It serves as tracker to recover

tracks which are not reconstructed by TPC (because of dead zones of TPC)

and reconstruct low momentum particles. Also it provides particle identification

and it is used as a centrality estimator with resolution 0.5% in the most central

collisions. Transverse momentum is covered in the range 0.1 − 3 GeV/c and

pseudorapidity in η < |0.9| [7] [10].

The VZERO detector is located inside of the main magnet and it consists of

two arrays of scintillator counters VZERO-A and VZERO-C; each has different

pseudorapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. Both

provide minimum bias triggers for Pb–Pb collisions and are used for centrality

determination which has resolution of about 0.5% for central and 2% for periph-

eral collisions. The VZERO detector is capable of providing beam luminosity and

the charged particle multiplicity measurement [7] [10].

Finally, the Zero Degree Calorimeter (ZDC) detects spectator protons and

neutrons separately (since spectator protons are deflected slightly from the beam

line) to be able to determine the centrality and it has resolution of about 1% in

central collisions and around 3% in mid-central collisions [7]. Thus, mainly it is

utilized to determine the centrality.
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Chapter 2

Flow Analyses

2.1 Anisotropic Flow Phenomena

In Fig. (2.1), a non-central nucleus-nucleus collision is depicted in transverse

plane. Blue circles represent the spectator nucleons which do not participate in

collision. Red circles represent the nucleons which undergo at least one collision

and which are called participants. The impact parameter b connects the centers

of the nuclei. Reaction plane is spanned by vector b and beam line z. That is

why projection of reaction plane corresponds to b line on transverse plane which

is denoted by dashed line on the figure. Reaction plane angle is denoted by ψR

in fixed lab frame. In this figure overlapping region has an almond shape and it

is characterized to leading order by second harmonic as we will see in the next

section.

Y

X

Z

b

ΨR

Figure 2.1: A non-central nucleus-nucleus collision on transverse plane.

11
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If there are no mutual collisions among the outgoing particles, they separately

evolve without reaching the thermalisation. On the other hand, at sufficiently

high energies anisotropic collisions will create strong interactions among outgoing

particles. Because of these mutual interactions, higher pressure gradient will be

created along the minor axis of almond shape compared to the major axis. That

is why this process results in more particles emitted along the reaction plane. In

this way anisotropy of the initial geometry has been converted into anisotropic

distribution of outgoing particles. At the end of the day we have a periodic

function of azimuthal distribution. This process is shown in Fig. (2.2), yellow

arrows are pressure gradients, black arrow represent outgoing particles which are

populated more along the reaction plane.

Z

Figure 2.2: Pressure gradient and more particles emitted along minor axis of almond.

2.2 Flow Harmonics

Random observable ϕ is described on the transverse plane which is vertical to

beam line and it is the azimuthal angle of quantity under probe, for instance it

might be the total momentum of outgoing particles at the angle ϕ. It is clear

that sample space of ϕ is [0,2π). Probability density function p.d.f of the quantity

will be denoted as f . Since it is a periodic function, it can be decomposed into

Fourier series as [11]:

f(ϕ) =
1

2π
[1 + 2

∞∑
n=1

(cn cosnϕ+ sn sinϕ)]. (2.2.0.1)
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In Eq. (2.2.0.1) cn and sn are called as Fourier coefficients and c0 was assigned

to 1 to be able to normalize the probability density function, hence we can write

the next equation,

∫ 2π

0

f(ϕ)dϕ = 1. (2.2.0.2)

We need to find out the Fourier coefficients cn and sn in Eq. (2.2.0.1), for this

purpose the orthogonality relations of trigonometric functions which are expressed

as below can be exploited.

∫ 2π

0

sin(mx+ α) sin(nx+ β)dx = π cos(α− β)δmn, (2.2.0.3)

∫ 2π

0

cos(mx+ α) cos(nx+ β)dx = π cos(α− β)δmn, (2.2.0.4)

∫ 2π

0

sin(mx+ α) cos(nx+ β)dx = π sin(α− β)δmn (2.2.0.5)

where δmn is the Kronecker delta symbol, n and m are nonzero integers, while

α and β are arbitrary numbers. By using orthogonality relations the Fourier

coefficients are constructed as below:

∫ 2π

0

f(ϕ) cos(nϕ)dx = cn, (2.2.0.6)

∫ 2π

0

f(ϕ) sin(nϕ)dx = sn. (2.2.0.7)

In Eq. (2.2.0.1) p.d.f was decomposed into Fourier series, but equivalently we

can also write the function in this form:

f(ϕ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

]
, (2.2.0.8)

where vn are anisotropic flow harmonics and Ψn are corresponding symmetry

planes. The relationships between the coefficients in Eq. (2.2.0.1) and Eq. (2.2.0.8)

can be written as vn =
√
c2
n + s2

n and Ψn = ( 1
n
) arctan sn

cn
.

If we multiply both sides of equation (2.2.0.8) with cos[m(ϕ−Ψm)] where m

is non-negative integer and take integral of the both sides over sample space, the
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equation becomes:

∫ 2π

0

cos[m(ϕ−Ψm)]f(ϕ)dϕ =
1

2π

∫ 2π

0

cos[m(ϕ−Ψm)]dϕ+

1

π

∞∑
n=1

∫ 2π

0

vn cos[m(ϕ−Ψm)] cos[n(ϕ−Ψn)]dϕ. (2.2.0.9)

As we clearly see in Eq. (2.2.0.9),
∫ 2π

0
cos[m(ϕ−Ψm)]dϕ is equal to 1

m
(sin(m2π−

mΨm)−sin(−mΨm)). In case of m being positive integer, result is obviously zero
1. In order to evaluate the second term in the right-hand side of the equation,

we use orthogonality relation described at Eq. (2.2.0.4) in which α = −Ψm and

β = −Ψn. If m is equal to n, Kronecker delta is 1, otherwise it is zero. That

is why only contribution to the summation comes from equality of m and n,

the remaining terms do not contribute anything. So, the argument becomes
vm
π
π cos(Ψm−Ψm) which is equal to vm. Now we reached out the equation below

(for the sake of generality we used index n instead of m):

∫ 2π

0

cos[n(ϕ−Ψn)]f(ϕ)dϕ = vn. (2.2.0.10)

For continuous random variable, the mean value is calculated as 〈x〉 =
∫ 2π

0
xf(x)dx

where f(x) is probability density function. In case of mean value of a function

(as an example g(x)), the equation turns into
∫ 2π

0
g(x)f(x)dx. In this regard

Eq. (2.2.0.10) is mean value of cos[n(ϕ−Ψn)] and can be expressed as below

vn = 〈cos[n(ϕ−Ψn)]〉 . (2.2.0.11)

The harmonic v1 is called directed flow, the harmonic v2 elliptic flow, the

harmonic v3 triangular flow, etc. So it is clear that to be able to determine the

flow harmonics (vn) and correspondingly to quantify anisotropic flow, we need

to know independently the corresponding symmetry planes Ψn in each event.

Problem of estimating the symmetry plane is that it fluctuates from event to

event. Since neither symmetry planes are recorded by detectors nor we have

a reliable technique to calculate the planes, it has become the main issue in the

flow analysis to estimate the amplitudes of flow harmonics vn without knowing the

symmetry planes Ψn. This can be achieved by utilizing two- and multi-particle

1Where m is zero the first argument in right-hand side of the equation 1
2π

∫ 2π

0
cos[m(ϕ −

Ψm)]dϕ turns into 1
2π

∫ 2π

0
dϕ which is equal to 1. Left hand-side of the equation becomes∫ 2π

0
f(ϕ)dϕ. As a result of orthogonality relation the second argument in right-hand side of

the equation is zero since of inequality of m = 0 and n > 0. So in case of m = 0 the equation

becomes
∫ 2π

0
f(ϕ)dϕ = 1 which is the normalization equation. This is what we expect, because

we assigned the value of v0 to 1 to be able to normalize the probability density function.
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correlation techniques which will be explained at the following chapters.

2.3 Two-Particle Azimuthal Correlations Tech-

nique

First we will define the all-events average two-particle azimuthal correlation in

the following way:

〈〈2〉〉 =
〈〈
ein(ϕ1−ϕ2)

〉〉
=

1

Ω

N∑
n=1

Mn∑
j=1

Mn∑
k=1
k 6=j

ein(ϕn,j−ϕn,k). (2.3.0.12)

In the above equation, angular brackets denote the average over all events. N

is the number of events and Mn is the multiplicity, i.e. the number of produced

particles in the nth event. ϕj,n is the azimuthal angle of jth particle from nth

event measured in the fixed laboratory frame.

We have enforced the constraint k 6= j in Eq. (2.3.0.12), the equality of

these indices is called autocorrelation and this contribution is extracted therefore

from the equation by definition. We are interested in calculation of two-particle

average, by keeping autocorrelation terms in the two-particle average calculation,

since two ϕ are the same we are not dealing with two-particle correlation any

more, so in that case we would just add some cos(0) values into calculation and

that would be strongly biased since cos(0) is obviously the maximum value of the

function. Or more simply Eq. (2.3.0.12) is the average of two different particle

correlations, that is why ϕj,n and ϕk,n angles have to belong to two different

particles (it means the extraction of autocorrelations).

In Eq. (2.3.0.12) we are calculating the average of ein(ϕ1−ϕ2) terms and Ω is

number of such terms over all events with extraction of autocorrelations and it is

the total number of permutations over all classes. 2

2As an analogy there are five students in a class (in our problem it is multiplicity) and two
chairs (in our problem it is ϕ1 and ϕ2), what is the number of possibilities (arrangement/order-
ing) to make sit these students on the chairs. Any of five students can sit on the first chair,
since one of them is already sitting on the first one, any of four students left can sit on the
second chair (in our problem this situation is valid because of extraction of autocorrelations).
The number of possible arrangements is the multiplication of five and four which is the five-
permutation of two: P (5, 2) = 5!

(5−2)! = 5·4·3!
3! = 5 ·4. We just need to remember in permutation

ordering (a, b) and (b, a) are two different situations/cases. For instance in above student-chair
example Jack,David sitting order is different than David,Jack order; so both are counted in
permutation calculations (this corresponds to inclusion of both ein(ϕa−ϕb) and ein(ϕb−ϕa) in our
average calculation). Now we extend the analogy and assume that there are some number of
classes and in each of them, there are different numbers of students (this corresponds to fluc-
tuation of multiplicity from event to event in our problem) and we want to find out what total
number of arrangements of students sitting on the two chairs over all classes is. We found out
that in the class which is composed of five students, the number of arrangements is the number
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In case of average calculation of two-particle correlation the same phenomenon

takes place. For nth event, where Mn denotes the multiplicity of the nth event,

Mn different particles can take place of ϕ1; since autocorrelations are extracted

(Mn−1) particles are left to occupy the ϕ2 place. As stated before ein(ϕa−ϕb) and

ein(ϕb−ϕa) are both included in the calculation. As a result of these, the number

of terms (arrangements) is the multiplication of these two values Mn · (Mn − 1)

for nth event or equivalently multiplicity permutation of 2:

P (Mn, 2) =
Mn!

(Mn − 2)!
= Mn · (Mn − 1) = Ωn. (2.3.0.13)

Ωn is the number of permutation (number of two-particle correlations) for nth

event. So at each event we have Eq. (2.3.0.13) contributes to Ω as the number of

two-particle correlations of the event and that is why Ω would be the addition of

the permutations over all events:

Ω =
N∑
n=1

P (Mn, 2) =
N∑
n=1

Mn(Mn − 1). (2.3.0.14)

So Eq. (2.3.0.12) takes the final form:

〈2〉 =
〈〈
ein(ϕ1−ϕ2)

〉〉
=

1
N∑
n=1

P (Mn, 2)

N∑
n=1

M∑
j=1

M∑
k=1
k 6=j

ein(ϕn,j−ϕn,k). (2.3.0.15)

Above equation is the straight average of two-particle correlations. If we want

to write it in weight-average form, we start by extending above equation over all

events:

〈〈2〉〉 =
1∑N

n=1 P (Mn, 2)

 M1∑
j=1

M1∑
k=1
k 6=j

ein(ϕ1,j−ϕ1,k) +

M2∑
j=1

M2∑
k=1
k 6=j

ein(ϕ2,j−ϕ2,k)+

...+

MN∑
j=1

MN∑
k=1
k 6=j

ein(ϕN,j−ϕN,k)

 . (2.3.0.16)

If 〈2〉n is the average of the nth event, nth argument in the right hand side of

of permutation P (5, 2), structure is the same for the other classes: for instance the number of
arrangements for the class composed of seven students is P (7, 2) and P (10, 2) for the class with
ten students etc. That is why Ω is the total number of permutations over all classes.
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Eq. (2.3.0.16) can be written as

Mn∑
j=1

Mn∑
k=1
k 6=j

ein(ϕn,j−ϕn,k) = Mn(Mn − 1)

∑Mn

j=1

∑Mn
k=1
k 6=j

ein(ϕn,j−ϕn,k)

Mn(Mn − 1)
= Mn(Mn − 1) 〈2〉n .

(2.3.0.17)

As it has been seen in above equation, for nth event we add all two-particle

correlation terms up and divide it by the number of the permutation of the event

and obviously result is two-particle average of the nth event 〈2〉n.

After reminding that Mn(Mn−1) is equal to P (Mn, 2), we insert Eq. (2.3.0.17)

into equation Eq. (2.3.0.16) and reach the following equation:

〈〈2〉〉 =
1∑N

n=1 P (Mn, 2)
[P (M1, 2) 〈2〉1 + P (M2, 2) 〈2〉2 + ...+ P (MN , 2) 〈2〉N ] ,

(2.3.0.18)

which in a compact form can be written as

〈〈2〉〉 =

∑N
n=1 P (Mn, 2) 〈2〉n∑N

n=1 P (Mn, 2)
. (2.3.0.19)

Above equation is the weighted average of two-particle correlation and weight

function is the number of permutations of the nth event. We have derived the

weight-average from the straight average and expect to see the same results from

both of them in any numerical calculations.

One of the key assumption of flow analysis is that emitted particles are inde-

pendent of each other [12]. If x1 and x2 are two independent observables, this

independency allows us to write the average of multiplication as the multiplication

of the averages (〈x1x2〉 = 〈x1〉 〈x2〉). Hence we are able to write the two-particle

correlations in case of ideal flow as

〈〈2〉〉 =
〈〈
ein(ϕ1−ϕ2)

〉〉
=
〈〈
ein(ϕ1−Ψn)

〉 〈
e−in(ϕ2−Ψn)

〉〉
. (2.3.0.20)

Due to the fact that taking average is a linear mapping (where a and b are

constants; x and y are variables, 〈ax+ y〉 = a 〈x〉 + 〈y〉 ) we can write single-

event average in Eq. (2.3.0.20) as

〈
ein(ϕ1−ϕ2)

〉
= 〈cos(n(ϕ1 −Ψn))〉+ i 〈sin(n(ϕ2 −Ψn))〉 . (2.3.0.21)

In a symmetric collision (beam and target particle are the same), it is equally

probable of having an emitted particle with an angle (ϕ − Ψn) and −(ϕ − Ψn).
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So the contribution to average from these particles cancel each other: sin(ϕ −
Ψn) + sin[−(ϕ − Ψn)] = sin(ϕ − Ψn) − sin(ϕ − Ψn) = 0. Therefore the term

〈sin(n(ϕ1 −Ψn))〉 in above equation will vanish. In that regard if we insert

Eq. (2.2.0.11) into Eq. (2.3.0.20), we reached the equation which gives the re-

lation between two-particle correlation average and flow harmonics as

〈〈2〉〉 =
〈
v2
n

〉
. (2.3.0.22)

We have developed a method in order to calculate the flow harmonics. The

method, as we aimed in previous section do not depend on symmetry plane Ψn;

but Eq. (2.3.0.22) is biased even if in only existence of ideal flow due to statistical

fluctuation
〈
vkn
〉
6= 〈vn〉k.

2.3.1 Results

In Fig. (2.3), true Monte Carlo simulation, straight and weighted average of

two-particle correlation technique for second harmonic is presented. For this

simulation 50K events has been run, symmetry plane angles (Ψn) have been

sampled from uniform distribution with sample space [0, 2π) and multiplicity of

an event from uniform distribution with sample space [50,500]. Azimuthal angles

(ϕ) were sampled from probability density function described in Eq. (2.2.0.8). In

this function the value of v2 was given as 0.05, the other harmonics were set to

zero.

Blue circle represents the straight average of Eq. (2.3.0.15), red square denotes

the weighted average with number of permutations in Eq. (2.3.0.19), purple square

represent the weighted average with weight one, green square is weighted with

multiplicity and black square is the result of Eq. (2.2.0.11) as a true Monte Carlo

simulation.

As it can be seen from the figure, true Monte Carlo simulation is converging

to initial value 0.05. As we expect straight average and weighted average with

number of permutations are exactly the same since they are derived from each

other and they are in agreement with initial value of v2 = 0.05. Weight functions

as one and multiplicity in this figure are also in agreement with initial value of

second harmonic, but we will see that these weights will deviate from the initial

value and from true Monte Carlo simulation for higher correlation.

An important result for this simulation, weighted average with permutation is

in exact agreement with straight average. Also CPU time was recorded as 1178.6

and real time was 19:40 minutes. We will see that the time required to run the

particle correlation algorithm will sharply increase for higher orders.
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Figure 2.3: Result of straight and weighted average of two-particle correlations for second
harmonic.

2.4 Multi-Particle Azimuthal Correlations Tech-

nique

In this section, we first will develop four-particle correlations technique; after-

wards we generalize the technique for higher number of particles. Any correlation

involving more than two particles is called multi-particle correlations. We start

by defining the average of four-particle correlations over all events:

〈〈4〉〉 =
〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
=

1

Ω4

N∑
n=1

Mn∑
j=1

Mn∑
k=1
k 6=j

Mn∑
l=1
l 6=k
l 6=j

Mn∑
s=1
s6=l
s 6=k
s 6=j

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s).

(2.4.0.1)

In the above equation, the notation has the same meaning as described in

previous section. Again we removed out all the terms which are result of any

type of equalities of the indices (autocorrelations) from the average calculation.

In case of equality of two indices which does not cancel each other like j and

k, three particles would remain (j = k, l, s) and it means we are adding three

particle correlations terms into average of four-particle correlations; if they cancel

each other like j and l or any three of the indexes are the same, two-particles

would left and we would add two-particle correlations terms into average of four-

particle correlations. If all of the indices are the same we just add some cos(0)

as it is explained in previous section. So now it is clear that we need to extract

autocorrelations from the average calculation, since otherwise they are biased.

Ω4 is the number of four-particle correlations over all events. We may use
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student-chair analogy which has been given in previous section. Now only differ-

ence is that, there are not two but four chairs in each classes. If there are Nn

students in the nth class, Nn different students may sit on the first chair, any

Nn − 1 students left can sit on the second chair, Nn − 2 students can sit on the

third chair and Nn − 3 students may sit on the fourth chair. So the number of

orderings is the multiplication: Nn(Nn− 1)(Nn− 2)(Nn− 3) which is the number

of permutation P (Nn, 4). Over all classes where N is the number of them, the

total number of orderings (arrangements) is the sum of permutations of each class∑N
n=1 P (Nn, 4).

We are seeking the four-particle correlations over all events. IfN is the number

of events and Mn is the multiplicity of the nth event, Mn particles may occupy the

place of ϕ1. After extraction of autocorrelation Mn − 1 particles are left for ϕ2,

Mn− 2 particles for ϕ3 and Mn− 3 particles are left for ϕ4. So the number of the

four-particle correlations for nth event is the multiplication: Mn(Mn − 1)(Mn −
2)(Mn − 3) which is the number of permutations P (Mn, 4). Total number of the

correlations over all events is the sum of the permutations:

Ω4 =
N∑
n=1

P (Mn, 4). (2.4.0.2)

By inserting Eq. (2.4.0.2) into Eq. (2.4.0.1) we reached out the straight average

of four-particle correlation:

〈〈4〉〉 =
1∑N

n=1 P (Mn, 4)

N∑
n=1

Mn∑
j=1

Mn∑
k=1
k 6=j

Mn∑
l=1
l 6=k
l 6=j

Mn∑
s=1
s 6=l
s 6=k
s 6=j

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s). (2.4.0.3)

Now we extend the equation above over all events, for simplicity instead of

four summations we use only one from now on and write it as

〈〈4〉〉 =
1∑N

n=1 P (Mn, 4)

 M1∑
j,k,l,s=1
j 6=k 6=l 6=s

ein(ϕ1,j+ϕ1,k−ϕ1,l−ϕ1,s) + ...

...+

MN∑
j,k,l,s=1
j 6=k 6=l 6=s

ein(ϕN,j+ϕN,k−ϕN,l−ϕN,s)

 . (2.4.0.4)

As we proceeded for two-particle correlations before, nth argument in the right
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hand side of the above equation can be written in terms of nth event average as

Mn(Mn − 1)(Mn − 2)(Mn − 3)

Mn∑
j,k,l,s=1
j 6=k 6=l 6=s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s)

Mn(Mn − 1)(Mn − 2)(Mn − 3)

= Mn(Mn − 1)(Mn − 2)(Mn − 3) 〈4〉n
= P (Mn, 4) 〈4〉n . (2.4.0.5)

After inserting the above equation into Eq. (2.4.0.4), it becomes

〈〈4〉〉 =
1∑N

n=1 P (Mn, 4)
[P (M1, 4) 〈4〉1 + P (M2, 4) 〈4〉2 + ...+ P (MN , 4) 〈4〉N ] .

(2.4.0.6)

Above equation is expressed in summation form as

〈〈4〉〉 =

∑N
n=1 P (Mn, 4) 〈4〉n∑N

n=1 P (Mn, 4)
. (2.4.0.7)

So the last equation is the weight-average of four-particle correlation where weight

function is the number of permutations. The equation has been derived from the

straight average. Therefore we expect to have the exactly the same result from

both of them in any numerical calculations.

It is straightforward to generalize the multi-particle correlation technique for

higher orders. Ω will be the total multiplicity-permutation of six for straight

average of six particle correlation, multiplicity-permutation of eight for straight

average of eight particle correlation etc. So in that regard straight average of six

particle correlation is written as

〈〈6〉〉 =
1∑N

n=1 P (Mn, 6)

N∑
n=1

Mn∑
j,k,l,s,f,t=1

j 6=k 6=l 6=s 6=t6=f

ein(ϕn,j+ϕn,k+ϕn,l−ϕn,s−ϕn,t−ϕn,f ), (2.4.0.8)

eight and higher order of particles correlation follow the same way. In weight

average form, the weight function is permutation of six for six particles, per-

mutation of eight for eight particles, etc. Now we write the above equation in

weighted form:

〈〈6〉〉 =

∑N
n=1 P (Mn, 6) 〈6〉n∑N

n=1 P (Mn, 6)
, (2.4.0.9)

eight and higher orders of particle correlations follow the same structure.

In previous section we exploited independency of the emitted particles and

related the harmonics with average of two-particle correlations. By using the
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same assumption it is also possible to show the relations of average of multi-

particle correlation with harmonics. We start with four-particle:

〈〈4〉〉 =
〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
=
〈〈
ein(ϕ1−Ψn)

〉 〈
ein(ϕ2−Ψn)

〉 〈
e−in(ϕ3−Ψn)

〉 〈
e−in(ϕ4−Ψn)

〉〉
. (2.4.0.10)

Since sine terms vanish, each average in the right hand side of above equation is

equal to one power of flow harmonic (vn). Therefore we can express the above

equation as

〈〈4〉〉 =
〈
v4
n

〉
. (2.4.0.11)

If we follow the same steps and use the same assumption, higher order relations

can be constructed as in the following equations:

〈〈6〉〉 =
〈
v6
n

〉
, 〈〈8〉〉 =

〈
v8
n

〉
, etc. (2.4.0.12)

As we stated before, even if in perfect scenario (only collective flow exist) above

equation is biased due to statistical fluctuation:
〈
vkn
〉
6= 〈vn〉k.

Up to now we constructed a method which does not depend on symmetry

plane angles, but the method is not feasible in terms of CPU time. For instance

the time required to run the algorithm of eight particle correlation technique last

a few billion years because of nested loops for a dataset corresponding to real

heavy-ion collisions collected at LHC. In the next section we will focus on this

obstacle.

2.5 Q-vector

Q-vector plays a central role in flow analysis. We start with definition of the

Q-vector, afterwards we will show how to implement Q-vector into two and multi-

particle correlation technique. Finally, we will see how one gets rid of the nested

loops with this implementation. As a result, it will be clear how sharply CPU

time will decrease and the correlation technique will become feasible.

2.5.1 Q-vector and Two-Particle Correlations

If ϕ is the transverse plane angle of the emitted particles in fixed laboratory

frame, Mn is the multiplicity of the nth event, Q-vector in nth harmonic for an

event will be denoted as Qn and evaluated in the following way:

Qn =
Mn∑
i=1

einϕn,i . (2.5.1.1)
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In order to ovoid any confusion, one has to be careful with nth harmonic and nth

event, for instance Mn is the multiplicity of nth event but Qn is the Q-vector of

nth harmonic.

As it can be seen from above equation Q-vector is a complex number. Obvi-

ously square of an absolute value of a complex number can be expressed as below:

|Qn|2 = QnQ
∗
n =

Mn∑
i=1

einϕi

Mn∑
i=1

e−inϕi =
Mn∑
i=1

Mn∑
j=1

ein(ϕn,i−ϕn,j). (2.5.1.2)

The last term in above equation is exactly the same with the last part of

the Eq. (2.3.0.15) except the extraction of the autocorrelation. To be able to

implement above equation into straight average of the two-particle correlations,

we need to find out the contribution of autocorrelation to above equation. In that

purpose we can write the above equation like below with help of two constrains

(i = j) and (i 6= j) which exclude each other:

|Qn|2 =
Mn∑
i=1

Mn∑
j=1

ein(ϕn,i−ϕn,j) =
Mn∑
i=1

Mn∑
j=1
j 6=i

ein(ϕn,i−ϕn,j) +
Mn∑
i=1

Mn∑
j=1
j=i

ein(ϕn,i−ϕn,j).

(2.5.1.3)

We are familiar with the first term in the most right hand side of above

equation. But what is the second term? For two-particle correlation it is relatively

easy to answer but it is going to be a real challenge for higher orders, as we will

see later. So in the second term i first takes value 1 and j has to take the same

value since of the constrain (i = j), if we extend the equation in this regard we

obtain:
Mn∑
i=1

Mn∑
j=1
j=i

ein(ϕn,i−ϕn,j) = 1 + 1 + ...+ 1 = Mn. (2.5.1.4)

By inserting this second term as multiplicity of the nth event in previous equation,

we reached out:

|Qn|2 −Mn =
Mn∑
i=1

Mn∑
j=1
i 6=j

ein(ϕn,i−ϕn,j). (2.5.1.5)

By inserting this equality of the nested loop into straight average of two-particle

correlation (Eq. (2.3.0.15)), we can write the following equation:

〈〈2〉〉 =
〈〈
ein(ϕ1−ϕ2)

〉〉
=

1
N∑
n=1

P (Mn, 2)

N∑
n=1

[
|Qn|2 −Mn

]
. (2.5.1.6)
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Where k = 1, 2, 3... above equation can be generalized as,

〈〈2〉〉kn|kn =
〈〈
eikn(ϕ1−ϕ2)

〉〉
=

1
N∑
n=1

P (Mn, 2)

N∑
n=1

[
|Qkn|2 −Mn

]
. (2.5.1.7)

So as it has been seen, we get rid of the nested loops for straight average of

two-particle correlation technique by implementing the Q-vector. What we only

need to do is the calculation of Q-vector for each event.

Now we repeat the same process for weighted average of two-particle correla-

tion in order to remove nested loops. In Eq. (2.3.0.19) we expressed the weighted

average where the equation 〈2〉n denotes the average of the nth event. If we write

it as

〈2〉n =

Mn∑
i=1

Mn∑
j=1
k 6=j

ein(ϕi−ϕj)

P (Mn, 2)
, (2.5.1.8)

and replace the nested loops with Eq. (2.5.1.5), we get the following equation:

〈2〉n =

N∑
n=1

[
|Qn|2 −Mn

]
P (Mn, 2)

. (2.5.1.9)

Now average of two-particle equation Eq. (2.3.0.19) is free of nested loops and

takes the final form:

〈〈2〉〉 =

N∑
n=1

Wn 〈2〉n

N∑
n=1

Wn

, (2.5.1.10)

where Wn’s are the permutations P (Mn, 2).

In two-particle correlation it is relatively straightforward to figure out the

contribution of autocorrelation, but it is instructive to grasp and appreciate the

role of Q-vector in flow analysis. As we will see in the next and other chapters, Q-

vector technique decreases the CPU time tremendously and makes the correlation

technique feasible.

Results

In Fig. (2.4), true Monte Carlo simulation, straight and weighted average of two-

particle correlation technique with Q-vector for second harmonic are presented.

For this simulation 50K events have been run, symmetry plane angles (Ψn) have
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been sampled from uniform distribution with sample space [0, 2π) and multiplicity

of an event from uniform distribution with sample space [50,500]. Azimuthal an-

gles (ϕ) were sampled from probability density function described in Eq. (2.2.0.8).

In this function the value of v2 was given as 0.05, the other harmonics were set

to zero. Weight function of two-particle correlation technique with and without

Q-vector are the same and it is multiplicity-permutation of two.

In this figure, first we see that inclusion of Q-vector technique has decreased

the CPU time tremendously. Straight averages are equal to weight averages with

or without Q-vector. Also this is a cross-check of inclusion of Q-vector, as we see

inclusion of Q-vector into technique is giving the same result with two-particle

correlation.
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0.054
{2,True Monte Carlo}2v
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{2,Q-Straight average}2v

 {2,Q-Weighted average [m(m-1)]}2v

CPU time~1200 CPU time~50

Figure 2.4: Result of straight and weighted average of two and multi particle correlation with
Q-vector for second harmonic.

2.5.2 Q-vector and Multi-Particle Correlations

In this section we start with inclusion of Q-vector into four-particle correlation

by showing all the steps explicitly and then we will apply the same process to

higher orders.

First we write average of four-particle correlation for nth event in a different

form,

〈4〉n,n|n,n =
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
=

1

P (Mn, 4)

[
Mn∑
j,k,l,s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s) − A4

]
.

(2.5.2.1)

In above equation, summation term does not exclude any autocorrelation. That

is why we subtract A4 which is the whole contribution from autocorrelations to
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summation term. This form let us to write four-particle correlation in terms of

Q-vector like in the following equation,

〈4〉n,n|n,n =
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
=

1

P (Mn, 4)

[
|Qn|4 − A4

]
. (2.5.2.2)

Now question is how many autocorrelations we have and what is their contribu-

tions. Only two particles might be the same: 4!/(2!2!) = 6, so we have six combi-

nations (j = k, j = l, j = s, k = l, k = s, l = s), each of this combinations corre-

sponds to three different particles. Three of them might be the same: 4!/3! = 4,

hence we have four combinations (j = k = l, j = k = s, j = l = s, k = l = s)

which is corresponding to two different particles. All particles might be the

same (j = k = l = s) meaning there is only one particle. One has to be

careful here, also we can divide four-particles into two different groups and in-

dexes equal each other in the same group but not equal to other group’s index

(j = k 6= l = s, j = l 6= k = s, j = s 6= l = k), these situations also corresponds

to two different particles. So there are three type of autocorrelations and we will

examine all these situations and find out their contributions.

There is only one particle:

This is the easiest case obviously, all indices/particles take the same value

from one to the multiplicity of the event:

Mn∑
j=k=l=s=1

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s) = e0 + e0 + ...+ e0 = Mn. (2.5.2.3)

There are two different particles:

These are the combinations we have for two different particles: (j = k = l, j =

k = s, j = l = s, k = l = s) and (j = k 6= l = s, j = l 6= k = s, j = s 6= l = k).

We start with first one (j = k = l) and write this case as

Mn∑
j=k=l 6=s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s) = P (Mn, 2)

Mn∑
j=k=l 6=s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s)

P (Mn, 2)
. (2.5.2.4)

In the right hand side of above equation, we divide the summation term with

multiplicity-permutation of two, now this term is nothing else but average of

two-particle correlation for the nth event. So above equation turns into:

Mn∑
j=k=l 6=s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s) = P (Mn, 2) 〈2〉n|n . (2.5.2.5)



27 CHAPTER 2. FLOW ANALYSES

Rest of the three cases (j = k = s, j = l = s, k = l = s) have the same amount of

contributions.

The other combinations which create two-particle correlations are (j = k 6=
l = s, j = l 6= k = s, j = s 6= l = k), contribution from the first combination

(j = k 6= l = s) might be written as

Mn∑
j=k 6=l=s

ein(2ϕn,j−2ϕn,s) = P (Mn, 2) 〈2〉2n|2n . (2.5.2.6)

Contribution of the second combination:

Mn∑
j=l 6=k=s

ein(ϕn,j+ϕn,k−ϕn,l−ϕn,s) = P (Mn, 2), (2.5.2.7)

and it is the same for third combination. Finally we can write all contribution

for the case of two different particles like below,

4P (Mn, 2) 〈2〉n|n + P (Mn, 2) 〈2〉2n|2n + 2P (Mn, 2). (2.5.2.8)

There are three different particles:

The combinations we have for this cases are (j = k, j = l, j = s, k = l, k =

s, l = s), we start with (j = k) and write the following equation,

Mn∑
j=k 6=l 6=s

ein(2ϕn,j−ϕn,l−ϕn,s) = P (Mn, 3)

Mn∑
j=k 6=l 6=s

ein(2ϕn,j−ϕn,l−ϕn,s)

P (Mn, 3)
= P (Mn, 3) 〈3〉2n|n,n .

(2.5.2.9)

For the combination of (l = s), the contribution is

Mn∑
j 6=k 6=l=s

ein(ϕn,j+ϕn,k−2ϕn,s) = P (Mn, 3) 〈3〉n,n|2n . (2.5.2.10)

For the combination of (j = l), the contribution is

P (Mn, 3)

Mn∑
j=l 6=k 6=s

ein(ϕn,j+ϕn,k−ϕn,j−ϕn,s)

P (Mn, 3)
= P (Mn, 3)

〈
eϕ1+ϕ2−ϕ1−ϕ3

〉
. (2.5.2.11)

In above equation there are three particles, hence the “sample space” is permuta-

tion of three. But two particles cancel each other and two particles are left, that
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is why we can not write it directly neither as average of two-particle nor average

of three particles but as in the right hand side of above equation. And this term

can be decomposed as following,

P (Mn, 3)
〈
ein(ϕ1+ϕ2−ϕ1−ϕ3)

〉
= P (Mn, 3)

〈
ein(ϕ2−ϕ3)

〉
= P (Mn, 3) 〈2〉n|n .

(2.5.2.12)

Rest of the combinations (j = s, k = l, k = s) contribute with the same amount.

Now we can express the total contribution of three different particles as below:

P (Mn, 3) 〈3〉2n|n,n + P (Mn, 3) 〈3〉n,n|2n + 4P (Mn, 3) 〈2〉n|n . (2.5.2.13)

So we found out all contribution from autocorrelations, now we add them up and

write it as,

A4 = P (Mn, 3)[〈3〉2n|n,n+〈3〉n,n|2n+4 〈2〉n|n]+P (Mn, 2)[4 〈2〉n|n+〈2〉2n|2n+2]+Mn.

(2.5.2.14)

Before we insert the last equation into Eq. (2.5.2.2), average of tree particle

correlation has to be expressed in terms of Q-vector. In that regard, average of

three particle correlation 〈3〉2n|n,n is written as

〈3〉2n|n,n =

Mn∑
j 6=l 6=s

ein(2ϕn,j−ϕn,l−ϕn,s)

P (Mn, 3)
=

1

P (Mn, 3)
[Q2nQ

∗
nQ
∗
n − A3] . (2.5.2.15)

So A3 is the total contribution from autocorrelation which we will construct as

below,

A3 = 2P (Mn, 2) 〈2〉n|n + P (Mn, 2) 〈2〉2n|2n +Mn. (2.5.2.16)

The first term in right hand side of above equation stems from equality of (j = k)

and (j = l), second term from equality of (k = l) and the last term from equality

of three indexes.

By following the same steps, 〈3〉n,n|2n is constructed like

〈3〉n,n|2n =

Mn∑
j 6=k 6=l

ein(ϕn,j+ϕn,k−2ϕn,l)

P (Mn, 3)
=

1

P (Mn, 3)
[QnQnQ

∗
2n − A3b] , (2.5.2.17)
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as one may expect A3b is giving the same result and it reads:

A3b = 2P (Mn, 2) 〈2〉n|n + P (Mn, 2) 〈2〉2n|2n +Mn. (2.5.2.18)

Now we insert Eq. (2.5.2.18) into Eq. (2.5.2.17), Eq. (2.5.2.16) into Eq. (2.5.2.15).

Afterwards Eq. (2.5.2.17) and Eq. (2.5.2.15) will be inserted into Eq. (2.5.2.14).

By putting the last equation into Eq. (2.5.2.2) we obtain final form of average of

four-particle correlations in terms of Q-vector for nth events:

〈4〉n ≡ 〈cos(n(ϕ1+ϕ2−ϕ3 −ϕ4))〉

=
1

P (Mn, 4)

Mn∑
i,j,k,l=1

(i 6=j 6=k 6=l)

ein(ϕi+ϕj−ϕk−ϕl)

=
1

P (Mn, 4)
×
[
|Qn|4+|Q2n|2−2 ·Re [Q2nQ

∗
nQ
∗
n]−4(M−2) |Qn|2

+2M(M−3)
]
, (2.5.2.19)

Finally, in terms of Q-vector, weight average of four-particle over all event

reads:

〈〈4〉〉n,n|n,n =

Mn∑
n=1

P (Mn, 4) 〈4〉n

Mn∑
n=1

P (Mn, 4)

. (2.5.2.20)

In case of straight average, permutations in numerator of above equation cancel

each other, we add the terms in square brackets of Eq. (2.5.2.19) and divide the

addition by summation of permutations.

If we follow the same steps we reached out average of six particle correlation

of an event like in the following equation,

〈6〉n =
1

P (Mn, 6)

Mn∑
j,k,l,s,f,t=1

k 6=j 6=l 6=s 6=f 6=t

ein(ϕ1,j+ϕ1,k−ϕ1,l−ϕ1,s)

=
1

P (Mn, 6)

[
|Qn|6 + 9|Q2n|2|Qn|2 − 6 ·Re[Q2nQnQ

∗
nQ
∗
nQ
∗
n]

+4 ·Re[Q3nQ
∗
nQ
∗
nQ
∗
n]− 12 ·Re[Q3nQ

∗
2nQ

∗
n] + 18(Mn − 4) ·Re[Q2nQ

∗
nQ
∗
n]

+4|Q3n|2 − 9(Mn − 4)(|Qn|4 + |Q2n|2) + 18(Mn − 2)(Mn − 5)|Qn|2

−6(Mn − 4)(Mn − 5)] . (2.5.2.21)

The same procedure might be followed in order to get higher order corre-

lations (further details and results for higher orders can be found in [7]). The
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problem with multi-particle correlation is that the method is precisely applicable

in the situation when only collective flow exists (actually as we stated before,

even if in this ideal scenario method is biased because of statistical fluctuation of

harmonics. But we will delay this discussion to Symmetric Cumulant section).

We expressed the key assumption of collective flow analysis as “all emitted parti-

cles are independent of each other”. But in reality there are correlated particles

contribute average calculation we were dealing with. This contribution is called

as non-flow and arise from several sources such as resonance decays, jets, quan-

tum correlation between identical particles, global momentum conservation which

causes a back to back correlation between particles’ momentum, Coulomb and

strong interaction among the particles especially for low relative velocities and

possibly some not known sources yet [13] [14] [15]. So multi-particle correlation

method is sensitive to non-flow and next section we will try to explain how it is

possible to suppress it.

Results

In Fig. (2.5) we run the Monte Carlo simulation with the same settings which

have been described in previous two result sections.

First we observe that straight and weight average as permutation are the same

for two, four and six particle correlation. These two averages converge to true

Monte Carlo value with relatively small error margin. As one can see from this

figure, weight function as one and multiplicity are deviating from true Monte

Carlo value for higher orders within relatively huge statistical errors. Finally

CPU time is recorded as 90 which is less than two minutes in real time. So we

clearly see that inclusion of Q-vector by decreasing the CPU time enormously

made the method feasible.

2.6 Q-Cumulants

As we stated in previous section multi-particle correlation technique is not quite

correct, due to contribution from non-flow. Cumulant is not capable of calculating

quantitatively the magnitude of this contribution but can suppress it down to

the scale which we are able to ignore [16] [17], it is not feasible with multi-

particle correlation technique since of extremely huge CPU time. Implementation

of Q-vector in cumulants which is called as Q-Cumulants makes the technique

applicable [18]. In this section we try to explain how it is possible to reduce the

non-flow and how one can use Q-Cumulants in collective flow analyses.



31 CHAPTER 2. FLOW ANALYSES

0 1 2 3 4 5 6 7

2v

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 True Monte Carlo
Straight average
Weighted with permutation 
Weighted with 1 
Weighted with multiplicity 

{MC}2v {2,Q}2v {4,Q}2v {6,Q}2v

CPU time~90

Figure 2.5: Result of straight and weighted average of two and multi-particle correlation with
Q-vector for second harmonic. At x axis we sated the order of correlation, y axis is the second
flow harmonic.

Figure 2.6: Representation of ran-
domly distributed eight correlated
pairs; multiplicity is sixteen. .

Due to non-flow correlation, factorization

of average is broken; but it is possible to de-

compose the averages in terms of cumulants.

We start with two-particle average and de-

compose it like in the following way,

〈x1x2〉 = 〈x1〉 〈x2〉+ 〈x1x2〉c . (2.6.0.22)

In above equation x1 and x2 are random vari-

ables, if they are independent the average on

the left side factorizes to 〈x1〉 〈x2〉; clearly in

this case two-particle cumulant is zero. This is

a collorary of cumulant: “A cumulant is zero

if one of the variables in it is independent of

the others. Conversely, a cumulant is not zero if and only if the variables in it are

statistically connected. [19]”. Now we set the variables x1 and x2 to ein(ϕ1−Ψn)

and ein(ϕ2−Ψn), respectively:

〈
ein(ϕ1−ϕ2)

〉
=
〈
ein(ϕ1−Ψn)

〉 〈
e−in(ϕ2−Ψn)

〉
+
〈
ein(ϕ1−ϕ2)

〉
c
. (2.6.0.23)

The term in the left hand side is the two-particle correlation, this is the value we

measure. Second term in the right hand side of the equation is two-particle cu-

mulant. It can not be factorized, since it denotes the contribution from correlated

particles. For instance ρ meson decays into two pions which are dependent on
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each other due to momentum and energy conservation, so the correlation among

these pions are measured by cumulant term. Where δ is the two-particle cumulant

contribution, previous equation turns into:

〈
ein(ϕ1−ϕ2)

〉
= v2

n + δ. (2.6.0.24)

In Fig. (2.6) we illustrated a rough picture of Hijing (only non-flow) which is

composed of randomly distributed eight-correlated particles pairs. This figure is

not a realistic picture of Hijing, simply shows the random distribution of corre-

lated pairs. In this figure closeness of the arrow only represents the correlation

among two-particles. In case of Hijing, vn will vanish since of random distribu-

tion of pairs, but two-particle correlations will not and yields a value which comes

from non-flow. So Eq. (2.6.0.24) turns into:

〈
ein(ϕ1−ϕ2)

〉
= δ(

1

m
). (2.6.0.25)

In above equation, if we imagine the average in matrix form at each row there

will be one correlated term, at total m rows gives m correlated terms (magni-

tudes are not clear). Division of uncorrelated terms’ addition by sample space

(m(m − 1)) will vanish, this is because of random distribution of pairs. So δ is

approximately equal to m
m(m−1)

∼ 1
m

. Contribution only comes from correlated

particles, that’s why simply we can use probabilistic way: probability of a par-

ticle matching with its pair, they are dependent on each other, with multiplicity

(m) is 1
m−1

. So two-particle cumulant approximately scale as 1
m

. With the same

reasoning three-particle cumulant scale as 1
m2 . More generally, when we have n-

particle cumulant, it scale as 1
mn−1 . Unfortunately in Eq. (2.6.0.24) v2

n also scale

as 1
m

, that is why we can not neglect non-flow contribution.

To be able to understand how it is possible to reduce the non-flow effect, we

proceed with decomposition of four-particle correlation average as we explain in

Appendix (A). After inserting proper scaling we obtain the final form:

〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
= v4

n +
4v2

n

m
+

2

m2
+ δ(

1

m3
). (2.6.0.26)

With subtraction of Eq. (2.6.0.26) and Eq. (2.6.0.24) like in the following way

2
〈
ein(ϕ1−ϕ2)

〉2 −
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
= 2v4

n +
4v2

n

m
+

2

m2

−
[
v4
n +

4v2
n

m
+

2

m2
+ δ(

1

m3
)

]
= v4

n + δ(
1

m3
), (2.6.0.27)
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two-particle cumulant contribution has canceled. Three-particle cumulant con-

tribution has vanished because any three-particle correlator evaluated for three

same harmonics is non-isotropic. In above equation first term v4
n scales as 1

m2 , on

the other hand second term δ is of order 1
m3 ; relative to the first term non-flow

contribution is reduced by factor of 1/m. Thus, we neglect the second term and

write the subtraction as,

2 〈2〉2 − 〈4〉 = v4
n. (2.6.0.28)

It is straightforward to show that by definition above equation is equal to

four-particle cumulant. We set the variables x1, x2, x3, x4 in Eq. (A.0.3.1) to

einϕ1 , einϕ2 , e−inϕ3 and e−inϕ4 , respectively. Non-isotropic terms vanish over all

events since we have a “perfect” detector which means its azimuthal acceptance is

uniform. In the next result section one may see the distributions of the azimuthal

angle, indeed, they are uniform for all centralities. So after defining new variables

and removing non-isotropic terms from four-particle average decomposition, we

reached out the equation:

−〈4〉c = 2 〈2〉2 − 〈4〉 = v4
n. (2.6.0.29)

If x1 = einϕ1 and x2 = e−inϕ2 are inserted in Eq. (2.6.0.22), first term of

the right hand side of the equation vanish since of nonisotropy and two-particle

cumulant becomes:

〈2〉c = 〈2〉 . (2.6.0.30)

By utilizing the collorary which has been mentioned before (cumulant is zero,

only, when there is any independence among its variables), we can state that,

two-particle cumulant is sensitive to two and higher order correlations. On the

other hand, four-particle cumulant is not sensitive to two or three particle corre-

lation, since there has to be one or two particle which would be independent from

the rest and four-particle cumulant becomes zero. More generally, if cumulant

order is k and order of correlation is k′; k-particle cumulant is not sensitive to

correlations which have order k′ < k. Obviously in this regard, six-particle cumu-

lant is less sensitive to non-flow compared to four-particle cumulant. But when

we are dealing with higher order cumulants, we are also increasing the statistical

uncertainties. That is why, it is the optimal solution to work with four-particle

cumulant. In addition to statistical uncertainties, it is clear from the scales of the

non-flow correlations, that the most important contribution is coming from two

correlated particles which is eliminated by four-particle cumulant, contribution

from four or higher order of correlations are negligible, thus the difference of the

sensitivity of four and six-particle cumulants is also negligible.

In Eq. (2.6.0.29) and Eq. (2.6.0.30), we use unbiased estimators to be able
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to calculate the cumulants as two and four-particle correlation averages with

implementation of Q-vector and call it as Q-Cumulants. Now we examine the

last two equations for the ideal scenario when statistical fluctuations are absent:

vn{2} =
√
〈2〉c =

√
〈〈2〉〉 = vn, (2.6.0.31)

vn{4} = 4

√
−〈4〉c =

4

√
2 〈〈2〉〉2 − 〈〈4〉〉 = 4

√
2v4

n − v4
n = vn. (2.6.0.32)

In above equations vn is flow harmonic, what we measure with Q-Cumulants

would be different since of non-flow and statistical fluctuations. Thus we intro-

duce new notations: In the equations above, vn{2} and vn{4} are what we mea-

sure with two and four-particle Q-Cumulants, respectively, and they are called as

reference flow harmonics.

2.6.1 Data Selection and Results

In this section, we start with data selection criteria and present the results of

charged particles in ALICE experiment for flow analysis.

Data have been used for the results in this section collected by ALICE detector

in 2010 from Pb–Pb collisions at center-of-mass energy
√
sNN = 2.76 TeV from

the runs 137161 and 137162. Particles have been selected from the transverse

momentum interval 0.2 < pT < 5 GeV/c and pseudorapidity range |η| < 0.8.

The z position of the primary vertex which is found in |V ertexz| < 10 cm has

been used to ensure an uniform acceptance (further details might be found in [7]).

First in Fig. (2.7), we present the distribution of azimuthal angle ϕ over all

events for centrality 0−5%, 40−50% and 70−80% (results for other centralities

can be found in Appendix (D.1)). We can clearly see that the distribution for

all centralities is uniform. This implies that we can regard the detector as a

“perfect” one. Now we ensure that, indeed, the average of nonisotropic terms

over all events at each centrality vanishes due to uniform distributions.

In Fig. (2.8), distribution of multiplicity for central, midcentral and periph-

eral collision have been presented (results for the other centralities are in Ap-

pendix (D.2)). Most importantly in these figures, we observe that mean value

of multiplicity is dropping from central collisions to peripheral collisions. For

70 − 80% centrality, the mean value is around 44. Obviously, for such a small

number of particles we may not have reliable results at this centrality, since of

high statistical uncertainties.

In Fig. (2.9), we see the results of two and four-particle cumulants for second

reference flow harmonic. Elliptic flow characterizes the strength of anisotropy, at
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Figure 2.7: Distribution of azimuthal angle ϕ for central, midcentral and peripheral collisions.

most central collisions because of the collision symmetry v2 will vanish. In the

most central collisions the initial geometry in coordinate space is nearly spheri-

cal, and that therefore second harmonic in most central collisions originate solely

from fluctuations. At peripheral collisions, due to low multiplicity we expect

to see less strong anisotropy compared to midcentral collisions and v2 reaches

its maximum value at midcentral collisions, since of the anisotropy of the colli-

sions and relatively large multiplicity. We see from the figure that four-particle

cumulant’s result is in agreement with our expectations, but not two-particle

cumulant, this is because; as we explained in previous sections, two-particle cu-

mulant is more sensitive to non-flow compared to four-particle cumulant. At

centrality 70 − 80% which is regarded as peripheral collision statistical error is

in such a magnitude (because of low multiplicity) that it prevents us to compare
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Figure 2.8: Distribution of multiplicity for central, midcentral and peripheral collisions.

the result with other centralities and decide if it increases or decreases. For two-

particle cumulant, second harmonic reaches peak values at peripheral collisions.

If we remember two-particle correlations of non-flow scale as 1
m

and two-particle

cumulant is sensitive to it, at peripheral collisions flow harmonic contribution

will reach its minimum values but non-flow, since of low multiplicity, have its

strongest effect. Although both cumulants are seeking for the same quantity, we

found out two different results. This difference arises from two different sources.

Obviously, first reason is that four-particle cumulant, as we stated before, is sup-

pressing non-flow contribution. Second reason, even if in ideal scenario (there is

only flow) two and four-particle cumulants are subject to statistical fluctuation

which yields two different results. This will be the topic of the following sections.

In the Appendix (E.0.1), we present the code snippets which have been used for
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analysis of two and four-particle cumulants ( Fig. (2.9)).
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Figure 2.9: Centrality dependence of elliptic flow from two and four-particle cumulants.
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Chapter 3

Flow Fluctuations

Anisotropic flow phenomenon was simply defined as transformation of initial

anisotropy into transverse plane as anisotropic distribution via interaction of

particles. This transformation is responsible for elliptic flow v2. On the other

hand, fluctuations of initial positions of nucleons inside the collision geometry

from event to event is capable of creating any flow harmonics vn. As it is de-

picted in Fig. (3.1) distribution of participant nucleons may have contained both

elliptic and triangular flow harmonics. In this section we are probing into these

fluctuations in terms of correlation of harmonics.

Figure 3.1: Distribution of participant nucleons inside the collision geometry includes both
triangular (v3) (on the right) and elliptic (v2) (on the left) harmonics.

3.1 Symmetric Cumulants

In previous sections, we stated that even there is no contribution from non-flow,

two and multi-particle correlations techniques are biased. Flow fluctuation man-

ifests itself through statistical fluctuation. This fluctuation which we have ne-

glected results in different values for harmonics in each event and are responsible

for 〈v2〉 6= 〈v〉2. This bias has been quantified in Appendix (B) and we reached

39
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the following equations:

v{2} = 〈v〉
(

1 +
σ2
v

〈v〉

)1/2

, (3.1.0.1)

v{4} = 〈v〉
(

1− 2
σ2
v

〈v〉

)1/4

. (3.1.0.2)

The first equation above measures second harmonic via two-particle cumulant;

left hand side of the equation is reference harmonic, this is what we are measuring,

first term in the right hand side of the equation 〈v〉 is true value of the harmonic.

In the parenthesis, numerator is variance and it is a positive value; denominator

is also positive due to correlation of outgoing particles with reaction plane. As

a result, we clearly see that what we are measuring with two-particle cumulants

is higher than true value. The second equation above measures second harmonic

via four-particle cumulant. Examination of this equation shows that what we

are measuring is lower than true value. Now we can conclude that in Fig. (2.9),

statistical fluctuation is responsible for having two different results or in other

words flow fluctuation causes the results of two- and four-particle cumulants to

be different from each other.

Now we will quantify the relationship between fluctuations of individual flow

harmonics event-by-event. Obviously they might be correlated, anti-correlated or

not correlated. We start with setting the variables in Eq. (A.0.3.1) x1, x2, x3 and

x4 to einϕ1 , eimϕ2 , e−inϕ3 and e−imϕ4 respectively. All nonisotropic terms vanish

and we get:

〈〈cos(mϕ1 + nϕ2 −mϕ3 − nϕ4)〉〉c = 〈〈cos(mϕ1 + nϕ2 −mϕ3 − nϕ4)〉〉

− 〈〈cos[m(ϕ1 − nϕ2)]〉〉 〈〈cos[n(ϕ3 − nϕ4)]〉〉

=
〈
v2
mv

2
n

〉
−
〈
v2
m

〉 〈
v2
n

〉
. (3.1.0.3)

Left hand side of above equation is four-particle cumulant with two different

and symmetric harmonics. This new variable is called as Symmetric Cumulant

SC(m,n) [20]. Double angular brackets in above equation represent the average

over all events as we carried out before. The last line in above equation is valid in

the absence of non-flow, but here we are calculating four-particle cumulant and

it has been proven that four-particle cumulant is sensitive to non-flow with scale

of 1/m3, where m is the multiplicity. Thus, we neglect the non-flow contribution.

The observable in Eq. (3.1.0.3) SC(m,n) is free of symmetry plane angles Ψn;

since the observable has two and symmetric harmonics (m,n,−m,−n), depen-

dence on symmetry planes has been canceled. SC(m,n) is zero if any of flow

harmonic is absent or constant. In addition to these situations, it is obvious that
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if flow harmonics are independent of each other, SC(m,n) is zero; but opposite

is not supposedly correct.

vm and vn are calculated according to their harmonic index as in Eq. (2.5.1.10).

Previously we have calculated four-particle correlation with the same harmonic,

this time we have two different harmonics and state the analytic result for four-

particle average of the event n in terms of Q-vector as in the following equation [7]:

〈4〉n = 〈cos(mϕ1 + nϕ2 −mϕ3 − nϕ4)〉 =
1

P (Mn, 4)
[|Qm|2|Qn|2

− 2Re[Qm+nQ
∗
mQ

∗
n]− 2Re[QmQ

∗
m−nQ

∗
n] + |Qm+n|2 + |Qm−n|2

− (Mn − 4)(|Qm|2 + |Qn|2) +Mn(Mn − 6)]. (3.1.0.4)

In above equation subindex of 〈4〉n represents the event n. Now by implementing

Eq. (2.5.1.10) for different harmonics and Eq. (3.1.0.4) into Eq. (3.1.0.3), it is

possible to find out the symmetric cumulant.

3.1.1 Monte Carlo Simulations

Multiplicity has been sampled from uniform distribution [50,500], 50K events has

been run and v2 was distributed uniformly from [0.04, 0.1] for the all following

simulations.

First in Fig. (3.2a) we set a positive correlation between fluctuations of fourth

and second harmonics: v4 = v2 + d and d is 0.15, one has to be careful with

assignment of d and with distribution of v2; harmonics should have positive values

with these assignments. Now v2 is positive since of its sample space and for each

simulation we give a value to d which makes v4 a positive harmonic, so that

the Fourier series decomposition in Eq. (2.2.0.1), when interpreted as p.d.f, is

always positive definite. As a result we see on the figure, SC(4, 2) is positive and

consistent with analytic result for SC(4, 2) for this particular Monte Carlo study,

which is shown with the blue marker.

In Fig. (3.2b) negative correlation has been created among the harmonics with

equation v4 = −v2 + d. As it can be seen from the graph, symmetric cumulant

has a negative value and consistent with analytic result, which is shown with the

blue marker, within statistical uncertainty.

The same process can be applied to the correlation among v3 and v2. For

this simulation d is set to 0.13. As we see from Fig. (3.3a), we created a positive

correlation between fluctuations of the harmonics v3 and v2, as we expect SC(3, 2)

has a positive value. In Fig. (3.3b) a negative correlation has been created and

as a result SC(3, 2) has a negative value. Both of the numerical results are in
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Figure 3.2: Analytic and SC(4, 2) results for positive and negative correlations of v4 and v2.

agreement with their analytical results. All analytical results in this thesis were
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Figure 3.3: Analytic and SC(3, 2) results for positive and negative correlations ofv3 and v2.

calculated by Mathematica.

3.1.2 Results

Now we present results from data collected by ALICE detector in 2010 from

Pb–Pb collisions at center-of-mass energy
√
sNN = 2.76 TeV with momentum

interval 0.2 < pT < 5 GeV/c and pseudorapidity range |η| < 0.8.

Unlike in Q-Cumulant analysis, now we need to run over all 2010 data (90

runs in total) which passed all central quality assurance criteria in ALICE, e.g.
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we plot two-particle correlation evaluated in second harmonic vs. run number

for centrality 10 − 20%. In Fig. (3.4) we see the results, on x-axis we have 90

run numbers and on y-axis two-particle correlation evaluated in second harmonic

with its statistical error. Results in all runs for two-particle correlations evaluated

in second harmonic are consistent within their statistical errors, otherwise the

particular run which has different result would need to be excluded from the

further analysis. We have developed the analysis task, which was carried out

on the Worldwide LHC Computing Grid (WLCG), a part of it is presented in

Appendix (E.0.2).
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Figure 3.4: Trending

In Fig. (3.5), we see azimuthal angle distribution for central, mid-central and

peripheral collisions. The uniform distributions at each centrality ensure that we

have an uniform azimuthal acceptance in each of the runs which were analyzed.

In Fig. (3.6), multiplicity distributions for central, mid-central and peripheral

collisions are presented. Most importantly we observe that mean value of mul-

tiplicity is dropping from central (around 2000) to peripheral collisions (around

75).

Finally, in Fig. (3.7) red square markers represent SC(4, 2) and blue circle

markers represent SC(3, 2). On the other hand, the open markers are result of

ALICE Collaboration paper [21] and full markers are results of our research. For

each centrality we have positive value of SC(4, 2) and negative value of SC(3, 2).

Positive correlation among the harmonics v4 and v2 implies that both harmonics
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Figure 3.5: Distribution of azimuthal angle ϕ for central, mid-central and peripheral collisions.

either tend to be larger or smaller than their own averages in a given event.

Negative correlation of v3 and v2 means that if one of the harmonic has a tendency

to be larger or smaller than its own average the other harmonic has an opposite

tendency in an event.

3.2 Generalized Symmetric Cumulants

3.2.1 Introduction

Symmetric Cumulants are new flow observables introduced recently to quantify

the strength of correlation between the fluctuations of magnitudes of two dif-

ferent flow harmonics vm and vn. By design, they should satisfy the following
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Figure 3.6: Distribution of multiplicity for central, mid-central and peripheral collisions.

requirements:

1. In the absence of fluctuations, i.e. for the fixed values of harmonics vn in

each event, SC are identically 0;

2. All terms in SC are isotropic;

3. Any dependence on the symmetry planes is canceled by definition;

4. If fluctuations of harmonics vm and vn are uncorrelated, SC are identically

0;

5. SC should be consistent with 0 for a system containing only non-flow cor-

relations (e.g. HIJING).
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Figure 3.7: Centrality dependence of SC(4, 2) and SC(3, 2).

All these requirements were met with 2-harmonic Symmetric Cumulants, SC(m,n).

Now we investigate to what extent this idea can be generalized for the case of 3

different harmonics.

3.2.2 SC(k, l,m)

The general 3-particle cumulant is defined, for any three random observables X1,

X2 and X3, as follows:

〈X1X2X3〉c = 〈X1X2X3〉

− 〈X1X2〉 〈X3〉 − 〈X1X3〉 〈X2〉 − 〈X2X3〉 〈X1〉

+ 2 〈X1〉 〈X2〉 〈X3〉 . (3.2.2.1)

We now make a specific choice, namely:

X1 ≡ exp[ik(ϕ1−ϕ2)] ,

X2 ≡ exp[il(ϕ3−ϕ4)] ,

X3 ≡ exp[im(ϕ5−ϕ6)] .
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It follows, after extending the averaging to all events:

SC(k, l,m) = 〈〈cos[kϕ1+lϕ2+mϕ3−kϕ4−lϕ5−mϕ6]〉〉 (3.2.2.2)

− 〈〈cos[kϕ1+lϕ2−kϕ3−lϕ4]〉〉 〈〈cos[m(ϕ5−ϕ6)]〉〉

− 〈〈cos[kϕ1+mϕ2−kϕ5−mϕ6]〉〉 〈〈cos[l(ϕ3−ϕ4)]〉〉

− 〈〈cos[lϕ3+mϕ4−lϕ5−mϕ6]〉〉 〈〈cos[k(ϕ1−ϕ2)]〉〉

+ 2 〈〈cos[k(ϕ1−ϕ2)]〉〉 〈〈cos[l(ϕ3−ϕ4)]〉〉 〈〈cos[m(ϕ5−ϕ6)]〉〉 ,

i.e.

SC(k, l,m) =
〈
v2
kv

2
l v

2
m

〉
−
〈
v2
kv

2
l

〉 〈
v2
m

〉
−
〈
v2
kv

2
m

〉 〈
v2
l

〉
−

〈
v2
l v

2
m

〉 〈
v2
k

〉
+ 2

〈
v2
k

〉 〈
v2
l

〉 〈
v2
m

〉
. (3.2.2.3)

Any dependence on symmetry planes is canceled out by definition, as can

easily be checked for each term separately in Eq. (3.2.2.3). For instance,

〈
v2
kv

2
l

〉
= 〈〈cos(k(ϕ1 −Ψk) + l(ϕ2 −Ψl)− k(ϕ3 −Ψk)− l(ϕ4 −Ψl))〉〉

= 〈〈cos[kϕ1+lϕ2−kϕ3−lϕ4]〉〉 (3.2.2.4)

As a result of symmetric harmonics (k, l,−k,−l) in above equation, symmetry

plane angles canceled each other. Since all correlators in Eq. (3.2.2.3) are com-

posed of symmetric harmonics, we can conclude that SC(k, l,m) is free of sym-

metry planes.

3.2.3 Toy Monte Carlo Studies for SC(k,l,m)

Now we perform few Monte Carlo studies in order to illustrate the desired prop-

erties of 3-harmonic symmetric cumulants SC(k,l,m). In order to evaluate each

correlator in Eq. (3.2.2.3), we will use recursion formula, the code snippets can

be found in Appendix (E.0.3).

Three Constant Harmonics

If harmonics vk, vl and vm are constant in each event, obviously mean value of a

constant is equal to itself 〈c〉 = c, Eq. (3.2.2.3) becomes zero:

SC(k, l,m) = v2
kv

2
l v

2
m − v2

kv
2
l v

2
m − v2

kv
2
mv

2
l

− v2
l v

2
mv

2
k + 2v2

kv
2
l v

2
m

= 0 . (3.2.3.1)
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In the first toy MC study we demonstrate that SC(k, l,m) defined in Eq. (3.2.2.3)

is consistent with zero when three harmonics are constant in each event. We

implement in ROOT the Fourier like p.d.f as,

f(ϕ) =
1

2π
(1 + 2v1 cosϕ+ 2v2 cos 2ϕ+ 2v3 cos 3ϕ) . (3.2.3.2)

and parametrize it only with fixed harmonics v1 = 0.05, v2 = 0.1 and v3 = 0.15.

We have run nine hundreds million events with a fixed multiplicity of a thousand

and we see the results in Fig. (3.8). In this figure correlators corresponds to terms

in Eq. (3.2.2.3), for instance 〈〈cos[ϕ1+2ϕ2+3ϕ3−ϕ4−2ϕ5−3ϕ6]〉〉 = 〈v2
1v

2
2v

2
3〉 is

represented by 〈cos(1, 2, 3)〉 and the same representation structure is valid for the

rest of the correlators. It is clear that non of them is zero, on the other hand as

we expect SC(1, 2, 3) is consistent with zero within statistical uncertainty.
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Figure 3.8: Results of generalized symmetric cumulants (SC(1, 2, 3)) and correlators for con-
stant harmonics.

Fluctuations of Three Independent Harmonics

We can easily see that when event-by-event fluctuations of vk, vl and vm are

uncorrelated, this symmetric cumulant is identically zero, since then

SC(k, l,m) =
〈
v2
k

〉 〈
v2
l

〉 〈
v2
m

〉
−
〈
v2
k

〉 〈
v2
l

〉 〈
v2
m

〉
−
〈
v2
k

〉 〈
v2
m

〉 〈
v2
l

〉
−

〈
v2
l

〉 〈
v2
m

〉 〈
v2
k

〉
+ 2

〈
v2
k

〉 〈
v2
l

〉 〈
v2
m

〉
= 0 . (3.2.3.3)
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We sample now values of three harmonics, v1, v2 and v3 from 3-variate p.d.f,

which explicitly factorizes for all three observables:

f(v1, v2, v3) ≡ ev1+v2+v3 = ev1ev2ev3 . (3.2.3.4)

Such a functional dependence ensures that three harmonics are independent ob-
servables by definition. We implement in ROOT Eq. (3.2.3.4) as TF3 object:

TF3 *pdf3D = new TF3("pdf3Ds","exp(x+y+z)",0.01,0.15,0.01,0.15,0.01,0.15);

As we see from above 3-variate p.d.f sample space of all three harmonics is

the same and it is [0.01, 0.15]. After we have run the code over all events with

two hundred million events and a thousand fixed multiplicity, we got results in

Fig. (3.9). In this figure all markers represent the same variables as we described

in previous section. As it is expected all of the correlators are nonzero and

SC(1, 2, 3) which depends on three independent harmonics is consistent with

zero.
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Figure 3.9: Results of generalized symmetric cumulants (SC(1, 2, 3)) and correlators for in-
dependent harmonics.

Fluctuations of Two Correlated Harmonics

Same as in previous example, we sample the values of harmonics from the follow-

ing 3D p.d.f:

f(v1, v2, v3) ≡ ev1v2+v3 = ev1v2ev3 . (3.2.3.5)

This kind of functional dependence ensures that correlation exists among two

harmonics, in this case v1 and v2 are dependent and both are independent of v3.
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In this regard Eq. (3.2.2.3) becomes zero:

SC(k, l,m) =
〈
v2
kv

2
l

〉 〈
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m

〉
−
〈
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kv

2
l

〉 〈
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−
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−

〈
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l
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v2
m

〉 〈
v2
k

〉
+ 2

〈
v2
k

〉 〈
v2
l

〉 〈
v2
m

〉
= 0 . (3.2.3.6)

Implementation in ROOT of Eq. (3.2.3.5) goes as follows:

TF3 *pdf3D = new TF3("pdf3Ds","exp(xy+z)",0.01,0.15,0.01,0.15,0.01,0.15);

Everything else is the same as in previous simulation. After we have run over all events, we

observe in Fig. (3.10) that each individual correlator is non-zero in Eq. (3.2.2.3) and SC(1, 2, 3)

is consistent with zero.
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Figure 3.10: Results of generalized symmetric cumulants (SC(1, 2, 3)) and correlators for two
correlated harmonics (v1 and v2).

Fluctuations of Three Correlated Harmonics

We sample the values of harmonics from the following 3D p.d.f:

f(v1, v2, v3) ≡ ev1v2v3 . (3.2.3.7)

Such a functional dependence ensures that correlation exists among all three harmonics and

SC(k, l,m) is not zero. Implementation in ROOT of Eq. (3.2.3.7) goes as follows:

TF3 *pdf3D = new TF3("pdf3Ds","exp(xyz)",0.01,0.15,0.01,0.15,0.01,0.15);

We have run the code over twenty one billion events with fixed multiplicity of a thousand. In

Fig. (3.11), we see the results: All correlators have nonzero values and SC(1,2,3) is in agreement

with it’s theoretical result which is also a nonzero value. Theoretical value for this particular

model of flow fluctuations was obtained with Mathematica
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Figure 3.11: Results of generalized symmetric cumulant (SC(1, 2, 3)) and correlators for three
correlated harmonics.
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Summary

We started with characterizing distribution of outgoing particles with Fourier series and devel-

oped two and multi particle correlations techniques which do not depend on symmetry planes

angle. Optimum weight functions and straight averages of two and multi particle correlations

techniques are described and Monte Carlo simulations are presented. Due to nested loops

which are needed to eliminate autocorrelations, techniques are not feasible; implementations

of Q-vector overcome the obstacle and tremendously decreases CPU time. Two and three cor-

related particles contributions from non-flow are eliminated by four particle Q-cumulants and

result are presented with local data set which is collected by ALICE detector in 2010 from

Pb–Pb collisions at center-of-mass energy
√
sNN = 2.76 TeV . Fluctuations of nucleons inside

the collision geometries are responsible for emerging of any type of flow harmonics and different

statistics at each events which results in fluctuations of flow harmonics. As a new observable

Symmetric Cumulants SC(m,n) are described to investigate correlations of flow harmonics.

Monte Carlo simulations of SC(3, 2) and SC(4, 2) are constructed; analysis task is carried out

on the Worldwide LHC Computing Grid (WLCG) over all 2010 data (90 runs in total), which

passed all central quality assurance criteria in ALICE, from Pb–Pb collisions at center-of-mass

energy
√
sNN = 2.76 TeV with momentum interval 0.2 < pT < 5 GeV/c and pseudorapid-

ity range |η| < 0.8. Finally, SC are extended to the case of 3 different harmonics SC(1, 2, 3)

and presented Monte Carlo simulations meet the requirements set for generalized symmetric

cumulants.
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Appendix A

Four Particle Average

Decomposition

Where x1, x2, x3 and x4 are variables, average of their multiplication is decomposed in terms

of cumulants as

〈x1x2x3x4〉 = 〈x1〉 〈x2〉 〈x3〉 〈x4〉+ 〈x1x2〉c 〈x3x4〉c + 〈x1x3〉c 〈x2x4〉c
+ 〈x1x4〉c 〈x2x3〉c + 〈x1〉 〈x2〉 〈x3x4〉c + 〈x1〉 〈x3〉 〈x2x4〉c
+ 〈x1〉 〈x4〉 〈x2x3〉c + 〈x2〉 〈x3〉 〈x1x4〉c + 〈x2〉 〈x4〉 〈x1x3〉c
+ 〈x3〉 〈x4〉 〈x1x2〉c + 〈x1x2x3〉c 〈x4〉+ 〈x1x2x4〉c 〈x3〉

+ 〈x1x3x4〉c 〈x2〉+ 〈x2x3x4〉c 〈x1〉+ 〈x1x2x3x4〉c . (A.0.3.1)

Now we set the variables x1, x2, x3, x4 to ein(ϕ1−Ψn), ein(ϕ2−Ψn), e−in(ϕ3−Ψn) and e−in(ϕ4−Ψn),

respectively. All non-isotropic terms vanish and previous decomposition turns into

〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
=
〈
ein(ϕ1−Ψn)

〉〈
ein(ϕ2−Ψn)

〉〈
e−in(ϕ3−Ψn)

〉〈
e−in(ϕ4−Ψn)

〉
+
〈
ein(ϕ1−ϕ3)

〉
c

〈
ein(ϕ2−ϕ4)

〉
c

+
〈
ein(ϕ1−ϕ4)

〉
c

〈
ein(ϕ2−ϕ3)

〉
c

+
〈
ein(ϕ1−Ψn)

〉〈
e−in(ϕ3−Ψn)

〉〈
ein(ϕ2−ϕ4

〉
c

+
〈
ein(ϕ1−Ψn)

〉〈
e−in(ϕ4−Ψn)

〉〈
ein(ϕ2−ϕ3

〉
c

+
〈
ein(ϕ2−Ψn)

〉〈
e−in(ϕ3−Ψn)

〉〈
ein(ϕ1−ϕ4

〉
c

+
〈
ein(ϕ2−Ψn)

〉〈
e−in(ϕ4−Ψn)

〉〈
ein(ϕ1−ϕ3

〉
c

+
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
c
. (A.0.3.2)

In above equation first term over all event is v4
n, second and third terms scale as 1/m (both

contribute to average 2
m ); fourth, fifth and sixth terms all together contribute

4v2n
m2 and the last

term is four-particle cumulant, it scale as 1
m3 .
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Appendix B

Flow Fluctuation

We start with some basic definitions, where x is a random variable which has probability density

function f(x), mean value of x and its variance are expressed like in the following equations,

respectively:

〈x〉 =

∫ ∞
−∞

xf(x)dx. (B.0.3.1)

σ2
x =

∫ ∞
−∞

(x− 〈x〉)2f(x)dx. (B.0.3.2)

Where h(x) is a function of x, we expand it into Taylor series up to second order at 〈x〉:

h(x) = h(〈x〉) + h′(〈x〉)(x− 〈x〉) +
h′′(〈x〉)

2
(x− 〈x〉)2. (B.0.3.3)

If we take the average of both sides,

〈h(x)〉 = h(〈x〉) + h′(〈x〉)(〈x〉 − 〈x〉) +
h′′(〈x〉)

2

〈
(x− 〈x〉)2

〉
. (B.0.3.4)

In above equation, second term in the right hand side of the equation is zero. Average value in

the last term is variance of x. So the equation takes the final form as,

〈h(x)〉 = h(〈x〉) +
h′′(〈x〉)

2
σ2
x. (B.0.3.5)

We found out reference flow harmonics with two-particle correlation as (for the simplicity we

drop the subindex n),

v{2} =
〈
v2
〉1/2

, (B.0.3.6)

variance of harmonic is written as

〈
v2
〉

= 〈v〉2 + σ2
v , (B.0.3.7)

by using equality (h(v) = v2) in Eq. (B.0.3.5), of course we get,

v{2} = (〈v〉2 + σ2
v)

1/2

= 〈v〉
(

1 +
σ2
v

〈v〉

)1/2

. (B.0.3.8)

In above equation, left hand side is what we are measuring with two-particle correlation. First
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argument in the right hand side is true value.

For four-particle cumulant, reference flow harmonic is

v{4} = (−〈v〉4 + 2
〈
v2
〉2

)
1/4
. (B.0.3.9)

We expand the term 〈v〉4 into Taylor series (Eq. (B.0.3.5)) and insert Eq. (B.0.3.7) into above

equation like in the following way:

v{4} =
(
−〈v〉4 +−6σ2

v 〈v〉
2

+ 2 〈v〉4 + 4 〈v〉2 σ2
v + σ4

v

)1/4

= 〈v〉

(
1− 2

σ2
v

〈v〉2

)1/4

. (B.0.3.10)

Left side of the above equation is reference harmonic and it is what we are measuring compared

to real value which is the first term of the right hand side of the equation.



Appendix C

Statistical Errors

For statistical uncertainty which we have utilized in Fig. (2.9), Fig. (2.3), Fig. (2.4) and Fig. (2.5)

we follow the same structure in [7]. Now it will be briefly explained in this section.

If variable x is sampled from a p.d.f, its mean value µx and variance σ2
x (or V [x]) are

expressed like below

µx = E[x] =

∫ ∞
−∞

xf(x)dx. (C.0.3.1)

σ2
x = V [x] = E[(x− µx)2] =

∫ ∞
−∞

(x− µx)2f(x)dx. (C.0.3.2)

We use an unbiased estimator for variance which is denoted as s2
x like in the following equation

s2
x =

∑N
i=1 wi(xi − 〈x〉)2∑N

i=1 wi
× 1

1−
∑N

i=1 w
2
i

[
∑N

i=1 wi]2

. (C.0.3.3)

In above equation xi is mean value of i-th event, wi is the corresponding weight function, 〈x〉
is average over all events and N is number of events.

Results with statistical errors will be presented as

〈x〉 ± V (〈x〉). (C.0.3.4)

Variance V (〈x〉) can be written as

V (〈x〉) =

∑N
i=1 w

2
x,i

[
∑N
i=1 wx,i]

2
σ2
x. (C.0.3.5)

By using unbiased estimator of σ2
x in above equation as s2

x described in Eq. (C.0.3.3), final

results will be reported as

〈x〉 ±

√∑N
i=1 w

2
i∑N

i=1 wi
sx. (C.0.3.6)

If h is a function of two variables x and y, mean value of h(x, y) is to first order given by

µh = E[h(x, y)] ≈ h(µx, µy), (C.0.3.7)
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and variance of h is to first order

σ2
h = V [h] = E[h2(x, y)− E[h(x, y)]]2

≈
[(

∂h

∂x

)∣∣∣∣
x=µx,y=µy

]2

σ2
x +

[(
∂h

∂y

)∣∣∣∣
x=µx,y=µy

]2

σ2
y

+ 2

(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=µx,y=µy

Vxy. (C.0.3.8)

In above equation Vxy is the covariance of variables x and y and its unbiased estimator Cov(x, y)

is given by

Cov(x, y) =

∑
wx,iwy,ixiyi∑
wx,iwy,i

−
∑
wx,ixi∑
wx,i

∑
wy,jyj∑
wy,j

1−
∑
wx,iwy,i∑

wx,i
∑
wy,i

. (C.0.3.9)

In above equation and from now on all summations run from one to number of events. For

multivariate function h final results will be reported as

〈h〉 ± s〈h〉 (C.0.3.10)

An unbiased estimator for 〈h〉 was given in Eq. (C.0.3.7). An unbiased estimator for the variance

of 〈h〉 might be derived from Eq. (C.0.3.8) like in the following equation

V [〈h〉] ≈
[(

∂h

∂x

)∣∣∣∣
x=µx,y=µy

]2

V [〈x〉] +

[(
∂h

∂y

)∣∣∣∣
x=µx,y=µy

]2

V [〈y〉]

+ 2

(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=µx,y=µy

V〈x〉〈y〉. (C.0.3.11)

Due to,

V〈x〉〈y〉 =

∑
wx,iwy,i∑

wx,i
∑
wy,j

Vxy (C.0.3.12)

The unbiased estimator for V [〈h〉]:

s2
〈h〉 ≈

[(
∂h

∂x

)∣∣∣∣
x=〈x〉,y=〈y〉

]2 ∑
w2
x,i

[
∑
wx,i]2

s2
x +

[(
∂h

∂y

)∣∣∣∣
x=〈x〉,y=〈y〉

]2 ∑
w2
y,i

[
∑
wy,i]2

s2
y

+ 2

(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=〈x〉,y=〈y〉

×
∑
wx,iwy,i∑

wx,i
∑
wy,i

Cov(x, y). (C.0.3.13)

For the average multi-particle azimuthal correlations final results will be presented as

〈〈2〉〉 ±

√∑
w2
〈2〉,i∑

w〈2〉,i
s〈2〉

〈〈4〉〉 ±

√∑
w2
〈4〉,i∑

w〈4〉,i
s〈4〉

〈〈6〉〉 ±

√∑
w2
〈6〉,i∑

w〈6〉,i
s〈6〉. (C.0.3.14)
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For the reference flow harmonics final results reported like in the following form

〈vn{2}〉 ± s〈vn{2}〉
〈vn{4}〉 ± s〈vn{4}〉
〈vn{6}〉 ± s〈vn{6}〉. (C.0.3.15)

Two-particle estimate:

We start with

〈vn{2}〉 ≈
√
〈〈2〉〉. (C.0.3.16)

For above equation, function h depends on one variable. With this restriction Eq.(C.0.3.13)

turns into

s〈vn{2}〉 =
1

2
√
〈〈2〉〉

√∑
w2
〈2〉,i∑

w〈2〉,i
s〈2〉. (C.0.3.17)

Four-particle estimate:

We start from

〈vn{4}〉 ≈
4

√
2 · 〈〈2〉〉2 − 〈〈4〉〉. (C.0.3.18)

This time function h depends on two variable, from Eq.(C.0.3.13) it follows that

s2
〈vn{4}〉 =

1

[2 · 〈〈2〉〉2 − 〈〈4〉〉]3/2
×

[
〈〈2〉〉2

∑
w2
〈2〉,i

[
∑
w〈2〉,i]2

s〈2〉2

+
1

16

∑
w2
〈4〉,i

[
∑
w〈4〉,i]2

s2
〈4〉 −

1

2
〈〈2〉〉

∑
w〈2〉,iw〈4〉,i∑

w〈2〉,i
∑
w〈4〉,j

Cov(〈2〉 , 〈4〉)

]
. (C.0.3.19)

Six-particle estimate:

We start from

〈vn{4}〉 ≈ 2−1/3 6

√
〈〈6〉〉 − 9 · 〈〈2〉〉 〈〈4〉〉+ 12 · 〈〈2〉〉3. (C.0.3.20)

The function h depends on three variables, thus we extend the Eq.(C.0.3.13) for three random

variables and obtain the following equation

s2
〈vn{6}〉 =

1

2 · 22/3[〈〈6〉〉 − 9 · 〈〈4〉〉 〈〈2〉〉+ 12 · 〈〈2〉〉3]5/3
×[

9

2
· [4 · 〈〈2〉〉2 − 〈〈4〉〉]2

∑
w2
〈2〉,i

[
∑
w〈2〉,i]2

s2
〈2〉

+
9

2
· 〈〈2〉〉

∑
w2
〈4〉,i

[
∑
w〈4〉,i]2

s2
〈4〉 +

1

18

∑
w2
〈6〉,i

[
∑
w〈6〉,i]2

s2
〈6〉

−9 · [4 · 〈〈2〉〉2 − 〈〈4〉〉]
∑
w〈2〉,iw〈4〉,i∑

w〈2〉,i
∑
w〈4〉,j

Cov(〈2〉 , 〈4〉)

+[4 · 〈〈2〉〉2 − 〈〈4〉〉]
∑
w〈2〉,iw〈6〉,i∑

w〈2〉,i
∑
w〈6〉,j

Cov(〈2〉 , 〈6〉)

−〈〈2〉〉
∑
w〈4〉,iw〈6〉,i∑

w〈4〉,i
∑
w〈6〉,j

Cov(〈4〉 , 〈6〉)
]
. (C.0.3.21)

For the rest of the figures, error analyses are based on bootstrapping. If we denote the
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variable under probe as y, the initial sample space, which is utilized to measure y, is divided

into ten subsamples {x1, x2, ..., x10}. If the unbiased estimator of variance is s2, we express that

as

s2 =
1

9

10∑
i=1

(xi − 〈x〉)2
. (C.0.3.22)

At the and, we report the result with estimated standard error like in the following way

y ±
√
s2

10
. (C.0.3.23)



Appendix D

Distributions

D.1 Distribution of Azimuthal Angle

In this section we show the distribution of azimuthal angle in Fig. (D.1) and Fig. (D.2). Now

we ensure of having perfect detector whose azimuthal acceptance is uniform. As a result, all

nonisotropic terms in equations vanish over all event average at each centrality. Results for the

other centralities have been presented in Sec. (2.6.1).
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Figure D.1: Distribution of azimuthal angle ϕ for different centralities.

D.2 Distribution of Multiplicity

In this section, we show the distribution of multiplicity for different centralities in Fig. (D.3),(D.4)

and (D.5) . The other centralities have been presented in Sec. (2.6.1).
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Figure D.2: Distribution of azimuthal angle ϕ for different centralities.
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Figure D.3: Multiplicity Distribution for centralities 5-10% and 10-20%.
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Figure D.4: Multiplicity Distribution for centralities 20-30% and 40-50%.
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Figure D.5: Multiplicity Distribution for centralities 50-60% and 60-70%.



Appendix E

Code Snippets

In this chapter we present the code snippets of some analysis.

E.0.1 Fig. (2.9)

10pt

1 #inc lude ” Riostream . h”

2 #inc lude <iostream>

3 #inc lude <fstream>

4 us ing namespace std ;

5

6 I n t t counter =0;

7 I n t t counter2 =0;

8 I n t t counterb =0;

9 I n t t counter2b =0;

10

11 const I n t t num = 9 ;

12 Double t c e n t r a l i t y [num] = { 2 . 5 , 7 . 5 , 15 . 0 , 25 . 0 , 35 . 0 , 45 . 0 , 55 . 0 ,

65 . 0 , 7 5 . 0} ; // c e n t r a l i t y

13 Double t v 2 [num ] ; // r e f e r a n c e f low harmonic v{2}
14 Double t v 4 [num ] ; // r e f e r e n c e f low harmonic v{4}
15 Double t b inErrorv 2 [num ] ;

16 Double t b inErrorv 4 [num ] ;

17

18 void q2 v ( ) ;

19

20 void main q2 v ( ) {
21 gROOT−>Se tS ty l e ( ” Pla in ” ) ;

22

23 TCanvas ∗ c1 = new TCanvas ( ”c1” , ”A Graph ” ,700 ,500) ;

24 c1−>SetTickx (1 ) ;

25 c1−>SetTicky (1 ) ;

26 c1−>SetFrameLineWidth (2 ) ;

27 gStyle−>SetLineWidth (2 ) ;

71



72

28

29 q2 v ( ”/home/ enes /Documents/ mastertez / data2 /DATA/0005” ) ;

30

31

32 TGraphErrors ∗ gr = new TGraphErrors (num, c e n t r a l i t y , v 2 , 0 , b inErrorv 2

) ;

33 gr−>SetName ( ” gr ” ) ;

34 gr−>SetMarkerColor (4 ) ;

35 gr−>SetMarkerStyle (8 ) ;

36 gr−>SetMarkerSize (1 ) ;

37 gr−>SetLineWidth (2 ) ;

38

39 TGraphErrors ∗ gr3 = new TGraphErrors (num, c e n t r a l i t y , v 4 , 0 ,

b inErrorv 4 ) ;

40 gr3−>SetName ( ” gr3 ” ) ;

41 gr3−>SetMarkerColor (2 ) ;

42 gr3−>Draw( ”AP” ) ;

43

44 TMultiGraph ∗mg = new TMultiGraph ( ) ;

45 mg−>Add( gr ) ;

46 mg−>Add( gr3 ) ;

47 mg−>Draw( ”AP” ) ;

48

49 c1−>Update ( ) ;

50 mg−>GetYaxis ( )−>S e t T i t l e O f f s e t ( 1 . 2 ) ;

51 mg−>GetXaxis ( )−>S e t T i t l e ( ” c e n t r a l i t y ” ) ;

52 mg−>GetYaxis ( )−>S e t T i t l e ( ” v {2}” ) ;

53

54 l e g h i s t = new TLegend (0 . 3151862 ,0 . 1146497 ,0 . 6848138 ,0 . 373673) ;

55 l e g h i s t−>AddEntry ( gr , ”two p a r t i c l e cumulant” , ”p” ) ;

56 l e g h i s t−>AddEntry ( gr3 , ” four p a r t i c l e cumulant” , ”p” ) ;

57 l e g h i s t−>SetLineWidth (2 ) ;

58 l e g h i s t−>Draw ( ) ;

59

60 c1−>Modif ied ( ) ;

61 c1−> SaveAs ( ” ass ignmentson . pdf ” ) ;

62 }
63

64 void q2 v ( const char ∗ d i r e c t o r y )

65 {
66

67 const char ∗ pat t e rn 0 = ” C e nt r a l i t y ” ;

68 const char ∗ pat t e rn 1 = ” . dat” ;

69 Double t sumper =0. , sumpers =0. , sumper4 =0. , sumper4s =0. , a1 =0. , b1

=0. , wa l l =0. , cov =0. , d1=0, cov1=0, cov3=0, cov4 =0;

70 TPro f i l e ∗hr1 = new TPro f i l e ( ”hr1” , ” P r o f i l e ” , 1 , 0 . , 1 . ) ;

71 hr1−>Sumw2( ) ;
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72 hr1−>SetErrorOption ( ” s ” ) ;

73 TPro f i l e ∗hr2 = new TPro f i l e ( ”hr2” , ” P r o f i l e 2 ” , 1 , 0 . , 1 . ) ;

74 hr2−>SetErrorOption ( ” s ” ) ;

75 hr2−>Sumw2( ) ;

76

77 TStopwatch watch ;

78 watch . S ta r t ( ) ;

79

80 TSystemDirectory ∗ baseDir = new TSystemDirectory ( ” . ” , d i r e c t o r y ) ;

81 TList ∗ l i s t O f F i l e s I n B a s e D i r = baseDir−>GetL i s tOfF i l e s ( ) ;

82 I n t t n F i l e s = l i s t O f F i l e s I n B a s e D i r−>GetEntr ies ( ) ;

83

84 f o r ( I n t t i F i l e =0; i F i l e<n F i l e s ; i F i l e ++)

85 {
86 TSystemFile ∗ c u r r e n t F i l e = ( TSystemFile ∗) l i s t O f F i l e s I n B a s e D i r−>At(

i F i l e ) ;

87

88 i f ( ! c u r r e n t F i l e | | cu r r en tF i l e−>I s D i r e c t o r y ( ) | |
89 strcmp ( cu r r en tF i l e−>GetName ( ) , ” . ” ) == 0 | |
90 strcmp ( cu r r en tF i l e−>GetName ( ) , ” . . ” ) == 0) { cont inue ;}
91

92 const char ∗ f i leName = cur r en tF i l e−>GetName ( ) ;

93 i f ( ! ( TString ( f i leName ) . Contains ( pat t e rn 0 ) && TString ( f i leName ) .

Contains ( pat t e rn 1 ) ) ) { cont inue ;}
94

95 const char ∗ f i l e = Form( ”%s/%s ” , d i r e c to ry , f i leName ) ;

96 cout<<Form( ” Access ing f i l e : %s ” , f i l e )<<endl ;

97 i f s t r e a m in ;

98 in . open ( f i l e ) ;

99

100 Double t dPhi = 0 . , dPt = 0 . , dEta = 0 . , c =0. , per =0. , c2 =0. , per4

=0. ; // permutation

101 s t r i n g event , m u l t i p l i c i t y ;

102 I n t t eventNo = 0 , M = 0 ;

103 I n t t eventCounter = 0 ;

104 TComplex q1 ; //q1 i s q−vec to r .

105

106 whi l e (1 )

107 {
108 in >> event >> eventNo >> m u l t i p l i c i t y >> M;

109 i f ( ! in . good ( ) && ! TString ( event ) . EqualTo ( ”End” ) ) { cout<<” Corrupted

l i n e : 1 ’ ( ”<<endl ; break ;}
110 i f ( TString ( event ) . EqualTo ( ”Event” ) )

111 {
112 i f ( eventCounter % 10 == 0) { cout<<Form( ”eventNo = %d , M = %d” ,

eventCounter ,M)<<endl ;} // Not i fy a f t e r each 10 th event

113
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114 q1 = TComplex ( 0 . , 0 . ) ;

115 q2 = TComplex ( 0 . , 0 . ) ;

116 q4 = TComplex ( 0 . , 0 . ) ;

117 q = TComplex ( 0 . , 0 . ) ;

118

119 i f ( M>3) {
120 sumper+=M∗(M−1.) ;

121 sumpers+=pow(M∗(M−1.) , 2 ) ;

122 sumper4+=M∗(M−1.) ∗(M−2)∗(M−3) ;

123 sumper4s+=pow(M∗(M−1.) ∗(M−2)∗(M−3) ,2 ) ;

124 wal l+= M∗(M−1.) ∗(M−2)∗(M−3)∗M∗(M−1.) ;

125 f o r ( I n t t p=1;p<=M; p++)

126 {
127 in >> dPhi >> dPt >> dEta ;

128 i f ( ! in . good ( ) ) { cout<<” Corrupted l i n e : ’ ( ”<<endl ; break ;}
129

130 q1 += TComplex( cos ( 2 .∗ dPhi ) , s i n ( 2 .∗ dPhi ) ) ; // Q−Qumulant

131

132 q2 += TComplex( cos ( 2 .∗ dPhi ) , s i n ( 2 .∗ dPhi ) ) ;

133 q4 += TComplex( cos ( 4 .∗ dPhi ) , s i n ( 4 .∗ dPhi ) ) ;

134

135 } // f o r ( I n t t p=1;p<=M; p++)

136 eventCounter++;

137 per=M∗(M−1.) ;

138 c=(q1 . Rho2 ( )−M) / per ;

139 hr1−>F i l l ( 0 . 5 , c , per ) ; // weighted 2−p c o r r e l a t i o n

140

141 per4=M∗(M−1.) ∗(M−2)∗(M−3) ;

142 q=q4∗TComplex : : Conjugate ( q2 ) ∗TComplex : : Conjugate ( q2 ) ;

143 c2=(pow( q2 . Rho2 ( ) ,2 ) + q4 . Rho2 ( ) − 2 .∗ q . Re ( ) −4.∗(M−2)∗q2 . Rho2 ( )

+2.∗M∗(M−3) ) / per4 ;

144 hr2−>F i l l ( 0 . 5 , c2 , per4 ) ;

145

146 cov1 += M∗(M−1.) ∗(M−2)∗(M−3)∗M∗(M−1.)∗c∗ c2 ;

147 cov3 += M∗(M−1.)∗c ;

148 cov4 += M∗(M−1.) ∗(M−2)∗(M−3)∗ c2 ;

149 }
150 } e l s e i f ( TString ( event ) . EqualTo ( ”End” ) ) {break ;}
151 } // whi l e (1 ) b i r event in b i t t i g i yer . b i t i n c e d i g e r evente gece r .

152

153 in . c l o s e ( ) ; // Close the e x t e r n a l f i l e .

154

155 }
156

157 i f ( hr1−>GetBinContent (1 ) ) >0.){
158 v 2 [ counter++] = s q r t ( hr1−>GetBinContent (1 ) ) ; // r e f e r a n c e f low

harmonic v{2} ,
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159 b inErrorv 2 [ counterb++] =(0.5/ s q r t ( hr1−>GetBinContent (1 ) ) ) ∗hr1−>
GetBinError (1 ) ∗ s q r t ( sumpers /(1.− sumpers/pow( sumper , 2 ) ) ) /sumper

;

160 }
161 e l s e {
162 cout<<endl<<” v 2 < 0 ”<<endl ;

163 counter++;

164 counterb++;

165 }
166 i f ((−hr2−>GetBinContent (1 ) + 2 .∗pow( hr1−>GetBinContent (1 ) ,2 ) ) >0.){
167 v 4 [ counter2++] = pow(−hr2−>GetBinContent (1 ) + 2 .∗pow( hr1−>

GetBinContent (1 ) ,2 ) , 1 . / 4 ) ;

168

169 a1 = pow( hr1−>GetBinContent (1 ) ,2 ) ∗pow( hr2−>GetBinError (1 ) ,2 ) ∗(

sumpers /(1.− sumpers/pow( sumper , 2 ) ) ) /pow( sumper , 2 ) ;

170 b1 = ( 1 . / 1 6 . ) ∗pow( hr2−>GetBinError (1 ) ,2 ) ∗( sumper4s /(1.− sumper4s/

pow( sumper4 , 2 ) ) ) /pow( sumper4 , 2 ) ;

171 cov=(cov1/ wal l − cov3∗ cov4 /( sumper∗sumper4 ) ) /(1.−( wa l l /( sumper∗
sumper4 ) ) ) ;

172 d1 = ( 0 . 5∗ hr1−>GetBinContent (1 ) ∗ wal l /( sumper∗sumper4 ) ) ∗cov ;

173

174 b inErrorv 4 [ counter2b++] = s q r t ( (1/pow ( 2 .∗pow( hr1−>GetBinContent

(1 ) ,2 )−hr2−>GetBinContent (1 ) , 3 . / 2 ) ) ∗( a1 + b1 − d1 ) ) ;

175 }
176 e l s e {
177 cout<<endl<<” v 4 < 0 ”<<endl ;

178 counter2++;

179 counter2b++;

180 }
181

182 watch . Stop ( ) ;

183 watch . Pr int ( ) ;

184 cout<<endl ;

185

186 return ;

187 }

E.0.2 Fig. (3.7)

1 #inc lude ” Riostream . h”

2 #inc lude ” Al iAnalys i sTaskForStudents . h”

3 #inc lude ” AliLog . h”

4 #inc lude ”AliAODEvent . h”

5 #inc lude ”AliAODInputHandler . h”

6 #inc lude ” AliAnalysisManager . h”

7 #inc lude ” Al iMu l tSe l e c t i on . h”
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8 #inc lude ”TLegend . h”

9

10 us ing std : : cout ;

11 us ing std : : endl ;

12

13 ClassImp ( Al iAnalys i sTaskForStudents )

14

15 Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents ( const char ∗
name , Boo l t usePart i c l eWeight s ) :

16 AliAnalysisTaskSE (name) ,

17 f H i s t L i s t (NULL) ,

18 fContro lH i s togramsL i s t (NULL) ,

19 fPtHi s t (NULL) ,

20 fNbins (1000) ,

21 fMinBin ( 0 . ) ,

22 fMaxBin ( 1 0 . ) ,

23 f C e n t r a l i t y H i s t (NULL) ,

24 fNCentra l i tyBins (10) ,

25 fMinCentra l i ty ( 0 . ) ,

26 fMaxCentral i ty ( 1 0 0 . ) ,

27 fMultHist (NULL) ,

28 fPh iH i s t (NULL) ,

29 fEtaHis t (NULL) ,

30 f h f (NULL) ,

31 f h f 2 (NULL) ,

32 l e g h i s t (NULL) ,

33 f F i n a l R e s u l t s L i s t (NULL) ,

34 num(0) ,

35 fh r2b in (0 ) ,

36 f s i z e (9 ) ,

37 fbinnum (0) ,

38 f counte r1 (0 ) ,

39 f counte r2 (0 ) ,

40 f counte r3 (0 ) ,

41 fmult (0 ) ,

42 c2 ( 0 . ) ,

43 fhr2min ( 0 . ) ,

44 fhr2max ( 0 . ) ,

45 fpe r2 ( 0 . ) ,

46 fpe r3 ( 0 . ) ,

47 fpe r4 ( 0 . ) ,

48 fvarb ( 0 . ) ,

49 fmu ( 0 . ) ,

50 fymin ( 0 . ) ,

51 fymax ( 0 . ) ,

52 f c 4 ( 0 . ) ,

53 f c 3 ( 0 . ) ,
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54 f c22 ( 0 . ) ,

55 f c24 ( 0 . ) ,

56 f c23 ( 0 . ) ,

57 fhr2 (NULL) ,

58 fhr3 (NULL) ,

59 fhrc22 (NULL) ,

60 fhrc23 (NULL) ,

61 fhrc24 (NULL) ,

62 fh r c3 (NULL) ,

63 fh r c4 (NULL) ,

64 f g r (NULL) ,

65 fq6 ( 0 . , 0 . ) ,

66 fq4 ( 0 . , 0 . ) ,

67 fq ( 0 . , 0 . ) ,

68 fq2 ( 0 . , 0 . ) ,

69 fqq ( 0 . , 0 . ) ,

70 fq5 ( 0 . , 0 . ) ,

71 fq3 ( 0 . , 0 . ) ,

72 fq1 ( 0 . , 0 . ) ,

73 fq3x ( 0 . , 0 . ) ,

74 fqq3 ( 0 . , 0 . )

75 {
76

77 AliDebug (2 , ” Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents

( const char ∗name , Boo l t usePart i c l eWeight s ) ” ) ;

78

79 f H i s t L i s t = new TList ( ) ;

80 f H i s t L i s t−>SetName ( ” outputStudentAnalys i s ” ) ;

81 f H i s t L i s t−>SetOwner (kTRUE) ;

82 th i s−>I n i t i a l i z e A r r a y s ( ) ;

83 DefineOutput (1 , TList : : C lass ( ) ) ;

84

85 i f ( usePart i c l eWeight s )

86 {
87 }
88

89 } // Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents ( const

char ∗name , Boo l t usePart i c l eWeight s ) :

90

91 Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents ( ) :

92 AliAnalysisTaskSE ( ) ,

93 f H i s t L i s t (NULL) ,

94 fContro lH i s togramsL i s t (NULL) ,

95 fPtHi s t (NULL) ,

96 // . . . .

97 // the same s t r u c t u r e are prsented here

98
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99 {
100 AliDebug (2 , ” Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents

( ) ” ) ;

101

102 } // Al iAnalys i sTaskForStudents : : Al iAnalys i sTaskForStudents ( ) :

103

104

105 Al iAnalys i sTaskForStudents : : ˜ Al iAnalys i sTaskForStudents ( )

106 {
107

108 i f ( f H i s t L i s t ) d e l e t e f H i s t L i s t ;

109

110 } // Al iAnalys i sTaskForStudents : : ˜ Al iAnalys i sTaskForStudents ( )

111

112 void Al iAnalys i sTaskForStudents : : UserCreateOutputObjects ( )

113 {
114

115 Boo l t oldHistAddStatus = TH1 : : AddDirectoryStatus ( ) ;

116 TH1 : : AddDirectory (kFALSE) ;

117 th i s−>BookAndNestAllLists ( ) ;

118 th i s−>BookControlHistograms ( ) ;

119 th i s−>BookFinalResultsHistograms ( ) ;

120 TH1 : : AddDirectory ( oldHistAddStatus ) ;

121 PostData (1 , f H i s t L i s t ) ;

122

123 } // void Al iAnalys i sTaskForStudents : : UserCreateOutputObjects ( )

124

125 void Al iAnalys i sTaskForStudents : : UserExec ( Option t ∗)

126 {
127 I n t t im=0, jm=0;

128

129 fq6 = TComplex ( 0 . , 0 . ) ;

130 fq4 = TComplex ( 0 . , 0 . ) ;

131 fq2 = TComplex ( 0 . , 0 . ) ;

132 fq5 = TComplex ( 0 . , 0 . ) ;

133 fq3 = TComplex ( 0 . , 0 . ) ;

134 fq1 = TComplex ( 0 . , 0 . ) ;

135

136 AliAODEvent ∗aAOD = dynamic cast<AliAODEvent∗>( InputEvent ( ) ) ; //

from TaskSE

137 i f ( !aAOD) { re turn ;}
138 Al iMu l tSe l e c t i on ∗ams = ( Al iMu l tSe l e c t i on ∗)aAOD−>FindListObject ( ”

Mul tSe l ec t ion ” ) ;

139 i f ( ! ams) { re turn ;}
140 i f (ams−>G e t M u l t i p l i c i t y P e r c e n t i l e ( ”V0M” ) >= fMinCentra l i ty && ams−>

G e t M u l t i p l i c i t y P e r c e n t i l e ( ”V0M” ) < fMaxCentra l i ty )

141 {
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142 f C e n t r a l i t y H i s t−>F i l l (ams−>G e t M u l t i p l i c i t y P e r c e n t i l e ( ”V0M” ) ) ;

143 }
144 e l s e

145 {
146 return ; // t h i s event do not belong to the c e n t r a l i t y c l a s s

s p e c i f i e d f o r t h i s p a r t i c u l a r a n a l y s i s

147 }
148

149 I n t t nTracks = aAOD−>GetNumberOfTracks ( ) ; // number o f a l l t r a ck s

in cur rent event

150 f o r ( I n t t iTrack =0; iTrack<nTracks ; iTrack++) // s t a r t i n g a loop over

a l l t r a ck s

151 {
152 AliAODTrack ∗aTrack = dynamic cast<AliAODTrack∗>(aAOD−>GetTrack (

iTrack ) ) ; // g e t t i n g a po in t e r to a t rack

153 i f ( ! aTrack ) { cont inue ;} // p r o t e c t i o n aga in s t NULL p o i n t e r s

154 i f ( ! aTrack−>T e s t F i l t e r B i t (128) ) { cont inue ;} // f i l t e r b i t 128

denotes TPC−only tracks , use only them f o r the a n a l y s i s

155

156 Double t e = aTrack−>E( ) ; // energy

157 Double t phi = aTrack−>Phi ( ) ; // azimuthal ang le

158 Double t eta = aTrack−>Eta ( ) ; // pseudorap id i ty

159 Double t pt = aTrack−>Pt ( ) ; // Pt

160

161 i f ( (−0.8 < eta ) && ( eta < 0 . 8 ) && ( 0 . 2 < pt ) && ( pt < 5 . 0 ) ) {
162

163 fq2 += TComplex( cos ( 2 .∗ phi ) , s i n ( 2 .∗ phi ) ) ;

164 fq4 += TComplex( cos ( 4 .∗ phi ) , s i n ( 4 .∗ phi ) ) ;

165 fq6 += TComplex( cos ( 6 .∗ phi ) , s i n ( 6 .∗ phi ) ) ;

166 fq1 += TComplex( cos ( phi ) , s i n ( phi ) ) ;

167 fq3 += TComplex( cos ( 3 .∗ phi ) , s i n ( 3 .∗ phi ) ) ;

168 fq5 += TComplex( cos ( 5 .∗ phi ) , s i n ( 5 .∗ phi ) ) ;

169 im++;

170 fPtHist−>F i l l ( pt ) ;

171 fPhiHist−>F i l l ( phi ) ;

172 fEtaHist−>F i l l ( eta ) ;

173

174 } // i f ( (−0.8 < eta ) && ( eta < 0 . 8 ) && ( 0 . 2 < pT) && (pT < 5 . 0 )

)

175

176 } // f o r ( I n t t iTrack =0; iTrack<nTracks ; iTrack++) // s t a r t i n g a loop

over a l l t r a ck s

177 fmult = im ;

178 fMultHist−>F i l l ( fmult ) ;

179

180 i f ( fmult > 3) {
181 fpe r2 = fmult ∗( fmult −1.) ;
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182 fpe r4 = fmult ∗( fmult −1.) ∗( fmult −2.) ∗( fmult −3.) ;

183 f c22 =( fq2 . Rho2 ( )−fmult ) / fpe r2 ;

184 fhr2−>F i l l ( 0 . 1 , fc22 , fp e r2 ) ;

185 f c24 =( fq4 . Rho2 ( )−fmult ) / fpe r2 ;

186 fhr2−>F i l l ( 1 . 1 , fc24 , fp e r2 ) ;

187 fq=fq6 ∗TComplex : : Conjugate ( fq2 ) ∗TComplex : : Conjugate ( fq4 ) ;

188 fqq=fq4 ∗TComplex : : Conjugate ( fq2 ) ∗TComplex : : Conjugate ( fq2 ) ;

189

190 f c4 =( fq2 . Rho2 ( ) ∗ fq4 . Rho2 ( ) − 2 .∗ fq . Re ( ) − 2 .∗ fqq . Re ( ) + fq6 .

Rho2 ( )+fq2 . Rho2 ( )−(fmult −4.) ∗( fq2 . Rho2 ( )+fq4 . Rho2 ( ) )+fmult

∗( fmult −6.) ) / fpe r4 ;

191 fhr2−>F i l l ( 2 . 1 , fc4 , fp e r4 ) ;

192 f c23 =( fq3 . Rho2 ( )−fmult ) / fpe r2 ;

193 fhr3−>F i l l ( 0 . 1 , fc23 , fp e r2 ) ;

194 fq3x=fq5 ∗TComplex : : Conjugate ( fq2 ) ∗TComplex : : Conjugate ( fq3 ) ;

195 fqq3=fq3 ∗TComplex : : Conjugate ( fq1 ) ∗TComplex : : Conjugate ( fq2 ) ;

196

197 f c3 =( fq2 . Rho2 ( ) ∗ fq3 . Rho2 ( ) − 2 .∗ fq3x . Re ( ) − 2 .∗ fqq3 . Re ( ) + fq5

. Rho2 ( )+fq1 . Rho2 ( )−(fmult −4.) ∗( fq2 . Rho2 ( )+fq3 . Rho2 ( ) )+fmult

∗( fmult −6.) ) / fpe r4 ;

198 fhr3−>F i l l ( 0 . 6 , fc3 , fp e r4 ) ;

199 fbinnum = gRandom−>Uniform (0 ,10 ) ;

200 fhrc22−>F i l l ( fbinnum , fc22 , fp e r2 ) ;

201 fhrc24−>F i l l ( fbinnum , fc24 , fp e r2 ) ;

202 fhrc4−>F i l l ( fbinnum , fc4 , f p e r4 ) ;

203 fhrc23−>F i l l ( fbinnum , fc23 , fp e r2 ) ;

204 fhrc3−>F i l l ( fbinnum , fc3 , f p e r4 ) ;

205 } // i f ( fmult > 3)

206

207 // d) PostData :

208 PostData (1 , f H i s t L i s t ) ;

209

210 } // void Al iAnalys i sTaskForStudents : : UserExec ( Option t ∗)

211

212 void Al iAnalys i sTaskForStudents : : Terminate ( Option t ∗)

213 {
214 Double t varb4 =0. , mu4=0. , varb3 =0. , mu3=0. , sc42 =0. , sc32 =0. ;

215 sc42 = fhr2−>GetBinContent (3 )−fhr2−>GetBinContent (1 ) ∗ fhr2−>
GetBinContent (2 ) ;

216 sc32 = fhr3−>GetBinContent (2 )−fhr2−>GetBinContent (1 ) ∗ fhr3−>
GetBinContent (1 ) ;

217 fh f−>SetBinContent (1 , sc32 ) ;

218 fh f−>SetBinContent (2 , sc42 ) ;

219

220 f o r ( I n t t i =1; i <11; i++) { mu4 +=fhrc4−>GetBinContent ( i )−fhrc24−>
GetBinContent ( i ) ∗ fhrc22−>GetBinContent ( i ) ; }

221 f o r ( I n t t s =1; s<11; s++) {
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222 varb4+= pow( fhrc4−>GetBinContent ( s )−fhrc24−>GetBinContent ( s ) ∗
fhrc22−>GetBinContent ( s ) − mu4/ 1 0 . , 2 ) ;

223 }
224 fh f−>SetBinError (2 , s q r t ( varb4 / 9 0 . ) ) ;

225

226 f o r ( I n t t i =1; i <11; i++) { mu3 +=fhrc3−>GetBinContent ( i )−fhrc23−>
GetBinContent ( i ) ∗ fhrc22−>GetBinContent ( i ) ; }

227 f o r ( I n t t s =1; s<11; s++) {
228 varb3+= pow( fhrc3−>GetBinContent ( s )−fhrc23−>GetBinContent ( s ) ∗

fhrc22−>GetBinContent ( s ) − mu3/ 1 0 . , 2 ) ;

229 }
230 fh f−>SetBinError (1 , s q r t ( varb3 / 9 0 . ) ) ;

231 f H i s t L i s t = ( TList ∗) GetOutputData (1 ) ;

232 i f ( ! f H i s t L i s t ) { e x i t (1 ) ;}
233

234 TFile ∗ f = new TFile ( ” Analys i sResultsSC . root ” , ”RECREATE” ) ;

235 f H i s t L i s t−>Write ( f H i s t L i s t−>GetName ( ) , TObject : : kSingleKey ) ;

236 d e l e t e f ;

237 } // end o f void Al iAnalys i sTaskForStudents : : Terminate ( Option t ∗)

238

239 void Al iAnalys i sTaskForStudents : : I n i t i a l i z e A r r a y s ( )

240 {
241 f o r ( I n t t i =0; i <9; i++)

242 {
243 f s c 4 [ i ] = 0 . ;

244 f c e n t r a l [ i ] = 0 . ;

245 f y e r r [ i ] = 0 . ;

246 }
247

248 } // void Al iAnalys i sTaskForStudents : : I n i t i a l i z e A r r a y s ( )

249

250 void Al iAnalys i sTaskForStudents : : BookAndNestAllLists ( )

251 {
252

253 TString sMethodName = ” void Al iAnalys i sTaskForStudents : :

BookAndNestAllLists ( ) ” ;

254 i f ( ! f H i s t L i s t ) {Fatal ( sMethodName . Data ( ) , ” f H i s t L i s t i s NULL” ) ;}
255 fContro lH i s togramsL i s t = new TList ( ) ;

256 fContro lHis togramsLis t−>SetName ( ” ControlHistograms ” ) ;

257 fContro lHis togramsLis t−>SetOwner (kTRUE) ;

258 f H i s t L i s t−>Add( fContro lH i s togramsL i s t ) ;

259 f F i n a l R e s u l t s L i s t = new TList ( ) ;

260 f F i n a l R e s u l t s L i s t−>SetName ( ” F ina lRe su l t s ” ) ;

261 f F i n a l R e s u l t s L i s t−>SetOwner (kTRUE) ;

262 f H i s t L i s t−>Add( f F i n a l R e s u l t s L i s t ) ;

263

264 } // void Al iAnalys i sTaskForStudents : : BookAndNestAllLists ( )
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265

266 void Al iAnalys i sTaskForStudents : : BookControlHistograms ( )

267 {
268 fPtHi s t = new TH1F( ” fPtHi s t ” , ” atrack−>Pt ( ) ” , fNbins , fMinBin , fMaxBin )

;

269 fPtHist−>SetSta t s (kFALSE) ;

270 fPtHist−>S e t F i l l C o l o r ( kBlue−10) ;

271 fPtHist−>GetXaxis ( )−>S e t T i t l e ( ” p { t }” ) ;

272 fContro lHis togramsLis t−>Add( fPtHi s t ) ;

273

274 f C e n t r a l i t y H i s t = new TH1F( ” f C e n t r a l i t y H i s t ” , ”ams−>
G e t M u l t i p l i c i t y P e r c e n t i l e (\”V0M\”) ” , fNCentra l i tyBins ,

fMinCentra l i ty , fMaxCentra l i ty ) ;

275 f C e n t r a l i t y H i s t−>S e t F i l l C o l o r ( kBlue−10) ;

276 f C e n t r a l i t y H i s t−>GetXaxis ( )−>S e t T i t l e ( ” c e n t r a l i t y p e r c e n t i l e ” ) ;

277 fContro lHis togramsLis t−>Add( f C e n t r a l i t y H i s t ) ;

278 fMultHist = new TH1F( ” fMultHist ” , ” M u l t i p l i c i t y D i s t r i b u t i o n ”

,1000 ,0 ,3000) ;

279 fMultHist−>GetXaxis ( )−>S e t T i t l e ( ”m” ) ;

280 fMultHist−>SetLineColor (4 ) ;

281 fContro lHis togramsLis t−>Add( fMultHist ) ;

282

283 fPh iH i s t = new TH1F( ” fPh iH i s t ” , ”Phi D i s t r i b u t i o n ” , 1 0 0 0 , 0 . , 6 . 3 ) ;

284 fPhiHist−>GetXaxis ( )−>S e t T i t l e ( ”Phi” ) ;

285 fPhiHist−>SetLineColor (4 ) ;

286 fContro lHis togramsLis t−>Add( fPh iH i s t ) ;

287

288 fEtaHis t = new TH1F( ” fEtaHis t ” , ”Eta D i s t r i b u t i o n ” ,1000 , −1 . ,1 . ) ;

289 fEtaHist−>GetXaxis ( )−>S e t T i t l e ( ”Eta” ) ;

290 fEtaHist−>SetLineColor (4 ) ;

291 fContro lHis togramsLis t−>Add( fEtaHis t ) ;

292

293 f g r = new TGraphErrors ( f s i z e , f c e n t r a l , f s c4 , 0 , f y e r r ) ;

294 fgr−>SetName ( ” gr ” ) ;

295 fgr−>SetMarkerColor (2 ) ;

296

297 fhr2 = new TPro f i l e ( ” fh r2 ” , ” fh r2 ” , 3 , 0 . , 3 . ) ;

298 fhr2−>Sumw2( ) ;

299 fContro lHis togramsLis t−>Add( fhr2 ) ;

300

301 fhr3 = new TPro f i l e ( ” fh r3 ” , ” fh r3 ” , 2 , 0 . , 1 . ) ;

302 fhr3−>Sumw2( ) ;

303 fContro lHis togramsLis t−>Add( fhr3 ) ;

304

305 fhrc22 = new TPro f i l e ( ” fh rc22 ” , ” fh rc22 ” , 1 0 , 0 . , 1 0 ) ;

306 fhrc22−>Sumw2( ) ;

307 // s i m i l a r d e c l e r a t i o n s o f other T P r o f i l e s take p lace here
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308

309 } // void Al iAnalys i sTaskForStudents : : BookControlHistograms ( )

310

311 void Al iAnalys i sTaskForStudents : : BookFinalResultsHistograms ( )

312 {
313

314 f h f = new TH1F( ” f h f ” , ” P r o f i l ” , 2 , 0 . , 1 0 0 ) ;

315 fh f−>GetXaxis ( )−>S e t T i t l e ( ” C e nt r a l i t y p e r c e n t i l e ” ) ;

316 fh f−>GetYaxis ( )−>S e t T i t l e ( ”SC(m, n) ” ) ;

317 fh f−>SetSta t s (0 ) ;

318 fh f−>SetOption ( ”pex0” ) ;

319

320 f F i n a l R e s u l t s L i s t−>Add( f h f ) ;

321

322 } // void Al iAnalys i sTaskForStudents : : BookFinalResultsHistograms ( )

E.0.3 Fig. (3.11)

1 #inc lude ”TComplex . h”

2 #inc lude ” TPro f i l e . h”

3 #inc lude ”TStopwatch . h”

4 #inc lude ” Riostream . h”

5

6 const I n t t n P a r t i c l e s = 1000 ;

7 Double t ang l e s [ n P a r t i c l e s ] ;

8 Double t weights [ n P a r t i c l e s ] ;

9 Boo l t bUseWeights = kFALSE;

10 const I n t t h1=1, h2=2, h3=3, h4=−1, h5=−2, h6=−3;

11

12 const I n t t sum = ( h1<0?−1∗h1 : h1 )+(h2<0?−1∗h2 : h2 )+(h3<0?−1∗h3 : h3 )+(

h4<0?−1∗h4 : h4 )

13 + ( h5<0?−1∗h5 : h5 )+(h6<0?−1∗h6 : h6 ) ;

14 const I n t t maxCorrelator = 6 ; // We w i l l not go beyond 8−p

c o r r e l a t i o n s

15 const I n t t maxHarmonic = sum+1;

16 const I n t t maxPower = maxCorrelator +1;

17 TComplex Qvector [ maxHarmonic ] [ maxPower ] ; // Al l needed Q−vec to r

components

18

19 TF1 ∗ f 1 = new TF1( ” f1 ” , ” ( 1 . /TMath : : TwoPi ( ) ) ∗ ( 1 . +2 .∗ [ 0 ]∗ cos ( x ) +

2 . ∗ [ 1 ] ∗ cos (2∗x ) + 2 . ∗ [ 2 ] ∗ cos (3∗x ) ) ” , 0 . ,TMath : : TwoPi ( ) ) ;

20 TPro f i l e ∗ c o r r e l a t i o n s [ 2 ] [ maxCorrelator ] = {{NULL}} ;

21 TPro f i l e ∗hr7 = new TPro f i l e ( ”hr7” , ” P r o f i l e 7 7 ” , 7 , 0 . , 7 . ) ;

22 hr7−>Sumw2( ) ;

23 Double t v1 , v2 , v3 ;

24 I n t t n P a r t i c l e s ;
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25

26 void p a r t i c l e s ( ) {
27 v1 =0.05;

28 v2 =0.1 ;

29 v3 =0.15;

30

31 f1−>SetParameter (0 , v1 ) ;

32 f1−>SetParameter (1 , v2 ) ;

33 f1−>SetParameter (2 , v3 ) ;

34

35 f o r ( I n t t i =0; i<n P a r t i c l e s ; i++) { ang l e s [ i ] = f1−>GetRandom ( ) ;}
36 }
37 void Cosmetics ( )

38 {
39 f o r ( I n t t cs =0; cs <2; cs++)

40 {
41 f o r ( I n t t c =0;c<maxCorrelator ; c++)

42 {
43

44 c o r r e l a t i o n s [ c s ] [ c ] = new TPro f i l e ( ”” , ”” , 1 , 0 . , 1 . ) ;

45 c o r r e l a t i o n s [ c s ] [ c]−>Sumw2( ) ;

46 } // end o f f o r ( I n t t c =0;c<maxCorrelator ; c++)

47 } // end o f f o r ( I n t t cs =0; cs <2; cs++)

48

49 } // void Cosmetics ( )

50

51 void Calcu lateQvectors ( )

52 {
53 f o r ( I n t t h=0;h<maxHarmonic ; h++)

54 {
55 f o r ( I n t t p=0;p<maxPower ; p++)

56 {
57 Qvector [ h ] [ p ] = TComplex ( 0 . , 0 . ) ;

58 } // f o r ( I n t t p=0;p<maxPower ; p++)

59 } // f o r ( I n t t h=0;h<maxHarmonic ; h++)

60

61 Double t dPhi = 0 . ; // p a r t i c l e ang le

62 Double t wPhi = 1 . ; // p a r t i c l e weight

63 Double t wPhiToPowerP = 1 . ; // p a r t i c l e weight r a i s e d to power p

64 f o r ( I n t t i =0; i<n P a r t i c l e s ; i++) // loop over p a r t i c l e s

65 {
66 dPhi = ang l e s [ i ] ;

67 i f ( bUseWeights ) {wPhi = weights [ i ] ; }
68 f o r ( I n t t h=0;h<maxHarmonic ; h++)

69 {
70 f o r ( I n t t p=0;p<maxPower ; p++)

71 {
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72 i f ( bUseWeights ) {wPhiToPowerP = pow(wPhi , p ) ;}
73 Qvector [ h ] [ p ] += TComplex(wPhiToPowerP∗TMath : : Cos (h∗dPhi ) ,

wPhiToPowerP∗TMath : : Sin (h∗dPhi ) ) ;

74 } // f o r ( I n t t p=0;p<maxPower ; p++)

75 } // f o r ( I n t t h=0;h<maxHarmonic ; h++)

76 } // f o r ( I n t t i =0; i<n P a r t i c l e s ; i++) // loop over p a r t i c l e s

77

78 } // void Calcu lateQvector s ( )

79

80 TComplex Q( I n t t n , I n t t p)

81 {
82

83 i f (n>=0){ re turn Qvector [ n ] [ p ] ; }
84 return TComplex : : Conjugate ( Qvector [−n ] [ p ] ) ;

85

86 } // TComplex Q( I n t t n , I n t t p)

87

88 TComplex Recurs ion ( I n t t n , I n t t ∗ harmonic , I n t t mult = 1 , I n t t

sk ip = 0)

89 {
90 // Ca lcu la te multi−p a r t i c l e c o r r e l a t o r s by us ing r e c u r s i o n ( an

improved f a s t e r v e r s i on ) o r i g i n a l l y developed by

91 // Kr i s t j an Gulbrandsen ( gulbrand@nbi . dk ) .

92

93 I n t t nm1 = n−1;

94 TComplex c (Q( harmonic [ nm1 ] , mult ) ) ;

95 i f (nm1 == 0) return c ;

96 c ∗= Recurs ion (nm1, harmonic ) ;

97 i f (nm1 == sk ip ) re turn c ;

98

99 I n t t multp1 = mult+1;

100 I n t t nm2 = n−2;

101 I n t t counter1 = 0 ;

102 I n t t hhold = harmonic [ counter1 ] ;

103 harmonic [ counter1 ] = harmonic [ nm2 ] ;

104 harmonic [ nm2 ] = hhold + harmonic [ nm1 ] ;

105 TComplex c2 ( Recurs ion (nm1, harmonic , multp1 , nm2) ) ;

106 I n t t counter2 = n−3;

107 whi l e ( counter2 >= sk ip ) {
108 harmonic [ nm2 ] = harmonic [ counter1 ] ;

109 harmonic [ counter1 ] = hhold ;

110 ++counter1 ;

111 hhold = harmonic [ counter1 ] ;

112 harmonic [ counter1 ] = harmonic [ nm2 ] ;

113 harmonic [ nm2 ] = hhold + harmonic [ nm1 ] ;

114 c2 += Recurs ion (nm1, harmonic , multp1 , counter2 ) ;

115 −−counter2 ;
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116 }
117 harmonic [ nm2 ] = harmonic [ counter1 ] ;

118 harmonic [ counter1 ] = hhold ;

119

120 i f ( mult == 1) re turn c−c2 ;

121 re turn c−Double t ( mult ) ∗ c2 ;

122

123 } // TComplex Al iF lowAna ly s i sWi thMul t ipa r t i c l eCor r e l a t i ons : :

Recurs ion ( I n t t n , I n t t ∗ harmonic , I n t t mult = 1 , I n t t sk ip =

0)

124

125 TComplex Q( I n t t n , I n t t p)

126 {
127

128 i f (n>=0){ re turn Qvector [ n ] [ p ] ; }
129 return TComplex : : Conjugate ( Qvector [−n ] [ p ] ) ;

130

131 } // TComplex Q( I n t t n , I n t t p)

132

133 TComplex Two( I n t t n1 , I n t t n2 )

134 {
135

136 TComplex two = Q( n1 , 1 ) ∗Q( n2 , 1 )−Q( n1+n2 , 2 ) ;

137 re turn two ;

138

139 } // TComplex Two( I n t t n1 , I n t t n2 )

140

141 void scgha ( )

142 {
143

144 TStopwatch t imerRecurs ion ;

145 Double t mu=0. , varb =0. , wTwoRecursion , wFourRecursion ,

wSixRecursion , wTwo ;

146 I n t t N=10;

147

148 const I n t t nvec = 1 ;

149 const I n t t harmv = 2 ;

150 const I n t t harmvb = 4 ;

151 const I n t t harmvc = 6 ;

152 Double t xans [ nvec ]={0 .5} , yans [ nvec ] , ye r r [ nvec ] , xans2 [ nvec

]={1 .} , xans3 [ nvec ]={0 .2} , xans4 [ nvec ]={0 .4} , xans5 [ nvec ]={0 .6} ,

xans6 [ nvec ]={0.8} yans2 [ nvec ] , ye r r2 [ nvec ] , yans3 [ nvec ] , ye r r3 [

nvec ] , yans4 [ nvec ] , ye r r4 [ nvec ] , yans5 [ nvec ] , ye r r5 [ nvec ] , yans6 [

nvec ] , ye r r6 [ nvec ] ;

153 I n t t harmonics Two Num [ harmv ] , harmonics Two Den [ harmv ]={0 ,0} ,

harmonics Four Num [ harmvb ] , harmonics Four Den [ harmvb

]={0 ,0 ,0 ,0 ,0 ,0} , harmonics Six Num [ harmvc ] , harmonics Six Den [
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harmvc ]={0 ,0 ,0 ,0} ;

154

155 TComplex twoRecursion , fourRecurs ion , s ixRecurs ion , two ;

156 TPro f i l e ∗hrb1 = new TPro f i l e ( ”hrb1” , ” P r o f i l e 1 ” , 1 0 , 0 . ,N) ;

157 hrb1−>Sumw2( ) ;

158 TPro f i l e ∗hrb2 = new TPro f i l e ( ”hrb2” , ” P r o f i l e 2 ” , 1 0 , 0 . ,N) ;

159 hrb2−>Sumw2( ) ;

160 // other T P r o f i l e s are dec l a r ed in the same way here .

161

162 f o r ( I n t t ne=0;ne<N; ne++) {
163

164 p a r t i c l e s ( ) ;

165 Calcu lateQvectors ( ) ;

166 t imerRecurs ion . S ta r t ( ) ;

167

168 harmonics Two Num [ 0 ] = h1 ; //1−1

169 harmonics Two Num [ 1 ] = h4 ;

170

171 twoRecursion = Recurs ion (2 , harmonics Two Num ) / Recurs ion (2 ,

harmonics Two Den ) . Re ( ) ;

172 wTwoRecursion = Recurs ion (2 , harmonics Two Den ) . Re ( ) ;

173 hr7−>F i l l ( 0 . , twoRecursion . Re ( ) , wTwoRecursion ) ; // <<cos ( h1∗phi1+h2

∗phi2 )>>

174 hrb1−>F i l l ( ne , twoRecursion . Re ( ) , wTwoRecursion ) ;

175

176 harmonics Two Num [ 0 ] = h2 ; // 2−2

177 harmonics Two Num [ 1 ] = h5 ;

178

179 twoRecursion = Recurs ion (2 , harmonics Two Num ) / Recurs ion (2 ,

harmonics Two Den ) . Re ( ) ;

180 wTwoRecursion = Recurs ion (2 , harmonics Two Den ) . Re ( ) ;

181 hr7−>F i l l ( 1 . , twoRecursion . Re ( ) , wTwoRecursion ) ; // <<cos ( h1∗phi1+h2∗
phi2 )>>

182 hrb2−>F i l l ( ne , twoRecursion . Re ( ) , wTwoRecursion ) ;

183

184 harmonics Two Num [ 0 ] = h3 ; // 3−3

185 harmonics Two Num [ 1 ] = h6 ;

186

187 twoRecursion = Recurs ion (2 , harmonics Two Num ) / Recurs ion (2 ,

harmonics Two Den ) . Re ( ) ;

188 wTwoRecursion = Recurs ion (2 , harmonics Two Den ) . Re ( ) ;

189 hr7−>F i l l ( 2 . , twoRecursion . Re ( ) , wTwoRecursion ) ; // <<cos ( h1∗phi1+h2∗
phi2 )>>

190 hrb3−>F i l l ( ne , twoRecursion . Re ( ) , wTwoRecursion ) ;

191

192 harmonics Four Num [ 0 ] = h1 ; //1 2 −1 −2

193 harmonics Four Num [ 1 ] = h2 ;
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194 harmonics Four Num [ 2 ] = h4 ;

195 harmonics Four Num [ 3 ] = h5 ;

196

197 fourRecurs ion = Recurs ion (4 , harmonics Four Num ) / Recurs ion (4 ,

harmonics Four Den ) . Re ( ) ;

198 wFourRecursion = Recurs ion (4 , harmonics Four Den ) . Re ( ) ;

199 hr7−>F i l l ( 3 . , f ourRecurs ion . Re ( ) , wFourRecursion ) ; // <<cos ( h1∗phi1+

h2∗phi2+h3∗phi3+h4∗phi4 )>>

200 hrb4−>F i l l ( ne , fourRecurs ion . Re ( ) , wFourRecursion ) ;

201

202 harmonics Four Num [ 0 ] = h1 ; //1 3 −1 −3

203 harmonics Four Num [ 1 ] = h3 ;

204 harmonics Four Num [ 2 ] = h4 ;

205 harmonics Four Num [ 3 ] = h6 ;

206

207 fourRecurs ion = Recurs ion (4 , harmonics Four Num ) / Recurs ion (4 ,

harmonics Four Den ) . Re ( ) ;

208 wFourRecursion = Recurs ion (4 , harmonics Four Den ) . Re ( ) ;

209 hr7−>F i l l ( 4 . , f ourRecurs ion . Re ( ) , wFourRecursion ) ; // <<cos ( h1∗phi1+

h2∗phi2+h3∗phi3+h4∗phi4 )>>

210 hrb5−>F i l l ( ne , fourRecurs ion . Re ( ) , wFourRecursion ) ;

211

212 harmonics Four Num [ 0 ] = h2 ; //2 3 −2 −3

213 harmonics Four Num [ 1 ] = h3 ;

214 harmonics Four Num [ 2 ] = h5 ;

215 harmonics Four Num [ 3 ] = h6 ;

216

217 fourRecurs ion = Recurs ion (4 , harmonics Four Num ) / Recurs ion (4 ,

harmonics Four Den ) . Re ( ) ;

218 wFourRecursion = Recurs ion (4 , harmonics Four Den ) . Re ( ) ;

219 hr7−>F i l l ( 5 . , f ourRecurs ion . Re ( ) , wFourRecursion ) ; // <<cos ( h1∗phi1+

h2∗phi2+h3∗phi3+h4∗phi4 )>>

220 hrb6−>F i l l ( ne , fourRecurs ion . Re ( ) , wFourRecursion ) ;

221

222 harmonics Six Num [ 0 ] = h1 ; // 1 2 3 −1 −2 −3

223 harmonics Six Num [ 1 ] = h2 ;

224 harmonics Six Num [ 2 ] = h3 ;

225 harmonics Six Num [ 3 ] = h4 ;

226 harmonics Six Num [ 4 ] = h5 ;

227 harmonics Six Num [ 5 ] = h6 ;

228

229 s ixRecur s i on = Recurs ion (6 , harmonics Six Num ) / Recurs ion (6 ,

harmonics Six Den ) . Re ( ) ;

230 wSixRecursion = Recurs ion (6 , harmonics Six Den ) . Re ( ) ;

231 hr7−>F i l l ( 6 . , s i xRecur s i on . Re ( ) , wSixRecursion ) ; // <<cos ( h1∗phi1+h2∗
phi2+h3∗phi3+h4∗phi4+h5∗phi5+h6∗phi6 )>>

232 hrb7−>F i l l ( ne , s i xRecur s i on . Re ( ) , wSixRecursion ) ;
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233 }
234 yans [ 0 ] = hr7−>GetBinContent (7 ) − hr7−>GetBinContent (4 ) ∗hr7−>

GetBinContent (3 ) − hr7−>GetBinContent (5 ) ∗hr7−>GetBinContent (2 ) −
hr7−>GetBinContent (6 ) ∗hr7−>GetBinContent (1 ) + 2 .∗ hr7−>

GetBinContent (1 ) ∗hr7−>GetBinContent (2 ) ∗hr7−>GetBinContent (3 ) ;

235

236 f o r ( I n t t i =1; i <11; i++) { mu +=hrb7−>GetBinContent ( i ) − hrb4−>
GetBinContent ( i ) ∗hrb3−>GetBinContent ( i ) − hrb5−>GetBinContent ( i )

∗hrb2−>GetBinContent ( i ) − hrb6−>GetBinContent ( i ) ∗hrb1−>
GetBinContent ( i ) + 2 .∗ hrb1−>GetBinContent ( i ) ∗hrb2−>GetBinContent

( i ) ∗hrb3−>GetBinContent ( i ) ; }
237

238 f o r ( I n t t i =1; i <11; i++) {
239 varb+= pow( hrb7−>GetBinContent ( i ) − hrb4−>GetBinContent ( i ) ∗hrb3

−>GetBinContent ( i ) − hrb5−>GetBinContent ( i ) ∗hrb2−>
GetBinContent ( i ) − hrb6−>GetBinContent ( i ) ∗hrb1−>GetBinContent

( i ) + 2 .∗ hrb1−>GetBinContent ( i ) ∗hrb2−>GetBinContent ( i ) ∗hrb3−>
GetBinContent ( i ) − mu/ 1 0 . , 2 ) ;

240 }
241 yer r [0 ]= s q r t ( varb / 9 0 . ) ;

242

243 mu=0. ;

244 varb =0. ;

245 yans2 [ 0 ] = hr7−>GetBinContent (7 ) ;

246

247 f o r ( I n t t i =1; i <11; i++) { mu +=hrb7−>GetBinContent ( i ) ; }
248

249 f o r ( I n t t i =1; i <11; i++) {
250 varb+= pow( hrb7−>GetBinContent ( i ) − mu/ 1 0 . , 2 ) ;

251 }
252

253 yerr2 [0 ]= s q r t ( varb / 9 0 . ) ;

254 mu=0. ;

255 varb =0. ;

256 yans3 [ 0 ] = hr7−>GetBinContent (4 ) ∗hr7−>GetBinContent (3 ) ;

257

258 f o r ( I n t t i =1; i <11; i++) { mu += hrb4−>GetBinContent ( i ) ∗hrb3−>
GetBinContent ( i ) ; }

259

260 f o r ( I n t t i =1; i <11; i++) {
261 varb+= pow( hrb4−>GetBinContent ( i ) ∗hrb3−>GetBinContent ( i ) − mu

/ 1 0 . , 2 ) ;

262 }
263

264 yerr3 [0 ]= s q r t ( varb / 9 0 . ) ;

265

266 mu=0. ;
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267 varb =0. ;

268 yans4 [ 0 ] = hr7−>GetBinContent (5 ) ∗hr7−>GetBinContent (2 ) ;

269

270 f o r ( I n t t i =1; i <11; i++) { mu += hrb5−>GetBinContent ( i ) ∗hrb2−>
GetBinContent ( i ) ; }

271

272 f o r ( I n t t i =1; i <11; i++) {
273 varb+= pow( hrb5−>GetBinContent ( i ) ∗hrb2−>GetBinContent ( i ) − mu

/ 1 0 . , 2 ) ;

274 }
275

276 yerr4 [0 ]= s q r t ( varb / 9 0 . ) ;

277

278 mu=0. ;

279 varb =0. ;

280 yans5 [ 0 ] = hr7−>GetBinContent (6 ) ∗hr7−>GetBinContent (1 ) ;

281

282 f o r ( I n t t i =1; i <11; i++) { mu += hrb6−>GetBinContent ( i ) ∗hrb1−>
GetBinContent ( i ) ; }

283

284 f o r ( I n t t i =1; i <11; i++) {
285 varb+= pow( hrb6−>GetBinContent ( i ) ∗hrb1−>GetBinContent ( i ) − mu

/ 1 0 . , 2 ) ;

286 }
287

288 yerr5 [0 ]= s q r t ( varb / 9 0 . ) ;

289

290 mu=0. ;

291 varb =0. ;

292 yans6 [ 0 ] = hr7−>GetBinContent (1 ) ∗hr7−>GetBinContent (2 ) ∗hr7−>
GetBinContent (3 ) ;

293

294 f o r ( I n t t i =1; i <11; i++) { mu += hrb1−>GetBinContent ( i ) ∗hrb2−>
GetBinContent ( i ) ∗hrb3−>GetBinContent ( i ) ; }

295

296 f o r ( I n t t i =1; i <11; i++) {
297 varb+= pow( hrb1−>GetBinContent ( i ) ∗hrb2−>GetBinContent ( i ) ∗hrb3−>

GetBinContent ( i ) − mu/ 1 0 . , 2 ) ;

298 }
299

300 yerr6 [0 ]= s q r t ( varb / 9 0 . ) ;

301 TCanvas ∗can = new TCanvas ( ”can” , ”A Graph” ,800 ,450) ;

302 can−>SetTickx (1 ) ;

303 can−>Divide ( 2 , 1 , 0 . 0 0 0 1 , 0 . 0 0 1 ) ;

304

305 can−>cd (1 ) ;

306 TGraphErrors ∗ gr3 = new TGraphErrors ( nvec , xans , yans , 0 , ye r r ) ;
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307 gr3−>SetName ( ” gr3 ” ) ;

308 gr3−>S e t T i t l e ( ”Constant Harmonics” ) ;

309 gr3−>Draw ( ) ;

310 l e g h i s t = new TLegend ( 0 . 6 , 0 . 6 , 0 . 8 , 0 . 7 ) ;

311 l e g h i s t−>AddEntry ( gr3 , ”SC(1 , 2 , 3 ) ” , ”p” ) ;

312

313 l e g h i s t−>SetLineWidth (2 ) ;

314 l e g h i s t−>Draw( ”Same” ) ;

315

316 can−>cd (2 ) ;

317

318 TGraphErrors ∗ gra = new TGraphErrors ( nvec , xans3 , yans3 , 0 , yer r3 ) ;

319 gra−>SetName ( ” gra ” ) ;

320 gra−>SetMarkerColor (5 ) ;

321 TGraphErrors ∗grb = new TGraphErrors ( nvec , xans4 , yans4 , 0 , yer r4 ) ;

322 grb−>SetName ( ”grb” ) ;

323 grb−>SetMarkerColor (6 ) ;

324 TGraphErrors ∗ grc = new TGraphErrors ( nvec , xans5 , yans5 , 0 , yer r5 ) ;

325 grc−>SetName ( ” grc ” ) ;

326 grc−>SetMarkerColor (7 ) ;

327 TGraphErrors ∗grd = new TGraphErrors ( nvec , xans6 , yans6 , 0 , yer r6 ) ;

328 grd−>SetName ( ”grd” ) ;

329 grd−>SetMarkerColor (8 ) ;

330 TGraphErrors ∗ gr = new TGraphErrors ( nvec , xans2 , yans2 , 0 , yer r2 ) ;

331 gr−>SetName ( ” gr ” ) ;

332 gr−>SetMarkerColor (4 ) ;

333 gr−>SetMarkerStyle (8 ) ;

334

335 TMultiGraph ∗mg = new TMultiGraph ( ) ;

336 mg−>Add( gr ) ;

337 mg−>Add( gra ) ;

338 mg−>Add( grb ) ;

339 mg−>Add( grc ) ;

340 mg−>Add( grd ) ;

341 mg−>S e t T i t l e ( ” C o r r e l a t o r s ” ) ;

342 mg−>Draw( ”AP” ) ;

343 mg−>GetXaxis ( )−>SetL imits ( 0 . , 2 . 6 ) ;

344

345 TLegend ∗ l e g h i s t 2 = new TLegend ( 0 . 4 6 , 0 . 4 , 0 . 9 8 , 0 . 9 ) ;

346 l e g h i s t 2−>AddEntry ( gr , ”#LTcos (1 , 2 , 3 )#GT” , ”p” ) ;

347 l e g h i s t 2−>SetLineWidth (2 ) ;

348 l e g h i s t 2−>SetTextSize ( . 0 4 ) ;

349 l e g h i s t 2−>Draw( ) ;

350 }
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