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Production of K*(892)+ in p+p collisions at 3.5 GeV

by Dimitar Mihaylov

The High Acceptance Di-Electron Spectrometer (HADES) is a fixed-target experi-

ment located at the GSI Helmholtz Centre for Heavy Ion Research and operating at the

SIS18 synchrotron, which provides energies of up to 2 GeV per nucleon. The HADES re-

search program is focused on exploring the dense nuclear matter by means of di-electron

spectroscopy. However, the detector is also suited for hadron detection. In April 2007 a

proton beam with a kinetic energy of 3.5 GeV, which corresponds to
√
s = 3.18 GeV, was

shot at a liquid hydrogen target. The data were really suitable for strangeness research,

i.e. investigation of hadrons that contain a strange quark, and several studies were per-

formed on this topic (e.g. [1–5]). The excited kaonic state K∗(892)+ has a production

threshold energy of 2.95 GeV, which is just a little bit below the available energy. The

deep sub-threshold production of K∗(892)+ has previously been measured by HADES

in Ar+KCl reactions at beam energy of 1.756 GeV [1]. There are also measurements

of this particle species at high energies, however no previous detection of K∗(892)+ has

been recorded at threshold energies. This inspired the investigation of this particular

type of particle. The following work explains the method used for extraction of the

total production cross section of K∗(892)+ in 3.5 GeV p+p collisions and discusses the

measurement of its spin-alignment properties. The results can be greatly beneficial to

the current transport models and can complement further results from future experi-

ments at HADES, when the detector will be moved to the newly developed Facility for

Antiproton and Ion Research (FAIR) and will be provided with higher beam energies.

Furthermore the results can be used as a reference for analyses of heavy-ion reactions

at similar beam energies. Such data, collected during the 2008 p+Nb beam time at a

kinetic energy of 3.5 GeV, are already available from HADES. This work was performed

within the framework of my master studies and inspired a paper published in 2015 [6].
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Chapter 1

Introduction

The introduction will firstly give an overview of the notation and the main properties

regarding the particle that will be investigated in this work: K∗(892)+. The performed

analysis will be justified at the end of the chapter.

1.1 Notation

In this work the following conventions regarding the notation are used.

Units

Unless specifically stated otherwise, natural units are used, in which the speed of light

c and the Planck constant ~ are both set to 1.

c = ~ = 1. (1.1)

This choice of units is called “natural” since they simplify certain equations and beauti-

fully highlight the equivalence between energy, mass and momentum, because all three

of them are given in the same units. By convention the unit of energy is eV.

Vectors

Both four-vectors and standard three-dimensional (3D) vectors will be used in this work.

In order to avoid any confusion in the text “normal” 3D vectors are designated with

lowercase and marked by an arrow, e.g. ~p, while their corresponding magnitudes are

without arrows, e.g. p. The four-vectors are denoted with an uppercase, e.g. P .

1



Chapter 1. Introduction 2

Particles

The notation regarding the particle species used in this work is that commonly accepted

by PDG [7]. A nucleon, i.e. a particle that is either a proton or a neutron, is denoted

by the letter ’N ’. It is customary to use the term hyperon (Y ) for baryons containing at

least one strange quark. In this work the baryons containing exactly one strange quark,

i.e. the Λ and Σ particles, will be of particular interest. Thus the term hyperon will

be explicitly used for those two families of particles. The letter ’Y ’ will be used for the

ground states of the Λ and Σ, ’Y ∗’ will be used for the resonance states Λ(1405) and

Σ(1385). Since K∗(892)+ will be frequently referred to, it will be shortly denoted as

K∗+.

1.2 K*(892)+

1.2.1 General properties

K∗+ is a short-lived mesonic resonance. Similarly to the K+ meson it consists of

an up- and an antistrange quark (us̄) and has an isospin I = 1/2, I3 = 1/2 and an

odd parity. Unlike the K+ meson, which is a pseudoscalar meson with spin 0, K∗+ is a

vector meson, meaning that it has a total spin of 1. It mainly decays into a kaon and a

pion via the strong interaction. The probability of any other decay is less than 0.3 %.

When produced in hadronic reactions it has a mass of M = 891.66 MeV and a decay

width Γ = 50.8 MeV. Those facts are taken from the PDG summary table [8].

1.2.2 Production mechanism

This analysis uses data from proton-proton collisions with a center of mass energy

of
√
s = 3.18 GeV. The observable

√
s is the invariant mass of the system. Therefore

the mass of the products cannot exceed the value of 3.18 GeV. The excess energy of a

reaction is defined as

ε :=
√
s−
√
sthr. (1.2)

The threshold energy
√
sthr is the minimum amount of energy required for a certain

final state and corresponds to the sum of the masses of all constituent particles. All

three-body final states with a positive ε are listed in table 1.1. There are numerous
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# Reaction
√
sthr [MeV] ε [MeV]

1. p + p→ p + Λ + K∗+ 2946 231
2. p + p→ n + Σ+ + K∗+ 3021 156
3. p + p→ p + Σ0 + K∗+ 3023 154
4. p + p→ N + Y + π + K∗+ ≥3081 ≤96
5. p + p→ N + Y∗ + K∗+ ≥3214 ≤-37
6. p + p→ p + N + K + K∗+ ≥3262 ≤-87

Table 1.1: Some of the most probable K∗+ production channels. The ones that are
grayed out are considered to be significantly suppressed compared to the first three
reactions.

other possible final states, but all of them are suppressed either because they have a

negative excess energy and/or have more than three particles in the final state.

1.2.3 Detection mechanism

Due to its very short mean lifetime, K∗+ decays very close to its production location

long before it can reach the detector. Thus, the only way to reconstruct the particle

is through the investigation of its decay products. As mentioned in section 1.2.1, the

dominant decay mode of the K∗ results in the state K + π. In the case of K∗+ there

are two possibilities:

K∗+ → K0 + π+, (1.3)

and

K∗+ → K+ + π0. (1.4)

The π0 cannot be efficiently detected by HADES since the experimental set-up is not

directly sensitive to neutral hadrons. An indirect detection of π0 is also not possible,

since it mainly decays into a pair of photons, which the HADES detector is not capable

to detect. Thus it is impossible to detect the K∗+ meson using the decay mode 1.4. The

π+/− on the other hand are very easy to be directly detected, since the tracking system

is very sensitive to them and they have a decay length, i.e. average distance before the

particle decays, of ≈ 7.8 m, which allows them to reach the detector. The K0 meson

can be detected from its decay products using the invariant mass technique, which will

be explained in the next chapter. Note that K0 has two distinct weak eigenstates, i.e.

states with definite lifetimes under decays via the weak force [9, 10], which are the K0
S

and the K0
L (see appendix A for further discussion). K0

S has a decay length of ≈ 27 mm

and predominantly decays to π+ + π−. Thus most of the K0
S particles decay before
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they have reached the tracking system and their decay products are easily detected

afterwards. Therefore K∗+ can be reconstructed using the following decay scheme:

K∗+ → K0
S + π+ → π+ + π− + π+. (1.5)

The topology of the process is illustrated in figure 1.1, highlighting the fact that the

K∗+ decays almost instantly but, on average, the K0
S particles decay several tents of

millimeters away from the primary vertex. This feature, as it will be explained later, is

of great importance for reconstructing the K∗+.

Figure 1.1: The K∗+ decays almost instantly at the primary vertex (PV) into K0
S +

π+. The K0
S travels some distance before decaying into π+ + π− at the secondary

vertex (SV). This example is from a real event, the visualization was performed using
GeoGebra [11].

1.3 Motivation

1.3.1 Possible modifications of K*(892)+

Within the Standard model of physics (see for example [10, 12]) the strong interac-

tion is described by the quantum chromodynamics (QCD). Since QCD is asymptotically

free, the interaction becomes weaker at higher energies [13]. Thus it is predicted that

at extreme energy densities hadrons break up and the matter is transformed into a new

phase called quark gluon plasma (QGP). In this state the chiral symmetry is presum-

ably restored and the quarks are deconfined. There are still some disputes regarding

the exact properties of the QCD phase diagram but it is commonly accepted that at
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high temperatures or for a high chemical potential corresponding to a high net baryon

density, a transition to QGP should occur. A sketch of the QCD phase diagram is

shown in figure 1.2. Different collision experiments can probe different regions of this

SIS18 ?

Figure 1.2: The QCD phase diagram [14].

diagram. In particular, at SIS18 the HADES experiment has access to relatively low

temperatures and high chemical potentials. When a heavy-ion (HI) collision is realized

in an experiment, the matter passes through several phases before reaching the detec-

tor. First a fireball is created, which is either in QGP phase or a hadron gas phase.

As the system expands, its energy density decreases. If a QGP state was realized, it

transitions back to a hadron gas state. In the next stage of the development of the

system the hadrons scatter off each other both elastically and inelastically, i.e. the par-

ticle composition continues to change. At a certain threshold value the energy density

of the system becomes low enough so that only elastic scattering can occur. This is

known as the chemical freeze-out [15]. The system further grows in size so much that

the mean free path of the particles is larger than the radius of the fireball. At this point

all particles practically stop to interact and continue to fly towards the detector. This is

called the thermal (kinetic) freeze-out [15]. These stages are schematically represented

in figure 1.3. It is important to note that the yields of all particle species are fixed after

the chemical freeze-out. This implies that most of the particles reconstructed by the

detector are created before the occurrence of chemical freeze-out. Thus any effects of

the medium are transfered to the kinematic observables of those particles. However,

short-lived resonances that decay via the strong interaction, such as the K∗(892)+, can
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Figure 1.3: Stages of the space-time evolution of a heavy ion collision. The sketch is
created after [15].

be much more sensitive to in-medium effects because of several reasons. In particular

there are a few competing effects that can change the detected yield1 of a resonance:

• Regeneration

This is the process of pseudo-elastic scattering of the decay products through the

corresponding resonance state, e.g. Kπ → K∗ → Kπ [16]. Unlike the initial Kπ

pair, the invariant mass of the scattered particles corresponds to IM(K∗) and thus

the total detected K∗ yield should increase.

• Re-scattering

If some of the decay products of the resonant particle scatter within the interacting

hadron gas2 it will loose the direct kinematic correlation to its mother particle

and thus the invariant mass technique will not be able to reconstruct the original

resonance [16]. As a result the measured yield of the investigated species should

decrease.

• Partial restoration of chiral symmetry

It is theoretically possible to probe the partial restoration of chiral symmetry, near

the phase transition point, by searching for mass or width modifications of the

observed resonances [16, 17].

1The yield corresponds to the number of particles. The particle reconstruction is performed using the
invariant mass technique (see chapter 2.2 for further details), thus the reconstructed yield will change if
the kinematic properties of the daughter particles are changed.

2That is during the stage between the chemical and the thermal freeze-out.
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• In-medium potential

There are theoretical models that predict a repulsive in-medium potential affecting

K+ and an attractive one affecting K∗(892)+ [18]. The effect of such a potential

can be tested using transport models, for example by investigating the shape of

the transverse momentum (pT ) spectrum and searching for deviations from the

zero potential expectation. An example of such study is the analysis performed by

the HADES collaboration regarding the in-medium modification effects acting on

K0 [3]. The result of this study is consistent with the theoretical prediction of a

repulsive potential acting on K0.

The exact strength of each effect depends on the properties of the medium. The

hadronic medium can be tested by modeling it with transport models and comparing

the predicted yields with the experimental data. In particular one is interested in cold

or hot nuclear matter effects that deviate from the 0-hypothesis, according to which HI

collisions are a superposition of many nucleon-nucleon collisions. For this reason it is

essential that HI collision data are analyzed using a reference that does not contain any

in-medium effects. The proton-proton (pp) system has this property and therefore it is

the perfect benchmark.

1.3.2 Existing experimental data

The properties of K∗(892)+ have not been previously measured at energies close

to the production threshold in p+p reactions. As can be seen in figure 1.4, this is in

contrast to K+, which has been measured inclusively as well as exclusively down to

excess energies ε of less than 1 MeV. The lowest measurement of the total production

cross section of K∗(892)+ in p+p reactions currently lies at
√
s = 4.93 GeV [19], which

corresponds to an excess energy of ε = 1.99 GeV. The HADES experimental data for

p+p collisions at
√
s = 3.18 GeV allows for probing K∗(892)+ at an excess energy of

only ε = 0.23 GeV.

In summary: The obvious lack of data for the production of the K∗(892)+ reso-

nance at near-threshold energies (
√
sthr = 2.95 GeV) and the rich possibilities to test

in-medium effects using this particular resonance inspired us to perform a study using

the HADES data for pp collisions at
√
s = 3.18 GeV. This will fill the currently existing

huge experimental gap and will provide valuable inputs for transport models. The re-

sult presented here can be used as a reference to p+A or A+A collisions at comparable
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Figure 1.4: The cross section as function of the excess energy for: (i) pp→K∗(892)+X
(red squares), (ii) pp→K∗(892)−X (open green crosses), and (iii) pp→K+X (open cir-
cles) [6]. The red line marks shows the energy region accessible by HADES for K∗(892)+.

energies, which can provide information about in-medium effects. Currently there are

data collected by HADES at 3.5 GeV kinetic beam energy for p+Nb collisions. This

particular types of collisions are expected to create cold nuclear matter, which probably

does not transition into a QGP phase. Nevertheless even at saturation density partial

restoration of the chiral symmetry is expected. Regeneration effects might not take

place, since the pNb system is relatively small and dilute. In the future the newly con-

structed FAIR [20] facility will accommodate the HADES experiment and will provide

higher beam energies using the synchrotron SYS100 [21]. It will then be possible to

perform A+A collisions at those energies.

1.4 Structure of this work

This work contains an analysis of the K∗(892)+ production in p+p collisions at
√
s = 3.18 GeV and it is structured as follows:

• Chapter 2: General concepts

The basics of particle detection and reconstruction as well as the invariant mass

technique and the effect of acceptance and efficiency are explained.
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• Chapter 3: The HADES experiment

This chapter gives an overview of the HADES experiment and its detector sys-

tems. The capabilities and limitations of the detector are shortly described. The

chapter also introduces the main software tools that are provided by the HADES

collaboration and used in this work.

• Chapter 4: Analysis of the K*(892)+ production

This is the main chapter of this study. It explains all steps of the data analysis, the

extraction of the total production cross section of K∗(892)+ and the investigation

of spin-alignment effects.

• Chapter 5: Summary and conclusions



Chapter 2

General concepts

2.1 Particle reconstruction in an experiment

The reconstruction of particles from the detector response is a complicated procedure.

Certainly the interaction of a single particle with the detector happens on a microscopic

scale. The basic idea is to allow for the propagation of the microscopic interaction to

macroscopic effects leading to a stronger signal, for example a current, significant enough

to be measured. The signal than needs to be digitalized and the obtained raw signal

can be further used for the reconstruction procedure. In this chapter a brief overview of

the concepts most relevant to the performed analysis will be given.

Track reconstruction

A particle propagating through the detector produces hits. A hit is the measured location

of the particle within the detector. The hits can then be used to reconstruct the track of

the particle. A track is an object that contains information about the particle spatial and

kinematic characteristics. The spatial trajectory of a particle can be directly obtained

using the hits. For charged particles it is possible to use an external magnetic field

in order to bend their trajectories. The bending radius can be used to extract the

momentum of the particle. In addition, the direction of the bending provides information

about the charge of the particle, i.e. whether it is negative or positive.

Particle identification

So far the track carries information about the position, momentum and charge of the

particle. A very important and needed property is the mass. One way to obtain it is

10
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to use the specific energy loss of a particle inside a certain medium. The term stopping

power is used to describe the force acting on a charged particle propagating through a

medium. The linear stopping power is:

S(E) = −dE
dx

, (2.1)

and describes the energy loss per unit length within the material. For practical reasons

in many physics books the term energy loss is used to describe the mass stopping power,

which is the linear stopping power divided by the density of the medium. The average

energy loss of a particle is commonly written as

−
〈

dE

dx

〉
.

This might be slightly misleading, since the units are not eV·cm−1 as in the case of S(E),

but rather MeV·g−1 ·cm2! In order to be consistent with the literature this notation is

also used in the present study. A detailed discussion on the passage of particles through

matter can be found in the Review of Particle Physics [7]. The equation of interest to

us is the Bethe-Bloch formula:

−
〈

dE

dx

〉
(β) = K

Z

A

z2

β2

[
1

2
ln

(
2mec

2β2γ2Tmax(β)

I2

)
− β2 − δ(β)

2

]
, (2.2)

which describes the mean rate of energy loss by moderately relativistic (βγ ∼ (0.1, 100))

charged heavy particles. In the last equation:

K = 0.307075 MeV mol−1 cm2,

me is the mass of the electron,

c is the speed of light,

Z it the atomic number of the absorber,

A is the atomic mass of absorber (in g mol−1),

z is the charge number of incident particle,

β is the velocity of the particle (in natural units),

γ = 1/
√

1− β2 is the Lorentz factor,

I is the characteristic ionization constant of the gas,

δ is a density correction term.
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Tmax is the maximum kinetic energy that can be transfered to an electron in a single

collision. It is described by the equation:

Tmax =
2mec

2β2γ2

1 + 2γme/m+ (me/m)2
, (2.3)

where m is the mass of the incident particle. These equations are by default expressed

as a function of β but, certainly, one could rewrite them as a function of the momentum

p = βγm. This is extremely useful since the HADES experiment measures the momenta

of the particles and, as shown in fig. 2.1,
〈

dE
dx

〉
(p) has very distinct functional shape for

different mass of the incident particle, which allows us to perform a particle identification

(PID) based on this relation. Thus if both the momentum and the energy loss are

measured, the mass of the particle can be determined!

Figure 2.1: An example from the ALICE experiment [22] of a PID using the specific
energy loss technique. The black curves represent the theoretical expectation, the
colored areas represent the amount of experimentally detected hits. The color scale is
based on the yield: red - many hits; blue - only a few hits. On this particular plot the
momentum is divided by the charge number (z) of the particle. The calculation for the
electron is performed differently since they are significantly lighter and thus experience
radiative energy losses.

In a real experiment there are always uncertainties in all of the measured quantities.

Therefore the detected particles will be distributed around the theoretical lines rather

than lying exactly at the expected position. This results in a slight overlap of the dis-

tributions, especially at high momenta. Thus the different particle species will become
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indistinguishable from each other. Therefore in a real-life experiment some of the parti-

cles are misidentified. The number of misidentifications can be lowered at the expense

of the statistics by applying stricter cuts around the theoretical curves. Normally it is

impossible to achieve perfect particle identification, thus there is always a certain prob-

ability that a track has a false PID assigned to it. For this reason the term particle

candidate will be used whenever referring to a reconstructed particle, highlighting the

possibility of misidentification.

There are other methods to perform a PID. One that can generally be applied to

the HADES data is the use of time of flight information, although for reasons that will

be clarified in the following chapters it cannot be used in this analysis. The time of

flight is defined as the time it takes for a particle produced in an event to reach a time-

measuring detector. This requires to know not only the time of arrival of the particle,

but the zero-time of the event as well. Since the distance to the detector is known, one

can calculate the velocity β of the particle. The momentum of the particle is usually a

measurable quantity, thus one can obtain the mass using the equation:

p = βγm =
β√

1− β2
m, (2.4)

⇒ m =
p
√

1− β2

β
. (2.5)

2.2 Invariant mass

Particle detectors can directly detect only certain types of particles. There are

two general reasons for this. First, different particles interact with matter differently,

thus the design of an experimental system should always make a compromise regarding

which particle species can be measured directly. Second some particles are short-lived

and decay before they have reached the detectors. I will now discuss the latter case

and introduce the concept of the invariant mass (IM). The basic idea is to reconstruct

a particle from its decay products that are assumed to be directly measurable, by using

the fundamental law of energy and momentum conservation. In the following I will use

the notation of four vectors (see for example [10]) and the energy-momentum relation

2.6.

E2 = m2 + p2. (2.6)



Chapter 2. General concepts 14

The corresponding four-momentum vector is defined as:

P =

E
~p

 . (2.7)

Let us assume that Ni initial number of particles interact with each other and they end

up in Nf number of particles. The conservation of energy and momentum is given by

the equation:
Ni∑
k=1

Pi,k =

Nf∑
k=1

Pf,k, (2.8)

where Pi and Pf are the four-momenta of the initial and final particles respectively. The

multiplication of two four-momenta is by definition given as:

P1 · P2 = E1 · E2 − ~p1 · ~p2. (2.9)

This means that:

P 2 = E2 − p2 = m2 =: s . (2.10)

This observable is always invariant under Lorentz transformations. Lets now investigate

the the decay of a mother particle into N daughter particles. From eq. 2.8 it follows

that:

P =

N∑
k=1

Pk, (2.11)

where P is the four-momentum of the mother particle and Pk are the momenta of the

daughter particles. This means that as long as one knows the energies and momenta,

or equivalently the mass and momenta (eq. 2.6), the four-momentum of the mother

particle is well defined (see 2.7). The mass of the particle can now be calculated using

equation 2.10.

2.3 Acceptance and efficiency

Overview

Each detector has some limitations regarding its sensitivity. The types and properties

of the particles that a detector can measure defines the acceptance. Even if a detector

is sensitive to a particular type of particles, lets say pions (π), no detector will ever be

able to record each and every pion, but will only be sensitive to a particular sub-set
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of the available phase space1, for example pions with very low or high momenta might

not be detected at all. Furthermore even if a particular π can be detected, depending

on its position in the phase space the detector is able to record it only with a certain

probability. This probability is called the efficiency of the detector. It is important

to emphasize that the efficiency of the detector is not a constant but rather a variable

that depends on the position in the phase space. If one is interested in the yield2 of a

certain particle species, one should always take into account the fact that the detector

efficiency reduces the detected yield. In the extreme case of zero efficiency, i.e. outside

of the acceptance, there is a zero yield in the experiment. Thus it is of great importance

that the acceptance and efficiency of the detector system are well understood. If this is

the case, one can easily correct the obtained experimental yield and calculate the actual

yield. Let us consider a specific example in which it is assumed that the position in the

phase space is fully defined by the momentum-vector of the particle. Let N be the total

yield (number of particles) and ∆N be the yield in a very small volume of the phase

space. Then the following relations are valid:

∆N = C(p, θ, ϕ)× (∆N)det, (2.12)

∆N =
∂3N

∂p∂θ ∂ϕ
, (2.13)

(∆N)det =

(
∂3N

∂p∂θ ∂ϕ

)
det

, (2.14)

where the subscript “det” denotes the detected yield and C is a correction function that

relates the real and detected yields. Many of the particle detector systems, including

HADES, are symmetrical with respect to ϕ, thus we can consider C as a function of p

and θ only, i.e.

∆N = C(p, θ)× (∆N)det, (2.15)

C(p, θ) =
∆N

(∆N)det
. (2.16)

Once obtained, this function can be used to correct the experimental data for the effects

of the acceptance and efficiency.

1A space (in a mathematical sense) containing all possible states of a dynamical system.
2Number of particles produced in the investigated reaction.
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Differential analysis

By differential analysis we understand the treatment of C(p, θ) as a discrete function,

which so far has been defined as a continuous function. Hence C(p, θ) can be represented

by a matrix called by convention acceptance and efficiency correction matrix (AEM).

The most common way of obtaining the AEM is by means of simulations. This can

be achieved by a two-step method. Firstly one can use a Monte-Carlo (random) event

generator to simulate particles with different phase space parameters. Secondly one

needs to reproduce the propagation of the previously simulated particles through the

detector system and the response of the system. This is a very complicated procedure

and commonly performed using the Geant platform. Geant is “a toolkit for the simu-

lation of the passage of particles through matter” [23]. By discretizing the phase-space

and making sure that we have enough number of simulated events in each phase-space-

bin, one can calculate the AEM by dividing bin-wise the number of particles originally

simulated with the Monte-Carlo event generator by the number of particles recorded

after running Geant. Thus the coefficients Cij of the AEM can be calculated using the

following equation:

Cij =
∆Nij

(∆N)det,ij
≈

(∆N)MC,ij

(∆N)Geant,ij
. (2.17)

In a simulation all parameters and output values are known. Hence (∆N)MC,ij and

(∆N)Geant,ij can be used to compute Cij . Obviously the detected yield (∆N)det,ij is

a known parameter during an experiment, hence the quantity of interest ∆Nij can be

obtained using:

∆Nij = Cij(∆N)det,ij =
(∆N)MC,ij

(∆N)Geant,ij
(∆N)det,ij . (2.18)

Possible problems

This procedure has two main assumptions:

• The simulation of the detector is accurate.

• The discretization is fine enough, i.e. the number of bins is very big.

• The geometric acceptance of the detector is limited.

The first condition is taken for granted since Geant is a pretty advanced platform that

is proven to be very robust. The second part is mostly limited by the statistics. Generally

speaking the initial simulation does not need to be physically accurate in order to apply
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the AE correction. The reason is that we only look at an infinitesimally small region

of phase-space and thus can assume a uniform distribution of the particle production

within this region. In contrast, if the discretization is coarser there might be some

physical effects that make the production non-uniform over a certain domain in phase-

space. Therefore the simulated production yield, and consequently the whole correction

procedure, will be inaccurate. More precisely: a fine discretization is independent of the

model used to populate the phase-space and a course discretization is model-dependent.

For this reason it is of great importance to refine the binning as much as possible.

Alternately one should have a much deeper understanding of the production mechanism

already at hand. Additionally any limitations in the geometric acceptance of the detector

can lead to a zero yield in certain bins, i.e. (∆N)Geant,ij = 0. Unfortunately this issue

cannot be resolved model-independently since the only two ways to overcome it is either

by extrapolation or by coarser binning.



Chapter 3

The HADES experiment

3.1 Overview

The High Acceptance Di-Electron Spectrometer (HADES) is a fixed-target experi-

ment located at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Ger-

many [24]. It is currently installed at the SIS18 accelerator which can provide a beam

with kinetic energies of 1-2 GeV per nucleon. The detector was initially designed for

measurements of the in-medium modifications of the ρ, ω and φ mesons via detection

of their decay into a dilepton pair (e+e−). However the current physics program of

HADES is far richer due to the capability of the detector system to reconstruct charged

hadrons as well. This allows for investigation of multiple topics. One in particular,

which is of interest in this work, is the strangeness physics, i.e. the production of par-

ticles containing a strange quark. For example in the recent past a detailed analysis of

the neutral kaon production was performed by members of the HADES collaboration

[3]. The present study benefits from those previous works since a lot of the developed

framework, regarding kaon reconstruction, can be reused in this analysis.

A detailed description of the HADES set up can be found in [24]. In this chapter I

will summarize some of the most important information regarding the experiment.

3.2 Detector system

The HADES detector system is composed of six identical sectors that are located

around the beam axis (see figures 3.1 and 3.2). This allows for almost full azimuthal

18
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coverage. The coverage in the polar angle is also large, ranging from 15◦ to 85◦.

Figure 3.1: Imploded view of HADES [25].

Figure 3.2: Schematic layout of the HADES detector - a side view [24].

The target

The target that the beam shoots at sits in-between the six sectors of HADES. It is

located in a field-free region. There are different types of targets that can be installed.

For proton-proton collisions a liquid hydrogen target was used.
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The RICH detector

The Ring-Imaging Cherenkov (RICH) detector is used for the detection of relativistic

electrons and positrons with momenta of 0.1 GeV ≤ p ≤ 1.5 GeV. It covers the whole

HADES acceptance. It essentially consists of two gas-volumes (see fig. 3.3), one is the

the radiator volume, which is filled with C4F10 gas that has a threshold Lorentz factor

for Cherenkov radiation of γth = 18. This means that only highly relativistic particles

can be detected. From the general relation

γ =
E

m
∝ Ekin

m
(3.1)

it becomes clear, that in order to have high-enough γ one either needs a light particle

or high kinetic energy. However in the momentum range of interest it is impossible

for any hadron or muon to have high enough energy to produce Cherenkov radiation.

Therefore the RICH detector is sensitive only to electrons and positrons. If an electron

or a positron produces Cherenkov radiation the photons are reflected from a Vacuum-

Ultraviolet (VUV) mirror. The photons then enter the photon detection volume, which

is filled with methane and separated from the radiator volume by a CaF2 window, and

are focused on a photon detector in a ring-shaped pattern.

Figure 3.3: Schematic layout of the RICH detector [24].

The multi-wire drift chambers and the magnet

The Multi-wire Drift Chambers (MDCs) are located after the RICH detector and are
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arranged in four planes. Each plane consists of six identical trapezoidal-shaped MDCs.

Two of the planes are located before and two after a magnet. The MDCs are capable of

measuring the position of the incoming particles. This is achieved by letting the particles

propagate through a gas-filled drift chamber which leads to ionization of the gas. Each

chamber is equipped with six wire-layers that are all arranged in different stereo angles

to each other in order to improve the resolution. After the primary ionization the

free electrons start drifting, due to an electric field, inducing secondary ionization and

multiplication of the drift-electrons. Finally the electrons reach the wire-layers and a

signal is created.

The magnet located between MDC planes I/II and III/IV creates a magnetic field,

which causes the charged particles to bend according to their momentum. After that,

based on the MDC position-hits and the known geometry of the magnetic field, the tracks

of the particles are reconstructed, i.e. both the particle position and momentum. The

spatial resolution of the system is in the order of 100 µm and the momentum resolution

can be as good as 4%. The MDCs are suited for detection of charged particles only.

An additional feature of the MDC system is its capability to measure the energy loss

of a particle. This is possible due to the fact that the deposited charge on the wires is

proportional to the energy loss of the traversing particle. As explained in chapter 2.1,

the energy-loss measurement is essential for the particle identification.

The META system

The Multiplicity and Electron Trigger Array (META) system consists of two time-

of-flight detectors, TOF and TOFino, and an electromagnetic shower detector (Pre-

Shower). TOF and TOFino are scintillator detectors that can measure the time of

arrival of the particle with resolutions of 150 and 420 ps respectively. Both detectors

can provide energy-loss information. In addition, the TOF detector is position-sensitive,

although the spatial resolution is quite low (25-27 mm).

The Pre-Shower detector is located behind TOFino. It complements the TOFino

detector by allowing for hit-position reconstruction as well as the RICH detector by its

capability of lepton-hadron separation.

In 2009 several major upgrades were performed on HADES, one of which was the

replacement of TOFino with a Resistive Plate Chambers (RPCs) detector. It features

higher granularity and an improved time-resolution of ≈ 66 ps
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The START-VETO system

In order to improve the particle identification capability of the Time-Of-Flight system

a START-VETO system is used. A CVD (Chemical Vapour Deposition) diamond

material was used to construct the START detector. It is located just in front of the

target and is able to determine the reaction time. The VETO detector is located after

the RICH detector and is made out of polycrystalline material. As the name suggests,

it is used to veto all particles that have not interacted with the target but have been

registered by the START detector.

The forward wall

In 2007 a deuterium beam experiment was performed [26]. It required the detection of

forward proton spectators. Thus the forward wall was installed to cover the polar angle

range from 0.33◦ to 7.17◦. The forward wall is a scintillation hodoscope divided into 300

scintillating cells. It is capable of hit-position and time-of-flight measurements, as well

as of energy-loss determination. However the momentum cannot be determined, which

prohibits the particle identification.

The trigger system

The trigger system of HADES, which basically determines which events are recorded

and which disregarded, consists of two levels:

• The LVL1 trigger ensures that there is a certain minimum multiplicity (number of

hits) in the META system.

• The LVL2 trigger is optimized for the search of dilepton pairs. It uses the informa-

tion from the RICH, TOF and Pre-Shower detectors for the signature of an electron

or a positron.

Since storing only LVL2 events will significantly bias the hadron analysis, a down-

scaled portion of the LVL1 events is saved as well. The downscaling is needed because

of hardware and storage limitations. Such events are used in the presented analysis.

3.3 Access to the data

All data obtained from HADES is stored in specially formated ROOT [27] files called

Data Summary Tapes (DSTs). They contain detailed information about each event,
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including full information about the reconstructed tracks. These files are accessible to

all collaborators for further processing.

3.4 Simulation tools

As explained in chapter 2.3, it is necessary to be able to simulate the production

and propagation of the analyzed particle in order to correct for AE effects. The HADES

collaboration has developed and provided to all members a few very important tools

that are suitable for this task.

PLUTO

The PLUTO framework is a Monte-Carlo event generator that is specifically developed

for HADES [28]. It is suitable for simulating the production of particles in heavy-ion

collisions at intermediate energies according to a thermal energy spectrum. In addition,

it can be used to model the production of particles in elementary collisions, for example

p+p. This is achieved under the assumption of a uniform phase space distribution.

PLUTO allows for the implementation of a more specific angular distribution as well as

for broader resonances. The latter is important for the simulation of the K∗+ production.

Additional feature of this software is the possibility to model the decay of a particle. This

simulation tool is fully independent of the geometry of the experiment. The simulated

yield corresponds to the coefficient (∆N)MC,ij in equation 2.17.

HGeant

The HGeant [29] simulation package is based on Geant 3.21 [23]. It includes implemen-

tation of the HADES geometry and is further modified in order to meet all requirements

of the software framework used by the collaboration. It can use the tracks provided by

PLUTO as an input and then simulates the propagation of the particles through the

detector system. This includes all known effects, such as the deflection in the magnetic

fields, scattering processes, energy loss, etc.

SimDST

The HGeant simulation itself does not provide an output that is equivalent to the DST

format used for storing experimental data (see section 3.3). The SimDST simulation

transforms the hits from the detector, which are provided by HGeant, into a realistic
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signal. This includes all effects from the electronic readout of the experiment as well as

track reconstruction. After this step the simulated data can be treated as experimental

data, thus the yield of the investigated particle species obtained from the subsequent

analysis corresponds to the (∆N)Geant,ij coefficient in equation 2.17. As explained in

section 2.3, this along with (∆N)MC,ij available from PLUTO is enough to correct the

experimental data for acceptance and efficiency.



Chapter 4

Analysis of the K*(892)+

production

4.1 Experimental data

The p+p 3.5 GeV beam

In the presented work p+p data at kinetic beam energy of 3.5 GeV were analyzed.

The data were collected with the HADES spectrometer at GSI in April 2007. At that

time the experimental setup was still using the TOFino detector. The target was liquid

hydrogen cooled down to 20 K at atmospheric pressure. The interaction probability

was 0.7%. The beam time lasted three weeks during which 1.2× 109 LVL1 events were

recorded [6].

LVL1 trigger conditions

In the case of 3.5 GeV p+p collisions the LVL1 minimum multiplicity was set to three,

which demands at least three particle candidates in the META detector (see chapter

3.2). This condition greatly suppresses the elastic p+p reactions in the data, which are

needed only for normalization purposes. The elastic reactions are separately analyzed

by the HADES collaboration, using a multiplicity requirement of two [30].

Detectors and data

The START detector was not used during this experiment due to the low energy depo-

sition of protons in the diamond detectors [31]. This makes the determination of the

25
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time-of-flight much more complex and inefficient. Thus this analysis makes use only of

the data from the MDCs to detect the pions needed for the reconstruction of K∗+.

4.2 Simulated data

Simulating tools

The simulated data used in this analysis were obtained via the PLUTO and HGeant

tools, as described in chapter 3.4.

Simulated channels

The AE corrections can be applied with a model-independent simulation of the phase

space as long as the discretization of the correction function is very fine (see chapter

2.3) and the detector has a full geometric acceptance. Despite the big acceptance of

HADES the latter condition is not fulfilled. In addition, as it will become evident later

in this chapter, the statistics available for this analysis allows only for a very course

discretization. Thus it is important to simulate the phase space distribution of K∗+

taking into account the dominant physic effects. Since this is the first ever measurement

of this particle species at this energy and HADES does not cover the full geometric

acceptance, there is no available information about the angular distribution of K∗+

and hence, one has to assume isotropic production. However, the possible production

channels are known and therefore their kinematic properties can be taken into account

during the simulations.

• p + p→ N + Y + K∗+p + p→ N + Y + K∗+p + p→ N + Y + K∗+

Table 1.1 shows all reactions that have a three-body final-state and a positive ex-

cess energy ε. The dominating channel is expected to be the p + p→ p + Λ + K∗+

because it is energetically the most favorable one. Since the masses of the proton

and the Σ0 are very close to the corresponding masses of the neutron and the Σ+

reactions 2 and 3 from table 1.1 are kinematically almost identical. Thus those two

channels can be generalized by the reaction p + p → N + Σ + K∗+ and it is suffi-

cient to perform a PLUTO simulation on only one of the two Σ-related production

channels. Without loss of generality (WLOG) the simulation was performed using

the p + Σ0 + K∗+ final-state.
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• p + p→ N + Y + π + K∗+p + p→ N + Y + π + K∗+p + p→ N + Y + π + K∗+

The four-body final-state channels governed by this reaction are suppressed com-

pared to the p + p→ N + Y + K∗+ channels due to the fact that the final state has

one more particle and thus requires more energy (see the grey entries in table 1.1).

The excess energy is still positive though, hence those channels definitely contribute

to the total yield. However in a first order approximation they may be neglected.

This assumption is an educated guess and it needs to be further verified. This issue

will be addressed and discussed in section 4.3.4.1.

• Off-shell channels

The off-shell production of K∗+ is possible due to the relatively large width of

this resonance state (Γ = 50.8 MeV). Thus reactions 5 and 6 from table 1.1 can

theoretically occur at energies lower than the threshold energy. Their contributions

can be completely ignored since they are negligible compared to the sub-threshold

channels.

In summary, only the final-states p + Λ + K∗+ and p + Σ0 + K∗+ should be simu-

lated. Further in this work this will be referred to as the two-channel model. The two

channels will be referred to as the Λ- and Σ-production channel respectively.

Decay mode

Since the K∗+ particle species is not included by default in the database of PLUTO,

it was manually programmed into it. The mass and width of K∗+ were set to their

corresponding PDG values of M = 891.66 MeV and Γ = 50.8 MeV. The only imple-

mented decay channel was K∗+ → K0
S + π+. No other channels were needed since the

reconstruction was performed using the K0
S decay channel exclusively.

4.3 Extraction of the total production cross section

4.3.1 Overview of the analysis

The extraction of the total production cross section of K∗+ can be divided into

several steps, all of which will be explained in detail in this chapter. A brief overview of

those steps is given below:
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Pion candidates

Using the DSTs provided by the HADES collaboration, the very first step is to assign

to each track a PID by applying cuts on the energy loss vs momentum plot (fig. 4.1).

As K∗+ has to be reconstructed from the invariant mass of three pions (discussed in

chapter 1.2.3), one needs to iterate over all particle tracks and select all pion candidates.

The details about the pion identification procedure are given in the doctoral thesis of

Dr. Jia-Chii Berger-Chen [31], as well as in [3, 32].

Figure 4.1: Energy loss dE/dx in the MDCs as a function of the momentum times
the polarity of the track. The area enclosed by the dotted lines marks the events that
are considered to be pions. For more details see [3] and [31].

K∗+K∗+K∗+ candidates

The next step of the analysis is to combine the pions from each event in triplets, using

one negative and two positive pions, in order to reconstruct the K0
S and K∗+ candidates

according to decay scheme shown in fig. 1.1. Each candidate needs to fulfill certain

criteria in order to be selected for further processing.

Reduction of the S/B ratio

The selection criteria used so far are relatively loose. The next step of the analysis begins

by plotting the invariant mass spectrum (IMS) of the K∗+ candidates and fine-tuning

the topological cuts until a good signal-to-background (S/B) ratio is achieved. This is

necessary in order to have an apparent peak in the spectrum and be able to perform
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a reliable fit. The K∗+ yield can be subsequently extracted from the area of the fitted

peak.

Choice of a fitting function

Fitting the IMS requires to know the spectral shapes of both the background and the

signal. The background is commonly described by a simple polynomial function since the

technique of event mixing does not work properly for p+p collisions. However the shape

of the signal needs more attention. Resonance particles, including K∗+, can usually be

described by a Breit-Wigner distribution, also known as Lorentz or Cauchy distribution.

However, there are additional effects, most notably the detector resolution and phase

space limitations, that can influence the spectral shape. Thus deeper investigation of

those effects is needed when choosing the peak-shape fitting function.

Differential analysis and AE corrections

As explained in chapter 2.3 it is necessary to extract the yield in different kinematic bins

in order to apply AE corrections independent of any model. Thus the data need to be

divided into as many subsamples as possible and extract the yield for each bin. After

that, the data can be corrected using the results obtained from the simulations.

From yield to cross section

The absolute yield has no physics meaning. The observable that has to be obtained is

the cross section. It can be calculated by normalizing the K∗+ yield to the yield of a

process with a known cross section and measured during the same experiment. This

can be achieved using the reference p+p elastic scattering that has been measured and

documented by the HADES collaboration [30]. The obtainedK∗+ yield is only associated

with its decay to K0
S+π+ and thus the obtained cross section will correspond exclusively

to this decay channel. In order to compute the total cross section, the branching ratios1

of both the K∗+ and the K0
S particles have to be taken into account. Those ratios can

be very easily calculated using the Clebsch-Gordan coefficients [10].

Systematic error

The final step of the analysis is to investigate the systematic error by testing the analysis

procedure for stability and reproducibility.

1The branching ratio is the probability to decay via a certain channel.
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4.3.2 Topological cuts

4.3.2.1 Track selection and particle candidates

After the tracks from the DST files obtain a PID, an iteration over all events is

performed. Events that do not contain at least one π− candidate and two π+ candidates

are disregarded. This condition is required by the decay scheme of the K∗+, shown

in figures 1.1 and 4.2. The primary vertex (PV) and the secondary vertex (SV) are

defined as the decay positions of the K∗+ and the K0
S respectively. After selecting the

triplets of pions the next step is to reconstruct the tracks of the K0
S and K∗+ particles.

This is achieved by combining two opposite charged pion candidates into a single K0
S

candidate (at the SV) and then combining it with the remaining positive pion in order

to reconstruct the K∗+ candidate (at the PV). For each candidate a set of observables,

that are important for the further processing of the data, are calculated and saved. They

are listed in table 4.1.

Observable Definition Default cut

zPV The z position component of the PV. ∈ (−70;−10) mm

dxy,PV Distance from the PV to the beam (z) axis. < 8.5 mm

IM(K0
S) Invariant mass of the K0

S candidate. n/a

IM(K∗+) Invariant mass of the K∗+ candidate. n/a

dV Distance between the primary and the sec-
ondary vertex.

> 18 mm

δπ+π− Distance of closest approach of the pions origi-
nating from the the K0

S candidate.
< 13 mm

dK
0

π+/− Closest distance between the track of π+/− orig-
inating from the K0

S candidate to the primary
vertex.

> 4 mm

dK
∗

π+ Closest distance between the track of π+ origi-
nating from the K∗+ candidate to the primary
vertex.

< 18 mm

Table 4.1: Variables used to apply topological cuts to isolate the K∗+ decay. Note
that δπ+π− is ideally zero (the tracks intersect) but due to resolution effects this is never
true.

After the particle candidates are reconstructed, further selection rules need to be

applied in order to filter out as many fake candidates as possible. The basic idea is to

constrain the candidates according to the topology of the reaction (fig. 1.1 and 4.2). It

is important to keep the kinematic observables unconstrained, otherwise there is a risk

to bias the data. The first filter (restrictions on zPV and dxy,PV ) checks if the primary

vertex, i.e. the K∗+ candidate, is located within a cylinder around the target, oriented
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in the direction of the beam. The length of the cylinder is 60 cm and its radius is

8.5 cm. This is a bit more than the size of the target, which is 25 cm in length and

5 cm in radius, but due to the resolution of the reconstruction procedure a real K∗+

can be reconstructed slightly outside of the target. The next set of cuts are related

to the relative position of the π and K0
S tracks to the two vertexes. The reason for

constraining those observables is to make sure that the primary and secondary vertex

are well separated and that the selected pion tracks are close to the vertex they have

been assigned to. The exact values of the cuts are listed in table 4.1.

If there are more than three pion candidates in a single event, all possible combina-

tions of π+π−π+ are built and iterated over. This is necessary since there is no reliable

way of recognizing which π candidates originates from a K∗+ particle. This means that

sometimes a single π candidate might be used for the reconstruction of more than one

K∗+. However this is not a physical effect and possible “fake” K∗+ candidates would

simply populate the background in the invariant mass spectrum and would not interfere

with the rest of the analysis. The term used to describe this effect is combinatorial back-

ground. After selecting the triplets of pions, the next step is to reconstruct the tracks

of the K0
S and K∗+ particles. This is achieved by combining two opposite charged pion

candidates into a single K0
S candidate and then combining the K0

S track with the re-

maining positive pion in order to reconstruct the K∗+ candidate. When reconstructing

a particle using the IM technique the tracks of the daughter particles should ideally in-

tersect, but due to the resolution effects of the detector and the tracking algorithm this

is not the case. In the actual data those tracks have a small distance of closest approach

but never intersect. Thus the point of intersection between the two daughter tracks,

called a vertex, has to be extrapolated and usually lies along the line of closest approach

of the two daughter particles. Since the initial selection is composed of two positive

pions, there are two possible ways of combining them into a K0
S . It is possible that the

alignment between the pion tracks is such that both combinations produce a reasonable

secondary vertex, i.e. a K0
S candidate. Thus a triplet of pions may be double counted

and used to reconstruct two K∗+ candidates. An example, taken from a recorded event,

is shown in figure 4.2. Similarly to the combinatorial background the double-counting

effect will simply increase the background and will not interfere with the analysis. The

strength of the two combinatorial effects depends on the cuts of the variables shown in

table 4.1; however it was estimated that for the typical values used in this analysis the
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contribution to the final spectrum is at most 6% of the total reconstructed yield. Since

the IMS is likely to be dominated by the background, this number is negligible.

(a) (b)

Figure 4.2: The same triplet of pions can sometimes be reconstructed in two differ-
ent ways. This example is from a real event, the visualization was performed using
GeoGebra [11].

The analysis was computationally divided into two stages. The first stage was the

iteration over all available events and the reconstruction of the K∗+ candidates with

the default cuts. This part is computationally expensive and thus performed on a local

batch-farm. After filtering out many of the tracks the rest of the data sample was small

enough in order to be processed on local machines.

4.3.2.2 Additional cuts

The next step is to reconstruct the invariant mass spectra (IMS) of the K0
S and

K∗+ candidates. The IMS is the yield of the particle as a function of its reconstructed

invariant mass. In the following plots the cuts have been further refined (see table 4.2).

Observable Cut

zPV ∈ (−70;−10) mm

dxy,PV < 8.5 mm

IM(K0
S) ∈ (485; 505) MeV

dV > 28 mm

δπ+π− < 13 mm

dK
0

π+/− > 8.2 mm

dK
∗

π+ < 5.6 mm

Table 4.2: Selection criteria used for creating figures 4.3, 4.4 and 4.5. The cut on
IM(K0

S) is applied only to fig. 4.5



Chapter 4.3. Analysis→Extraction of σ(K∗+) 33

Figure 4.3 represents the IMS of K0
S particles. As can be seen there is a very

strong signal corresponding to the K0
S meson around its nominal mass of 497.6 MeV.

Obviously the events left and right from the observed peak are mostly background. Thus

a cleaner IMS of K∗+ can be obtained by applying an additional constrain to IM(K0
S).

Figure 4.4 shows the invariant mass spectrum of K∗+ without the additional cut on

IM(K0
S), whereas in figure 4.5 the cut has been applied.
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Figure 4.3: IMS of K0
S . The signal is fitted using a double-Gaussian function and the

background is represented by a 3rd-degree polynomial.
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Figure 4.4: IMS of K∗+ without a cut on IM(K0
S). The signal is fitted using a

Breit-Wigner function and the background is represented by a 3rd-degree polynomial.

Obviously the signal-to-background ratio (S/B) is much higher in the latter case. The

estimated statistics is about 2000 K∗+ particles. It is interesting to note that the fit with

the additional cut seems to produce higher uncertainties. This might be related to a poor

choice of the fitting function. In the plots presented so far the signal has been modeled

by a Breit-Wigner function. This function is commonly used to model resonances but it
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Figure 4.5: IMS of K∗+ with a cut on IM(K0
S). The signal is fitted using a Breit-

Wigner function and the background is represented by a 3-rd degree polynomial.

carries no additional information about phase-space limitations or detector resolution.

Thus it is only a crude first-attempt to fit the signal; a more sophisticated model for the

signal shape will be presented in the next sections.

4.3.3 Description of the signal

In the previous chapter the fits were performed using a straightforward approach

to resonances - the Breit-Wigner function. However K∗+ is a pretty broad resonance

(Γ ≈ 51 MeV) and the excess energy of the most favorable production channel (see table

1.1) is 231 MeV. This number is comparable to the width, therefore one could expect

some changes in the functional shape of the signal. Additionally, since K∗+ decays to

K0 + π+ there is a limit on the minimal invariant mass, which is equal to the sum of

the masses of the daughter particles, i.e.

IM(K∗+)min = M(K0) +M(π+) = (497.6 + 139.6) MeV = 637.2 MeV. (4.1)

A detailed proof of the statement above can be found in appendix B.

In summary: the phase space for the IM(K∗+) is limited both below and above the

nominal mass of the particle. Hence the functional shape of the IMS is expected to

deviate a bit from the typical Breit-Wigner shape. Furthermore the limited resolution

of the detector, which is expected to be in the order of 10%, might smear the signal.

Therefore the effects of both the phase space limitation and the detector resolution

should be investigated in more detail.
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4.3.3.1 Phase space effects

Let us first examine the effect on the phase space limitations. This can be very easily

probed by our phase space simulations (PLUTO). The mass of the simulated K∗+ and

the Breit-Wigner fit to those data are plotted in fig. 4.6a. Obviously there is some

discrepancy between them. It could be argued that for less statistic this effect will be

“lost” due to the higher uncertainty. However as can be seen in fig. 4.6b, even with

a simulated yield of only 2000 K∗+ particles the fit still cannot match the IM(K∗+)

and Γ(K∗+) values within uncertainties. The discrepancy between the fit and the data

becomes extremely strong in some particular phase-space regions. Thus during the

differential analysis some of the selected bins can surely have a very distorted spectral

shape. An example, based on a pT > 470 MeV cut, is shown in figure 4.7.
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Figure 4.6: The IMS of K∗+ in a PLUTO simulation of the Λ-channel. All events
are plotted.
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Figure 4.7: The IMS of K∗+ in a PLUTO simulation of the Λ-channel. Only events
with pT > 470 MeV are plotted.

The IM-cutoff at 637.2 MeV is clearly visible in figures 4.6 and 4.7. Another no-

ticeable feature is the suppressed yield at high invariant masses and the presence of an



Chapter 4.3. Analysis→Extraction of σ(K∗+) 36

upper limit, which is determined by the excess energy. For the full-range plot (fig. 4.6)

this should correspond to M(K∗+) + ε(Λ−channel) ≈ (892 + 231) MeV = 1123 MeV.

In the case of a pT > 470 MeV cut (fig. 4.7) the analytical calculation of the maximum

IM(K∗+) is somewhat more complicated (see appendix B) but the result is 960 MeV

and it seems to be consistent with the simulation.

Correction for those effects

A relatively straightforward way to take those effects into account is to divide the ob-

served spectrum by a perfect BW spectrum of the same yield. This is done by simulating

with PLUTO the same reaction and the same number of events, but at much higher

beam energy (23 MeV). In figure 4.8 one can see that the distribution provided by

this high-energy simulation is described really well by a BW function and in fig. 4.9

one can see that the ratio between the actual and the high-energy distribution can be

modeled by a second-degree polynomial with a sharp cut-off at 637.2 MeV. Below this

value the yield is assumed to be zero. In addition, there is one more cut-off at higher

energies. The exact value depends on the minimal allowed momenta of K∗+. However

in the calculations here this value is approximated with the root of the second-degree

polynomial. If the polynomial does not have a root its minimum is taken as the cut-off

value instead. The correction function (eq. 4.2) will be referred to as the Phase Space

correction Function (PSF).

Signal = Amplitude× PSF× Breit-Wigner =

= A · (1 + p1 ·mK∗+ + p2 ·m2
K∗+) · BW(mK∗+ ,Γ)

(4.2)

The phase-space correction has to be applied independently for each kinematic bin.

4.3.3.2 Detector resolution

Another effect that needs to be investigated for its influence on the spectral shape

of the IM(K∗+) is the detector resolution. The HADES momentum resolution is of the

order of 5%. The K∗+ is reconstructed using three pion tracks and thus the uncertainty

will definitely grow. A very simple way of getting an estimation of the strength of the

effect is to simulate, using PLUTO, K∗+ particles with no spread in the IM, i.e. let

Γ → 0. After that HGeant can simulate the response of the detector and produce an

IMS, which ideally should be a δ-function around the nominal K∗+ mass. However, as
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Figure 4.8: The IMS of K∗+ in a PLUTO simulation of the Λ-channel using higher
beam energy. According to the BW fit the yield is overestimated. However the yield is
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Figure 4.9: The phase space correction function (PSF) obtained by fitting the divided
spectrum of 23 GeV PLUTO simulation (fig. 4.8) and the 3.5 GeV PLUTO simulation
(fig. 4.6a).

shown in figure 4.10, this is not the case as the spectral shape of the IM has approxi-

mately a Gaussian profile with spread of ≈10 MeV. This number roughly corresponds

to the HADES resolution of the IM(K∗+). The resolution might depend on some of

the topological cut and most certainly depends on the momenta of the daughter pions.

However this simple plot highlights an issue that needs to be addressed - since the de-

tector resolution is of the same order as the width of the particle, the BW spectral shape

will be smeared out by the Gaussian-distributed resolution (e.g. see fig. 4.11). Hence

a much better choice to model the signal will be a convolution of a Breit-Wigner and a

Gaussian profile - the Voigt function. Compared to the Breit-Wigner function, which has
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Figure 4.10: IM(K∗+) assuming a zero width.

three input parameters: amplitude, mean value and width (Γ), the Voigt function has

an additional parameter that corresponds to the standard deviation (σ) of the Gaussian

profile.

MeV) +IM(K*
750 800 850 900 950 1000

A
rb

itr
ar

y 
un

its

0

0.005

0.01

Breit-Wigner

=10 MeV)σVoigt (

=20 MeV)σVoigt (

Figure 4.11: Plotted are one Breit-Wigner (black line) and two different Voigt func-
tions (red lines) with mean values and widths (Γ) corresponding to the nominal values
for the K∗+ particle. The yields (integrals) of the two Voigt functions are equal to
the yield of the BW function. However due to the smearing effect of the underlying
Gaussian profile their spectral shapes are broadened and the maximum amplitudes
lowered.

4.3.3.3 Fitting function

Analytical representation

Summarizing the previous section: a resonance is modeled by a Breit-Wigner shaped
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IM. However due to phase-space limitations this shape has to be modified by a second-

degree polynomial. In addition, the limited resolution causes a smearing of the signal,

thus further modifying the spectral shape to a Voigt function.

The background of the IMS mostly results from analysis artifacts, such as combina-

torics and misidentifications. Therefore it is reasonable to try the most trivial description

of the background - a polynomial function. The degree of the polynomial should be as

low as possible in order to constrain the number of free parameters and to obtain a robust

fitting procedure. The function of choice in this analysis has the following analytical

representation:

F (Minv;N,M,Γ, σ) = Signal(Minv;N,M,Γ, σ) + Background(Minv) =

= N (N)× P(2)(Minv)×Voigt(Minv;N,M,Γ, σ) + P(3)(Minv),

(4.3)

where

N = number of K∗+ candidates,

M = mass of K∗+,

Minv = IM of the K∗+ candidate,

Γ = natural width of the particle,

σ = the standard deviation of the convoluted Gaussian,

N is a normalization factor ∝ N ,

P(2) is a 2nd order polynomial (PSF)2,

P(3) is a 3rd order polynomial (background).

(4.4)

It is important to note that once the IMS is fitted the extraction of the K∗+ yield can

be done by integrating the signal function only (the blue-colored part of equation 4.3).

A minor imperfection in this choice of function is the fact that it applies the smearing

effect to the BW profile before being corrected for phase-space effects. The reason to

use this function despite of this is two-fold. First, smearing out a polynomial is a

numerical nightmare that will complicate and slow down the analysis code. Second and

most important, the amount of statistics available for this analysis is not that large,

which introduces a lot of uncertainties. Thus it is only needed to refine the fitting

2WLOG the first coefficient of P(2) can be fixed to one since the normalization is determined by N ,
i.e P(2) = 1 + p1 ·M + p2 ·M
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function to a point where it is stable, reproducible, and the simulated output is fitted

with a reasonable accuracy. Function 4.3 was thoroughly tested and did not show any

drawbacks, thus it was concluded that a further refinement is unnecessary in view of the

additional complexity.

Fixed parameters

The behavior and performance of any fitting procedure strongly depends on the amount

of free parameters and their initial values. The IMS is a one-dimensional function

with the invariant mass (Minv) as its variable. The free parameters describing the

signal are the yield (N), the mass (M), width (Γ) and IM-resolution (σ) of K∗+ as

well as the two parameters defining P(2). This means that a total of 6 parameters

are used for the parametrization of the signal. The background requires four additional

parameters (three for each degree of P(3) and one normalization parameter) thus function

4.3 has a total of 10 free parameters. The two polynomial functions are used for a

qualitative modeling of the phase space and the background but carry no actual physical

information. This fact along with the limited statistics results in a rather chaotic fitting

procedure, i.e. the algorithm will converge differently depending on the initial values of

the fitting function. This is clearly unacceptable, hence it is necessary to constrain or fix

some of the parameters. A more careful investigation of the fitting procedure revealed

that the Γ and σ parameters are affected extremely strongly by this chaotic behavior.

Thus the width Γ was fixed to the nominal PDG value of 50.8 MeV. As previously

demonstrated, the PSF can be directly extracted from the PLUTO simulations (fig.

4.9). Thus the fitting procedure can be split in two: first the phase space correction

is extracted directly from PLUTO and the result is used to fix the parameters of P(2).

Second, the detector resolution (σ) is extracted from the HGeant simulation by fitting

the simulated yield with the signal function. One can ignore the background since the

simulation contains only K∗+ particles. In this process the PSF is fixed based on the

result from PLUTO, while K∗+ width (Γ) is fixed based on the PDG. The resulting value

for the parameter σ is further used to constrain the fitting function for the experimental

data. The “work-flow” of the fitting procedure is schematically represented in figure

4.12. The mass is not fixed at any point in both the simulation and the experimental

data. Hence it can be used as a cross check of the accuracy of the fit. It should be

noted that depending on the kinematic cuts applied to the data, the PSF and possibly

σ can change! Thus it is important to always apply identical kinematic cuts on both
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Figure 4.12: The data are fitted using the function 4.3. In order to constrain some
of the parameters a PLUTO simulation is used to extract the PSF and feed data to a
HGeant simulation with the help of which, using the PSF obtained from PLUTO and
the PDG value of Γ, the detector resolution σ is extracted. Finally the PSF, Γ and σ
are all being fixed and the the experimental data can be fitted.

the simulated and the experimental data. This is of course relevant for the differential

analysis, which probes different regions of the phase space. An example of the extraction

of σ from a HGeant IMS is shown in figure 4.13. Experimental spectra fitted with this
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(b) Only events with pT ∈ (410, 700) MeV.

Figure 4.13: Extraction of σ from HGeant simulations. The phase space correction
is extracted from PLUTO simulations (e.g. see fig. 4.9) and the width Γ is fixed to
50.8 MeV. The two sub-figures display different regions of the phase space. The signal
seems to be well described. This example is based on an exclusive simulation of the
Λ-channel.

procedure are shown in figure 4.14. The cuts used in those plots are listed in table 4.3.
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Observable Restriction

zPV ∈ (−70;−10) mm

dxy,PV < 8.5 mm

IM(K0
S) ∈ (485.8, 505.2)

dV > 28 mm

δπ+π− < 13 mm

dK
0

π+/− > 8.2 mm

dK
∗

π+ < 5.6 mm

Table 4.3: List of the commonly used cuts in this work.
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Figure 4.14: Experimental IMS of K∗+. The spectra are fitted using the procedure
described in this chapter, i.e. the fitting function is given by equation 4.3 and the
PSF, Γ and σ are fixed based on simulations. Each plot represents a different region
of the phase-space. The black crosses represent the data (with uncertainties), the solid
red lines are the full fit functions and the dashed red lines represent the corresponding
backgrounds.

4.3.4 Correction for acceptance and efficiency

The experimental yield needs to be corrected for acceptance and efficiency effects.

As previously explained (see chapter 2.3) a differential analysis is needed in order to

achieve that. From the data shown in figure 4.14 one can conclude that the number

of K∗+ particles is less than 2000 and that it is not reasonable to divide the full yield

into more than 5-6 bins. The possibility of extending the number of bins was tested,

but unfortunately the fitting function seemed to loose its sensibility and reliability for

higher bin numbers. For this reason it was concluded to divide the data in up to 5
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bins and perform a single-differential analysis. Unfortunately this can introduce some

integrated effects in each bin, unless the phase-space simulation accurately models the

production. A very simple but effective model of the phase space is to take into account

the two dominating production channels: p+p→ p+ Λ +K∗+ (Λ-channel) and p+p→

p + Σ0 + K∗+ (Σ-channel) and use a mixture of those for the AEC. The possibility of

any anisotropic production is still not included. The assumption that the production is

not highly anisotropic can in fact be justified just by considering the results presented

in figure 4.14. In this plot the full phase-space spectrum produces a total yield of

1658 ± 145 particles and the total integrated yield, i.e. the sum of the yields from the

pT restricted spectra, is 1692± 148. Those two numbers are fully compatible within the

uncertainties and therefore the assumption for predominantly an isotropic production is

justified. However this argumentation is not enough to exclude anisotropic production.

For this reason the whole analysis procedure was repeated multiple times using a different

kinematic observable for the differential analysis on each re-iteration. The selected

observables are the transverse momentum (pT ), the center of mass momentum (pCM),

the rapidity (Y ) and the center of mass cosine theta (cosθCM) of the K∗+ particle. The

assumption about a relatively isotropic production is justified, as long as the results

from the different runs are self-consistent.

4.3.4.1 The two-channel model

A problem regarding the two-channel production model is that the exact contribu-

tion of each channel is unknown. Thus the cross sections ratio, which corresponds to the

yield ratio, between the two channels should be implemented as an additional analytical

parameter. Before focusing on this issue let first of all examine the mathematical prop-

erties of this model. Generally (see eq. 2.17 and chapters 2.3 and 3.4) the correction is

given by:

C
(2ch)
i =

N
(2ch)
i

n
(2ch)
i

, (4.5)

where i represents the bin number and N
(2ch)
i and n

(2ch)
i are defined according to the

notation rules described in table 4.4. By combining equations 4.5 and 2.18 one obtains:

N
(exp)
i = C

(2ch)
i n

(exp)
i =

N
(2ch)
i

n
(2ch)
i

n
(exp)
i (4.6)
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Notation Meaning

N
(X)
i The total corrected yield of the ith bin

in the data sample X.

n
(X)
i The reconstructed uncorrected yield

of the ith bin in the data sample X.

X = exp Experimental data.

X = Λ, Σ Simulated data for the Λ and Σ channel
respectively.

X = 2ch Simulated data for the two-channel model.

w(Λ), w(Σ) Weight of the contribution of the respec-
tive channel to the two-channel model.

p(Λ), p(Σ) Contribution (percentage) of the respec-
tive channel to the total two-channel sam-
ple.

Table 4.4: Notation rules used for the AEC.

N
(2ch)
i can be defined as:

N
(2ch)
i := w(Λ)N

(Λ)
i + w(Σ)N

(Σ)
i , (4.7)

where w(Λ) and w(Σ) represent the weight factors of the pure Λ and Σ channel respec-

tively. If such a sample is used as an input for HGeant it is expected that:

n
(2ch)
i := w(Λ)n

(Λ)
i + w(Σ)n

(Σ)
i (4.8)

number of K∗+ candidates will be reconstructed. Thus equation 4.5 can be rewritten

as:

C
(2ch)
i =

w(Λ)N
(Λ)
i + w(Σ)N

(Σ)
i

w(Λ)n
(Λ)
i + w(Σ)n

(Σ)
i

. (4.9)

The K∗+ yield in PLUTO and HGeant is known for both the Λ and the Σ channels.

The only unknowns in equation 4.9 are the weight factors w(Λ) and w(Σ). They can be

determined up to a constant from the ratio R between the Λ-associated and Σ-associated

kaons:

R :=
w(Λ)N (Λ)

w(Σ)N (Σ)
, (4.10)

where N (Λ) =
∑

iN
(Λ)
i and N (Σ) =

∑
iN

(Σ)
i are the total numbers of input kaons for

HGeant associated to the corresponding channel. This representation (equations 4.9

and 4.10) is especially useful since it highlights the possibility to calculate the correction

coefficient C
(2ch)
i for any desired ratio R, as long as one of the weight coefficients w is
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fixed, only by using the existing simulation data of the pure Λ− and the pure Σ-channel

production. Thus there is no need for performing any additional simulations. The

simulated PLUTO yield in both channels is 2 million3 K∗+ particles. In order to have a

consistent error calculation, a further requirement is that N (2ch) = N (Λ) = N (Σ) = 2·106.

This condition ensures that w(Λ) = p(Λ) and w(Σ) = p(Σ). Thus equation 4.5 is further

simplified to:

C
(2ch)
i =

N
(2ch)
i

n
(2ch)
i

=
p(Λ)N

(Λ)
i + p(Σ)N

(Σ)
i

p(Λ)n
(Λ)
i + p(Σ)n

(Σ)
i

, (4.11)

with

p(Λ) + p(Σ) = 1. (4.12)

Equation 4.12 removes a further degree of freedom to the weight coefficients w, meaning

that C
(2ch)
i can be calculated for any desired ratio R. The corrected yield is obtained

from eq. 4.6 and 4.11:

N
(exp)
i = C

(2ch)
i n

(exp)
i =

p(Λ)N
(Λ)
i + p(Σ)N

(Σ)
i

p(Λ)n
(Λ)
i + p(Σ)n

(Σ)
i

n
(exp)
i . (4.13)

The next logical step is to find optimal values for p(Λ) and p(Σ). To achieve this, one

needs to use the property that under ideal conditions, i.e. a correct model and a perfect

simulation, the detected yield in each bin should equal the simulated yield up to a

normalization constant:

n
(exp)
i = Nn(2ch)

i ∀i, (4.14)

where N = n
(exp)
tot /n

(2ch)
tot . The optimal values for p(Λ) and p(Σ) can be determined by

performing a χ2 minimization of the bin-wise yield distributions in simulation and in

experiment. Mathematically this corresponds to calculating:

min

∑
i

 n
(exp)
i − n(2ch)

i

σ
(
n

(exp)
i − n(2ch)

i

)
2 , (4.15)

where the minimization is performed over different values for p(Σ). The data did not

show any strong dependence on this parameter, thus the minimization was performed by

scanning the data in p(Σ) steps of 0.1. After applying some systematic checks, which will

be explained in chapter 4.3.6, the final value of p(Σ) for the pT observable was found to be

3Actually a total of 16Mi events were simulated and used as an input for HGeant. The reason why
only 2M events were accessed is explained in appendix C.
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0.41+0.19
−0.22. Figure 4.15 shows the uncorrected yield as a function of pT compared to the

simulated yields (after HGeant) for 0%, 41% and 100% Σ-channel contribution. All of

the scenarios produce reasonable χ2 values, but clearly the 41% Σ-channel contribution

gives the best description of the data, and the 100% Σ-channel contribution the worst.

This is expected, since the Λ-channel is energetically more favorable as compared to

the Σ-channel (see table 1.1). Furthermore the assumption that all other production
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Figure 4.15: Uncorrected pT spectrum of K∗+ obtained by plotting the yield of each
pT bin (see fig. 4.14) and dividing it by the bin width, i.e. the pT range. The expected
values as obtained from the HGeant output (colored lines) are plotted in addition to the
experimental results (red bars). The three different curves represent different Σ-channel
contributions. The total yield of each model is normalized to the total experimental
yield. Spectra obtained from other observables can be found in appendix D.

channels can be neglected (see chapter 4.2) is proven to be correct. This can be explained

by using only the energy and momentum conservation. If more energy is used for the

production process and transfered to particles other than K∗+, K∗+ itself will posses a

lower kinetic energy and, naturally, a lower momentum. Thus the pT spectrum will be

shifted towards lower values, as in the case of the Σ-channel (see fig. 4.15).

4.3.4.2 Branching ratios

After the AEC coefficients are sorted out, the next step is to use equation 4.13 to

extract the actual K∗+ yield. However, the analysis procedure is sensitive only to K∗+

decaying into K0
S + π+. For this reason a correction using equation 4.13 can provide

only the yield associated with this particular decay of K∗+. As mentioned in chapter
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1.2.3, the two main decay channels are:

K∗+ → K0 + π+ and K∗+ → K+ + π0. (4.16)

The K0 particle is a mixture between the two weak eigenstates K0
S and K0

L (see ap-

pendix A) and the ratio between the yields of the two is 1:1. This analysis relies on

reconstructing the K∗+ exclusively from a K0
S + π+, hence only a half of the total K∗+

yield associated with a decay into K0 +π+ is reconstructed. The next question is what is

the branching ratio between the two decay channels shown in 4.16. This can be read-out

from the table of the Clebsch-Gordan coefficients (see e.g. [10]) by using the information

on the isospin configuration of the daughter particles and the decay products. The K∗+

particle can be expressed as a combination of two distinct final-states, each containing

two particles. Mathematically this is expressed as:

|I I3〉 =
∑
x

C(x)
∣∣∣I(x1)I

(x1)
3

〉 ∣∣∣I(x2)I
(x2)
3

〉
, (4.17)

where x are the possible final states in which the initial state |I I3〉 is decomposed into,

x1 and x2 are the two particles of which the final state x is composed, C(x) are the

corresponding Clebsch-Gordan coefficients and I and I3 stand for the isospin and the

third component of the isospin respectively. In this particular case:

x ∈ {K0
Sπ

+,K+π0},

x1 ∈ {K0
S ,K

+},

x2 ∈ {π+, π0},

(4.18)

and hence:

|I I3〉K∗+ = C(K0
Sπ

+)
∣∣∣I(K0

S)I
(K0

S)
3

〉 ∣∣∣I(π+)I
(π+)
3

〉
+

+ C(K+π0)
∣∣∣I(K+)I

(K+)
3

〉 ∣∣∣I(π0)I
(π0)
3

〉
.

(4.19)

The square of the Clebsch-Gordan coefficients represents the probability to decay via

the respective channel and the branching ratio is given as:

Branching Ratio =
∣∣∣C(K0

Sπ
+)
∣∣∣2 :

∣∣∣C(K+π0)
∣∣∣2. (4.20)
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Using the isospin properties of the particles involved (see table 4.5) equation 4.19 be-

comes: ∣∣∣∣12 1

2

〉
K∗+

= C(K0
Sπ

+)

∣∣∣∣12 − 1

2

〉
|1 1〉+ C(K+π0)

∣∣∣∣12 1

2

〉
|1 0〉 . (4.21)

Figure 4.16 shows the relevant part of the Clebsch-Gordan table and one can read out

Particle I I3

K∗+ 1/2 1/2

K0
S 1/2 -1/2

π+ 1 1

π0 1 0

Table 4.5: Isospin properties.

that C(K0
Sπ

+) =
√

2/3 and C(K+π0) = −
√

1/3. Thus it can be concluded (see eq. 4.20)

that the branching ratio between K∗+ → K0 + π+ and K∗+ → K+ + π0 is 2:1, i.e. 2/3

of all K∗+ particles decay via the K∗+ → K0 + π+ channel. Summarizing the above

Figure 4.16: Clebsch-Gordan coefficients [7]. Please refer to a specialized literature
for a detailed explanation on how to read the table (e.g. [10]). In accordance with the
notation in equation 4.17, the olive box corresponds to the values of I(x1) and I(x2),
the magenta box corresponds to the I and I3 values of the initial state (K∗+), the

red arrows point to the rows where I
(x1)
3 and I

(x2)
3 are to be found and finally in the

light-green box are the corresponding Clebsch-Gordan coefficients, written without the
square root sign.

discussion: 2/3 of the K∗+ particles decay into K0 + π+ and 1/2 of the neutral kaons

(K0) are K0
S particles, thus this analysis is sensitive only to 1/3 of the total K∗+ yield.

Hence the final yield needs to be multiplied by a factor of 3 in order to take those effects

into account, i.e.

C(BR) := 3, (4.22)
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and equation 4.13 can be expanded to:

N
(exp)
i = C(BR)C

(2ch)
i n

(exp)
i . (4.23)

As a final remark it is worth mentioning that K0
S decays into a π+ +π− pair in 69.2%

of the time. There are other decay channels, most notably the decay into a π0 +π0 pair,

but there is no need to explicitly correct the yield for this effect since it is simulated by

HGeant and consequently included in C(2ch).

4.3.4.3 Extraction of the cross section

Up to this point only the absolute yield was evaluated. The physical quantity of

interest is the cross section and thus it is necessary to normalize the cross section to the

yield. This can be done by exploring the fact that the ratio between the cross sections

of two processes is equal to the ratio between the absolute yields (eq. 4.24).

σ(K∗+)

N(K∗+)
=
σel(pp)

Nel(pp)
. (4.24)

Since the p+p elastic cross section is theoretically known and the absolute yield is mea-

sured by HADES [30], one can use this information to extract the total K∗+ production

cross section:

σ(K∗+) =
σel(pp)

Nel(pp)
N(K∗+) = C(σ)N(K∗+), (4.25)

where

C(σ) := 1.11× 10−5 µb. (4.26)

The value of C(σ) is determined based on [30], taking into account that this analysis

uses 12164 number of files and the LVL2 condition downscales the number of events by

a factor of 3. Hence, based on equations 4.23, 4.25 and 4.26 the K∗+ production cross

section can be bin-wise calculated using:

σ
(exp)
i = C(σ)C(BR)C

(2ch)
i n

(exp)
i . (4.27)
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The total production cross section is simply the integral of the differential distribution

which in the discrete case is given by a summation over all bins:

σK
∗+

tot = C(σ)C(BR)
∑
i

C
(2ch)
i n

(exp)
i , (4.28)

4.3.5 First results

Figure 4.17 shows the results after applying equation 4.28 to the available data.

Each plot represents the result after performing the differential analysis on a different

kinematic observable. The results for the total production cross section are listed in
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Figure 4.17: The corrected IMS for 4 different kinematic observables. Only statistical
errors are taken into account.

table 4.6. There are some small discrepancies between the results, but they are all equal

within the statistical errors. This means that the correction procedure is quite stable,

despite the very coarse discretization. Herewith the assumption about an isotropic pro-

duction, discussed in chapter 4.3.4, is proven to be reasonable within the uncertainties.

Nevertheless the results from table 4.6 are still not finalized. An issue that has been

overlooked in the discussion so far is the influence of the topological cuts (see chapter

4.3.2) on the analysis procedure. In theory, as long as all assumptions made are ex-

tremely good, there should be no influence of the topological cuts on the final result. In
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Observable σK∗+(µb)

pT 8.8± 0.8

pCM 10.2± 1.0

y 9.3± 1.0

cosθCM 9.6± 0.9

Table 4.6: First results for the total K∗+ production cross section. The results are
obtained by using one set of topological cuts, listed in table 4.3, and the errors represent
only the statistical uncertainties.

reality this will certainly not be true, therefore it is of great importance to perform a

consistency check regarding those cuts. The solution to this problem is explained in the

next section.

4.3.6 Investigation of the systematic error

The systematic error is always challenging to be estimated, since there might be

many different hidden sources of uncertainties. This analysis relies heavily on the topo-

logical cuts in order to get a clear K∗+ signal. Hence it is assumed that the main source

of systematic error is related to those cuts. The investigation of this particular source

of uncertainty can be performed by varying the topological cuts and recalculating the

K∗+ cross section. Any deviation in the result is considered as systematical uncertainty.

The setup for this study was to select 1200 different cut combinations. The selection

was done according to the cut variations shown in table 4.7. Each combination was sep-

arately analyzed, for all observables of interest, by extracting the signal, i.e. fitting the

relevant IMS, and performing acceptance and efficiency corrections. Before accepting

the result from a single iteration certain quality assurance needs to be fulfilled. This

is needed in order to reject all iterations that may have encountered some numerical

problem, e.g. divergence of a fitting function. These criteria are listed in table 4.8.

Figure 4.18 represents the distribution of the accepted results obtained from the 1200

combinations for each analyzed observable. The systematic uncertainty is defined as

the 68% confidence central interval of this distribution. This means that the value for

the cross section is the median of the distribution and the upper and lower errors are

chosen in such a way, that 16% of the yield is rejected on each side of the distribution

(the grayed-out areas in the plots). The reason to use the median approach and not the
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Observable Min Max Steps

IM(K0
S)∈ (495.5−X, 495.5 +X) X = 1σ X = 2σ 3

dV [mm] > 24 > 40 5

δπ+π− [mm] < 7 < 13 4

d
K0
S

π+/− [mm] > 5.6 > 16 5

dK
∗

π+ [mm] < 3 < 16 6

Table 4.7: Rules for selecting the cut-combinations. The restriction on each observ-
able changes in equal discrete steps, the first step is in the “min” column and the last
step is the “max” column. The number of steps in which each observable is changed
are listed in the last column. For the cut around the IM(K0

S), the invariant mass was
assumed to be 495.5 MeV and the standard deviation (σ) of the distribution 9.7 MeV.
These values are extracted from figure 4.3.

Conditions

No more than 1 bin failed the AE correction and was extrapolated
The covariance matrix of the global fit is positive definite

p-val (Global fit)> 0.05
Relative Error (in all non-zero bins) < 0.4

Table 4.8: Conditions for accepting the analysis result for a specific topological cut.
A bit more details on those conditions can be found in appendix E.

more commonly used mean value and standard deviation approach is mostly due to the

relatively asymmetrical distributions, which makes the standard deviation an inaccurate

estimate of the error. By contrast the median approach enables the calculation of asym-

metrical errors. Finally the total statistical error is calculated as the mean statistical

error of all accepted iterations.

An analogous study can be performed on the Σ-channel contribution p(Σ). This is

related to the discussion in section 4.3.4.1. If an optimal p(Σ) is calculated for each

topological cut and added to a single distribution (fig. 4.19), from which the median

and the central interval are extracted, the final result for the Σ-channel contribution will

be obtained.

4.3.7 Final results

The final corrected spectra, obtained after analyzing the systematic uncertainty,

are shown in figure 4.20. The final results for the total K∗+ production cross section

are summarized in table 4.9. Apparently all results are the same within the uncer-
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(a) σ(K∗+) based on pT of K∗+. The median
value is 9.5 µb, the 68% confidence interval is
[8.6, 10.6] µb.
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(b) σ(K∗+) based on pCM of K∗+. The me-
dian value is 9.8 µb, the 68% confidence inter-
val is [8.9, 11.2] µb.
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(c) σ(K∗+) based on y of K∗+. The median
value is 8.8 µb, the 68% confidence interval is
[7.8, 10.0] µb.
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(d) σ(K∗+) based on cosθCM of K∗+. The
median value is 9.0 µb, the 68% confidence
interval is [8.0, 10.3] µb.

Figure 4.18: Systematic error of the total K∗+ production cross section. These plots
are used to obtain the final results shown in table 4.9.

Observable σK∗+(µb)

pT 9.5± 0.9(stat)+1.1
−0.9(syst)

pCM 9.8± 0.9(stat)+1.4
−0.9(syst)

y 8.8± 1.0(stat)+1.2
−1.0(syst)

cosθCM 9.0± 1.1(stat)+1.3
−1.0(syst)

Table 4.9: Final results for the total K∗+ production cross section.

tainties. However, the investigated observables are dependent on each another, which

makes the combination of all of the results into a single number statistically incorrect.

Thus as a final result only one of the entries has to be selected. As the pT result has

the smallest error it is reasonable to use this as the final value for the cross section.

Hence our final solid statement is that the total production cross section of

the K*(892)+ particle is:

σtot(K
∗(892)+) = 9.5 ± 0.9(stat)+1.1

−0.9(syst) µb (4.29)
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(a) p(Σ) based on pT of K∗+. The median
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(c) p(Σ) based on y of K∗+. The median value
is 1 %, the 68% confidence interval is [−3, 5] %.
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(d) p(Σ) based on cosθCM of K∗+. The median
value is 0 %, the 68% confidence interval is
[−3, 4] %.

Figure 4.19: Systematic error of the Σ-channel contribution. Note that the results
in 4.19c and 4.19d are meaningless, since the rapidity and cosθCM observables are not
a good direct probe of the phase space (see figure D.1 in appendix D). Thus the Λ-
and the Σ-channel are indistinguishable from each other when analyzed using those
observables. The fitting procedure is stuck around the initial values, which were set to
p(Σ) = 0, and the negative values in the intervals are simply binning artifacts.

An additional comment can be done regarding figure 4.20d. The phase-space simu-

lation (the solid line) is based on an isotropic production of K∗+. A fit with Legendre

polynomials (see appendix F) was performed to test the hypothesis of an anisotropic

production. According to the obtained χ2 values both the isotropic simulation and the

anisotropic hypothesis fit to the data reasonably well. However the simulation provides

a better χ2 value which suggests that within the uncertainties it is impossible to detect

any relevant anisotropy.

4.4 Spin alignment effects

The developed analysis procedure allows to perform an additional study on the K∗+,

namely to look for spin-alignment effects, i.e. a preferred spin-orientation of the particles.

The spin-alignment is characterized by a spin-density matrix ρ with elements ρmm′ [33].
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(a) Corrected pT spectrum of K∗+.
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(b) Corrected pCM spectrum of K∗+.
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(c) Corrected rapidity spectrum of K∗+.
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Figure 4.20: Corrected spectra of K∗+.

The spin-density matrix possesses the property:

Tr(ρ) = 1. (4.30)

Therefore the diagonal elements, which represent the probability of spin-orientation

along a certain axis, are of special importance. Concentrating on the case of spin 1

particles one can define the diagonal elements as ρ1,1, ρ0,0 and ρ−1,−1. From equation

4.30 it follows that:

ρ0,0 = 1− ρ1,1 − ρ−1,−1. (4.31)

This construction can be used to highlight the difference between polarization and spin-

alignment by using a very simple example, namely assuming that ρ1,1 = ρ−1,−1 6= 1/3.

It follows that ρ0,0 = 1−2ρ1,1 6= ρ1,1. In this scenario there is a preferred spin-alignment

but since the projections along the positive or negative spin axis are equal there is no

net-polarization. This means that the spin-alignment does not imply polarization. In

the case of no net-polarization of a spin 1 particle, i.e. ρ1,1 = ρ−1,−1, it can be shown
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(details in [34] and [35]) that the function:

W (ϑ) =
3

4

[
1− ρ00 + (3ρ00 − 1)cos2ϑ

]
(4.32)

describes the yield of the investigated particle. If the vector meson decays into two

daughter particles, then ϑ is the angle between the momentum of the vector meson

in the laboratory system and the momentum of one of its daughter particles in the

rest system of the parent particle. This can be applied to the K∗+ decay into K0
S + π+.

Hence the coefficient ρ00 of K∗+ can be extracted from the data by repeating the analysis

presented in section 4.3, only this time the differential analysis needs to be performed

by using the observable cosϑK0
S

and fitting the resulting corrected spectrum with the

function W (ϑK0
S
). Here the observable ϑ is replaced by the angle between the K∗+ and

K0
S particles. The choice is arbitrary, without loss of generality the angle between K∗+

and π+ could have been used. The resulting corrected IMS from this procedure is shown

in figure 4.21. The result for ρ00 is:

0
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Figure 4.21: Corrected cosϑK0
S

IMS of K∗+. The estimation of the systematical un-

certainties (see fig. 4.22) are calculated in analogy to all corrected IM spectra presented
in section 4.3.

ρ00 = 0.39± 0.09(stat)+0.10
−0.09(syst). (4.33)

This value is compatible with the case of no spin-alignment. Nevertheless the rela-

tively large uncertainties cannot completely exclude the possibility for a preferred spin-

orientation.
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Figure 4.22: Calculation of the systematic uncertainty of ρ00. The median value is
0.39, the 68% confidence interval is [0.30, 0.49]



Chapter 5

Summary and conclusions

The HADES experiment provided a great opportunity to investigate an unexplored

energy region regarding the production of the K∗(892)+ particle. The performed anal-

ysis, the results of which were published in Physical Review C [6], revealed that the

two main contributing production channels are p + p → p + Λ + K∗+ and p + p →

N + Σ + K∗+. The contribution of the latter channel has been estimated to be:

p(Σ) = 0.41+0.19
−0.22.

The total production cross section of K∗(892)+ was calculated to be:

σtot(K
∗(892)+) = 9.5 ± 0.9(stat)+1.1

−0.9(syst) µb.

Figure 5.1 shows how this result relates to the existing world data. The new result

follows the trend observed in the data so far. The fit to the K∗+ data can be used

for extrapolating the total production cross section of the particle down to an excess

energy of only 231 MeV. The obtained result will be able to provide valuable input for

transport models as well as to serve as a reference for future studies of K∗+ production

in proton-nucleus and heavy-ion collisions. For example, this result can help analyzing

the p-Nb HADES data, recorded at exactly the same beam energy, which will provide

information about the cold nuclear matter effects influencing the production of the K∗+

particle.
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Figure 5.1: Energy (
√
s − √sthr) dependence of the total cross section for the pro-

cesses: i) pp → K∗(892)+X (squares — world data [19, 36–38], triangle — present
work), ii) pp → K∗(892)−X (empty crosses), and iii) pp → K+X (empty circles)
([39–41] and references therein). The solid (dashed) line is a fit to the K∗(892)+

(K+) data with f (x) = C (1− (D/x)
µ
)
ν
, where x =

√
s. The numerical values are

C = 3.22 × 106(1.04 × 105), D = 2.89(2.55) GeV, µ = 1.19 × 10−2(1.16 × 10−1),
ν = 1.86(1.67) [6].

The method used to extract the cross section provided an opportunity to obtain

information regarding the spin-alignment properties of the K∗+ production. The result

ρ00 = 0.39 ± 0.09(stat)+0.10
−0.09(syst)

cannot conclusively exclude the hypothesis for a spin-alignment. It is however fully com-

patible with the no spin alignment case (ρ00 = 0.33) and does not show any significant

hint about a possible deviation.



Appendix A

Neutral kaons

Below I summarize the text that can be found in section 4.4.3.1 of the book “Intro-

duction to Elementary Particles” by David Griffiths [10].

Using the CP operator one can define two distinct CP eigenstates:

|K1〉 =

(
1√
2

)(∣∣K0
〉
−
∣∣∣K0

〉)
and |K2〉 =

(
1√
2

)(∣∣K0
〉

+
∣∣∣K0

〉)
, (A.1)

with

CP |K1〉 = |K1〉 and CP |K2〉 = − |K2〉 , (A.2)

where K0 and K
0

correspond to the neutral kaon and antikaon. It can be shown that

under the assumption that CP is conserved, K1 should aways decay into two pions, while

K2 into three:

K1 → π+ + π− or K1 → π0 + π0, (A.3)

K2 → π+ + π− + π0 or K2 → π0 + π0 + π0. (A.4)

The energy released in the 2π decays is greater and therefore the decay is faster. However

it was proven that K2 can in fact decay into two pions. This may happen because of

the CP violation in weak decays. Let us define K0
S and K0

L as the short- and long-lived

states respectively: ∣∣K0
S

〉
=

1√
1 + |ε|2

(|K1〉+ ε |K2〉) , (A.5)

∣∣K0
L

〉
=

1√
1 + |ε|2

(|K2〉+ ε |K1〉) . (A.6)
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Obviously both the short- and long-lived states can decay into all possible channels.

However, since the coefficient ε is very small, most of K0
S decay into 2 pions and most of

K0
L decay into 3 pions. An anomaly related to the CP violation happens only in roughly

1 in 500 events. Additionally, since the cτ value1 of K0
S and K0

L are 2.68 cm and 15.34 m

respectively, most of the K0
S particles and only a fraction of the K0

L particles, will decay

inside the HADES detector. Thus it is absolutely reasonable to neglect any effects of the

CP violation and to assume that the reconstructed neutral kaons are only K0
S particles

and the number of K0
L and K0

S particles is the same.

1cτ is the speed of light multiplied by the mean life time τ and represents the mean distance a particle
would travel before it decays, assuming that it is traveling at the speed of light.



Appendix B

Phase space effects on the

spectral shape

Low-mass minimum

The PLUTO simulation of the K∗+ IMS (fig. 4.6) clearly visualizes that there is a zero

yield for masses below c.a. 637 MeV. This is related to the decay of K∗+ into K0
S and π+,

the reaction that we exclusively reconstruct. The requirement this reaction to happen

is the mass of the mother particle, K∗+ in our example, to be equal or greater than the

sum of the masses of the two daughter particles. This can be shown mathematically

using four-vectors as follows:

PK∗+ = PK0
S

+ Pπ+

P 2
K∗+ = P 2

K0
S

+ P 2
π+ + 2 · PK0

S
· Pπ+

m2
K∗+ = m2

K0
S

+m2
π+ + 2 ·

[
EK0

S
· Eπ+ − ~pK0

S
· ~pπ+

]
. (B.1)

We can, without loss of generality, observe the system in the rest frame of K∗+, i.e.

~pK∗+ = ~pK0
S

+ ~pπ+ = 0,

~pK0
S

= −~pπ+ = ~p. (B.2)

Combining equations B.1 and B.2 we obtain:

m2
K∗+ = m2

K0
S

+m2
π+ + 2 ·

[
EK0

S
· Eπ+ + |~p|2

]
.
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Using the general relation

E2 = m2 + p2 (B.3)

we obtain

m2
K∗+ = m2

K0
S

+m2
π+ + 2 ·

[√
m2
K0
S

+ |~p|2 ·
√
m2
π+ + |~p|2 + |~p|2

]
. (B.4)

The term in the brackets is always positive and it is minimal when |~p| = 0. In that case

(
m2
K∗+

)
min

= m2
K0
S

+m2
π+ + 2 ·mK0

S
·mπ+ =

(
mK0

S
+mπ+

)2
,

⇒ (mK∗+)min = mK0
S

+mπ+ ≈ (497.6 + 139.6) MeV = 637.2 MeV. (B.5)

High-mass maximum

The cut-off visible in the simulated IM spectrum (figures 4.6 and 4.7) is due to the

limited excess energy of the reaction. For the full data it is quite straightforward to

understand that the maximum invariant mass of K∗+ is:

{IMK∗+}max = M(K∗+) + ε. (B.6)

This relation follows directly from the energy conservation (eq. 2.10 and 2.11) and the

definition of the excess energy (eq. 1.2) under the assumption that the momentum of

K∗+ is zero. However if there is a certain restriction regarding the momentum of K∗+

then it is a bit more difficult to obtain an analytic solution for the maximum allowed

IMK∗+ value. Let us examine the situation when there is a minimum allowed momentum

pcut of K∗+. The total energy of the system is

√
s = Etot = Ep + EΛ + EK∗+ . (B.7)

The maximum IMK∗+ corresponds to a maximal EK∗+ . This, on the other hand, en-

forces:

min {Ep + EΛ} = min

{√
m2
p + p2

p +
√
m2

Λ + p2
Λ

}
, (B.8)

and thus

max {EK∗+} = Etot −min

{√
m2
p + p2

p +
√
m2

Λ + p2
Λ

}
. (B.9)
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The conservation of momentum demands

pcut = pp + pΛ, (B.10)

therefore B.9 transforms in

max {EK∗+} = Etot −min

{√
m2
p + p2

p +
√
m2

Λ + (pp − pcut)2

}
(B.11)

Let’s apply a simple first-derivation search for an extremum with respect to pp:

pp√
m2
p + p2

p

+
pp − pcut√

m2
Λ + (pp − pcut)2

= 0, (B.12)

⇒
p2
p

m2
p + p2

p

=
(pp − pcut)

2

m2
Λ + (pp − pcut)2

, (B.13)

⇔ p2
pm

2
Λ +

�������
p2
p(pp − pcut)

2 = m2
p(pp − pcut)

2 +
�������
p2
p(pp − pcut)

2 , (B.14)

⇔ p2
pm

2
Λ −m2

p

(
p2
p + p2

cut − 2pppcut

)
= 0, (B.15)

⇔ p2
p

(
m2

Λ −m2
p

)
+ 2pppcutm

2
p − p2

cutm
2
p = 0 (B.16)

The last expression can be easily solved using the standard solution of a quadratic

equation:

pp =

−pcutm
2
p ±

√
��

��p2
cutm

4
p +

(
m2

Λ −�
�m2
p

)
p2

cutm
2
p

m2
Λ −m2

p

(B.17)

pp>0
===⇒ pp =

−pcutm
2
p + pcutmpmΛ

m2
Λ −m2

p

= pcut

mpmΛ −m2
p

m2
Λ −m2

p

. (B.18)

All parameters in the above equation are known. In the case of pcut = 470 MeV (see fig.

4.7)

⇒ pp = 214.7 MeV. (B.19)

The maximum IMK∗+ can be obtained by using the property B.3:

max {EK∗+} =

√
max {IMK∗+}2 + p2

cut, (B.20)

⇒ max {IMK∗+} =

√
max {EK∗+}2 − p2

cut. (B.21)
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Using the value of pcut = 470 MeV and combining equations B.11, B.19 and B.21 one

obtains:

max {IMK∗+} ≈ 960 MeV. (B.22)



Appendix C

Number of simulated events

An important parameter for the simulation is the number of events needed. The

efficiency of the reconstruction is between 1/200 and 1/100, depending on the phase-

space region. According to the “rule of thumb” an efficiency of 1/150 is assumed in

the following calculations. As shown in the present work, the available experimental

K∗+ yield is around 1500. Initially the simulated PLUTO yield was 2M events. This

resulted in roughly 13k K∗+ candidates after running HGeant. Since the error goes

down as the square root of the number of events, this means that the ratio between

the uncertainty in the simulation and in the experiment is only
√

13000/1500 ≈ 2.9.

The desired goal was to achieve a smaller uncertainty related to the simulation, thus

the PLUTO sample was increased to 16Mi= 224 ≈16.8M. This exact number was chosen

because: a) the CPU time was still reasonable (a total of a few hundred hours distributed

on more than 50 units) b) this ensures that only 10% of the uncertainty is related to

the simulation. c) I really like numbers that are powers of 2. It should be noted that

this huge number of events brings another issue with it: when accessing the PLUTO

data for the AEC 16Mi of iterations are needed in order to go through all events. Since

the post-analysis was performed on local machines (like my personal laptop or desktop)

this slowed significantly down the analysis. However the simulation error discussed so

far is related to the limited HGeant statistics, which is so low due to the acceptance

and efficiency effects. The PLUTO sample is not influenced by that and hence the

error related to PLUTO is a factor of
√

150 ≈ 12 times less than compared to HGeant.

Therefore I have decided to reduce the number of events accessed from the PLUTO

sample to 2M. This still ensures that the PLUTO error is a factor of 4.2 smaller than
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the HGeant error and a factor of 36.5 smaller than the experimental error. This scaling

introduces discrepancy to the AE correction factor, which is obtained using the ratio

between the yield of the PLUTO and HGeant samples, hence the values and errors of

one of the samples needed to be scaled accordingly. WLOG it was chosen to scale down

the HGeant yield (and errors) by a factor of 224/(2 ·106) ≈ 8.4. For this reason in section

4.3.4.1 the number 2M was used when normalizing the number of events used by the

two-channel model.
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Uncorrected spectra

Below all uncorrected spectra obtained during the analysis are plotted.
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(a) Uncorrected pT spectrum of K∗+.
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(c) Uncorrected rapidity spectrum of K∗+.
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(d) Uncorrected cosθCM spectrum of K∗+.

Figure D.1: All uncorrected spectra of K∗+. The expected values, as obtained from
the HGeant output, are plotted on the top of the experimental data. The three different
curves represent different Σ-channel contributions. The value of p(Σ) for the two-channel
model is different for each curve, the values used are the best fit for each observable
(see 4.19). The total yield of each model is normalized to the total experimental yield.
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Conditions regarding the quality

assurance

The following section provides further information regarding the conditions listed in

table 4.8.

• Failing to fit the yield in a certain bin

Sometimes it is possible to have a fit failure. This happens quite often in the

experimental data in the bins with least room in the phase space. If a single bin

fails to be properly fitted the yield is extrapolated based on the HGeant simulation.

This is achieved by normalizing the yield in the problematic bin from HGeant to

the experimental data by using the total yield from all other bins as a reference.

If the fitting procedure failed in multiple bins, the whole set of topological cuts is

rejected.

• Global fit

The fitting procedure was set up in a way that allowed to fit all of the bins simul-

taneously, for example by demanding that the mass should always be the same in

all bins. However since many of the fit parameters were fixed, this procedure was

found to bring no significant improvement and all bins were fitted independently.

Even so the fitting procedure still provided as an output a global covariance matrix

and a p-value, i.e. taking all bins into account. These observables were used in the

conditions for the topological cuts (see table 4.8).
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Legendre polynomials

The Legendre polynomials are defined as follows [42, 43]:

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k

=
n∑
k=0

(
n

k

)(
−n− 1

k

)(
1− x

2

)k
= 2n ·

n∑
k=0

xk
(
n

k

)(n+k−1
2

n

)
.

(F.1)

In figure 4.20d the spectrum is fitted with a combination of P0(x) and P2(x), i.e.

P0,2(x) = a0P0(x) + a2P2(x) = a0 +
a2

2

(
3x2 − 1

)
. (F.2)

This function is symmetric around 0, just as the cosθCM observable, which is why P0,2(x)

was used to fit the spectrum. An isotropic production of the K∗+ particle corresponds

to the result from the PLUTO simulation (the purple line in figure 4.20d), which is a

rather flat distribution. The function F.2 should be a better fit to the data in the case

of a strongly anisotropic K∗+ production.
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