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Abstract

This thesis represents the study of proton production in π− +A collisions at an incident
beam momentum of 1.7 GeV/c using the HADES spectrometer at GSI. The data was
recorded in 2014. To identify and reconstruct protons, a graphical selection, which is
based on the β − p relation, is applied. Afterwards, the experimental data are corrected
due to HADES detector acceptance and efficiency. The number of corrected protons
for π− + C reactions is NC

corr = 5.51741 · 107 and for π− + W is NW
corr = 1.11617 · 108.

The extracted proton production cross sections are on the one hand for π− + C reaction
∆σCp = 133127± (3)stat ± (20569)sys ± (+20918

−17115)norm µb and on the other hand for π− + W
reaction ∆σWp = 1560370 ± (192)stat ± (563353)sys ± (+245188

−200609)norm µb. Furthermore, a
comparison to two state-of-the-art transport models, GiBUU and UrQMD, shows a similar
behavior and a reasonable agreement at forward rapidities for the proton production
cross section as a function of rapidity. Moreover, the comparison to HARP data shows a
minor incoming beam momentum dependency at low transverse momenta which vanishes
at higher transverse momenta.
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1 Introduction

More than one century ago Joseph Thomson discovered the electron. That also marked
the starting point to discover the inner structure of atoms. In 1919 Ernest Rutherford
detected the proton and predicted the neutron which was discovered by James Chadwick
13 years later. Together with the photon, a lot of phenomena can be described. Since
that, the improvement of accelerators, particle detectors and statistics leaded to an entire
zoo of particles which are connected through one theory: The Standard Model of particle
physics [11].

1.1 The Standard Model

The Standard Model describes in principle the constituents of matter and the interaction
among them. It is based on the fact, that all matter is made of particles which interact
with each other by exchanging various particles associated with the fundamental forces.
All fermions have spin 1/2. They are divided into two categories, quarks and leptons.
The six types of quarks indicated as violet in Fig. 1.1 are up, down, charm, strange, top
and bottom. Based on charge and mass they belong to three different families. The first
family consists of up and down quark out of what stable matter is built of. For example,
protons consist of two up and one down quark which results in proton charge equal to
+1. The others are leptons which are illustrated in green in Fig. 1.1. Leptons are also
divided into three families containing e+, e−, µ+, µ−, τ+, τ− and their corresponding
neutral (anti)neutrinos νe, νµ, ντ .

In nature four types of fundamental interactions are known to exist which are the
gravitational, the electromagnetic, the strong and the weak. Each of them can be
mathematically described as a field. On particle physic scales, the gravitational force is
not significant and is excluded in the Standard Model [11]. The three other forces are
discrete quantum fields and their interactions are mediated by elementary particles which
are virtual exchange bosons with spin 1 and they are described in the Standard Model.

The electromagnetic force acts on charged particles. It is carried by massless photons,
has therefore an infinite scale and creates electric, as well as magnetic fields. This force is
responsible for the attraction potential in atomic nuclei which holds atoms together. The
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1.1 The Standard Model Introduction

weak force acts on all particles of the Standard Model which is for example responsible
for the β−decay. It is carried by the three massive exchange bosons W± and Z0 which
results in short range of the weak interaction compared to the electromagnetic. Above
very high temperatures the exchange bosons of electromagnetic and weak interactions are
essentially identical and the two theoretical descriptions merge to the unified electroweak
interaction as Sheldon Glashow, Abdus Salam and Steven Weinberg predicted [11]. The
strong force acts on (anti)quarks which carries the colors (anti)blue, (anti)green and
(anti)red. In nature there is just color neutrality which appears through the combination
of either three quarks, or one quark antiquark pair. So quarks can form baryons on the one
hand and mesons on the other hand. Baryons are made out of three quarks, for example
the proton consists of two up quarks and one down quark. Mesons are constructed
by one pair of quark and antiquark like for example pions (

∣∣π+〉 =
∣∣∣ud〉, |π−〉 = |du〉,∣∣π0〉 = 1/

√
2
[
|uu〉 −

∣∣∣dd〉]). The strong force is carried by eight different massless gluons
and make it possible for quarks to form nucleons and then they can further form the
atomic nuclei. Gluons are able to interact among themselves and therefore the range of
the strong force is in the order of 10−15m which corresponds to the proton radius.

Figure 1.1: Illustration of the Standard Model of particle physics [22].
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Introduction 1.2 Hadron Mass Generation

The last missing piece which was predicted by the Standard Model is the neutral
Higgs boson (indicated in yellow in Fig. 1.1) with spin 0 and m = 125 GeV/c2, which
was discovered at CERN in 2012. Nearly 50 years ago it was predicted that through
introducing a scalar field (Higgs field) the spontaneous symmetry braking in Gauge
theories, could be explained. With applying this Higgs field on the electroweak theory, it
leads to the generation of the high and different masses of the W± and Z0. The scalar
field also gives mass to the fundamental fermions through the Yukawa interaction [10].

1.2 Hadron Mass Generation

All stable matter is built out of protons which are the lightest stable particles. Compared
to the mass of its components, which sums up to 9.1 MeV/c2, the rest mass mp =
938.272 MeV/c2 of the proton is much larger [23]. This missing mass can be explained
by introducing the spontaneous breaking of chiral symmetry. In the chiral effective field
theory, the degrees of freedom are hadrons or quarks. Its fundamental symmetry is the
SU(3)L ⊗ SU(3)R, where the chirality of left- and right-handed hadrons is conserved
and the quark masses go to zero in the chiral limit. This means, in the interaction
among quarks via gluon exchange, right-handed quarks stay right-handed quarks as
well as left-handed quarks stay left-handed quarks. The vacuum, which is populated
by scalar quark-antiquark pairs 〈0| q̄q |0〉, called chiral condensate, does not share the
invariance under SU(3)L ⊗ SU(3)R chiral transformation. If a qR/qL interacts with
the chiral condensate like qL + q̄LqR = qR, one can see that the ground state does not
vanish. So, going to the ground state (vacuum), the expectation value 〈0| q̄q |0〉 is not
zero and as a consequence this symmetry is broken. Including the quark masses, the
spontaneous breaking of the chiral symmetry generates hadron masses. So the missing
mass of the proton is generated through the binding energy of the strong force which
holds the components of the nucleus together [24].

With increasing temperature and density, the expectation value is decreasing until its
restoration (Fig. 1.2). This means that at high temperatures and high densities the
hadron mass is predicted to change. For this prediction there are many experimental
searches. Large Hadron Collider (LHC) (indicated in yellow in Fig. 1.2) can reach high
temperatures whereas experiments located at Heavy-Ion Synchrotron (SIS) 18 (indicated
in green in Fig. 1.2) are able to reach higher densities. Originally, High-Acceptance
DiElectron Spectrometer (HADES) located at SIS 18 studied the in-medium modification
of light vector mesons [1].
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Figure 1.2: Expectation value of the chiral condensate as a function of the temperature
T and nuclear density ρ/ρ0. The different experiment regions are indicated
[13].

1.3 Structure and Goal of this Thesis

The study of hadron production has a long history in high-energy particle, nuclear, and
cosmic ray physics. The most basic physical observables, for example in high-energy
hadron-hadron collisions, are the absolute yields and the transverse momentum (pt)
spectra. They can be used to improve parameters of hadronic event generators in state-
of-the-art transport models. In this work, the double-differential proton production
cross-section in π− + C and π− + W is presented.

Proton production in pion nucleus reactions at kinetic energies around a few AGeV occurs
mostly through inelastic scattering and through the strong decay of short-lived baryonic
resonances (e.g. N?, ∆(1232)).

Figure 1.3 shows the full analysis chain, to obtain the corrected proton yield and hence
the double-differential cross-section of protons. Chapter 2 gives a short overview of the
pion beam facility and the relevant components of the HADES detector system. An
important step is to simulate events with two different transport models (GiBUU and
UrQMD). A general overview of transport models is given in the first part of Chapter 3.
In the second part of Chapter 3, the necessary steps to simulate the detector influence on
particles are described. At this point, the simulated data as well as the experimental data
have the same structure. The first part in Chapter 4 describes the full analysis procedure
which is applied to the experimental data as well as to both simulation data. The
analysis procedure starts with the event selection (Section 4.1.1), the proton identification
and reconstruction (Section 4.1.2) and the acceptance and efficiency correction (Section
4.1.3). The second transport model (UrQMD) is used to prove the model independence
of the corrected experimental yield. The error calculation is performed in Section 4.1.4.
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To extract the yield in unmeasured transverse momentum pt regions, a Boltzmann
extrapolation is applied (Section 4.1.5). As a last step in the analysis procedure, the
absolute normalization is necessary to obtain the proton production cross-section (Section
4.1.6). Besides, the obtained results are compared to transport model predictions and
the HARP data. The HARP Collaboration performed extensive measurements of the
inclusive double-differential proton production cross-section in various pion-nucleus
reactions [8]. The varying incoming beam momenta for the HARP data are in between
(3 GeV/c− 15 GeV/c). The different target materials are Be, C, Cu, Sn, Ta and Pb. One
motivation for the HARP experiment was to make a systematic study of precise hadron
production for π + A and p+ A over a wide transverses momentum and angle range to
validate and improve hadron production models. This work provides proton production
of two different nuclei in terms of double-differential cross-sections at a lower incident
pion beam momentum (1.7 GeV/c). So the existing double-differential proton production
cross-section in π− + C reaction of the HARP data could be enlarged to lower incident
beam momenta. Moreover, the double-differential proton production in π− +W of this
work expands the different target materials.
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SimDst

HGeant

Event Generator
GiBUU/ UrQMD

Experiment

Full Scale
Analysis:

Event Selection

Particle Iden-
tification

Yield Extraction
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Raw Yield
Distribution

GiBUU/UrQMD

Raw Yield
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Experiment

Acc ⊗ Eff

Corrected Yield

Figure 1.3: Schematic of the complete analysis chain which is employed to get the
experimental corrected proton yield. The simulated events of GiBUU/UrQMD
(dark violet) have to be processed through simulation tools including HGeant
and SimDST to create events which has the same structure and losses as
the experimental data (magenta). Afterwards, both the experimental and
simulated data are analyzed (blue) in the same way. The Acc⊗Eff matrix is
needed to extract the corrected experimental yield (orange).
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2 The HADES Experiment

HADES is a magnetic spectrometer which is located at the GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt (Germany). It is a fixed target experiment designed
for various collisions, e.g. nucleus-nucleus, proton-proton, proton-nucleus, or pion-nucleus
collisions. Originally it was designed to study medium modifications of light vector
mesons e.g. ρ, ω, φ in elementary and heavy-ion-induced reactions. Equally important is
their electromagnetic decay branch into e+e− pairs [2]. The possibility to have HADES
in combination with a secondary pion beam provides the unique opportunity to study
hadron and dielectron production in pion-proton collisions in various beam momenta
from 0.656GeV/c until 800GeV/c and pion-nucleus collisions at 1.7GeV/c [1].

2.1 Pion Beam Facility

In 2014 an experimental campaign was carried out by the HADES Collaboration impinging
a negatively charged pion beam at 1.7GeV/c beam momentum on carbon and tungsten
targets. The secondary pion beam can be produced by the collision of high intensity
protons or heavy-ion beams with a thick production target. These proton- or ion beams
up to energies of 4.5GeV and 2AGeV are delivered from a synchrotron of maximum
18Tm rigidity located at the GSI accelerator complex. Studies with pion beams in
[12] showed that the largest pion current with beam momenta between 0.656GeV/c
and 1.7 GeV/c at HADES is possible by impinging 12C or 14N ion beams onto a 10 cm
thick Be target. For technical reasons a primary 14N beam with intensities of about
0.8−1.0 ·1011 ions/spill was used [19]. In this collision, together with the pions also other
particles are produced. Positive pion beams are contaminated with positrons, positive
muons, positive kaons, protons and nuclear fragments. The contamination by electrons,
negative muons and kaons of a negative charged pion beam is minor and was estimated to
be below a few percentages [19]. In order to get a clean beam, dipoles select pions along
the beam-line towards HADES through their deflection angle. Quadrupole magnets focus
the beam [12]. A schematic drawing of the pion beam-line and its different elements to
transport the beam from the production target to HADES is visualized in Fig. 2.1.
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2.2 Detector System The HADES Experiment

Figure 2.1: Schematic overview of the beam line between the pion production target
and the HADES cave. The dipole magnets(D), quadrupoles (Q), tracking
detectors (C1, C2) and the target-T0 detector are indicated. The FD dipole
which is used to direct the beam to cave B is shown as well [1].

Due to a huge spread out of the beam in momentum and position, the beam-line
acceptance is around ∆p/p ≈ 8%. To achieve a better momentum resolution of 5% [1]
, a secondary beam diagnostic system, called CERBEROS, was installed. It consists
of two tracking stations C1 and C2 (see Fig. 2.1) and the target-T0 detector (see Fig.
2.1), which will be explained in Section 2.2. C1 is located after the production target
in between quadrupole magnets Q4 and Q5. C2 is located behind the second dipole D2,
closer to the target. The target-T0 detector, which is located 2 cm in front of the target,
allows to optimize the beam profil and the generation of a fast timing signal for trigger
purposes and time-of-flight particle identification. It was developed to offer online beam
monitoring and for reconstruction of momentum, as well as the position for pions [25].

2.2 Detector System

The HADES detector system is built out of six identical sectors. Superconducting
magnetic coils produce a toroidal magnetic field. The spectrometer covers polar angles
between 18◦ ≤ θ ≤ 85◦. A schematic layout of the HADES detector system is displayed
in Fig. 2.2 in which all parts are sketched. To reconstruct the momentum, the deflection
angle of particle trajectories arising from four hit positions in MDCs located before and
after the magnetic coils is measured. Behind the MDCs, the META system consisting of
RPC and TOF is located on the one hand to improve the track reconstruction with an
extra hit information and on the other hand to perform the time-of-flight measurement.
The first level trigger (LVL1) selects events with a predefined charged particle multiplicity
[2]. A more detailed description of the individual detector systems, which are necessary
for the hadron analysis, will be presented in the following.
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Figure 2.2: HADES detector and its important components [18].

Target-T0 Detector
Coming along from the pion beam direction, the secondary pion beam impacts first on
the target-T0 detector. It is located 2 cm in front of the HADES target and detects
the reaction start time t0 for the time-of-flight measurement. The detector, which was
particularly designed for the pion beam campaign, consists of nine diamond sensors and
is pictured in Fig. 2.3. Each is based on mono-crystalline diamond material which is
produced by the chemical vapor deposition (CVD) process. This detector has to fulfill a
good timing precision δt ≤ 100 ps. The obtained time resolution was about δt ≈ 250 ps.
The detector didn’t reach the expected time precision due to the extensive pick-up noise
in the target-T0 detector. However, a considerable amount of off-vertex reactions could
be suppressed on the trigger level. Timing signals from the CERBEROS beam tracking
detector layers were used to suppress pile-up and multi hit events in the tracking stations
on the LVL1 trigger level. [1].
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Figure 2.3: Photography of the target T0 detector [1].

Target
The employed targets are sketched in Fig. 2.4 consisting of three segments indicated in
yellow. The distance between the individual segments is 18 mm. The red boxes represent
the edges of the RICH detector. The area around the target is nearly field free. The
target material properties are summarized in Table 2.1.

Figure 2.4: Schematic drawings of the solid target consisting of tungsten (left) and carbon
(right) separated into three segments (yellow) and the edges of the RICH
detector (red).[26] [18].

Table 2.1: Material and target properties of carbon and tungsten targets.
Target Nsegment A dsegment [mm] � [mm] ρ [g/cm3]

C 3 12.011 7.2 12 1.85
W 3 183.84 2.4 12 19.3

Magnet
The superconducting magnet which consists of six coils surrounding the beam axis is used
for track reconstruction. Its toroidal field geometry provides a field free region around
the target. Its maximum field strength is obtained at the sector edge and reaches up to
3.6 T. To cool down the coils, they are surrounded by a liquid nitrogen shield [2].
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Mini Drift Chambers
The other components of the magnet spectrometer to reconstruct the trajectory of
particles are 24 trapezoidal planar MDCs (Mini-Drift Chambers), which are arranged
in six identical sectors. Each of the four detector planes (MDC I-IV ) has a different
orientation (see Fig. 2.5 left panel) to optimize the spatial resolution. Each detector
plane is subdivided into six sectors. Whereas all MDC chamber models feature 6 field
wire layers with a different orientation. In every single sector, two MDC planes (MDC
I, II) are in front of the superconducting magnet and two others (MDC III, IV ) are
located behind [2].

Charged particles passing the drift cells in the chamber ionize the gas along their trajectory.
The resulting free electrons are multiplied in an electric field through avalanche effects
while drifting towards sense wires. The induced signal then can be read out. On basis
of this signal, the hit position in the MDC can be reconstructed. After passing the two
MDCs, the charged particles are deflected by the toroidal magnetic field as visualized in
Fig. 2.5 (right panel). To estimate the bending direction and the radius of the curvature,
measurements of the particles track in front (A, B) and behind (C, D) the magnet are
necessary. Based on these measurements the determination of the particle track points,
the path length, the particles momentum and charge is possible with a resolution of
1− 4%. For particle identification one needs also the velocity out of the time-of-flight
measurement. The explanation is coming up next.

The HADES Collaboration (G. Agakishiev et al.): The high-acceptance dielectron spectrometer HADES 251
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Fig. 9. Polar-angle distributions of Cherenkov ring properties
for single electrons from open e+e− pairs produced in the re-
action C + C at 1 AGeV (exp). Simulation results (sim) are
shown for comparison. The error bars reflect the widths of the
nearly Gaussian multiplicity distributions at each angle. Left:
ring radius vs. lepton polar angle; right: mean number of pads
within a region of 13 × 13 pads around ring centers.

ter for various polar angles of the emitted electrons. The
data have been obtained by averaging over the full az-
imuthal detector acceptance, i.e. all six MWPC modules,
and are characterized by nearly Gaussian multiplicity dis-
tributions at each polar angle. The small variation of ring
radius nicely reflects the adjusted pad design of the cath-
ode plane (see sect. 2.2.2). The continuous rise of pad mul-
tiplicity with polar angle is a consequence of the increas-
ing radiator length, from about 36 cm to 65 cm. Averaged
over all 6 sectors, one observes experimentally a mean of
19.3±2.8 pads around θ = 25◦ and 22.3±2.0 pads around
θ = 75◦. The large widths partly reflect variations of op-
tical and electrical performance of the different detector
modules. Comparing the experimental values with those
from simulations based on the experimental N0 values
yields a reasonable agreement. The differences at larger
angles point to possible losses in radiator transmission at
longer path lengths and/or to local imperfections in pho-
tocathode quantum efficiency or mirror reflectivity.

In summary, the overall performance of the RICH de-
tector system, although slightly lower than in the original
design, has proven to be sufficient for e± identification in
nuclear collisions (see sect. 4.5).

2.3 Tracking system

2.3.1 Overview

The high-resolution spectroscopy of vector mesons
(σMe+e− /Me+e− ! 2.5%) in heavy-ion collisions via their
dielectron decay channel defines the decisive design and
performance constraints on the HADES tracking system.
To reach this goal, an intrinsic spatial cell resolution of the
order or better than 150µm along with the reduction of
multiple scattering in detector materials and air, high effi-
ciency and a large acceptance are crucial requirements for
the success of the experimental program. Extended design
studies and prototyping [21–23] preceded the production

0,0

Fig. 10. Top: schematic layout of the HADES tracking system.
Two sets of Mini-Drift Chambers (MDCs) with 24 wire planes
per sector are placed in front and behind the magnetic field to
measure particle momenta. Bottom: schematic view of the six
anode wire frames inside a HADES MDC, representing the six
stereo angles.

of the 24 Mini-Drift Chambers (MDCs) of four different
sizes, conducted by GSI Darmstadt, LHE/JINR Dubna,
FZ Dresden-Rossendorf [24], IPN Orsay and University of
Frankfurt.

The HADES tracking system consists of 24 trapezoidal
planar MDCs symmetrically arranged in six identical sec-
tors. It provides a polar-angle coverage between 18◦ and
85◦ around the beam axis, forming four tracking planes
(I–IV) of increasing size. In each sector, two modules
(planes I and II) are located in front of and two (planes III
and IV) behind the toroidal magnetic field of the super-
conducting magnet, as shown in fig. 10 (top). The region
between the six coils of the magnet dictates the active area
of the chambers.

During the construction special emphasis was put on
the use of low-mass materials for window foils (aluminized
Mylar), wires (bare aluminum) and counting gas (helium-
based) in order to minimize multiple scattering. The total
detector thickness per chamber is about 5 · 10−4 in units

Figure 2.5: Left: Schematic illustration of a MDC chamber. Each chamber consists of six
trapezoidal layers with different field wire orientations [2]. Right: Image of an
exemplary charged particle track through the magnet spectrometer consisting
of magnetic coil and four MDCs [26].
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2.2 Detector System The HADES Experiment

META System
The Multiplicity Electron Trigger Array (META) consists of two time-of-flight detectors
(TOF) and the Resistive Plate Chamber (RPC). Its main applications are a fast deter-
mination of the charged-particle multiplicity of an event basis for the trigger decision
and the time-of-flight measurement in combination with the target-T0 detector. Both
detectors are located behind MDC IV .

The TOF detector covers large polar angles from 44◦ to 85◦. Like the whole spectrometer,
also TOF is divided into six identical sectors. Each sector consists of eight modules,
which are constructed of eight scintillator rods (in total 384) with PMTs on both ends [2].
Particles crossing the scintillator excite the material. By emitting photons, the excited
material returns back to the ground state. The photons are amplified and transformed
into an electrical signal in the PMTs. The arrival time with a resolution of σt ≈ 150 ps
and the amplitudes of the signal in the PMTs allow to extract the time-of-flight and the
deposited energy of the particle. These information are used for the particle identification
[2].

The lower polar angle region in between 18◦ and 45◦ is covered by the RPC detector. As
well as TOF, RPC holds the six-folder-structure of HADES. However, the RPC has a
better time resolution, which is below σt ≈ 100 ps. It is built up by various amounts of
independent detector cells (Fig. 2.6 left panel). Each individual cell (Fig. 2.6 right panel)
is made of alternating aluminium and glass plates, which are surrounded by an aluminium
box to avoid cross-talk. The gap between the two parallel electrode plates is filled with
gas, as illustrated in Fig. 2.6 (right panel). The aluminium layers which represent these
electrodes have a high voltage difference between them to create a homogeneous electric
drift field in the gas volume. An electrically charged particle traversing the RPC detector
ionizes gas molecules along its trajectory. In the homogeneous drift field the electrons
are accelerated towards the anode, creating an avalanche of charge carriers (so-called gas
amplification), which induces an electrical signal in the electrodes.

Figure 2.6: Left: Schematic drawing of one sector of the RPC detector [21]. Right:
Illustration of one RPC cell [18].
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Central Trigger System
If incoming beam particles interact with the target the reaction products produce signals
which are used as input for the Central Trigger System (CTS). The CTS which consists
of a Central Trigger Unit (CTU) and a Matching Unit (MU) produces the trigger signals.
The basic principle of the two level trigger system is shown in Fig. 2.7. The CTU
generates digital trigger information and can handle several types of triggers. This
information is then transported to the individual Detector Trigger System (DTS). Using
this concept, the read out boards send only the fraction of events which matches one of
the trigger decisions (LVL1, LVL2) to the event builder [14].

Figure 2.7: Basic principle of the HADES two-level trigger system: The trigger sources
are sampled by the central trigger system (CTS). Trigger information is
transported to the individual detector trigger systems (DTS). Data with a
positive trigger decision are transported to the event builder (EB) [14].

The first level trigger (LVL1) is based on a fast determination of the charged particle
multiplicity to minimize random noise events in the data [1]. The LVL1 selects only
events if the charged particle multiplicity is M ≥ 2 in the META System in combination
with a hit in the target-T0 detector. If the LVL1 trigger condition is fulfilled the trigger
signal goes to all detectors.

The LVL2 trigger decision is based on the real time e+e− identification. In the experi-
mental pion beam campaign this trigger decision was not used [1].
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3 Simulations

In general, simulations have a significant importance for the interpretation of the ex-
perimental data in hadron-hadron collisions at intermediated energies. In this Chapter,
first of all, relevant aspects of transport models will be shortly discussed followed by
introducing two specific models, GiBUU and UrQMD. Since the GiBUU and UrQMD
models are also used to apply efficiency and acceptance corrections to the experimental
data, they have to be processed through various simulation tools to mimic the same
influences and losses as the experimental data. These individual steps are explained in
the second part of this Chapter.

3.1 Transport Model Calculations

In experimental hadron-hadron collisions the information of final-state particles are
integrated over the whole time evolution of the collision process. To learn about the
reaction dynamics, transport models are used. Transport model descriptions are based
on processes at the microscopic level.

Their major advantage is that they follow the entire time evolution of the reaction.
That means they are able to simulate the physical reaction from the initial state until
the particle production at any chosen time interval. Besides this, they are based on
experimental input (e.g. cross-sections) to simulate realistic reactions.

The GiBUU and UrQMD transport models are based on the non-relativistic BUU
(Boltzmann-Uehling-Uhlenbeck) equation (Eq. 3.1.1), which describes the space-time
evolution of the single-particle phase space density f(~r, ~p, t) influenced by a collision term
Icoll. The collision term includes gain and loss terms according to scattering and decay
processes. Also Pauli blocking is included in the collision term Icoll. Each particle species
is represented by one differential equation [27] [4](

∂

∂t
+ ~p

m
· ∇r + ~F · ∇p

)
f(~r, ~p, t) = Icoll. (3.1.1)

The BUU equation (Eq. 3.1.1) is a non-linear integral-differential equation which cannot
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Simulations 3.1.1 GiBUU

be solved analytically or in a direct numerical way. A common approach for example is
the test-particle ansatz (GiBUU) [27].

3.1.1 GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model, which was originally devel-
oped to describe heavy-ion collisions is a transport model for hadron-, photon-, electron-,
neutron- and heavy-ion-induced reactions. The suitable energy range for the GiBUU
transport model starts at a few 10 MeV and goes up to 40 GeV [15][9].

To solve the BUU equation (Eq. 3.1.1) the test-particle ansatz is used in GiBUU. In this
approach, the single-particle distribution function f(~r, ~p, t) is replaced by a huge number
of test particles N (Eq. 3.1.2 ) which follow the shape of a δ−function [27]

f(~r, ~p, t)→
N∑
i

δ(~r − ~ri(t))δ(~p− ~pi(t)). (3.1.2)

In the GiBUU test-particle ansatz the assumption is made, that the many-body-system
behaves like a classical fluid on microscopic space-time scales [9]. The initial state is
either in agreement with the experimental conditions (hadron-nucleus and heavy-ion
collisions) or is determined by external models (photon, electron and neutrino nucleus
reactions). In low and mediated energy ranges, the particle production is created through
a resonance model. Here hadrons originate from resonance decays. The relevant degrees
of freedom are mesons and baryons, which are propagated through a mean field potential
and scatter according to cross-sections. In total 34 mesons and 90 baryons are included.
At higher energies (> 3 GeV) quarks and gluons become the degrees of freedom. Here
GiBUU switches to the string model PYTHIA including string fragmentation which
generates particles at the quark level by breaking up strings [9].

3.1.2 UrQMD

The Ultra relativistic Quantum Molecular Dynamik (UrQMD) model is a transport
theory based on the QMD approach. The Quantum Molecular Dynamics model is a
N-body theory based on a covariant propagation of all hadrons on classical trajectories.
A significant difference to the test-particle ansatz is the representation of the particles.
Each nucleon is represented by a coherent state in form of a Gaussian wave package (Eq.
3.1.3) which is characterized by six time-dependent parameters ~ri (space coordinates) and
~pi (momentum coordinates). In Eq. 3.1.3 L is related to the extension of the Gaussian
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wave package and the simplification ~ = c = 1 is used [3]

φi(~r; ~ri ~pi, t) =
( 2
Lπ

)3/4
exp

{
− 2
L

(~r − ~ri(t))2 + i~pi(t)~r
}
. (3.1.3)

The total wave function Φ in Eq. 3.1.4 is the direct product of all coherent states (Eq.
3.1.3)[3]

Φ =
∏
i

φi(~r; ~ri ~pi, t). (3.1.4)

The collisions in the QMD simulations are limited to binary collisions (two-body level)
and performed in a point-particle sense similar to BUU models. The total cross-section
of hadron-hadron collisions is estimated with the help of the geometrical cross-section.
The collision of two particles is taking place, if the minimum distance d between two
particles satisfies (Eq. 3.1.5). The latter determined the total cross-section σtot, which
is dependent on the isospins of colliding particles, their flavor and the center-of-mass
energy [4]

d <

√
σtot
π
. (3.1.5)

In UrQMD the available energy ranges from the SIS (
√
s ≈ 2 GeV) region up to RHIC

energy (
√
s ≈ 200 GeV). The collision term includes more than 50 baryon species like

N , ∆ or Y resonances with masses up to 2.25 GeV/c2 and 45 mesons. At high energies,
quarks and gluons cannot be neglected anymore and hence UrQMD switches also to a
string model like GiBUU [4].

3.1.3 Absolute Normalisation of Simulated Data

To obtain the proton production cross-section in order to perform a comparison to
experimental measurements the results of the transport model calculations have to be
absolutely normalized. The absolute normalization is in general based on the geometrical
cross-section σgeom (Eq. 3.1.6), in which bmax describes the maximum impact factor

σgeom[mb] = π · b2
max

10 . (3.1.6)

The factor 10 is needed to convert fm2 to mb.

GiBUU
For GiBUU the production cross-section σ is given by Eq. 3.1.7

σ = σgeom
Nfiles ·Nensembles

·N. (3.1.7)
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Here the geometrical cross-section σgeom is calculated (Eq. 3.1.6) on the basis bmax which
is provided by simulations. In Eq. 3.1.7 N is the number of events where a reaction
took place, Nfiles is the number of simulated files and Nensembles stands for the number of
particles in each file.

UrQMD
The production cross-section σ of UrQMD is given in a similar way (Eq. 3.1.7). However,
the geometrical cross-section σgeom is directly provided in UrQMD. As well as for GiBUU,
Nfiles is the whole amount of simulated files and Nensembles the amount of simulated
particles for each file.

3.2 Simulation Tools

To correct the data for acceptance and efficiency effects, which will be explained in detail
in Section 4.1.3 a full-scale simulation is necessary. The results of transport models, e.g.
GiBUU and UrQMD, have to be processed through a chain of different tools displayed
in Fig. 1.3 (magenta), which will be discussed in the following. The second transport
model, in this work UrQMD is required to perform a self-consistency check, which will
also be explained in Section 4.1.3, to make sure that the correction method is model
independent.

HGeant
The HGeant framework is a simulation tool based on the CERN software Geant 3.21 [16],
which contains the complete HADES detector setup. In order to simulate the particle
interaction with the detector material, particles which are produced by GiBUU and
UrQMD, are propagated through HGeant. Relevant physical processes are for example
secondary collisions, scattering processes and energy loss in the detectors.

SimDST
The information provided by HGeant has to go through SimDST (Simulated Data
Summary Table) level, in which the detector response is considered and finally the
simulated particle tracks are reconstructed like real data. The evaluated particle momenta
are stored. After this step the simulated data has the same structure as the experimental
data. Hence, the same analysis procedure can be applied, what will be explained in
Section 4.1. With this, the matrices for acceptance and efficiency corrections (Acc⊗Eff
see Section 4.1.3) can be obtained in order to provide unbiased yield distributions for the
physical interpretation.
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4 Inclusive Proton Production

The inclusive proton (p) production in π− +C and π− +W collisions at a beam momentum
of 1.7 GeV/c is presented in this chapter. It contains the complete analysis procedure as
well as the obtained final results namely the double-differential distribution. Besides, the
comparison to state-of-the-art transport models and the HARP data is discussed.

4.1 Analysis Procedure

The large statistic allows to perform a double-differential analysis in a set of independent
kinematic variables in the laboratory frame. The initial set of kinematic independent
variables is the transverse momentum pt in combination with the rapidity y.

The transverse momentum pt (Eq. 4.1.1) is defined perpendicular to the beam axis
(z-axis) and thus carries the information about the interaction process

pt =
√
p2
x + p2

y. (4.1.1)

The rapidity y of a particle (Eq. 4.1.2) can be expressed as

y = 1
2 ln

(
E + pz
E − pz

)
= 1

2 ln
(1 + β cos(θ)

1− β cos(θ)

)
(4.1.2)

where pz denotes the particle momentum along the beam axis, E its energy and θ is the
polar angle. Regarding the rapidity there is a differentiation into three regions: Beam-
(forward), target- (backward) and mid-rapidity. The target rapidity is used for y = 0,
whereas y →∞ is called beam rapidity.

In the pt − y phase space the transverse momentum ranges from 0− 1000 MeV/c (∆pt =
40 MeV/c) and the rapidity is between 0 and 1.2 (∆y = 0.1). This analysis allows to
extract a cross-section as a function of the rapidity σ(y).

18



Inclusive Proton Production 4.1.1 Event Selection

4.1.1 Event Selection

To make sure that in this analysis only reactions are considered in which the secondary
π− beam interacts with the target, the recorded events have to fulfill certain event
selection criteria. The initial point of the event selection is ,that a hit was registered in
the target-T0 detector and all events comply with the LVL1 physical trigger conditions
(Section 2.2). The first level trigger (LVL1) selects only events with a charged particle
multiplicity M ≥ 2 in the META system in combination with a hit in the target-T0

detector. In this analysis the following event selection criteria were applied:

NoPileUp
An important criterion is to reject so called pile-up events which leads to a wrong
determination of the reaction time t0 and thus to an incorrect time-of-flight measurement.
A pile-up is the case in which multiple pions are registered in the target-T0 detector in
the time window for the selection of a single event. To reject pile-up events a multiplicity
of one is reconstructed in the target-T0 detector in the time window starting form −5 ns
until 15 ns.

goodClustVert
After excluding pile-up events the selected event has at least to satisfy the condition to
have not less than one track in the inner MDC I/II. Also a selection on the χ2 of the
reconstructed vertex bigger than zero is applied and its position in z-direction should be
greater than −160 mm.

Multiplicity
In the experimental data only events are included that satisfy the LVL1 trigger conditions,
as mentioned before.The simulation has to go through the same selection procedure as
the measured data. Hence, the selection criterion is also applied to the simulated data.

Primary vertex reconstruction
To ensure that only events which interact with the target are taken, selections on the
primary vertex are considered. The vertex is calculated by the distance of closest approach
to all the tracks registered in MDC and META. This method requires at least two fully
reconstructed tracks. In the left panel in Fig. 4.1 the z−component of the primary
vertex distribution is indicated in black for the experimental data. Three peaks are
visible which belong to the three segments of the target. The two red lines display the
primary vertex cut in z−direction corresponding to range of z = −80 mm and z = 5 mm.
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4.1.1 Event Selection Inclusive Proton Production

The dashed gray distribution for a GiBUU simulation is in good agreement with the
experimental primary vertex distribution. The primary vertex resolution in z-direction
is σzPV ≈ 4.7 mm [26]. Furthermore, the primary vertex distribution in the xy−plane
was exploited. The resolution for the primary vertex in x-(y-)direction is σxPV ≈ 3.1 mm
(σyPV ≈ 2.6 mm). Indicated by the black circle in Fig. 4.1 b) the vertex cut in xy−plane
with R =

√
x2 + y2 < 20 mm is shown.
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Figure 4.1: Primary vertex distributions in z−direction a) with the selected region indi-
cated by the red lines. b) Primary vertex distribution in xy−plane including
the selected area (resembled as a black circle).

The effect of the mentioned event selection criteria in Fig. 4.2 are visualized for the
experimental data as well as the GiBUU simulation (Chapter 3). For both, π− + C
and π− + W reactions, the looses are quite similar. For example, the experimental data
(π− + C) drop down to 74% including all event selection criteria while for the GiBUU
simulated data goes to 77%.
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Figure 4.2: Individual event selection criteria and their remaining events in %, starting
from the complete amount of registered events going through all selection
criteria like NoPileUp, goodClustVert, Multiplicity and Primary vertex selec-
tion.

4.1.2 Proton Identification and Reconstruction

The next step of the proton analysis is the proton identification. The particle identification
is performed separately for RPC and TOF to account for the different resolutions. One
possibility to identify protons is based on the β-momentum relation (c = 1)

β(p) = p

E
=
√

~p2

m2 + ~p2 (4.1.3)

with the energy E, defined as E =
√
~p2 +m2 and m denotes the proton mass (mp =

938.272 MeV/c2) [23].

Figure 4.3 shows the p− β distribution for RPC including all positive charged particles
assuming that all positive particles are protons. The step at about 300 MeV/c could be
caused by the energy loss and magnetic field correction for proton candidates. As the
analysis is focusing only on protons the same corrections were applied to all particles.
So here it was assumed that all particles are protons. The future proton analysis is not
impacted by this fact. The theoretical β-values for p, π+ and d are indicated by the
black curves. For low momenta the theoretical β-value for π+ does not match with the
experimental data. This can be attributed to the fact that the momentum correction for

21



4.1.2 Proton Identification and Reconstruction Inclusive Proton Production

protons was applied assuming that the pion is a proton. As only protons are considered
in the further analysis this has no influence on the presented inclusive proton analysis.
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Figure 4.3: The p−β spectrum for RPC (a)) and TOF (b)) detectors containing positively
charged particles with a momentum correction for protons. The theoretical β
curves for p, π+ and d are indicated by the black curves.

To identify the protons, the β − p distribution was projected on the velocity axis in
momentum intervals of 20 MeV/c. Figure 4.4 shows the β distribution of p, π+ and d in
an exemplary momentum interval (720− 740 MeV/c). To describe the β-distribution for
p, π+ and d simultaneously a Gaussian distribution was adopted for each particle species
in order to extract the mean µ and the resolution σ of the proton distribution in each
momentum slice. Hence, the entire distribution was adapted with the sum of these three
Gaussian functions (Eq 4.1.4). As demonstrated in Fig. 4.4 the measured distribution is
almost background free, hence no addition function is needed.

f(x) = Ap · e
− 1

2 ·
(
x−µp
σp

)2

+Aπ+ · e
− 1

2 ·
(x−µ

π+
σ
π+

)2

+Ad · e
− 1

2 ·
(
x−µd
σd

)2

(4.1.4)

In Figure 4.4 the experimental β distributions for π+, p, d together with their theoretical
β values indicated by dashed vertical lines are shown. Besides of that, the individual
Gaussian fits and the combined fit are presented. In β-distribution in the momentum
range from 720 MeV/c to 740 MeV/c in RPC the mean value µp of the individual Gaussian
fit for protons is µp = 0.61, while its resolution is σp = 0.02.
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Figure 4.4: β-distributions of p, π+, and d in the momentum range from 720 MeV/c
to 740 MeV/c in RPC. The individual Gaussian fits and the combined fit
(magenta) are included. The combined fit consists of the three Gaussian
fits for d (green), p (blue) and π+ (red). The dashed lines belong to the
theoretical β-values.

Furthermore, the mean (µp) and width (σp) of the β−distribution extracted from the
single proton Gaussian fit are compared to the values from the combined fit. The mean
values agree perfectly over the selected range. Moreover, the mean µp compared to the
theoretical β for the protons is also in good agreement over the selected range within in
average about 1% (Fig. 4.5 a)). Given that the proton peak is isolated it is possible to
take µp and σp of the Gaussian individual fit instead of the combined fit. In addition, the
resolution σ at low/high momenta is more stable for the individual Gaussian fit. Since,
for low momenta the β−distribution becomes asymmetric due to a non-linear correlation
between β and momentum p, the assumption of a Gaussian is not fully justified. Hence,
the resolution σp as a function of the momentum shows deviations from the monotone
behavior (Fig. 4.5 b)). To obtain the resolution σp over the entire momentum range, the
distribution was adapted with a second-order polynomial function. Thus, the σp values
from the polynomial fit have been further used.
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Figure 4.5: a) Comparison of the extracted mean value µp of protons (diamond) for the
individual Gaussian and the total fit (star) in β-distribution as a function
of the momentum in the RPC. The theoretical β proton values are given by
the black line. b) Extracted resolution σp of the protons (diamond) for the
individual Gaussian and the total fit (star) together with the second-order
polynomial fit shown by the solid magenta curve.

To make sure that the graphical cut selects nearly all protons while excluding most other
particle species, the graphical cut was constructed with 2σ around the mean µp. Figure
4.6 displays the resulting graphical selection based on the β and momentum p correlation
separately for RPC (Fig. 4.6 a)) and TOF (Fig. 4.6 b)). The selected momentum range
for the graphical cut is in between 360 MeV/c and 1600 MeV/c for RPC and in between
300 MeV/c and 1100 MeV/c for TOF. The same procedure, as discussed before, was also
applied to the GiBUU simulation to extract the same graphical selection. The same
selection range was used as well.
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Figure 4.6: p− β distribution for positive charged particles in π− + C collisions together
with the ±2σp graphical cut (dark blue solid curve) for protons around µp
(red dashed curve) for RPC (a)) and TOF (b)).
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To quantify the proton purity after the graphical selection, experimental and simulated
mass distribution of the protons in different pt-y ranges were investigated. In the
following it has not been distinguished between RPC and TOF. In order to compare the
experimental and the simulated mass spectra each simulated mass distribution was scaled
by the following factor (Eq. 4.1.5) where mp,min = 800 MeV/c2, mp,max = 1200 MeV/c2

denote the minimal and the maximal calculated proton masses

SF =
∫mp,max
mp,min

mp,Exp∫mp,max
mp,min

mp,GiBUU PID 14
. (4.1.5)

mp,Exp represents the experimental proton mass distribution and mp,GiBUU PID 14 repre-
sents the simulated proton mass distribution with the GEANT PID information to verify
that only real protons are selected. Figure 4.7 compares the experimental and simulated
mass distributions. One can see that the scaled simulated mass distribution after the
graphical selection (blue curve) as well as the additional GEANT PID information (filled
area) reproduces the experimental spectrum (black points) well.
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Figure 4.7: Comparison of the mass distribution in π− + C reactions for the experimental
data (black points) and the simulation with (filled area) and without (blue
curve) GEANT PID information. The shown transverse momentum range
lies between 400 − 440 MeV/c with varying rapidity ranges from 0.3 to 0.7.

As the mass resolution in experiment and simulation are in good agreement, one can not
only extract the purity (purity) in the simulated data by comparing the proton yield of
the integrated mass spectra with and without GEANT PID information (Eq. 4.1.6), but
also the experimental purity (purity?) (Eq. 4.1.7).

purity = 100 ·
∣∣∣∣1− N(mGiBUU)−N(mGiBUU PID 14)

N(mGiBUU PID 14)

∣∣∣∣ (4.1.6)
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In Equation 4.1.6 and Eq. 4.1.7 N(mGiBUU) represents the simulated yield after integrat-
ing the mass distribution for each pt and y bin, while N(mGiBUU PID 14) stands for the
simulated yield with GEANT PID information and N(mExp) for the experimental yield.

purity∗ = 100 ·
∣∣∣∣1− N(mExp)−N(mGiBUU PID 14)

N(mGiBUU PID 14)

∣∣∣∣ (4.1.7)

In addition, to get a proper comparison and thus a correct purity calculation, there need
to be enough entries in the simulation data. In this analysis only bins with more than
300 entries are included.

Figure 4.8 a) depicts the purity distribution which is nearly 100% over the whole phase
space and averages at 99.997%. In Figure 4.8 b) the purity? is shown. In both cases,
bins with a purity below 60% were excluded.
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Figure 4.8: Purity of the protons as a function of transverse momentum and rapidity for
simulation a) and experimental data b) in π− + C reactions.
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a) and simulated data b).

26



Inclusive Proton Production 4.1.3 Acceptance and Efficiency Correction

Figure 4.9 a) depicts the reconstructed proton yield in the experimental data. The
proton yield is mainly distributed between 0 < y ≤ 1.2 and 0 < pt ≤ 1000 MeV/c with
a maximum around pt = 400 MeV/c and y = 0.2. At lower transverse momenta and
rapidity the population decreases until the HADES acceptance is reached. In Figure 4.9
b) the phase space distribution of the extracted yield in GiBUU simulation is shown.
Both, the experimental and simulated double-differential distributions look quite similar.
The chosen binning for GiBUU simulation and experiment is the same all over this
analysis.

4.1.3 Acceptance and Efficiency Correction

As discussed in Chapter 2, the measurement is limited by the geometrical HADES
acceptance. Besides, the detector response or the final analysis procedure including for
example the particle identification and the applied cuts introduce inefficiencies.

The corrections for these effects are performed with the help of full-scale simulations e.g.
based on transport model calculations (Section 3.1). The complete chain of simulation
tools is described in detail in Section 3.2. It consists of an event generator, in this case
GiBUU, in which the initial conditions like employed target and beam particles are set.
Event generators cover the full available phase space of the studied reaction while the
influence of the detector which contains particle interaction with the detector material,
scattering and energy loss, are treated in the HGeant framework. The efficiency effects
caused by the detector response are taken into account in the SimDST production.
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Figure 4.10: a) Initial full-scale pt − y distribution for GiBUU in π− + C collisions.
b) Acc⊗Eff matrix for the GiBUU simulation as a function of transverse
momentum and rapidity in π− + C collisions.

The SimDST output format is similar to the format of the experimental data. As a last
step, the simulated data is analysed exactly in the same way as the experimental data. In
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this way the full-scale simulation is obtained. This includes finally the losses caused by, for
example, the event selection (Section 4.1.1) and the particle identification (Section 4.1.2).
This allows to calculate a correction matrix εcorr(pt, y) for the experimental spectrum
according to Eq. 4.1.8 based on the initial εin(pt,y) and reconstructed simulation
εfinal(pt,y)

εcorr(pt, y) = εfinal(pt,y)
εin(pt,y) . (4.1.8)

The initial simulated distribution in the double-dimensional pt − y distribution in π− +
C reactions which is not limited by the geometrical HADES detector acceptance is
represented in Fig. 4.10 a). Most of the protons are populated in the range pt < 200 MeV/c
and y < 0.1. But they dont’t fly inside the acceptance of the HADES detector. The
acceptance and efficiency correction matrix (Fig. 4.10 b)) is obtained by dividing the
initial GiBUU phase space distribution of protons by the reconstructed spectrum. The
average acceptance and efficiency is around 55.67%.

At the edges of the detector acceptance the combined acceptance and efficiency drops
down to 10%. Finally, by dividing the measured yield through the acceptance and
efficiency matrix, an unbiased proton spectrum is obtained (Fig. 4.11). The latter can
be used for physical interpretations. Fig. 4.11 a) displays the unbiased proton yield
for π− + C reactions with a maximum yield population in 200 < pt < 400 MeV/c and
0 < y < 0.3. Going to higher transverse momenta and beam rapidity the proton yield
decreases. The number of corrected protons for π− + C reactions is NC

corr = 5.5 · 107 In
Figure 4.11 b) the unbiased yield for π− + W collisions is represented which shows almost
the same behaviour with a number of corrected protons NW

corr = 1.1 · 108.
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Figure 4.11: Unbiased corrected proton yield as a function of transverse momentrum pt
and rapidity y in π− + C a) and π− + W b) reactions.
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A precise method to validate the applied correction is a self-consistency check. To archive
this, a second transport model, in this case UrQMD was used. The unfiltered double-
differential spectrum based on UrQMD is presented in Fig. 4.12 a). After processing
the UrQMD data through the same full scale analysis as discussed in Chapter 3, the
acceptance and efficiency matrix was obtained and applied to the experimental data (Fig.
4.12 b)).

yi
el

d

50

100

150
310×

 [MeV/c]
t

p
0 200 400 600 800 1000

y

0

0.5

1

 p + X→ + C -πa)

 E
ff 

U
rQ

M
D

×
A

cc
 

0

0.2

0.4

0.6

 [MeV/c]
t

p
0 200 400 600 800 1000

y

0

0.5

1

 p + X→ + C -πb)

Figure 4.12: a) Initial full-scale pt − y distribution for UrQMD in π− + C reactions. b)
Acc⊗Eff matrix for the UrQMD transport model as a function of transverese
momentum and rapidity in π− + C collisions.
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Figure 4.13: Corrected experimental pt spectrum in π− + C reactions for rapidity regions
ranging form y = 0.2 − 0.5 based on GiBUU (black points) and UrQMD
(blue stars) correction matrices.

To confirm the model independence of the applied method, the resulting acceptance and
efficiency corrected pt distributions, based on GiBUU and UrQMD, were projected on
the rapidity axis and compared to each other. The comparison is shown in Fig. 4.13 for
three different rapidity regions. For both models the corrected experimental pt spectra
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are in good agreement. At the HADES detector acceptance border minor differences are
visible, which can be attributed to statistical fluctuations. The comparison confirms the
assumption that the correction in these two kinematic independent variables is not related
to the underlying model. In the subsequent analysis the GiBUU corrected spectrum was
applied.

4.1.4 Systematic and Statistical Uncertainties

The statistical error of the double-differential proton distribution is nearly negligible due
to the high collected statistics. As shown in the β−distribution in Fig. 4.4, the proton
peak is isolated with almost no background which is also resembled by the high purity
(Fig. 4.8). Therefore, the statistical error calculation is simplified to (Eq. 4.1.9)

∆Nstat = 1√
Nuncorr

·Ncorr. (4.1.9)

Nuncorr denotes the number of uncorrected protons while Ncorr is the number of corrected
protons. The relative statistic error ∆Nstat, rel = 1√

Nuncorr
is about 0.002% for Carbon

and about 0.01% for Tungsten.

Systematic uncertainties come along with every experimental measurement. In the present
analysis a 2σ selection around the expected value for protons in the β − p distribution
is applied to select a high proton purity sample. To discover any significant influence
introduced by the proton identification, the analysis was repeated for 1.5σ and 2.5σ
graphical selection (Fig. 4.14). In Figure 4.15 the variation of the corrected experimental
yield as a function of pt due to the proton identification are compared to each other. One
can see that there are no significant variations (∆Nvar) and hence these corresponding
uncertainties are small. However, the difference was considered in the systematic error
evaluation in the following way (Eq. 4.1.10) where Nmax, corr and Nmin, corr represent the
maximum and minimum corrected yield.

∆N±, var =
|Nmax/min,corr −Ncorr|

Ncorr
, (4.1.10)

The variation error ∆Nvar is nearly negligible as it is on average far below 1%. Besides,
the efficiency error ∆Neff of 3% [18] due to the detector response was taken into account
in the systematic uncertainties. So the systematic error is dominated by the efficiency
error ∆Neff. According to Eq. 4.1.11 the systematic error on the obtained yield of protons
is then in the order of 3% when summing up quadratically the variation of the β-cut
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(∆Nvar) and the efficiency correction (∆Neff )

∆N±,sys =
√

∆N2
±,var + ∆N2

eff ≈ 3%. (4.1.11)

For the rapidity density distribution ∆Nextra was considered in the systematic error
calculation. ∆Nextra arises from the extrapolation to unmeasured transverse pt regions
and will be explained in Section 4.1.5. For the rapidity density distribution the total
systematic error amounts to

∆N±,sys =
√

∆N2
±,var + ∆N2

eff + ∆N2
extra ≈ 15% (4.1.12)

where ∆Nextra is the error of the Boltzmann extrapolation (Section 4.1.5) to unmeasured
pt regions and which is on average about 15%.
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Figure 4.14: p− β spectrum in π− + C reaction separated for RPC a) and TOF b). The
1.5σ, 2σ and 2.5σ selection around µp (red dashed curve) indicated by the
light blue, mid blue and dark blue curve, respectively.
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Figure 4.15: Double-differential pt distribution in π− + C reactions for rapidity regions
ranging from y = 0.2− 0.5 with the graphical selection for 1.5σ (light blue
stars), 2σ (black points) and 2.5σ (blue diamonds).
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4.1.5 Transverse Momentum Extrapolation

Another important quantity is the rapidity density distribution dN

dy
(Fig.4.17 b)). It

is obtained by the integration of the two-dimensional phase space over pt. Inside the
HADES acceptance the unmeasured pt regions are dependent on the selected rapidity
range. One can see in Fig. 4.16 that the acceptance is limited at very low and very high
transverse momenta (in average pt < 300 MeV/c and pt ≥ 900 MeV/c). To also extract
the yield in the unmeasured regions, a Boltzmann fit (Eq. 4.1.13) can be used. This
approach has been employed for various collision systems [17] [20]. It is especially used
in heavy-ion collisions [17]. Even though, studies from [26] show that the Fermi motion
forces the pt spectra to follow a Boltzmann shape. Thus, a Boltzmann fit was applied
to the experimental data allowing to extrapolate the yield in the low and high pt range
which is not covered by HADES. In Equation 4.1.13 A(y) denotes the amplitude, mp the
proton mass and TB(y) stands for the inverse slope parameter

dN

dptdy
= A(y) · pt ·

√
p2
t +m2

p · e
−

√
p2
t +m2

p

TB(y) . (4.1.13)

Both, the amplitude and the inverse slope parameter are rapidity dependent free fit
parameters.
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Figure 4.16: Double-differential distribution as a function of pt in π− + C reactions for
certain rapidity regions y = 0.2 − 0.5. The Boltzmann extrapolation is
indicated by the orange curve. The statistic and systematic uncertainties
are given by error bars and grey boxes, respectively.

The corrected pt-spectrum for a rapidity range of 0.2 ≤ y < 0.5, including the statistical
and systematic errors is shown in Fig. 4.16. Also, the Boltzmann fit, is sketched in Fig.
4.16. As demonstrated in Fig 4.16, the Boltzmann fits (orange curve) are in rather good
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agreement with the experimental data over the entire rapidity range.

The rapidity dependent inverse slope parameter was extracted from the Boltzmann fit
and is pictured in Fig. 4.17 a). In this plot, the values are increasing when the rapidity
gets larger. Comparing the inverse slope parameter as function of rapidity (4.17 a)) with
the double-differential distributions as a function of pt (4.16 ), one can see that small
TB values belong to sharp distributions with a maximum at small transvere momenta.
With the increasing TB values the distributions in Fig. 4.16 also gets broader and so the
percantage of protons with large transverse momenta has a has a bigger contribution.

The total yield
(
dN

dy

)
as a function of rapidity in π− + C collisions is displayed in Fig.

4.17 b) and was obtained on basis of the sum of all measured data points and two integrals
at high and low pt range extrapolated with the Boltzmann fit (Eq. 4.1.14).The data
points in the rapidity range (0.0 < y < 1.0) are shown including their statistical errors
(error bars) and systematic errors (gray boxes). The statistical uncertainties are smaller
than the marker points.

dN

dy
=
∫ Nstart

0

dN

dptdy
dpt +

∑
Ncorr ·∆pt +

∫ 1500MeV/c

Nstop

dN

dptdy
dpt. (4.1.14)
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Figure 4.17: a) Inverse slope parameter TB as a function of rapidity in π− + C reactions
from the Boltzmann fit. b) Total yield as function of rapidity in π− + C
reactions. The statistic and systematic uncertainties are indicated by the
error bars and filled areas, respectively.
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4.1.6 Absolute Normalization

To obtain the proton production cross-section an absolute normalization is necessary.
The cross-section (Eq. 4.1.15) is dependent on the number of reconstructed protons (N),
the incident number of pions (Nbeam) the solid target density ρ, the mass number of the
target nucleus A, the Avogadro constant NA and the target thickness dtarget

σ = N

Nbeam · (ρ/A) ·NA · dtarget
. (4.1.15)

The number of incident pions (Nbeam = NT0 · (1− tdead)(0.81± 0.1)) which reached the
target, is calculated based on the number of particles NT0 , which were detected in the
target-T0 detector. The latter has to be corrected with the dead time of the HADES data
acquisition system. Moreover, the geometrical acceptance has to be taken into account,
as the target-T0 detector area is bigger than the one of the solid target. The given
uncertainty arises from the beam transport simulation. Moreover, another uncertainty
(10%) arising from the NT0 variation has to be considered. The individual observables
for the cross-section calculation are listed in Table 4.1.

Table 4.1: Summary of relevant physical observables to calculate the absolute normaliza-
tion.
Target A ρ [g/cm3] dtarget [cm] NT0 tdead [%]

C 12.011 1.85 0.72 4.31 · 109 0.156
W 183.84 19.3 0.24 4.16 · 109 0.154
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4.2 Results and Discussion

In the following section the double-differential cross-sections of both, π− + C and π− +
W, collision systems and their integrated differential production cross-sections will be
presented.

4.2.1 Pt − y Distribution

The double-differential yield was normalized to the number of beam particles and target
thickness as explained in Section 4.1.6. The rapidity dependent differential cross-sections
in π− + C and π− + W reactions are shown in Fig. 4.18 and Fig. 4.19. The dominant
error of the double-differential cross-section (Fig. 4.18 and Fig. 4.19) is the normalization
error due to the beam intensity uncertainty which is in average about 15%. Here a
Boltzmann fit was applied to extrapolate to the unmeasured pt regions (Section 4.1.5).
The latter is indicated as violet curve in Fig. 4.18 and as orange curve in Fig. 4.19. The
Boltzmann fits are in good agreement with the experimental data (dark points) in the
rapidity ranges 0 < y < 1 for π− + C reaction and 0 < y < 0.9 for π− + W collision. At
higher rapidity y > 1.0 (π− + C) and y > 0.9 (π− + W) the pt coverage of the experiment
is not sufficient to constrain the fit.
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Figure 4.18: Double-differential cross-section in π− + C reactions for rapidity regions
ranging between 0 < y < 1.2. The Boltzmann fit is indicated by the violet
curve. The statistic, systematic and normalization uncertainties are given
by error bars, filled and dotted violet boxes.
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Figure 4.19: Double-differential cross-section in π− + W reactions for rapidity regions
ranging between 0 < y < 1.2. The Boltzmann extrapolation is indicated by
the orange curve. The statistic, systematic and normalization uncertainties
are given by error bars, filled and dotted orange boxes.
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4.2.2 Rapidity Density Distribution

By summing up all measured data points and the two integrals of the Boltzmann
extrapolation in the region not covered by the HADES acceptance, the integrated
differential cross-section as a function of the rapidity for both collision systems in the
rapidity range 0 < y < 1.0 (π− + C) and 0 < y < 0.9 (π− + W) was obtained. The latter
are presented in Fig. 4.20. The shape of the rapidity distribution is quite similar for both
collision systems. By integrating over the rapidity dependent cross-section the differential
production cross-sections (∆σ) in π− + C (0 < y < 1.0) and in π− + W (0 < y < 0.9)
was calculated and is listed in Table 4.2.
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Figure 4.20: Proton production cross-section as a function of rapidity for π− + C a) and
π− + W b) reactions. The statistical errors (error bars) are smaller than
the symbol size. The systematic uncertainties are indicated by filled boxes,
while the normalization errors are displayed as dotted boxes.

Table 4.2: Target and integrated differential cross-section for protons in π− + C (0 < y <
1.0) and π− + W (0 < y < 0.9) reactions. The absolute error values are given
in the following order: statistic (first), systematic (second) and normalization
(third).

Target ∆σ [µb]
C 133127± 3± 20569+20918

−17115
W 1560370± 192± 563353+245188

−200609
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4.3 Comparison to Transport Model Calculation and HARP
Data

After calculating the total production cross-sections in π− + C and π− + W collisions a
comparison to two state-of-the-art hadronic transport models, GiBUU [9] and UrQMD [3],
will be presented. Moreover, a comparison with the double-differential proton production
cross-sections of the HARP data is provided.

4.3.1 Comparison to GiBUU and UrQMD

The particle production mechanism implemented in these two models was explained in
Section 3.1. Both models are based on the BUU equation (Eq. 3.1.1 in Section 3.1).
While GiBUU mediates hadron production channels via cross-section parametrization and
therefore does not explicitly produce and propagate intermediated resonances, UrQMD
is a resonance based model in the low energy regime. Hence, the particle production
occurs through two body decay of intermediated resonances.

In the following comparisons in Fig. 4.21 (π− + C) and in Fig. 4.22 (π− + W) the
violet (brown) solid line represents the GiBUU model prediction, while the dashed violet
(brown) line stands for the UrQMD model prediction.

In Figure 4.21 (π− + C) GiBUU and UrQMD overestimate the data points nearly in all
rapidity ranges. The shape of both models are rather comparable over almost the entire
rapidity range. The deviation between data points and model predictions decreases with
increasing rapidity. For low rapidity (y < 0.3), the experimental shape is reproduced very
well by both models. In this rapidity region the low transverse momenta regions have
no measured data points due to the HADES acceptance. Looking at the unmeasured
transverse momenta for the rapidity range 0 < y < 0.3, the Boltzmann extrapolation does
not match to the shape of the transport models. So it could also be possible that in this
region a wrong prediction is caused due to the Boltzmann extrapolation. Going to more
forward rapidity (y > 0.2) the data points are spread out in a wider transverse momentum
range. In this rapidity range (0.2 < y < 0.5) both models are in good agreement with
the experimental data. But also both models change the shape and at high transverse
momenta (pt > 600 MeV/c) a shoulder, which transforms at higher rapidity to a second
peak, is observed. Such peak is not seen in the experimental data. In the target rapidity
range (0 < y < 0.2) the GiBUU peak is much higher than the peak for UrQMD.

In Figure 4.22 (π− + W) the comparison to transport model calculation shows the same
behavior as in Fig. 4.21 (π− + C). The major difference for the heavier target is that the
peak prediction for UrQMD in the low rapidity range (0 < y < 0.2) is much higher. Also,
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the arise of the shoulder appears at higher rapidity. However, the shoulder turning into a
second peak is less distinct. In the rapidity regions 0.5 < y < 0.7 the transport models
reproduce the experimental data rather well.

The deviation of both models with the experimental data could be caused by three body
final state effects. Three body final states can be produced by intermediated resonances,
which decay in the second step. In the current version of UrQMD however three body
reactions are not implemented.
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Figure 4.21: Comparison of the double-differential cross-section in π− + C reaction for
rapidity regions 0 < y < 1.2 to the GiBUU and UrQMD transport models.
The Boltzmann fit is indicated by the violet solid line. The statistic, sys-
tematic and normalization uncertainties are given by error bars, filled and
dotted violet boxes. The GiBUU and UrQMD predictions are given by the
solid pink curve and by the dashed pink curve.

40



Inclusive Proton Production 4.3.1 Comparison to GiBUU and UrQMD

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

20

40

60

80

3
10×  y < 0.1 ≤0.0 

 p + X→ + W -π

data

stat err

sys err

norm err

 
extrapolation
Boltzmann

 y < 0.1 ≤0.0 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

20

40

60

80

3
10×  y < 0.2 ≤0.1 

 p + X→ + W -π

GiBUU

UrQMD

 y < 0.2 ≤0.1 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

10

20

30

40

3
10×  y < 0.3 ≤0.2 

 p + X→ + W -π

 y < 0.3 ≤0.2 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

5

10

15
3

10×  y < 0.4 ≤0.3 
 p + X→ + W -π

 y < 0.4 ≤0.3 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

1000

2000

3000

4000
 y < 0.5 ≤0.4 

 p + X→ + W -π

 y < 0.5 ≤0.4 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

500

1000

1500

2000

2500
 y < 0.6 ≤0.5 

 p + X→ + W -π

 y < 0.6 ≤0.5 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

500

1000

1500

2000

 y < 0.7 ≤0.6 
 p + X→ + W -π

 y < 0.7 ≤0.6 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

500

1000

 y < 0.8 ≤0.7 
 p + X→ + W -π

 y < 0.8 ≤0.7 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

200

400

600

800
 y < 0.9 ≤0.8 

 p + X→ + W -π

 y < 0.9 ≤0.8 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

200

400

 y < 1.0 ≤0.9 
 p + X→ + W -π

 y < 1.0 ≤0.9 

 [MeV/c]
t

p
0 500 1000 1500

 y
 M

eV
/c

)]
∆

b/
(

µ
dy

 [
t

/d
p

σ
2 d 0

100

200

300

 y < 1.1 ≤1.0 
 p + X→ + W -π

 y < 1.1 ≤1.0 

Figure 4.22: Comparison of the double-differential cross-section in π− + W reaction for
rapidity regions 0 < y < 1.2 the GiBUU and UrQMD transport models.
The Boltzmann fit is indicated by the a orange solid line. The statistic,
systematic and normalization uncertainties are given by error bars, filled
and dotted orange boxes. The GiBUU and UrQMD predictions are given by
the solid brown curve and by the dashed brown curve.

The experimental proton production cross-sections in π− + C and π− + W reactions, as a
function of rapidity (Fig. 4.23), are also compared to the GiBUU and UrQMD transport
model predictions. As mentioned before the shape of the two models looks qualitatively
similar. The rapidity range for both simulations is in between −0.5 < y < 1.5. Both
models have in principle the same shape as the experimental data. In the low rapidity
region (0 < y < 0.2) there is a huge deviation between both models and the experimental
data. But looking at Fig. 4.21 and Fig. 4.22 one can see in the low rapidity range

41



4.3.1 Comparison to GiBUU and UrQMD Inclusive Proton Production

(0 < y < 0.3), that pt < 400 MeV/c is not measured. The Boltzmann extrapolation in
this region does not match the shape of the transport models.

In Figure 4.23 a) where the proton cross-section of π− + C reaction is shown, the UrQMD
model reproduces the experimental data better than the GiBUU model. The shape of
both models follows a similar behaviour as the experimental data. However, the peak of
both models is shifted to lower rapidity than the experimental peak.

For π− + W reactions (Fig. 4.23 b)) the peak of the UrQMD prediction close to target
rapidity is higher than the GiBUU prediction. For the light carbon target the behaviour
was the other way round. Moreover, in Fig. 4.23 b) the shape for both model predictions
and the experimental data is nearly the same.
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Figure 4.23: Comparison of the experimental proton production cross-section as a function
of rapidity to GiBUU (solid curve) and UrQMD (dashed curve) in π− + C
a) and π− + W b) reactions. Statistical errors which are indicated by error
bars are smaller than the marker sizes. The systematic and normalization
uncertainties are displayed as filled and dotted boxes, respectively.
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4.3.2 Comparison to HARP Data

The same analysis procedure as explained for pt − y phase space (Section 4.1) was also
applied to a second set of independent variables (pt,−θ). This second analysis reviews the
transverse momentum, ranging from 0 GeV/c − 1 GeV/c and the polar angle in between
10◦ and 90◦. The chosen binning for the transverse momentum pt is ∆pt = 0.04 GeV/c
and for the polar angel it is ∆θ = 10◦. This second set of independent variables was
necessary to compare the experimental double-differential proton cross-sections to the
double-differential cross-sections of the HARP Collaboration.
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Figure 4.24: Unbiased corrected yield as a function of transverse momentum pt and polar
angle θ in π− + C a) and π− + W b) reactions.

The HARP Collaboration performed a systematic measurement of inclusive double-
differential cross-sections of hadron production by impinging protons and charged pions
with momenta 3, 5, 8, 12, 15 GeV/c with different nuclei (Be, C, Cu, Sn, Ta, Pb) [8].
In Figure 4.25 a comparison of the double-differential cross-section for different polar
angle regions in π− + C reaction at two different incoming beam momenta (HADES:
1.7 GeV/c, HARP [5]: 3 GeV/c) is given. The chosen binning differs at large angles
(θ > 60◦) and is not included in this comparison. The HADES data are in average in
good agreement with the HARP data over the full rage. Figure 4.26 shows the comparison
of the double-differential cross-section for the polar angel region (30◦ ≤ θ < 40◦) for
π− + C reaction at six different incoming beam momenta ((HADES: 1.7 GeV/c, HARP
[5]: 3 GeV/c), 5 GeV/c, 8 GeV/c, 12 GeV/c and 15 GeV/c). For low transverse momenta
there is a weak beam dependency. But going to higher transverse momenta this weak
dependency depicts until it completely disappears at around pt ≈ 0.7 GeV/C.
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Figure 4.25: Comparison of the double-differential cross-section in π− + C reaction for
polar angle regions 20◦ < θ < 60◦ with the HARP data [5] at 3 GeV/c
(stars). The statistic, systematic and normalization uncertainties of this
work (HADES) are given by error bars, filled and dotted green boxes,
respectively.
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Besides, the weak beam momentum dependency one can also investigate the proton
production on the atomic mass number A. In Figure 4.27 the double-differential proton
production cross-section in π− + W reaction at 1.7 GeV/c is compared to the proton
production cross-section in π− + C and π− + Ta at 3 GeV/c measured by HARP in
[5] [6] [7]. One can see, that at lower transverse momenta the atomic mass number A
dependency is more distinct than for higher pt. Reaching pt = 1 GeV/c there is almost
no dependency on the atomic number A anymore. The atomic numbers of tungsten
(A = 184) and tantalum (A = 180) are comparable. The difference between them
arises from the incoming beam momentum dependency (Fig. 4.28). In Figure 4.28
the comparison of π− + W at 1.7 GeV/c (HADES) to various incoming beam momenta
(3, 5, 8, 12, 15 GeV/c) for π− + Ta reaction (HARP) is presented, to demonstrate its
more distinct behavior for heavier targets than carbon. The incoming beam momentum
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dependency for the HARP data in π− + Ta is distinct for 3 GeV/c and 5 GeV/c. With
this, the difference to the smaller values for the measured data in π− + W at a lower
incoming beam momentum (1.7 GeV/c) can be explained. Reaching higher incoming
beam momenta this dependency disappears. In general, one can see an increase of the
proton production cross-section with larger atomic numbers for pt < 1 GeV/c.
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Figure 4.27: Comparison of the double-differential cross-section in π− + W (brown dots)
reaction at 1.7 GeV/c with π−+C (violet stars) and π−+Ta (green diamonds)
at 3 GeV/c. The statistic, systematic and normalization uncertainties are
given by error bars, filled and dotted brown boxes.
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5 Conclusion

In this work, the inclusive proton production cross-sections in π− + C and π− + W
reactions at an incident beam momentum of 1.7 GeV/c, measured with HADES at SIS
18/GSI was presented.

In both collision systems, the integrated differential proton production cross-section ∆σ
in π− + C (0 < y < 1.0) and in π− + W (0 < y < 0.9) reactions inside the HADES
acceptance was obtained (Table 4.2).

In both Figures 4.21 and 4.22 a comparison to the state-of-the-art transport model
calculations, performed with GiBUU and UrQMD, were presented in terms of pt and y.
For both models in both collision systems, the shape and yield look very similar except
for target rapidies (0.0 ≤ y < 0.2). In this region, the Boltzmann extrapolation for low
transverse momenta, does not match the shape of both transport model calculations.
In the target rapidity region in (π− + C) reactions at small transverse momenta, the
yield for GiBUU is much higher than for UrQMD. For π− + W reactions it is the
other way around. Here, the yield for GiBUU at low transverse momenta shows also a
kind of double peak structure. In mid-rapidity the shape and production yield of the
experimental double-differential cross-sections is reproduced by both models. Going to
higher rapidity, the simulated GiBUU and UrQMD data develop a second peak, at high
pt values. The creation of this second peak indicates elastic proton scattering. In UrQMD
elastic scattering is caused by the strong decay of intermediated resonaces. However,
the experimental data shows no evidence for the creation of a second peak. In Figure
4.23 the comparison of the proton production cross-section as a function of rapidity
to both models was shown. The shape of the experimental data in π− + C reaction is
reproduced by GiBUU and UrQMD. Both peaks (GiBUU and UrQMD) are shifted more
towards target rapidity. In π− + W reactions only GiBUU reproduces the shape of the
experimental data, while UrQMD has a double peak structure at the target rapidity
region. At rapidity y > 0.2 (y > 0.4) for π− + C ( π− + W ) reactions the shape and
height is reproduced by both models.

Moreover, comparisons to the double-differential proton production cross-sections, mea-
sured by the HARP Collaboration, were presented. The double-differential proton
production cross-sections for π− + C reactions at 1.7 GeV/c, obtained in this thesis, are a
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smaller than for the HARP data at 3 GeV/c at small polar angles. Going to larger polar
angles and reaching higher traverse momenta, the data points are in good agreement
with the HARP data. The obtained results allow to investigate the dependency of the
incoming beam momenta and the proton production on the atomic number A. In Figure
4.26 for π− + C reactions an insignificant dependency of the incident beam momentum
is visible. The beam momentum dependency gets more distinct for beam reactions on
heavier targets e.g. Tantalum (Fig. 4.28). Reaching higher transverse momenta, the
incoming beam momentum dependency gets less distinct.

The presented measurement in this thesis is at a lower incident beam momentum
(1.7 GeV/c) than HARP. Besides, a tungsten target was used in the HADES pion beam
campaign, which is not included in the HARP report. So the existing HARP data could
be enlarged with both, the lower incoming beam momentum and additional double
differential proton production cross-section in π− + W reactions.
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