Production of $K^*(892)^+$ in P+P collisions at 3.5 GeV

Dimitar Mihaylov

Technische Universität München

dimitar.mihaylov(at)mytum.de dimitar.lubomirov.mihaylov(at)cern.ch

July 19, 2016

Dimitar Mihaylov (TUM)

ТШП

TECHNISCHE

UNIVERSITÄT

MÜNCHEN

PRODUCTION OF K^{*}(892)⁺

JULY 19, 2016 1 / 33

- (E

MOTIVATION

THE HADES EXPERIMENT

ANALYSIS

RESULTS

Dimitar Mihaylov (TUM)

Production of $K^{*}(892)^{+}$

JULY 19, 2016 2 / 33

ELE DOG

프 + + 프 +

PDG table:

K*(89 2)) $I(J^{P}) = \frac{1}{2}(1^{-})$	
	$K^*(892)^{\pm}$ mass $m = 891.66 \pm 0.26$ MeV	
	$K^*(892)^0 \text{ mass } m = 895.94 \pm 0.22 \text{ MeV}$ (S = 1.4)	
	$\frac{K^*(892)^{\perp} \text{ full width } \Gamma = 50.8 \pm 0.9 \text{ MeV}}{\text{Full width } \Gamma = 46.2 \pm 1.3 \text{ MeV}}$	
	$K^*(892)^0$ full width $\Gamma=48.7\pm0.8$ MeV $(S=1.7)$	
		Р

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
Κπ	\sim 100 $\%$	6	289
$\mathcal{K}^{0}_{\gamma}\gamma$	(2.39±0.21)>	< 10 ⁻³	307
$K^{\pm}\gamma$	(9.9 ± 0.9) >	< 10 ⁻⁴	309
Κππ	< 7 >	< 10 ⁻⁴ 95%	223

Dimitar Mihaylov (TUM)

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

PRODUCTION MECHANISM

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

GOAL OF THE ANALYSIS

- To reconstruct the invariant mass spectrum (IMS) of the $K^*(892)^+$.
- To apply acceptance and efficiency corrections to the differentially extracted yield.
- ► To estimate the total production cross section.

MOTIVATION

Dimitar Mihaylov (TUM)

MOTIVATION

- ► No previous measurements of the K*(892)⁺ at energies close to the production threshold in pp collisions.
- The result will help to constrain parameters in transport models.
- The results can be used as reference measurement to pA or even AA collisions, which will be capable of investigating in-medium effects.

THE HADES EXPERIMENT

THE HADES EXPERIMENT

High Acceptance Di-electron Spectrometer @ GSI, Darmstadt

[http://ojs.ujf.cas.cz/ionty/hades/, 2016]

Dimitar Mihaylov (TUM)

PRODUCTION OF K^{*}(892)⁺

July 19, 2016 8 / 33

(ロ) (同) (三) (三) (三) (0) (0)

THE HADES EXPERIMENT

THE HADES EXPERIMENT

- ► Full azimuthal coverage, 15° 85° in polar angle.
- Momentum resolution 1 5%.
- Particle ident. via dE/dx & Tof.
- ▶ 1.2 · 10⁹ Events in p+p at *E*_{beam} = 3.5 GeV.

< E

ANALYSIS

Dimitar Mihaylov (TUM)

Production of $K^{*}(892)^{+}$

4 ロ ト 《 部 ト 《 語 ト 《 語 ト 通 1 = の Q ()
JULY 19, 2016 10 / 33

DECAY TOPOLOGY

Dimitar Mihaylov (TUM)

ΠП

Production of K^{*}(892)⁺

JULY 19, 2016 11 / 33

11 DQC

< ∃ >

Dimitar Mihaylov (TUM)

Production of $K^{*}(892)^{+}$

July 19, 2016 12 / 33

IMS of the K_S^0 candidates

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

July 19, 2016 13 / 33

1 = 9 Q Q

Image: A matrix

HADES

IMS of the $K^*(892)^+$ candidates

• No cut on $IM(\pi^+\pi^-)$.

The signal is fitted with a Breit-Wigner function.

-

- With cut on $IM(\pi^+\pi^-)$.
- The signal is fitted with a Breit-Wigner function.

-

PROBLEMS WITH THE FIT

- Phase space limitations.
- Detector resolution.
- A Brei-Wigner function is incapable of modeling the signal.
- Monte-Carlo simulations are needed for further investigation.

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

JULY 19, 2016 16 / 33

ELE SOG

- 1. $p + p \rightarrow p + K^{*}(892)^{+} + \Lambda$ 2. $p + p \rightarrow p + K^{*}(892)^{+} + \Sigma^{0}$
- 2. $p + p \rightarrow p + K^*(892)^+ + \Sigma$
- \blacktriangleright $K^*(892)^+$ \rightarrow K^0_S + π^+

- Both channels are simulated with the PLUTO event generator.
- The response of the detector has been simulated using **HGeant**.

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

JULY 19, 2016 17 / 33

WORK-FLOW

Dimitar Mihaylov (TUM)

Production of $K^*(892)^+$

JULY 19, 2016 18 / 33

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●目目 のへで

IMS of the $K^*(892)^+$ candidates

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

JULY 19, 2016 19 / 33

315

< E

< 🗇 🕨

Corrections

The measured yield $n_i^{(exp)}$ needs to be corrected for:

- Acceptance and efficiency.
- Branching ratios.
- Normalization to pp elastic collisions.

$$\sigma_{\rm tot}^{K^{*+}} = C^{(\sigma)} C^{(\rm BR)} \sum_{i} C_{i}^{(\rm 2ch)} n_{i}^{(\rm exp)}$$

Dimitar Mihaylov (TUM)

JULY 19, 2016 20 / 33

1 = 990

• 3 > 1

ACCEPTANCE AND EFFICIENCY CORRECTIONS

The simulations contain two distinct production channels - which one should be used?

ACCEPTANCE AND EFFICIENCY CORRECTIONS

The simulations contain two distinct production channels - which one should be used?

 Solution: mix the two channels and fit the predicted measured yields to the experimental data.

$$C_i^{(2\mathrm{ch})} = \frac{N_i^{(2\mathrm{ch})}}{n_i^{(2\mathrm{ch})}} = \frac{p^{(\Lambda)}N_i^{(\Lambda)} + p^{(\Sigma)}N_i^{(\Sigma)}}{p^{(\Lambda)}n_i^{(\Lambda)} + p^{(\Sigma)}n_i^{(\Sigma)}}$$

UNCORRECTED p_T SPECTRUM

Corrected p_T spectrum

3 3

Systematic uncertainties

DIMITAR MIHAYLOV (TUM)

PRODUCTION OF K^{*}(892)⁺

July 19, 2016 24 / 33

Systematic uncertainties

The idea:

- Take many different "paths", i.e. cut combinations.
- The deviation between the results should be considered as systematic uncertainty.
- Make a cross check with observables other than p_T.

Systematic uncertainties

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

JULY 19, 2016 26 / 33

Systematic uncertainties

Observable	$\sigma_{\mathcal{K}^{*+}}(\mu b)$	Σ contribution (%)
p _T	$9.5 \pm 0.9 (\mathrm{stat})^{+1.1}_{-0.9} (\mathrm{syst})$	40.8 ^{+19.0} -22.1
$p_{ m CM}$	$9.8\pm0.9({\rm stat})^{+1.4}_{-0.9}({\rm syst})$	$28.5^{+17.6}_{-14.6}$
У	$8.8\pm1.0({\rm stat})^{+1.2}_{-1.0}({\rm syst})$	n/a
$\cos \theta_{ m CM}$	$9.0 \pm 1.1(\text{stat})^{+1.3}_{-1.0}(\text{syst})$	n/a

Dimitar Mihaylov (TUM)

Production of $K^{*}(892)^{+}$

July 19, 2016 27 / 33

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spin-alignment

The spin-alignment property can be investigated using the angle θ between the momentum of the K^{*+} particle (in LAB) and the momentum of one of its daughters (in CM).

ELE SOO

Spin-Alignment

- The spin-alignment property can be investigated using the angle θ between the momentum of the K^{*+} particle (in LAB) and the momentum of one of its daughters (in CM).
- In the case of no net polarization this observable should be described by:

$$W(\vartheta) = rac{3}{4} \left[1-
ho_{00}+(3
ho_{00}-1) \mathrm{cos}^2 artheta
ight],$$

where $\rho_{\rm 00}$ is the zero-spin projection component of the spin-density matrix.

Spin-Alignment

- ► The spin-alignment property can be investigated using the angle *∂* between the momentum of the K^{*+} particle (in LAB) and the momentum of one of its daughters (in CM).
- In the case of no net polarization this observable should be described by:

$$W(\vartheta) = rac{3}{4} \left[1-
ho_{00}+(3
ho_{00}-1) \mathrm{cos}^2 artheta
ight],$$

where $\rho_{\rm 00}$ is the zero-spin projection component of the spin-density matrix.

• In the absence of spin-alignment ρ_{00} should be 1/3.

 $\rho_{00} = 0.39 \pm 0.09 (\text{stat})^{+0.10}_{-0.09} (\text{syst}).$

Dimitar Mihaylov (TUM)

Production of $K^*(892)^+$

July 19, 2016 29 / 33

1 = 9 Q Q

RESULTS

SUMMARY AND CONCLUSIONS

• The total production cross section of $K^*(892)^+$ was calculated to be:

 $\sigma_{\rm tot}({\sf K}^*(892)^+) = 9.5 \pm 0.9({
m stat})^{+1.1}_{-0.9}({
m syst}) \ \mu{
m b}.$

ELE SOG

RESULTS

▶ The total production cross section of $K^*(892)^+$ was calculated to be:

```
\sigma_{\rm tot}({\sf K}^*(892)^+) = 9.5 \pm 0.9({
m stat})^{+1.1}_{-0.9}({
m syst}) \ \mu{
m b}.
```

The Λ production channel seems to be dominant, however the uncertainty does not allow for an accurate estimation of the exact contribution:

 $p^{(\Lambda)} = 0.59^{+0.22}_{-0.19}$

Dimitar Mihaylov (TUM)

Results

▶ The total production cross section of $K^*(892)^+$ was calculated to be:

```
\sigma_{\rm tot}({\sf K}^*(892)^+) = 9.5 \pm 0.9({
m stat})^{+1.1}_{-0.9}({
m syst})~\mu{
m b}.
```

The Λ production channel seems to be dominant, however the uncertainty does not allow for an accurate estimation of the exact contribution:

$$p^{(\Lambda)} = 0.59^{+0.22}_{-0.19}$$

The result for the spin-alignment is fully compatible with the no-spin-alignment hypothesis:

$$\rho_{00} = 0.39 \pm 0.09 (\text{stat})^{+0.10}_{-0.09} (\text{syst}).$$

Dimitar Mihaylov (TUM)

RESULTS

SUMMARY AND CONCLUSIONS

The fit to the K*+ data can be used for extrapolating the total production cross section of the particle down to an access energy of only 231 MeV.

DIMITAR MIHAYLOV (TUM)

PRODUCTION OF K^{*}(892)⁺

JULY 19, 2016 31 / 33

RESULTS

SUMMARY AND CONCLUSIONS

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

< E > < E > E = つへで JULY 19, 2016 32 / 33 DISCUSSION

THANK YOU FOR YOUR ATTENTION!

Veliko Tarnovo, Bulgaria DIMITAR MIHAYLOV (TUM) PRODUC

PRODUCTION OF K^{*}(892)⁺

JULY 19, 2016 33 / 33

DQC

Dimitar Mihaylov (TUM)

Production of $K^*(892)^+$

July 19, 2016 1 / 18

QCD PHASE DIAGRAM

[Bicudo et al., 2011]

Dimitar Mihaylov (TUM)

PRODUCTION OF K^{*}(892)⁺

July 19, 2016 2 / 18

IN-MEDIUM K^{*+} potential

Dimitar Mihaylov (TUM)

Production of $K^*(892)^+$

July 19, 2016 4 / 18

1 = 990

$K^*(892)^+$ production channels

#	Reaction	$\sqrt{s_{ m thr}}~[{ m MeV}]$	arepsilon [MeV]
1.	$p + p \rightarrow p + \Lambda + K^{*+}$	2946	231
2.	$\mathbf{p} + \mathbf{p} \rightarrow \mathbf{n} + \Sigma^+ + \mathbf{K^{*+}}$	3021	156
3.	$\mathbf{p} + \mathbf{p} \rightarrow \mathbf{p} + \Sigma^0 + \mathbf{K}^{*+}$	3023	154
4.	$\mathbf{p} + \mathbf{p} \to \mathbf{N} + \mathbf{Y} + \pi + \mathbf{K}^{*+}$	\geq 3081	≤ 96
5.	$\mathrm{p}+\mathrm{p}\rightarrow\mathrm{N}+\mathrm{Y}^{*}+\mathrm{K}^{*+}$	\geq 3214	≤-37
6.	$p + p \rightarrow p + N + K + K^{*+}$	>3262	<-87

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

PID (EXAMPLE)

DIMITAR MIHAYLOV (TUM)

Production of $K^*(892)^+$

July 19, 2016 6 / 18

PHASE SPACE LIMITATIONS

Ideal IMS (high-energy collisions):

PHASE SPACE LIMITATIONS

Theoretical IMS for the Λ -channel:

Theoretical IMS for the Λ -channel at $p_T > 470$ MeV:

PHASE SPACE LIMITATIONS

Correction function:

DETECTOR RESOLUTION

Effect of the detector resolution on IMS:

Production of K^{*}(892)⁺

< E ト イ E ト E = つ へ (~ JULY 19, 2016 11 / 18

DETECTOR RESOLUTION

HGeant fits used for fixing the resolution:

Dimitar Mihaylov (TUM)

Production of $K^*(892)^+$

July 19, 2016 12 / 18

- Each bin (i) is corrected with a coefficient $C_i^{(2ch)}$.
- C_i^(2ch) is estimated from the simulations using a mixture between the two production channels.
- $p(\Lambda)$ is the relative contribution of the Λ -channel.

$$C_i^{(2\mathrm{ch})} = \frac{N_i^{(2\mathrm{ch})}}{n_i^{(2\mathrm{ch})}} = \frac{p^{(\Lambda)}N_i^{(\Lambda)} + p^{(\Sigma)}N_i^{(\Sigma)}}{p^{(\Lambda)}n_i^{(\Lambda)} + p^{(\Sigma)}n_i^{(\Sigma)}}$$

Dimitar Mihaylov (TUM)

JULY 19, 2016 13 / 18

ACCEPTANCE AND EFFICIENCY CORRECTIONS

The accuracy of the correction depends on:

- Accuracy of the detector simulation.
- The refinement of the mesh discretization.
- The geometric acceptance of the detector.

UNCORRECTED SPECTRA

Dimitar Mihaylov (TUM)

PRODUCTION OF K^{*}(892)⁺

JULY 19, 2016 15 / 18

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Corrected spectra

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

JULY 19, 2016 16 / 18

3 1 4 3

A 🗸

1 = 990

Bibliography

BIBLIOGRAPHY I

Adam, J. et al. (2016).

Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider.

Phys. Rev., C93(2):024917.

The High-Acceptance Dielectron Spectrometer HADES. *Eur. Phys. J.*, A41:243–277.

Agakishiev, G. et al. (2014).

Medium effects in proton-induced K^0 production at 3.5 GeV. *Phys. Rev.*, C90:054906.

Bicudo, P., Cardoso, N., and Cardoso, M. (2011).

The Chiral crossover, static-light and light-light meson spectra, and the deconfinement crossover.

PoS, BORMIO2011:062.

Dimitar Mihaylov (TUM)

Production of K^{*}(892)⁺

< E > < E > E = のへの JULY 19, 2016 17 / 18 BIBLIOGRAPHY

BIBLIOGRAPHY II

http://ojs.ujf.cas.cz/ionty/hades/ (2016).

NPI Rez group - HADES.

http://ojs.ujf.cas.cz/ionty/hades/.

Accessed: 2016-03-20.

Tsushima, K., Sibirtsev, A., and Thomas, A. W. (2000).

Strangeness production from πN collisions in nuclear matter. *Phys. Rev.*, C62:064904.

EL DOG

→ ∃ >