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Abstract

The study of collective anisotropic flow, a phenomenon where an initial state spacial
anisotropy in the overlap region of two colliding nuclei gets transfered into a final
state momentum space and particle production anisotropy, in ultrarelaticistic heavy-
ion collisions proved to be one of the best probes to study in detail the properties
of the strongly interacting matter created in such collisions, the quark-gluon plasma.
To quantify the anisotropy in the particle momentum distribution a Fourier series is
used whose coefficients vn characterize flow magnitudes and whose phases Ψn represent
symmetry planes, respectively in harmonic n.

In this thesis, after giving a brief introduction to quantum chromodynamics, heavy-
ion collisions, quark-gluon plasma and the ALICE experiment, the latest method in
measuring flow using Q-cumulants are introduced. Prerequisites like the mathematical
description of flow, multiparticle correlations up to order 8 and the cumulant expansion
are derived and with the combination of these techniques flow estimators which are
able to suppress unwanted effects of nonflow are presented. It is shown how to ana-
lytically express these multiparticle correlation based estimators in terms of Q-vectors
to drastically reduce computation time and it is discussed how they perform when not
only collective flow is present. In the analysis part the obtained and implemented tech-
niques are applied to data from the ALICE experiment at the CERN Large Hadron
Collider, taken at energies of

√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV. All analyses

are performed for both energies and compared for changes. The main object of study
is the second Fourier coefficient v2 representing elliptic flow, which is analyzed as a
function of centrality, transverse momentum in the range 0.2 < pT < 5.0 GeV/c and
pseudorapidity in the range |η| < 0.8. Higher harmonic flow v3, v4, v5 and v6 are studied
as a function of centrality. Finally correlations of symmetry planes are discussed and
novel analytic observables which are free of flow coefficient contributions, exclusively
measuring symmetry plane correlations on an event-per-event basis are introduced.
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1 Introduction

1.1 Quantum Chromodynamics (QCD)

Quantum chromodynamics (QCD) is a type of quantum field theory, specifically a non-
abelian gauge theory under the symmetry group SU(3). As part of the Standard Model
of elementary particle physics it describes the strong interaction between quarks and glu-
ons. Like the other fundamental interactions, the strong interaction is described by the
exchange of gauge bosons (gluons), which arise from the invariance under local group trans-
formations1. Similar to the electric charge in quantum electrodynamics (QED), particles
interacting strongly have color charge which are, in analogy to additive color mixing, called
red, green and blue (and their corresponding anti-color). Quarks carry only one unit of
color charge (or anti-color charge), whereas gluons carry one unit of color as well as one
unit of anti-color. This property stemming from the non-abelianity of QCD allows gluons
in contrast to photons (the gauge bosons of QED) to couple to other gluons. These gluon-
gluon interactions can constrain color fields and allow stringlike degrees of freedom (called
color flux tubes or QCD strings) to form, which exert a constant force when stretched. This
force is responsible for a property called confinement, meaning quarks are confined within
color neutral structures and cannot be observed freely, since as two quarks get separated the
energy density rises to a point where it becomes energetically favorable to create a quark
anti-quark pair out of the vacuum, combining with the original quarks and thus creating
two separated color neutral hadrons. Another important property of QCD is the asymptotic
freedom [1, 2], which means that for large energies or small distances the interaction between
quarks and gluons becomes asymptotically small and they behave like free particles. The
reason for this is a dominance of anti-screening caused by virtual gluons over screening2

caused by virtual quarks by a factor of 12 [4].
One can summarize QCD via its Lagrangian

LQCD =
∑
q

ψ̄q,a

(
iγµ∂µδab − gsγµtCabACµ −mqδab

)
ψq,b −

1

4
FAµνF

Aµν , (1)

where Einstein notation is used, ψq,a are the Dirac spinors for a quark field of flavor q and
mass mq with color-index a running from a = 1 to 3, γµ are the Dirac γ-matrices, ACµ are
the gluon fields with C running from C = 1 to 8, tCab ≡ λCab/2 are the generators of the
SU(3) group with λCab being the Gell-Mann matrices, gs is the strong coupling constant and
FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν is the gluon’s field strength tensor with the structure
constant fABC of SU(3) defined by [tA, tB] = ifABCt

C and δab is the Kronecker delta [5].
Another term in the Lagrangian is allowed, which would be responsible for breaking of the
CP-symmetry of QCD, leading to an electric-dipole moment of the neutron. Experiments
have measured the coefficient θ̄ of this term to an upper bound of θ̄ < 10−11, which means
QCD doesn’t break CP-symmetry to our current knowledge and is known as the strong

1As QCD is a gauge theory, transformations between possible gauges form a Lie group (gauge group or
symmetry group), which has a corresponding Lie algebra (namely the tangent space at the identity) with
generators. Each group generator originates a gauge field to ensure the invariance of the Lagrangian under
local group transformations (gauge invariance), the quanta of the fields being the gauge bosons.

2Screening means a phenomenon also present in QED, where a charge creates a vacuum polarization
by attracting the opposingly charged particle of a virtual particle anti-particle pair and repelling the same
charged one, effectively partially canceling the field of the charge. Anti-screening is not as easy to depict. For
a qualitative explanation one can look e.g. at Peskin & Schroeder chapter 16.7 [3], but the important part
is that instead of perturbations of the matter field inducing effective charges as in QED now perturbations
in the gauge field induce dipoles which act exactly opposite to screening.
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CP problem [6]. To study QCD one has to take into account the running3 of the strong
coupling g2

s/4π ≡ αs = αs(Q
2) making it only possible for large energies to use perturbative

calculations (pQCD), which give good results for hard scattering processes [7]. For smaller
energies (/ 1 GeV) non-perturbative methods have to be used, which are today mostly done
via lattice calculations (LQCD) introduced by Wilson [8], where fields and interactions are
simulated on discrete Wick rotated spacetime lattices and physical results are received as
the limit for lattice spacing a → 0. One has to note that since LQCD is based on the
fundamental QCD Lagrangian all strong interaction dynamics are determined in terms of
gs and QCD can only give ratios of physical quantities [9]. To fix a dimensional scale the
mass of a well known particle is inserted as given.

1.2 Quark-gluon Plasma (QGP)

The first statistical models of hadron thermodynamics were made, without knowledge of
QCD and assuming thermalized matter, by Fermi [10], Hagedorn [11] and Landau [12], which
already gave an upper limit for the temperature of hadronic matter. After the discovery
of asymptotic freedom of QCD it was realized that it implies a transition to a new high
temperature and high density phase of deconfined quarks and gluons [13, 14], which was
named quark-gluon plasma4 (QGP) by Edward Shuryak [15]. It was confirmed by SU(2)
LQCD calculations [16–19] that this state of matter has a transition temperature which is
experimentally observable by ultrarelativistic heavy-ion collisions (e.g. [20]).

One can depict the transition from hadronic matter to QGP in various simple models
extending hadrons to structures made up of quarks and gluons. For example in a bag model
[21] a pion gas is the dominant phase due to the bag pressure, which acts as a confining force
binding quarks and gluons into hadrons. It results from the difference between the physical
vacuum and the ground state in the deconfined phase. However for high temperatures
the QGP is favored, because it has a higher number of intrinsic degrees of freedom [9].
This approach, as well as many others [22, 23], try to describe QGP by thermodynamics
under some additional model assumptions. The more fundamental approach is to get strong
interaction thermodynamics out of the fundamental strong interaction dynamics given by
LQCD, which (at least today) mostly leads to LQCD.

Our current understanding of strongly interacting matter can be qualitatively summa-
rized in a QCD phase diagram, which is shown in Fig. 1a) and Fig. 1b). At the origin of Fig.
1a) lies the vacuum. Also at zero temperature, but with a nonzero baryon chemical potential
(which controls the density and is thus related to it) of about 1 GeV live nuclei and at even
further densities properties of neutron stars are reached. For high densities, but low temper-
atures Fermi surfaces begin to exist and in analogy to the BCS (Bardeen–Cooper–Schrieffer)
theory of superconductors [26] the color conducting phase can form coloured bosonic diquark
pairs, the Cooper pairs of QCD, which can condense at low temperatures and form a color
superconductor [27–29]. For low density and temperature the nucleons, i.e. protons and
neutrons, behave like a gas, but as temperature and density are raised, the nucleons are
excited into baryon resonances, which decay into pions and nucleons, altogether forming
the hadron gas, which for even higher high temperature becomes the quark-gluon plasma.
The transition starts as a first order transition from hadron gas to QGP for higher µB and
ends in a critical point from where it becomes a continuous crossover for lower µB. The

3Because of screening and antiscreening described above the coupling becomes dependent on the trans-
fered four-momentum squared Q2, in short it runs.

4Plasma in general stands for matter where charges get screened by other mobile charges. In a QGP
the confinement, resulting from anti-screening dominating screening, breaks for high temperatures due to
thermal fluctuations of the gauge fields overcoming vacuum fluctuations.
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(a) (b)

Figure 1: Schematic phase diagram of QCD in the temperature T - baryon chemical potential
µB plane a) [24] and in the pressure p - temperature T plane b) [25].

most recent LQCD calculations [30, 31] show that the transition for small baryon chemical
potential is not a clear phase transition, but an analytic crossover at a critical temperature
of about Tc = (154 ± 9) MeV for µB = 0. Also Fig. 1a) shows the evolution of a system
created in heavy-ion collisions by the Large Hadron Collider (LHC) at CERN, the Rela-
tivistic Heavy Ion Collider (RHIC) in Brookhaven and the future Facility for Antiproton
and Ion Research (FAIR) at the GSI. Starting right after the system is in approximate
local thermal equilibrium after a collision with a temperature sufficient to create a QGP,
cooling down, chemically freezing out and then kinetically freezing out. Similar conditions
including the QGP are expected to have formed in the early Universe microseconds after
the Big Bang, therefore understanding QGP properties helps understanding the evolution
of the early Universe.

Contrary to the first anticipated picture of a weakly coupled system of quarks and
gluons, experimental data of elliptic flow (which was consistent with predictions from ideal
hydrodynamics), heavy quark suppression and jet quenching show that the QGP is strongly
interacting (sQGP) [32–35]. The characteristic of an ideal fluid becomes important with new
theoretical developments, in particular the Maldacena’s conjecture5 lead to gauge gravity
dualities (AdS/CFT) allowing the study of certain strongly interacting theories with weakly
interacting ones from string theory [36–38], stating that theories, which can be expressed
by holographic duality have a lower bound on the shear viscosity over entropy ratio η/s >
~/4πkB [39, 40]. Current experiments show that the created QGP is very close to this
boundary [41–44].
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(a) (b)

Figure 2: Spacetime evolution of an ultrarelativistic heavy-ion collision depicting the differ-
ent stages and the corresponding timescale. ( a) from [45], b) from [46])

1.3 Heavy-Ion Collisions

To experimentally produce a system with temperatures above the strong phase transition
temperature and create the QGP phase described in the previous section, ultrarelativistic
heavy-ion collisions are the tool to go. As seen from the center of mass system each incoming
nucleus can be considered as a Lorentz-contracted, coherent [47] cloud of partons, or in a
more rigorous theoretical model as plates of color glass condensate (CGC) [48]. Roughly
sketched the idea of CGC is as follows: Looking at an incident ion, as the collision energy
increases the parton density also increases up to where the partons begin to overlap. In-
creasing the energy further leads to a saturation (parton recombination becomes favourable)
and condensation of the “color drops” to a connected domain. The interaction time ∼ 1/

√
s

6 of two colliding ions is much shorter compared to the formation timescale of gluons so
that they appear frozen, hence the term “glass”. The gluons are assumed to be coherend
and therefore form classical fields which still lie on the Lorentz-contracted disc. When these
two CGC discs collide they form a longitudinal (to the beam axis), classic colorfield, which
is called glasma [49–51]. Through expansion this glasma becomes dilute and the single par-
tons appear. Subsequent collisions between the partons then lead to local thermalization
and the QGP is formed [9, 51]. Comparisons of experiments with hydrodynamic models
assuming a perfect fluid show, that this has to happen in less than 1 fm/c [47]. Being
nearly thermalized, the system evolves further under relativistic fluid dynamics, expanding,
decreasing in energy density, cooling and finally hadronizing [51, 52]. These hadrons have at
first enough energy to scatter elastically as well as inelastically, whereas inelastic scatterings
can change the relative abundances of particle species while elastic collisions only change
the momenta. When the energy per hadron does not allow any further inelastic processes,
one speaks about the chemical freezeout. When also elastic processes stop the thermal or
kinetic freezeout is reached. The produced hadrons free stream to the detectors which are
discussed in the next chapter. The described evolution is shown in Fig. 2.

5Some string theories in curved space time are connected to conformal gauge theories in flat (3+1) di-
mensional space. In the limit of very strong coupling the string theory becomes identical to a version of Ein-
stein’s theory of general relativity with negative cosmological constant. In technical terms: 4 dimen-
sional N = 4 Super Symmetric SU(Nc) Yang Mills theory (Nc =∞) is dual to Type II B Super String the-
ory in an AdS5 × S5 product space [36].

6Here s is one of the Mandelstam variables defined as s = (p1+p2)2 with p1 and p2 beeing the 4-momenta
of the colliding ions. For a collider experiment the 3-momenta −→p1 is equal to −−→p2 and

√
s becomes the total

center of mass energy.
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Figure 3: Left: Two ultrarelativistic heavy-ions before colliding with impact parameter |b|.
Right: Nuclei shortly after collision, the spectators proceed unaffected while the participants
are responsible for particle production [53].

1.3.1 Centrality and Glauber Model

Heavy-ions are extended objects, and hence the system created in peripheral collisions will
be different than the one created in head-on (central) collisions. It is therefore convenient
to classify collisions by their centrality which is defined by the impact parameter |b|. The
impact parameter describes the length of the vector connecting the two nuclei centers pro-
jected onto a plane transverse to the beam axis and is not a direct experimental observable
(see Fig. 3 left). However, the collision centrality can be inferred by assuming that the
measured particle multiplicity M is a monotonic function of |b| [52, 53]. High multiplicity
events stem from central collisions (small |b|) and low multiplicity events from peripheral.
If the particle multiplicity distribution dN/dM is measured event-by-event, one can define
centrality classes by binning the distribution as fractions of its total integral [54]. For ex-
ample an event i is in the centrality class 5–10%, which corresponds to central collisions,
if its multiplicity Mi fulfills N05 < Mi < N10, where the bin boundaries N05 and N10 are
defined via ∫ N05

∞
dN
dM dM∫ 0

∞
dN
dM dM

= 0.05 and

∫ N10

∞
dN
dM dM∫ 0

∞
dN
dM dM

= 0.1 . (2)

A commonly used model in relativistic heavy-ion physics to calculate geometric quan-
tities is the Glauber model. With its help a set of parameters can be calculated, under the
assumption that the collision of two nuclei can be seen as the superposition of the individual
interactions of the constituent nucleons, which then also characterize the centrality. This set
includes the number of participating nucleons Npart (nucleons which undergo at least one
inelastic nucleon-nucleon collision) and the number of binary collisions Ncoll (total number
of inelastic nucleon-nucleon collisions, including multiple collisions of the same nucleon).
Npart is also called number of wounded nucleons, wheres the nucleons which are not collid-
ing are called spectators. Since the energies in relativistic heavy-ion collisions exceed the
binding energy of the nuclei by a few orders of magnitude, the nucleus can be described by
the spatial density distribution of the nucleons, which is parametrized as a Woods-Saxon
distribution

ρ(r) = ρ0 ·
1 + wr2/R2

1 + exp
(
r−R
a

) . (3)

Here ρ0 is the density in the central region of the nucleus, R is the mean radius of the
nucleus (at ρ = 0.5ρ0), a characterizes the thickness of the surface layer and ω character-
izes deviations from a sphere [52, 55]. These parameters7 can be determined via electron

7If A is the number of nucleons in a nucleus, the mean electromagnetic radius is about R ≈ 1.2A1/3 fm
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scattering in separate experiments. Another input to the Glauber model is the inelastic
nucleon-nucleon cross section σNN , which can be measured in proton-proton collisions and
includes the beam energy dependence of the model. With these conditions one can either
proceed analytically under some further assumptions in the optical-limit approximation or
numerically with a Glauber Monte Carlo approach.

The optical limit approach assumes that at sufficiently high energies as in relativistic
collisions the nucleons carry enough momentum to stay undeflected on straight trajecto-
ries as the nuclei pass through each other. Furthermore it is assumed that nucleons move
independently inside the nucleus and its size is large compared to the nucleon-nucleon in-
teraction range [54]. These assumptions allow the derivation of analytic expressions for
σNucleusNucleus, Ncoll, Npart expressed in the independently measured quantities ρ(r) and
σNN .8

The Monte Carlo approach is a straightforward algorithm working as follows: 1. sample
the nucleons in the nucleus following the probability distribution defined in Eq. (3); 2.
chose a random impact parameter |b| from the distribution dσ/db = 2πb, 3. (since it is
assumed that the nucleons travel on straight trajectories and σNN is independent of the
number of collisions underwent before) in the simplest version of the algorithm, tag the
nucleon and count the number of collisions if the transverse separation of two nucleons is
less than

√
σNN/π. By repeating this procedure for a sufficient number of times, a relation

between Ncoll and Npart can be calculated.
To relate the experimentally measured multiplicity to Ncoll and Npart from simulation, a

simple model to simulate the particle production for a set of events generated by the Glauber
MC method has to be used. The obtained multiplicity distribution can then be fitted to
the experimental one (see fig. 12) and also binned in the same way as the experimental one.
Since the mean values of the simulation parameters, e.g. 〈b〉 or 〈Ncoll〉, are known per bin
of simulated multiplicity, it can now be assumed that the mean quantities are also valid for
the experimental distribution [54].

A different way of determining the centrality instead of measuring the multiplicity is by
measuring the spectators unaffected by the collision in a Zero Degree Calorimeter (ZDC),
assuming again a monotonic dependence for the deposited energy as a function of |b|. In
particular, larger |b| leads to more spectators and hence more energy deposited in the ZDC.
Both methods can be combined to decrease uncertainties.
However in general there is no standard way of defining centrality classes and different
experiments use different techniques and frameworks. Since the data used in this work
comes from the ALICE experiment it is referred to [56] for a more detailed description.

and the central density about ρ0 ≈ 0.17 nucleons/fm3 [55].
8For a more in depth description see [54] or more specific to ALICE [56].
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2 Experimental Setup

2.1 Large Hadron Collider (LHC)

Figure 4: The CERN accelerator complex (right) and acceleration steps with achieved
energies for protons (left) [57, 58].

The Large Hadron Collider (LHC) located at the European Organization for Nuclear Re-
search (“Conseil Européen pour la Recherche Nucléaire” in short CERN) close to the French-
Swiss border in the suburb of the Swiss city Geneva, is the world’s largest particle collider.
At 100 meters beneath the ground lies the main storage ring of the synchrotron type ac-
celerator with a circumference of 27 kilometers. It consists of 8 radiofrequency cavities per
beam, which accelerate the particles and 9300 superconducting magnets operated at 1.9 K,
which produce a maximum magnetic field of 8.33 T and guide the particles through the
vacuum tube. The LHC can currently (after the 2015 upgrade) achieve proton-proton (p-p)
collisions with center of mass energies of up to

√
sNN = 13 TeV and lead-lead (Pb-Pb)

collisions up to
√
sNN = 5.02 TeV per nucleon pair, but is designed to go up to 14 TeV for

p-p and 5.52 TeV per nucleon pair9 (or 1150 TeV total) for Pb-Pb. Per design, the protons
inside the LHC are grouped into bunches of 1.1 ·1011 (7 ·107 for Pb) particles and at full load
2808 (592 for Pb) bunches separated by 25 ns or equivalently 7 m in distance travel through
the ring at 99.9999991% the speed of light, traversing it 11 245 times per second. Although
the beam on the collision points are collimated to 16µm, when two proton bunches cross
each other only 20 collision occur on average, but since these crossings happen with a fre-
quency of 2808 · 11 245 = 31.6 MHz this results in 20 · 31.6 MHz ≈ 600 million p-p collisions
per second. Besides p-p and Pb-Pb collisions the LHC was also operated with p-Pb at√
sNN = 5.02 TeV and for the future also collisions of lighter ions than lead are foreseen.

9Out of 208 lead nucleons only 82 are charged protons, which can be accelerated by the fields, thus
resulting in 82/208 · 14 TeV = 5.52 TeV.
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Figure 5: The ALICE experiment. The inner detectors are magnified and shown in the top
right corner. [62]

The Pb-Pb collisions analyzed in this thesis are provided by the LHC, however, it needs
a system of pre-accelerators (see Fig. 4) to bring the particles to relativistic speeds. Starting
from a source of vaporized lead, the ions get initially accelerated by the linear accelerator
Linac 3, from where they enter the Low Energy Ion Ring (LEIR), followed by the Proton
Synchrotron (PS) and the Super Proton Synchrotron (SPS) before being finally ejected into
the LHC.

Around the LHC ring are four main experiments located, namely: A Large Ion Col-
lider Experiment (ALICE), A Toroidal LHC ApparatuS (ATLAS), Compact Muon Solenoid
(CMS) and Large Hadron Collider beauty (LHCb). While ATLAS and CMS are general pur-
pose experiments optimized for discovering new particles like the Higgs, LHCb is focused
on bottom-quark physics in the forward regions. ALICE, from which the data of this thesis
stem, is a dedicated heavy-ion experiment and is discussed in the following section.

In summary10, the LHC brings together over 10 000 scientists and engineers from more
than 100 countries, uses 1000 GWh energy and produces 15 PB of data per year.

2.2 A Large Ion Collider Experiment (ALICE)

ALICE is an experiment optimized for the study of strongly interacting QCD matter created
in relativistic heavy-ion collisions11. In particular its main goal is to investigate the prop-
erties of the quark-gluon plasma. The experiment is optimized to provide high-momentum
resolution as well as very good particle identification (PID) of the reconstructed tracks
over a broad range of momentum while at the same time coping with the extreme par-
ticle multiplicities occurring in Pb-Pb collisions. The experiment with its dimensions of
16 × 16 × 26 m3 and a weight of about 10 000 t consists of 18 different detector systems.
Starting at the center first comes the barrel containing the Inner Tracking System (ITS) of
six layers of high-resolution Silicon Pixel Detectors (SPD), Silicon Drift Detectors (SDD)

10The facts presented in this section stem from [59–61]
11This section is based on [62–66].
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(a) (b)

Figure 6: The ALICE a) Time Projection Chamber [61] and b) Inner Tracking System [67].

and Silicon Strip Detectors (SSD), outside the barrel follows a cylindrical Time Projection
Chamber (TPC) and three particle identification arrays consisting of Time-of-Flight (TOF),
Ring Imaging Cherenkov (High Momentum Particle Identification - HMPID) and Transition
Radiation Detectors (TRD), further followed by two Electromagnetic Calorimeters (PHOton
Spectrometer - PHOS and EMCal).

The ITS is placed directly around the beam pipe and is used to determine the main
interaction vertex as well as secondary vertices of fast decaying heavy flavor and strange
particles. It can track low momentum particles, is used in PID, and has the highest spatial
resolution among the ALICE detectors (which is needed so close to the beam axis). The
primary tracking device is the cylindrical TPC positioned around the ITS. This gas filled
apparatus covers the volume from inner radius r = 85 cm around the beam axis (minimal
distance to distinguish tracks of different particles) to outer radius r = 250 cm (length
required to get a good tracking and PID resolution). The TRD detector can be used to
improve the momentum resolution at high momenta as well as to identify electrons. To
further identify particles the TOF detector is used for charged hadrons and the HMPID for
high momentum particles. To measure energy of charged particles and also to trigger on
high pT particles and improve jet measurements the EMCal can be used. What is left are
photons and neutral mesons, which are identified in the PHOS. All the mentioned detectors
are embedded in a solenoid magnet which creates a magnetic field of B = 0.5 T.

So far detectors were discussed which are arranged perpendicular around the beam axis.
However, ALICE also uses detectors in the forward and backward direction close to the
beam pipe. A small T0 detector located directly around the beam pipe, consisting of Photo
Multiplier Tubes (PMT) acts as a trigger and longitudinal vertex position estimator and
measures the event time. The V0 detector provides minimum bias triggers and centrality
triggers for the central barrel. To measure the charged particle multiplicity the Forward
Multiplicity Detector (FMD) is used and for photon multiplicity the Photon Multiplicity
Detector (PMD). At a distance of about 116 m away from the interaction region, but still
close to the beam pipe, lie the Zero Degree Calorimeters (ZDC), which are important for the
determination of the centrality by measuring spectator nucleons (see section 1.3.1). Lastly
a forward muon spectrometer with 14 tracking and triggering chambers, a dipole magnet
and an absorber can detect muon pairs from e.g. quarkonia decays.
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2.2.1 Time Projection Chamber (TPC)

ALICE was designed with the goal of reconstructing all the individual tracks of the huge
amount of particles produced in Pb-Pb collisions. Therefore a TPC was chosen as the
primary tracking detector, since it can provide a fine track reconstruction due to a large
amount of points for each track while still being fast enough12 for the LHC Pb-Pb configu-
ration which allows collisions at a rate of 10 MHz.

The TPC is a cylindrically shaped detector filled with 88 m3 of gas (90% Ne, 10%
CO2), which is separated by a cathode in the middle (see Fig. 6 a) ) and has a size of
5 m along the beam axis and a radius up to 2.5 m. When a charged particle traverses the
TPC gas volume it ionizes the gas atoms along its path. The liberated electrons then drift
towards the end plates (which have a potential applied to them creating a uniform electric
field) where they get registered by Multi-Wire Proportional Chambers (MWPC), which also
amplify the primary electron signal. From the time an electron needs to reach the end plate
a z coordinate of the causing particle can be reconstructed and the (r,ϕ) coordinates can
directly be extracted from the MWPC, giving a full three dimensional track.

Concerning phase space coverage the TPC can detect particles in the transverse momen-
tum range 0.1 < pT < 100 GeV/c with 6% resolution for pT < 20 GeV/c in central Pb-Pb
collisions [63]. The track finding efficiency saturates at about 90% for pT > 1 GeV/c and the
azimuthal resolution is about ∆ϕ = 0.7 mrad for the whole pT range. Although the TPC
covers full azimuth exception in the form of dead zones between the neighboring sectors
(there are 16 sectors altogether) exist, essentially limiting the efficiency. Furthermore it has
a pseudorapidity coverage of |η| < 0.9 for tracks traversing the whole radial length.

In addition to the TPC’s main usage for tracking it can also be used for particle iden-
tification and centrality estimation [68]. To identify a particle the measured amplitude in
the MWPC can be used for a dE/dx analysis combined with the particles momentum taken
from the curvature of the path through the gas volume, which is inside a magnetic field.

Overall13 the uniform azimuthal coverage of the TPC makes it the ideal detector for flow
studies such as in this thesis, because non-uniform acceptance would result in systematic
biases, which otherwise one has to correct for.

2.2.2 Inner Tracking System (ITS)

The ITS [60, 63, 67, 71] consists of 6 layers of silicon detectors using 3 different technologies.
Its two innermost layers are composed of SPD, the next two of SDD and the last two of
SSD. Being closest to the beam axis, the SPD has the highest spatial resolution. Both SPD
layers together consist of 9.8× 106 binary readout cells (50× 70µm in size), allowing them
to separate two tracks for track densities of up to 80 tracks per cm2. Arriving at the SSD
the track density is less than 1 cm−2 and the spatial resolution of the sensor can be smaller.
Combined the layers of the ITS can locate the primary vertex with a resolution better than
100µm. It can also give information about low pT particles (< 100 MeV/c), which do not
reach the TPC.

The ITS covers a pseudorapidity range of |η| < 0.9 for interaction vertices within 5 cm
along the beam, although the first SPD layer has a coverage of |η| < 2.0.

Silicon itself is a semi-conductor and can be arranged in pn-junctions. By applying a
voltage a depletion zone (depleted of thermal electrons) can be created, which is sensitive to

12However after the planned long shutdown 2 (LS2) in 2018 the luminosity of the LHC will be increased
and the current readout method using Multi-Wire Proportional Chambers (MWPC) has to be upgraded to
overcome the slowness resulting from a gating grid. It is planned to replace the MWPC with Gas Electron
Multipliers (GEM) which offer continuous readout.

13This subsection used [60, 63, 69, 70].
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particles. When a particle traverses a silicon sensor it excites the electrons in the material
along its path into the valence band of the pn-junction, allowing them to drift to a readout
interface. If the particle traversed all 6 layers a track can be fitted and charge and momentum
of the particle can be found. Furthermore dE/dx analysis is possible in the 4 outer layers.
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3 Anisotropic Flow

(a) (b)

Figure 7: Schematic view of a non-central nucleus-nucleus collision drawn in the transverse
plane perpendicular to the beam axis z showing in a) the reaction plane ΨRP and the impact
parameter|b| [72] and in b) the difference between a reaction plane and the participant plane
ΨPP [73, 74].

To constrain the properties of the QGP produced in ultrarelativistic heavy-ion collisions one
studies azimuthal14 anisotropies in the collective expansion of the produced system, which
can only form if a strongly interacting medium is created and not if the collision of two
nuclei is seen as a superposition of individual nucleon collisions. This collective expansion
(described in section 1) is called flow [53]. Anisotropies in the flow develop due to an
anisotropic overlap of the colliding nuclei (see Fig. 7 or Fig. 8) as well as to event-by-event
fluctuating structures of the density profiles of the nuclei, leading to anisotropic pressure
gradients in the hot and dense matter [75]. The pressure gradients therefore transform
the initial spatial inhomogeneities and anisotropies into momentum anisotropies of the final
state particles, which are experimentally accessible. The crucial hypothesis of pure flow
phenomenon is that particles in a given event are emitted independently according to some
azimuthal distribution. Since every azimuthal distribution is 2π periodic around the beam
axis, it can be mathematically described by a Fourier series [76] which will be covered in
the following section.

3.1 Flow Quantification

3.1.1 Geometric Description

Consider a non-central collision of two identical spherical nuclei, described by smooth
Woods-Saxon nuclear density distributions, traveling in opposite directions (as can be seen
in Fig. 4 a) ). Anisotropic flow is characterized by the Fourier series description of the
triple differential invariant distribution of emitted particles in an event with respect to the
reaction plane, which can be written [76, 77] as

E
d3N

d3p
=

d3N

pT dpT dη dϕ
=

1

2π

d2N

pT dpT dη

1 + 2

∞∑
n=1

vn(pT, η) cos[n(ϕ−ΨRP )]

 , (4)

14Azimuthal directions are perpendicular to the beam axis. The azimuthal angle ϕ defines the direction
of an emitted particle in the azimuthal plane (see Fig. 7).
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where ϕ is the azimuthal angle of a particle, E the energy, p the total 3-momentum vector,
pT the transverse momentum, η the pseudorapidity and ΨRP is the angle defining the
reaction plane, which is the plane spanned by the beam axis and the impact parameter
vector (see Fig. 7 a) )15. The description with respect to ΨRP is necessary, because in
actual experiments the orientation of the impact parameter differs from event to event and
ΨRP is therefore needed to compare quantities between different events. Sine terms in the
series vanish due to reflection symmetry16, leaving only even flow harmonics v2n (n ∈ N).
Finally the Fourier coefficients vn are called flow coefficients, in particular v0 is called radial
flow, v1 directed flow, v2 elliptic flow, v3 triangular flow and so on, which are interpreted in
the next section. The flow coefficients vn can be expressed as

vn(pT, η) = 〈cos
[
n(ϕ−ΨRP

]
)〉 =

∫ 2π
0 cos[n(ϕ−ΨRP )] d3N

pT dpT dη dϕ
dϕ∫ 2π

0
d3N

pT dpT dy dϕ
dϕ

(5)

(see Appendix A). They are in general pT and η dependent and considering this dependence
vn(pT, η) is called nth harmonic differential flow [73]. By averaging vn(pT, η) over pT and η
with the invariant distribution as a weight17 one gets the integrated flow.

To experimentally measure integrated flow, or more precisely flow coefficients, the all
event average

〈vn(pT, η)〉 = 〈〈cos
[
n(ϕ−ΨRP )

]
〉〉 (6)

is taken. For discrete measured particles 〈〈. . .〉〉 has to be read as: 1.) average over all
particles in a chosen event and (pT, η) bin and 2.) average over all events (in a centrality
class). Integrated over transverse momentum and pseudorapidity in an all event averaged
analysis, the particle distribution is therefore (as given in [53])

dN

dϕ
=
〈N〉
2π

1 + 2
∞∑
n=1

〈vn(pT, η)〉 cos[n(ϕ−ΨRP )]

 , (7)

where 〈N〉 is the mean number of particles per event.

3.1.2 Event-by-Event Fluctuating Initial Geometry

In general the assumption used above of nuclei having smooth, spherical density distributions
is not adequate, but rather one has to think of nuclei being made up of individual nucleon,
or even more detailed, parton distributions (as can be seen in Fig. 8). These distributions
can fluctuate event-by-event, breaking the picture of an “almond-shaped” collision region by
creating an inhomogeneous energy density distribution. Only to leading order an elliptic
shape of the collision region and its reflection symmetry are then given. Breaking reflection
symmetry necessitates that the sine terms in the Fourier series (Eq. (4)) are not zero, which
is equivalent to giving each term in the Fourier series an independent phase shift called
symmetry plane Ψn instead of a global shift ΨRP . As a consequence odd flow harmonics
v2n+1 (n ∈ N0) are non-vanishing due to such fluctuations. This conceptually changes18

15This plane is not directly measurable, but has to be estimated, for example with the event plane method
[76] and is then called event plane.

16With the used assumptions “equal spherical nuclei and smooth distribution” it is equally probable to
emit a particle in ϕ or in −ϕ direction. Therefore sin(nϕ) + sin(n(−ϕ)) = sin(nϕ)− sin(nϕ) = 0 .

17For example over pT: vn =

∫∞
0 vn(pT) dN

dpT
dpT∫∞

0
dN
dpT

dpT
.

18But does not affect the experimental measurements, because both Ψn and ΨRP are not a priori known
[78].
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Figure 8: Left: Example initial state energy density distribution. Middle and Right: Ex-
ample initial state symmetry planes Φ2 and Φ3 [80].

equations (4-7), which only hold for event-by-event fluctuating initial geometries if ΨRP is
substituted by Ψn. For convenience:

E
d3N

d3p
=

1

2π

d2N

pT dpT dη

1 + 2

∞∑
n=1

vn(pT, η) cos[n(ϕ−Ψn)]

 , vn(pT, η) = 〈cos[n(ϕ−Ψn)]〉 ,

(8)

dN

dϕ
=
〈N〉
2π

1 + 2
∞∑
n=1

〈vn(pT, η)〉 cos[n(ϕ− 〈Ψn〉)]

 , 〈vn(pT, η)〉 = 〈〈cos[n(ϕ− 〈Ψn〉)]〉〉 .

(9)

Depending on the centrality of a collision one differentiates between a geometry-dominated
regime in mid-central collisions and a fluctuation-dominated regime in the most central col-
lisions [79]. The former one is characterized by the existence of the dominant harmonic v2,
which predominantly originates from the almond-shaped collision geometry in mid-central
collisions. On the other hand, in the latter regime all harmonics can in principle be of
comparable magnitude, since all of them solely stem from fluctuations.

For completeness, another commonly used global phase shift introduced for fluctuating
initial geometries is the participant plane ΨPP defined by the dipole asymmetry of the initial
energy density. This plane is not equal to ΨRP (see Fig. 7 b) ) in general, but fluctuates
around it. Therefore only in the absence of fluctuations these two planes coincide.

3.1.3 Initial Geometry and Final Momentum Distribution

As previously pointed out, anisotropic flow is generated by the initial anisotropy in the
energy density of the colliding nuclei, which consists of the anisotropic overlap geometry
and the fluctuations in the parton distributions, followed by an expansion of the produced
medium. Flow is described by the coefficients vn and the symmetry planes Ψn. In a
similar way the initial coordinate space geometry can be described using eccentricities εn
and symmetry plane angles Φn [78, 81–83]; in the center of mass system of the participating
nucleons these degrees of freedom are given as

εn =

√
〈rn cos(nϕ)〉2 + 〈rn sin(nϕ)〉2

〈rn〉
, nΦn = atan2

(
〈rn sin(nϕ)〉, 〈rn cos(nϕ)〉

)
+ π ,

(10)

with (r,ϕ) the transverse position of the participating nucleons in polar coordinates [78, 83].
An important point to understand the system properties is how εn and Φn are related to vn
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and Ψn. Especially in early studies it was often assumed that vn responds linearly to εn per
harmonic n (εn ∝ vn) and that Ψn ' Φn [78, 83–85]. However, more recent studies found
that in general the dependence is non-linear and flow of harmonic n has contributions from
different εn harmonics; furthermore Ψn 6= Φn [79, 86–88].

Although in experiments only the final state particles are physical observables and there-
fore the flow is measured and not the initial coordinate space distribution directly, different
theoretical models try to describe directly the initial conditions. The most commonly used
ones to simulate the initial energy and entropy density distribution are the Monte Carlo
Glauber (MC Glauber) [54], the Monte Carlo Kharzeev-Levin-Nardi Color Glass Conden-
sate (MC-KLN CGC) [89] and the IP-Glasma [49, 90–95] models.

In the Glauber MC model (see section 1.3.1) the event-by-event fluctuating distribution
of nucleons is responsible for fluctuations of εn. In the MC-KLN model the energy density
is calculated by the initial gluon production, which has spatial dependence and is obtained
by a parametrization of the Color Glass Condensate model of gluon saturation in nuclei
[96]. The IP-Glasma model in contrast to the two aforementioned ones also takes into
account fluctuations of gluon fields inside the colliding nucleons and then evolves these
using classical Yang-Mills dynamics, switching to hydrodynamic models after a matching
surface (Cooper-Frye freeze-out surface [97]) [53].
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4 Q-cumulants and Multiparticle Correlations
In the last section it was described how flow can be quantified and in theory also measured
by equation (9) if the symmetry planes are experimentally accessible. Unfortunately the
flow angles (i.e. the symmetry plane angles Ψn) are not directly measurable and new
techniques have to be introduced to estimate flow harmonics vn. The oldest and most
frequently used method involves a direct estimation of Ψn via mean preferred directions of
emitted particles and is commonly called event plane method (EP) [76, 98]. However, this
method is biased by nonflow contributions. To improve the flow measurements methods
based on cumulants, which are genuine multiparticle correlations, were developed and first
mentioned in [99]. These methods systematically suppress nonflow effects. Since they
would require construction of all possible particle multiplets an elegant formalism using the
cumulant generating functions (GFC) was developed [99–101]. This approach still might
lead to systematic biases, because it was derived using approximations (and hence will not
be discussed in this thesis). The up to now final solution (that will also be used in all
analyses presented in this thesis) lies in so called Q-cumulants (QC), which are cumulants,
analytically expressed in terms of the moments of the flow vector. The following sections
introduce this method and describe how it is used to estimate flow using multiparticle
correlations, where the general argumentation of these sections is based on [53, 60, 61, 77,
99, 100, 102].

To complete this short overview, further methods besides the Q-cumulant method based
on multiparticle correlations were developed, but will not be elaborated here. Most consid-
erable are the Lee-Yang zeros (LYZ) method [103–106], which suppresses nonflow contribu-
tions to all orders and the fitted q-distribution (FQD) method, which fits a Bessel-Gaussian
probability density function to an observable which is a function of the measured azimuthal
angles (and hence has indirect sensitivity to vn) but is per event invariant to Ψn [107].

4.1 Flow Vector Qn

As a prerequisite for the following sections and as a central object in anisotropic flow analysis,
the complex flow vector, or Q-vector, in harmonic n is generally introduced:

Qn = |Qn| einΨ′n ≡ 1

M

M∑
j=1

einϕj , (11)

where M is the multiplicity of an event and ϕj the azimuthal angle of the jth particle. It
has to be noted that the prefactor 1/M might vary, further common definitions use 1/

√
M

or just 1 (in later sections of this thesis it will for convenience reasons also chosen as 1). The
reason for introducing this quantity is due to the cyclicity of the underlying problem; the
2π periodic flow analysis, and how to unfold it. One can depict the Q-vector for example
in the following two ways: 1) One may think of a standard polar coordinate system. If the
total interval [0, 2π) is now divided into n equally sized subintervals (where each has its own
0 degree position), Qn is measuring a mean value in each of the n subintervals followed by
an average over all n mean values. Hence the angle is in the range Ψ′n ∈ [0, 2π/n). 2) One
may neglect the 1/M prefactor and think of Qn as being a random walk.

In other words Qn can be seen as the n-periodic preferred direction of particle emission.
This is also the original idea behind the event plane method, which assumes, that Ψ′n is a
good estimate of the corresponding Ψn in the underlying probability distribution (Eq. (8)).
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4.2 Event Plane and Scalar Product Method

As the most intuitive approach the event plane method tries to estimate Ψn (the “true”
symmetry plane from p.d.f. defined in Eq. (8)) by solving Eq. (11) for the phase19

Ψ′n =
1

n
arctan

(
=mQn
<eQn

)
=

1

n
arctan

(∑
j sin(nϕj)∑
j cos(nϕj)

)
. (12)

This formula can be improved by adding weights to correct for e.g. pT or η efficiency:

Ψ′n =
1

n
arctan

(∑
j wj sin(nϕj)∑
j wj cos(nϕj)

)
. (13)

It is important to note that only for an infinite number of particles per event Ψ′n → Ψn,
therefore in experiments with limited number of particles there will always be an inaccu-
racy in determining Ψn, which via Eq. (9) lead to inaccuracies in the estimation of flow
harmonics. To correct for this issue an event plane resolution R is introduced [98], which
again cannot be measured directly but can be estimated by dividing the particle set into
sub-events (with equal multiplicity) and then estimating Ψ′n in each sub-event. In general
the resolution is given [98, 108] by

R ≡
〈
ein(Ψ′n−Ψn)

〉
=

〈
Qn
|Qn|

e−inΨn

〉
=
〈
cos[n(Ψ′n −Ψn)]

〉
, (14)

where the last equality holds for reflection symmetry in absence of statistical fluctuations
[108]. If split into two sub-events A and B with same multiplicity and resolution20 each
sub-event provides a symmetry plane estimate Ψ′An , Ψ′Bn via Eq. (12), out of which the
resolution can be calculated [108, 109] as the correlation between these estimates:

R =

√√√√〈 QAn∣∣QAn ∣∣ Q
B
n
∗∣∣QBn ∣∣
〉

=
√〈

cos[n(Ψ′An −Ψ′Bn )]
〉
. (15)

The final resolution corrected flow coefficients are then given by Eq. (9), where Ψn is
estimated via Eq. (12), divided by the resolution in Eq. (15):

vn{EP} =

〈
Qn

QA
n
∗

|QA
n |

〉
√〈

QA
n

|QA
n |

QB
n
∗

|QB
n |

〉 . (16)

Here Qn is called a differential flow vector, because it is composed of particle of interest
(POI), which can e.g. lie in a narrow pT-, η-, etc. ranges, wheres QA(B)

n come from sub-
events A(B) and can be chosen to contain many particles to improve statistical stability.
Due to the fact that R calculated via Eq. (15) is always smaller than unity, the EP method
always underestimates flow harmonics vn, unless they are corrected for finite resolution.

19More exact, the atan2 function should be used, which computes the principal value of the argument
function of a complex number to assure single-valuedness.

20E.g. by symmetric splitting around mid-rapidity and applying a gap in pseudorapidity.
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At this point it is also worth mentioning another commonly used method, the scalar
product method. Its simplest form is obtained by removing the absolute value factors

∣∣∣QA(B)
n

∣∣∣
in Eq. (16):

vn{SP} =

〈
Qn ·QAn

∗
〉

√〈
QAn ·QBn

∗〉 . (17)

Compared to the event plane method, the scalar product method completely removes the
explicit dependence on any symmetry plane (to see this compare the second and third term
in Eq. (11)) – this can be seen as a preview for the following sections on multiparticle
correlations.

However, the discussed methods do not come without flaws. In the era of precision flow
measurements [108], especially the event plane method, although corrected for resolution,
should be marked as deprecated. When it was developed the general assumption was that
event-by-event flow fluctuations are negligible, i.e. flow is about constant per event. Since it
is now known that they are not, it was investigated how they contribute to different methods
[108, 110] with the result, that the event plane measurements are ambiguous due to detector
acceptance and can give any value between the mean 〈vn〉 (for infinite resolution) and the
root-mean-square (RMS)

√〈
v2
n

〉
(for low resolution) [108]. This dependence on analysis

details between different experiments makes it unfavorable to use this method since values
can differ from a few percent for v2, 10% for v3 and higher harmonics up to a factor of 2
for mixed correlations (involving event planes from different harmonics) [108]. The scalar
product method on the other hand, always yields the RMS [108].

In addition, methods based on multiparticle correlations also give clear estimates inde-
pendent of acceptance but furthermore suppress nonflow. These will be the main topic of
the subsequent sections.

4.3 Two- and Multiparticle Correlations

The problem in measuring flow coefficients directly via the simple equation (9) is due to Ψn

not being a direct experimental observable. One could try to estimate Ψn as done with the
event plane method or completely eliminate Ψn by using two- and multiparticle azimuthal
correlations. The first idea of using particle pair correlations to measure collective flow was
introduced in [111] and like the scalar product method (see Sec. 4.2) it only used 2-particle
correlations. In the next sections a generalized formulation using (in theory) any amount of
particles will be described. In order to achieve that the underlying objects called m-particle
correlations (or correlators) are now introduced.
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4.3.1 m-Particle Correlators

The most general single-event average m-particle correlation in harmonics n1, n2, . . . , nm of
particles with azimuthal angles ϕk1 , ϕk2 , . . . , ϕkm is defined [102] as

〈m〉n1,n2,...,nm
≡

〈
ei(n1ϕk1

+n2ϕk2
+···+nmϕkm )

〉
(18)

≡

M∑
k1,k2,...,km=1

(k1 6=k2 6=···6=km)

wk1wk2 . . . wkme
i(n1ϕk1

+n2ϕk2
+···+nmϕkm )

M∑
k1,k2,...,km=1

(k1 6=k2 6=···6=km)

wk1wk2 . . . wkm

(19)

where M is again the multiplicity of an event and wk1 , wk2 , . . . , wkm are particle weights,
which can be used to remove systematic biases originating from various detector inefficien-
cies21. It is emphasized that the condition k1 6= k2 6= · · · 6= km is important to remove auto-
correlations, i.e. correlations from particles to itself (also called self-correlations), which can
give a strong bias for particular combinations of harmonics22. For the typical flow analysis
of single flow coefficients vn only specific combinations of the free parameters are needed23,
which simplify this expression drastically. In particular only correlators of the form m even
and n1 = n2 = · · · = −nk − 1 = −nk are needed where the sign of the harmonics changes
at half (the subscripts, being redundant, will be suppressed; e.g. for 2-particle correlation
〈2〉n,−n ≡ 〈2〉). Furthermore particle weights in this thesis are chosen to be unit, this will
be justified in section 5.1 . Using these conditions the single-event average 2- and 4-particle
azimuthal correlations read

〈2〉 ≡
〈
ein(ϕ1−ϕ2)

〉
≡ 1(

M
2

)
2!

M∑
i,j=1
i 6=j

ein(ϕi−ϕj) , (20)

〈4〉 ≡
〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉
≡ 1(

M
4

)
4!

M∑
i,j,k,l=1
i 6=j 6=k 6=l

ein(ϕi+ϕj−ϕk−ϕl) . (21)

In a second step the all-event average is defined as

〈
〈2〉
〉
≡

〈〈
ein(ϕ1−ϕ2)

〉〉
≡

N∑
i=1

(w〈2〉)i 〈2〉i

N∑
i=1

(w〈2〉)i

, (22)

〈
〈4〉
〉
≡

〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
≡

N∑
i=1

(w〈4〉)i 〈4〉i

N∑
i=1

(w〈4〉)i

, (23)

21Typical weights might be ϕ-weights from non-uniform azimuthal acceptance, pT-weights from non-
uniform momentum reconstruction efficiency, etc. In general w = w(ϕ, pT, η,PID, . . . ).

22E.g. for isotropic harmonics satisfying
∑

i ni = 0 self-correlations would give a trivial, non-negligible
contribution of e0 = 1.

23However, recently a generic framework to calculate these general correlators in an efficient recursive
way was developed [102].



4.4 Collective Flow and Nonflow 21

Figure 9: Azimuthal particle distributions, where a) v2 > 0, v2{2} > 0, b) v2 = 0, v2{2} =
0, c) v2 = 0, v2{2} > 0 [74].

where N is the number of events and w〈2〉, w〈4〉 are event weights, which are not arbitrary
but since multiplicity fluctuates event-by-event have to be chosen24 as the number of distinct
m-particle combinations one can form for an event with multiplicity M [60]

w〈m〉 ≡
(
M

m

)
m! . (24)

For 2- and 4-particle correlations they are respectively

w〈2〉 ≡ M(M − 1) , (25)
w〈4〉 ≡ M(M − 1)(M − 2)(M − 3) . (26)

4.4 Collective Flow and Nonflow

In flow analysis one in general differentiates between two kinds of correlations. On the
one hand there is the concept of “collectivity” and on the other hand correlations between
only a (small) subset of the produced particles. The former being the one flow analysis is
interested in, the latter one, resulting from various kind of physical processes like momentum
conservation, Bose-Einstein correlations, final state Coulomb interactions, jet fragmentation,
resonance decays, etc., polluting the flow signal and thus labeled nonflow. When only
collective anisotropic flow is present all produced particles are emitted independently to
each other and are only correlated to some common symmetry plane. As a consequence the
multivariate probability density function of m particles factorizes into the product of the
normalized marginalized p.d.f. of each particle which are respectively given by the Fourier
series in (7):

f(ϕ1, ϕ2, . . . , ϕm) = fϕ1(ϕ1)fϕ2(ϕ2) · · · fϕm(ϕm) . (27)

Furthermore, since collective anisotropic flow is a genuine multiparticle phenomenon, while
nonflow typically involves only particles from a subset, genuine multiparticle correlations
can be used to reduce the relative contributions from nonflow and to give a statement on
whether vn is dominated by flow or nonflow (see also section 4.6.6).
Figure 9 illustrates collective and non-collective effects exemplified by elliptic flow v2. The
left figure shows an anisotropic distribution yielding a value in elliptic flow greater than
zero for both, the true value and the estimate using 2-particle correlations (indicated by the
notation {2}). The middle figure depicts no elliptic flow and also no particle correlations
leading to a value of zero. Figure 9 c) shows the difficulties originating from nonflow,

24In practice all measured correlations will be biased by nonflow contributions and one could tune the
weights to reduce systematic bias. Unfortunately this is not possible in a consistent way, but could be done
based on Monte Carlo event generation.
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although there is no collective anisotropic flow, 2-particle correlations are present, which
are clearly not due to the collective origin, but in this case due to a simple rotation of a
duplicate of the initial distribution (in physical terms this reasoning could e.g. originate
from resonance decays, where a particle track splits into two highly correlated new tracks).

4.5 Correlations and Flow

In the previous sections multiparticle correlations as well as collective anisotropic flow and
factorization of the underlying p.d.f. were introduced. Both concepts can be combined to
get a first estimate for the flow coefficients vn:〈
〈2〉
〉
≡
〈〈
ein(ϕ1−ϕ2)

〉〉
=

〈〈
ein(ϕ1−Ψn−(ϕ2−Ψn))

〉〉
(28)

=

〈〈
ein(ϕ1−Ψn)

〉 〈
e−in(ϕ2−Ψn)

〉
+ δ2,n

〉
(29)

=
〈
v2
n + δ2,n

〉
(30)

(flow)
=

〈
v2
n

〉
, (31)

〈
〈4〉
〉
≡
〈〈
ein(ϕ1+ϕ2−ϕ3−ϕ4)

〉〉
=

〈〈
ein((ϕ1−Ψn)+(ϕ2−Ψn)−(ϕ3−Ψn)−(ϕ4−Ψn))

〉〉
(32)

=
〈
v4
n + δ4,n + 4v2

nδ2,n + 2δ2
2,n

〉
(33)

(flow)
=

〈
v4
n

〉
. (34)

Here the correlations were expanded25 into a common correlation of each particle with the
symmetry plane (which can be identified as vn, see Eq. (9)) and correlations independent
of the symmetry plane between the particles. The correlated terms are noted by δm,n for an
m-particle correlation in harmonic n and are precisely the nonflow stated in the previous
section. It can be also easily seen that for pure collective behavior and in the absence of
nonflow the δm,n terms vanish and such a multiparticle correlator can be used to measure
flow coefficients. This is also true for higher orders [60]〈

〈6〉
〉

=
〈
v6
n

〉
,
〈
〈8〉
〉

=
〈
v8
n

〉
, . . . . (35)

4.6 Cumulants

The last section showed a decomposition of the 2- and 4-particle distributions (Eqs. (30) and
(33)) because in general a complete factorization as in Eq. (27) breaks down due to nonflow
effects. However, this decomposition can be explained in a rigorous mathematical sense
using cumulant expansion. This section first introduces cumulants, shows how they are ap-
plied to multiparticle correlations and then connected to flow measurements. Furthermore
an analytic way of describing cumulants in terms of Q-vectors, which is a breakthrough con-
cerning computation time, is shown and deviations from ideal flow conditions, e.g. presence
of flow fluctuations and nonflow, are discussed.

25The expansion, especially for 4-particle and higher correlations, is not too obvious and originates in
the cumulant expansion, which is described in the next section.
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4.6.1 Mathematical Formalism

Cumulants κr can be used to describe uni- or multivariate probability distributions and are
an alternative to the moments of a distribution in a sense that for two p.d.f. whose moments
are identical also the cumulants will be and vice versa. Since for flow analysis joined (or
multivariate) cumulants are the important ones only a quick introduction to univariate
cumulants is given.

4.6.1.1 Univariate Cumulants
Remembering the definitions of the moment of order r ∈ N0 of a real-valued random variable
X with p.d.f. f

µr ≡ E(Xr) ≡ 〈Xr〉 ≡
∫ ∞
−∞

xrf(x) dx, (36)

and the moment generating function (MGF)

M(ξ) ≡ E(eξX) = E

 ∞∑
r=0

(ξX)r

r!

 =
∞∑
r=0

ξr

r!
E(Xr) =

∞∑
r=0

ξr

r!
µr , (37)

the cumulant generating function (CGF) is given [112] by taking the logarithm

K(ξ) = logM(ξ) = logE(eξX) =
∑
r

ξr

r!
κr . (38)

Both generating functions respectively combine all moments/cumulants in one expression
out of which the moments/cumulants can in return be “generated” by taking the rth deriva-
tive at the origin

µr = M (r)(0) =
drM(ξ)

dξr

∣∣∣
ξ=0

, κr = K(r)(0) =
drK(ξ)

dξr

∣∣∣
ξ=0

. (39)

As mentioned, moments can be expressed in terms of cumulants and vice versa, using Faà di
Bruno’s formula for higher derivatives of composite functions the analytic expressions read
[113]

µr =

r∑
k=1

Br,k(κ1, . . . , κr−k+1) , κr =

r∑
k=1

(−1)k−1(k − 1)!Br,k(µ1, . . . , µr−k+1) , (40)

where Br,k are the partial or incomplete exponential Bell polynomials. In particular the
first few relations are

µ1 = κ1 κ1 = µ1 (41)

µ2 = κ2 + κ2
1 κ2 = µ2 − µ1

2 (42)

µ3 = κ3 + 3κ2κ1 + κ3
1 κ3 = µ3 − 3µ2µ1 + 2µ1

3 (43)

µ4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1 κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ1

2 − 6µ1
4

(44)

and it can be seen that to express the rth moment(cumulant) the first r cumulants(moments)
are needed. Furthermore a recursion exists which relates cumulants and moments

κr = µr −
r−1∑
m=1

(
r − 1

m− 1

)
κmµr−m . (45)
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Figure 10: Partition of a 2- and 3-element set into non-empty subsets [99].

Lastly moments expressed in terms of cumulants have a strong link to combinatorics, as
will be further discussed in 4.6.2. In particular they describe partition of sets. A partition
of a set is a grouping of the set’s elements into non-empty subsets (called blocks) in a way
that every element is included in one (and only one) of the subsets. This property using
cumulants becomes more easy to see if the rth moment is written as [114]

µr = E(Xr) =
∑
π

∏
B∈π

κ|B| (46)

where π iterates through all possible partitions of a set of size r, B is one of the blocks into
which the set is partitioned and |B| is the size of the block. Therefore each term in the sum
is a product of cumulants whose indices add up to r.

4.6.1.2 Multivariate Cumulants - Joined Cumulants
For a set of m random variables S = {X1, X2, . . . , Xm} the CGF straightforwardly general-
izes to

K(ξ1, ξ2, . . . , ξm) = logE
(
e
∑m

j=1 ξjXj

)
. (47)

As an analytic expression [115, 116] the joined cumulants read

κ(X1, . . . , Xm) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

∏
i∈B

Xi

 , (48)

where π iterates over the set of all possible partitions, B runs through all blocks of partition
π and |π| is the number of blocks in partition π. Also Eq. (46) can be generalized:

E(X1 · · ·Xm) =
∑
π

∏
B∈π

κ(Xi : i ∈ B) . (49)

An interesting connection occurs when the random variables X1, X2, . . . , Xm become
indistinguishable and the corresponding joined cumulant “collapses” into the mth univari-
ate analogon: κ(S) = κ(X,X, . . . ,X︸ ︷︷ ︸

m times

) = κm(X) ≡ κm. Moreover a joined cumulant of 2

variables is exactly the covariance κ(X1, X2) = cov(X1, X2) and combined with the afore-
mentioned collapse when the variables become indistinguishable, this gives the variance
κ(X,X) = cov(X,X) = var(X). Also trivially κ(X1) = κ1 = E(X1).

To disentangle especially Eqs. (49) and (48), some examples are now given and depicted.
The easier to depict equation is (49). Starting with the trivial case

• m = 1 : There is exactly one partition π1 into non-empty sub-sets of a set S = {X1}
with one element, namely the set itself. The first (and only) partition π1 has therefore
only one block B1,1 of size

∣∣B1,1

∣∣ = 1 and in total this yields

E(X1) = κ(X1) . (50)
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• m = 2 : Going a step further to m = 2 random variables there are two different
partitions, which are also visualized in the top of Fig. 10,

π1 = {B1,1, B1,2} = {{X1}, {X2}} , (51)
π2 = {B2,1} = {{X1, X2}} . (52)

The first possible partition π1 consists of two blocks B1,1, B1,2 with one element each.
The second partition π2 consists of only one block B2,1 but with two elements. Com-
bined this gives

E(X1X2) = κ(X1)κ(X2) + κ(X1, X2) (53)
= E(X1)E(X2) + κ(X1, X2) . (54)

where in the last step Eq. (50) was used.

• m = 3 : For three random variables the possible partitions into non-empty sub-subsets
(also illustrated in Fig. 10 bottom) are

π1 = {B1,1, B1,2, B1,3} = {{X1}, {X2}, {X3}} , (55)
π2 = {B2,1, B2,2} = {{X1, X2}, {X3}} , (56)
π3 = {B3,1, B3,2} = {{X1, X3}, {X2}} , (57)
π4 = {B4,1, B4,2} = {{X2, X3}, {X1}} , (58)
π5 = {B5,1} = {{X2, X3, X1}} . (59)

Thus the whole sum reads

E(X1X2X3) =κ(X1)κ(X2)κ(X3)

+ κ(X1, X2)κ(X3) + κ(X1, X3)κ(X2) + κ(X2, X3)κ(X1) (60)
+ κ(X1, X2, X3)

=E(X1)E(X2)E(X3)

+ κ(X1, X2)E(X3) + κ(X1, X3)E(X2) + κ(X2, X3)E(X1) (61)
+ κ(X1, X2, X3)

=E(X1)E(X2)E(X3)

+
[
E(X1X2)− E(X1)E(X2)

]
E(X3)

+
[
E(X1X3)− E(X1)E(X3)

]
E(X2) (62)

+
[
E(X2X3)− E(X2)E(X3)

]
E(X1)

+ κ(X1, X2, X3)

= − 2E(X1)E(X2)E(X3)

+ E(X1X2)E(X3) + E(X1X3)E(X2) + E(X2X3)E(X1) (63)
+ κ(X1, X2, X3) ,

where in the first step from Eq. (60) to (61) equation (50) was inserted and in the
second step from Eq. (61) to (62) equation (54) was used.

In this example the recursive nature of the underlying problem can be seen. For each
newly added random variable a new cumulant arises of the order of random variables in the
expectation value. To express the expectation value of a product of m random variables
solely in terms of lower number of random variables expectation values is possible up to the
m variable joint cumulant. Or argued the other way around:
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The m random variable cumulant can be purely expressed as a combination of
expectation values of m and less random variables (which is exactly what Eq. (48)

says).

Either by looking at Eq. (48) or by solving Eq. (54) and (63) for their respective cumulant
one gets

κ(X1, X2) =E(X1X2)− E(X1)E(X2) , (64)
κ(X1, X2, X3) =E(X1X2X3)

− E(X1X2)E(X3)− E(X1X3)E(X2)− E(X2X3)E(X1) (65)
+ 2E(X1)E(X2)E(X3) .

Since Eq. (49) is now understood it is easy to see that Eq. (48) is basically the same just
with E(. . . ) interchanged with κ(. . . ) and a weighting factor for each term depending on
the block size |π|.

At the end of this mathematical overview of cumulants a possible interpretation of the
meaning of cumulants is given. From the previous example it can be seen that the joint
cumulant acts as a measure of how far random variables are from independence, completely
vanishing for independence. This is easily realized by looking at the cumulant expressed
solely by expectation values, because for independent variables the expectation value fac-
torizes and hence all terms cancel. Or in other words

The joined cumulant of m random variables X1, . . . , Xm measures the interaction
of the variables which is genuinely of m-body type

(where interaction means the opposite of independence).

4.6.2 Cumulant Expansion of Multiparticle Correlations

In section 4.6.1 the objects of interest were mainly the expectation values and the cumulants.
However the objects of interest in this thesis are multiparticle correlations. Fortunately the
framework of cumulants can easily be applied to multiparticle correlations. In particular for
a given m particle correlator

〈m〉 =
〈
ein(ϕ1+ϕ2+···−ϕm−1−ϕm)

〉
=
〈
einϕ1einϕ2 · · · e−inϕm−1e−inϕm

〉
(66)

the event-average 〈. . .〉 equates to the expectation value E(. . . ) and the individual fac-
torized exponential functions can be identified as the random variables with the following
mathematical description:

X1 ≡ einϕ1 , X2 ≡ einϕ2 , . . . , Xm−1 ≡ einϕm−1 , Xm ≡ einϕm . (67)

In practice the cumulant cannot be measured directly, but since it can be expressed in terms
of expectation values it can be obtained indirectly. Unfortunately, looking at the definition
of the expectation value (e.g. in Eq. (36)) a problem arises, namely the the needed joint
multivariate p.d.f. is not know. Nevertheless, the all-event sample averages (see e.g. Eqs.
(22), (23)) can be used as unbiased estimators for the expectation values. Therefore the
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multiparticle cumulants read

cn{1} ≡ 〈〈einϕ1〉〉 , (68)

cn{2} ≡ 〈〈ein(ϕ1−ϕ2)〉〉 − 〈〈einϕ1〉〉〈〈e−inϕ2〉〉 , (69)

cn{3} ≡ 〈〈ein(ϕ1+ϕ2−ϕ3)〉〉
− 〈〈ein(ϕ1+ϕ2)〉〉〈〈e−inϕ3〉〉
− 〈〈ein(ϕ1−ϕ3)〉〉〈〈einϕ2〉〉 (70)

− 〈〈ein(ϕ2−ϕ3)〉〉〈〈einϕ1〉〉
+ 2 · 〈〈einϕ1〉〉〈〈einϕ2〉〉〈〈e−inϕ3〉〉 ,

where the notation cn{m} means “cumulant estimated with m-particle correlations in har-
monic n”. There are two arguments which help simplifying these equations: 1) Objects like
〈〈ein(ϕ1−ϕ2)〉〉 and 〈〈ein(ϕ1−ϕ3)〉〉 are the same physical quantity, because the average is in
both cases done over all two-particle combinations and hence they are just mathematical
relabellings. 2) For detectors with uniform acceptance26 only isotropic combinations of har-
monics, i.e.

∑
i ni = 0, yield non-zero multiparticle correlators after the all-event average

(because the average is done in the laboratory frame and not with respect to a symmetry
plane) and with all harmonics fixed as ni = n this translates that all odd particle number
correlations like 〈〈einϕ1〉〉 or 〈〈ein(ϕ1+ϕ2−ϕ3)〉〉 will also vanish. The final unbiased estimators
for the true cumulants for uniform acceptance are

cn{2} = 〈〈2〉〉 (71)

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2 , (72)

cn{6} =
〈
〈6〉
〉
− 9 ·

〈
〈2〉
〉 〈
〈4〉
〉

+ 12 ·
〈
〈2〉
〉3
, (73)

cn{8} =
〈
〈8〉
〉
− 16 ·

〈
〈6〉
〉 〈
〈2〉
〉
− 18 ·

〈
〈4〉
〉2

+ 144 ·
〈
〈4〉
〉 〈
〈2〉
〉2 − 144 ·

〈
〈2〉
〉4
, (74)

and

cn{1} = cn{3} = cn{5} = cn{7} = · · · = 0 . (75)

The higher order cumulants are added for completeness [60] and can be calculated in the
same manner as it was discussed in the previous sections.

4.6.3 Cumulants and Flow

The step from multiparticle cumulants to an estimator for flow coefficients is straightforward.
For example starting with the 2-particle cumulant Eq. (71) the 2-particle correlation can
be rewritten as in Eq. (30) to get

cn{2} = 〈〈2〉〉 (76)

=
〈
v2
n + δ2,n

〉
(77)

=
〈
v2
n

〉
+
〈
δ2,n

〉
(78)

(flow)
=

〈
v2
n

〉
, (79)

26For a discussion on non-uniform acceptance cumulants, where all terms have to be taken into account,
see for example [60]. As mentioned before, the data used in this thesis is uniform.
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where first the linearity of the expectation operator was used and in the last step nonflow
was neglected. For the 4-particle cumulant in Eq. (72), the 2- and 4-particle correlations
can be rewritten by Eqs. (30) and (33) to get

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2 (80)

=
〈
v4
n + δ4,n + 4v2

nδ2,n + 2δ2
2,n

〉
− 2

〈
v2
n + δ2,n

〉2
(81)

=
〈
v4
n

〉
+
〈
δ4,n

〉
+ 4

〈
v2
nδ2,n

〉
+ 2

〈
δ2

2,n

〉
− 2

(〈
v2
n

〉
+
〈
δ2,n

〉)2

(82)

=
〈
v4
n

〉
+
〈
δ4,n

〉
+ 4

〈
v2
nδ2,n

〉
+ 2

〈
δ2

2,n

〉
− 2

(〈
v2
n

〉2
+ 2

〈
v2
n

〉 〈
δ2,n

〉
+
〈
δ2,n

〉2
)
(83)

=
〈
−v4

n

〉
+
〈
δ4,n

〉
(84)

(flow)
=

〈
−v4

n

〉
, (85)

where further assumption had to be made, namely 〈δ2,n〉2 = 〈δ2
2,n〉 and 〈v2

n〉2 =
〈
v4
n

〉
meaning

event-by-event fluctuations in vn and δ2
2,n are negligible and 〈v2

nδ2,n〉 = 〈v2
n〉〈δ2,n〉 meaning

flow and nonflow are not correlated. Again for completeness the higher order cumulants
under the same assumptions respectively read

cn{6}
(flow)

=
〈

4v6
n

〉
, cn{8}

(flow)
=

〈
−33v8

n

〉
. (86)

It should be noted that an alternating pattern in the sign is visible, which can act as a
necessary (not sufficient though) condition to estimate if flow of harmonic n is dominated
by systematic bias or collective flow.

The reference flow estimates can then finally be obtained by canceling the prefactor and
taking the corresponding root. In summary:

vn{2} ≡
√
cn{2} =

√
〈〈2〉〉 =

√
〈v2
n〉 ' 〈vn〉 , (87)

vn{4} ≡ 4
√
−cn{4} = 4

√
−
(
〈〈4〉〉 − 2 · 〈〈2〉〉2

)
= 4

√
−
(
〈v4
n〉 − 2 · 〈v2

n〉2
)
' 〈vn〉 , (88)

vn{6} ≡ 6

√
1

4
cn{6} =

6

√
1

4

(〈
〈6〉
〉
− 9 ·

〈
〈2〉
〉 〈
〈4〉
〉

+ 12 ·
〈
〈2〉
〉3
)

(89)

=
6

√
1

4

(〈
v6
n

〉
− 9 ·

〈
v2
n

〉 〈
v4
n

〉
+ 12 ·

〈
v2
n

〉3
)
' 〈vn〉 , (90)

vn{8} ≡ 8

√
− 1

33
cn{8} (91)

=
8

√
− 1

33

(〈
〈8〉
〉
− 16 ·

〈
〈6〉
〉 〈
〈2〉
〉
− 18 ·

〈
〈4〉
〉2

+ 144 ·
〈
〈4〉
〉 〈
〈2〉
〉2 − 144 ·

〈
〈2〉
〉4
)

(92)

=
8

√
− 1

33

(〈
v8
n

〉
− 16 ·

〈
v6
n

〉 〈
v2
n

〉
− 18 ·

〈
v4
n

〉2
+ 144 ·

〈
v4
n

〉 〈
v2
n

〉2 − 144 ·
〈
v2
n

〉4
)

(93)

' 〈vn〉 , (94)

where vn{m} reads “reference flow coefficient vn in harmonic n estimated with m-particle
cumulant”. All estimate the same flow harmonic vn but are plagued by different systematic
biases due to nonflow, statistical fluctuations, etc. and therefore the different notation is
used.
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4.6.4 Q-cumulants

During the last sections a sophisticated method for estimating flow with cumulants expressed
in terms of multiparticle correlations, which is able to systematically suppresses unwanted
effects of nonflow, was developed and is in principle ready to use in data analyses. Yet
there is another point which can be improved, namely when it comes to implementing Eqs.
(87) – (94) one is unavoidably confronted with implementing multiparticle correlators as e.g.
in Eqs. (20) and (21). These correlators are averaged over all possible particle combinations
(without autocorrelations) of one event, which equates in the numerical implementation to
a brute-force approach of nested loops, in particular to evaluate an m-particle correlator
m nested loops are needed. This corresponds to a complexity of O(Mm), which for LHC
multiplicities going up to aroundM ≈ 2500 is unfeasible to evaluate. The improved method
avoiding this problem while still preserving the elimination of autocorrelations is called Q-
cumulants (QC) method [77] and is based on flow vectors. For convenience the flow vector
will now be reintroduced (and this definition is kept for the rest of the thesis) with a different
prefactor to simplify the equations:

Qn ≡
M∑
j=1

einϕj , (95)

where again M is the number of particles in an event, ϕj are the azimuthal angles of
the produced particles and n is the flow harmonic. The main idea of this method is to
analytically express multiparticle correlations in terms of Q-vectors evaluated in different
harmonics n, 2n, 3n, . . . and then use Eqs. (87) – (94) to estimate the flow coefficients.

For illustration the 2-particle Q-cumulant is derived in detail. Since the goal is to express
Eq. (20) (which has per definition removed autocorrelations) with Q-vectors it is taken as
a starting point and consecutively rearranged

〈2〉 =
1(

M
2

)
2!

M∑
i,j=1
i 6=j

ein(ϕi−ϕj) =
1

M(M − 1)

M∑
i,j=1
i 6=j

ein(ϕi−ϕj) (96)

=
1

M(M − 1)

 M∑
i,j=1

ein(ϕi−ϕj) −
M∑
i=1

ein(ϕi−ϕi)

 (97)

=
1

M(M − 1)

 M∑
i=1

einϕi

M∑
j=1

e−ϕj −
M∑
i=1

1

 (98)

=
1

M(M − 1)

(
QnQ

∗
n −M

)
(99)

=
|Qn|2 −M
M(M − 1)

, (100)

where the crucial part was to expand the condition in the sum which removes autocor-
relation. Using the same idea of expanding the initial interlaced sum (while preserving
autocorrelation removal), which again can recursively be broken down to a level of plain
Q-vectors, one gets [60] for higher orders (which quickly grow in number of terms, in fact the
number of distinct terms per correlator form a Bell sequence [102], therefore the 8-particle
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correlator is omitted)

〈4〉 =
|Qn|4 + |Q2n|2 − 2 ·Re [Q2nQ

∗
nQ
∗
n]

M(M − 1)(M − 2)(M − 3)
− 2

2(M − 2) · |Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
, (101)

〈6〉 =
|Qn|6 + 9 · |Q2n|2 |Qn|2 − 6 ·Re [Q2nQnQ

∗
nQ
∗
nQ
∗
n]

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 4
Re [Q3nQ

∗
nQ
∗
nQ
∗
n]− 3 ·Re

[
Q3nQ

∗
2nQ

∗
n

]
M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 2
9(M − 4) ·Re [Q2nQ

∗
nQ
∗
n] + 2 · |Q3n|2

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)
(102)

− 9
|Qn|4 + |Q2n|2

M(M − 1)(M − 2)(M − 3)(M − 5)

+ 18
|Qn|2

M(M − 1)(M − 3)(M − 4)

− 6

(M − 1)(M − 2)(M − 3)
.

In the final step the event averaged correlations
〈
〈2〉
〉
,
〈
〈4〉
〉
, . . . can be obtained from Eqs.

(22), (23), etc. and can then be inserted into Eqs. (87) – (94) to get the final flow estimate
with Q-cumulants.

The important note here is that these Q-cumulant flow estimates (for uniform accep-
tance) can be evaluated in one run over the data, since every possible Qn is a sum over
all particles and can be evaluated while scanning through the events for in principle any
number of different harmonics n, followed by plugging all Q-vectors into Eqs. (100) – (102).

4.6.5 Flow Fluctuations

To derive Eqs. (87) – (94) it was assumed that event-by-event fluctuations are negligible and
e.g. relations like 〈v2

n〉2 =
〈
v4
n

〉
hold. It is now known that this assumption does not hold

and in general
〈
vkn

〉
6= 〈vn〉k because the flow fluctuations vary the underlying p.d.f. in the

average.
To estimate the effect of statistical flow fluctuations to the correlators 〈〈m〉〉 one can

treat 〈m〉 as a function of a random variable and expand it in a Taylor series around the
mean, which gives to leading (second) order in the variance σvn respectively [60]〈

v2
n

〉
= 〈vn〉2 + σ2

vn , (103)〈
v4
n

〉
= 〈vn〉4 + 6σ2

vn 〈vn〉
2 , (104)〈

v6
n

〉
= 〈vn〉6 + 15σ2

vn 〈vn〉
4 , (105)〈

v8
n

〉
= 〈vn〉8 + 28σ2

vn 〈vn〉
6 . (106)

Plugging Eqs. (103) – (106) into Eqs. (87) – (94) and assuming a strong flow signal in com-
parison to the fluctuations σvn � 〈vn〉 the to leading order in σvn corrected flow coefficients
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are [60]

vn{2} ' 〈vn〉+
1

2

σ2
vn

〈vn〉
, (107)

vn{4} ' 〈vn〉 −
1

2

σ2
vn

〈vn〉
, (108)

vn{6} ' 〈vn〉 −
1

2

σ2
vn

〈vn〉
, (109)

vn{8} ' 〈vn〉 −
1

2

σ2
vn

〈vn〉
. (110)

It should be noted that in the derivation of these equations no assumptions about the
underlying model (i.e. the p.d.f.) of the flow fluctuations were made. A further peculiarity
is the fact, that only the 2-particle cumulant is enhanced by flow fluctuations, all other
multiparticle cumulants are suppressed. In combination with e.g. Eqs. (84) and (78)
this demonstrates that the difference between vn{2} and vn{4} is sensitive to both effects,
nonflow and flow fluctuations.

4.6.6 Cumulants vs Nonflow

In section 4.4 the concept of nonflow was introduced, in this section it will be discussed how
cumulants behave when nonflow is present.

For “pure” flow it was argued (see section 4.4), that each particle is correlated to a
symmetry plane. In combination with cumulants this means that out of M particles in an
event one could pick any cn{m} for an arbitrary amount of particlesm and since all particles
of the event (in particular also the m particles picked in the cumulant) are correlated to
the symmetry plane, the cumulant will give a non-zero value and hence can measure the
collective part (i.e. collective flow). On the other hand an m-particle cumulant will only
measure genuine m-particle (and higher) nonflow, since e.g. 2-particle nonflow would not
be a genuine m-particle correlation and therefore by definition cannot contribute to all
cumulants with m > 2. This could be seen e.g. in Eq. (81) where all lower order nonflow
contributions canceled.

Considering a simple example of genuine 2-particle nonflow δ2,n, in particular the reso-
nance decay of one resonance into two secondary particles, the scaling of its magnitude for
an event with multiplicity M can be roughly estimated by combinatorics. Out of the M
detected particles the first one is picked and has a chance of 1/M of being one of the two
correlated by the decay. The second particle is picked out of the remaining M − 1 particles
and has a chance of 1/(M − 1) of being the second particle of the decay. Thus the total
scaling would be

δ2,n ∼
1

M

1

M − 1
∼ 1

M2
(one 2-particle resonance decays) . (111)

If every particle would split into 2 tracks the chance of picking as the first particle a cor-
related particle is M/M = 1 because all particles now come from splitting. The chance for
the second particle to be correlated to the first is 1/(M − 1) giving in total:

δ2,n ∼
1

M − 1
∼ 1

M
(M/2 2-particle resonance decays) . (112)

For collective flow every particle can be picked as the first one (M/M = 1), but since it is
correlated to any other due to all being correlated to the symmetry plane ( (M−1)/(M−1) =
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1) the total scaling is unit as it should for collective flow. Similar argumentation [61] gives
a scaling of

δ4,n ∼
1

M

1

M − 1

1

M − 2

1

M − 3
(one 2-particle resonance decays) , (113)

δ4,n ∼
1

M − 1

1

M − 2

1

M − 3
(M/2 2-particle resonance decays) , (114)

for the 4-particle cumulant.
An example for the latter scaling in experiments could be the process ρ → ππ, from

which a significant fraction of the produced pions originates. The scaling Eq. (112) together
with Eq. (30) gives also a hint on when nonflow can be neglected in 2-particle correlations,
namely when vn �M−1/2.

The nonflow scaling with multiplicity is important to estimate for up to whichM vn{m}
is still reliable. The condition is that the flow signal has to be (much) bigger than the nonflow
contribution: 〈

v2
n

〉
!
� 1

M
⇒ vn �

1

M1/2
, (115)〈

v4
n

〉
!
� 1

M3
⇒ vn �

1

M3/4
. (116)

It is easily visible that the 4-particle flow estimator scales much milder and is sooner a
reliable estimate for the true flow coefficient (for typical M in Pb-Pb collisions see Fig. 12
or 15).

In principle all sorts of possible nonflow sources could be derived in an analytic way
(e.g. k-times track splitting by weighting the Q-vector k times), for some examples see [60,
61]. Furthermore a way to quickly estimate many sorts of nonflow contributions is by using
Monte Carlo simulations, but in general there is currently no systematic way to eliminate
them all exactly.
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5.1 Used Data and Quality Assurance

The data used in this thesis stem from the ALICE experiment at the LHC at CERN. It
consists of two datasets of Pb-Pb collisions recorded for different beam energies. The first
set, hereinafter referred to as Run 1, was recorded in November 2010 and was taken at a
center of mass energy of

√
sNN = 2.76 TeV per nucleon pair. The second dataset, hereinafter

referred to as Run 2, is from the end of 2015 and was taken at a center of mass energy of√
sNN = 5.02 TeV. In total the Run 1 dataset has about 100 000 events and the Run 2

set about 70 000 events, which is only a small percentage of the total data taken by the
ALICE Collaboration and thus some analyses are lacking statistics. This is also why only
the statistical errors, which are considerably larger than the systematic ones [117, 118], are
shown in the following results. Both datasets are structured in the same way: For each event
a list of non-identified particles with corresponding kinematic variables azimuthal angle ϕ,
transverse momentum pT and pseudorapidity η is given. The events came pre-binned in
centrality classes, which was done using AliRoot’s [119] standard centrality determination
framework27 (for detailed description see [56, 120]).

For the reconstruction the TPC as well as the ITS were used as the main tracking
devices, reconstructing so called global tracks. Because in flow analyses any inefficiencies
in the detector’s azimuthal acceptance will introduce a non-negligible bias, one either has
to have a uniform distribution or use acceptance corrected formulas (see for example [60,
102]). Azimuthal distributions of all reconstructed particles are shown in Fig. 11, indicating
close to uniform distributions and thus making it unnecessary to correct for non-uniform
acceptance.
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Figure 11: Azimuthal distribution of all reconstructed particles for a) Run 1 and b) Run 2
data, for 0.2 < pT < 5.0 GeV/c and |η| < 0.8 .

The kinematic region was cut to 0.2 < pT < 5.0 GeV/c for the transverse momentum
and to |η| < 0.8 for the pseudorapidity. As mentioned in section 2 the tracking capability
below 0.2 GeV/c decreases significantly, since a large number of particles in this momentum
region cannot even fully reach and traverse the TPC. The upper pT boundary is due to
the increasing probability of jets28 being produced, which highly affect nonflow. Physical

27Which is basically fitting a Glauber model to the multiplicity measured with VZERO.
28Jets are narrow cones of high pT particles, which are created when a very high pT parton (carrying

color charge) is produced in a collision and then hadronizes. Because of QCD confinement (see section
1) the parton creates other colored objects around itself which are boosted in the parton’s direction. The
collective cone of produced particles is called jet and induces strong correlations. These correlations heavily
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acceptance of the TPC, which per design is limited to |η| < 0.9 and with the requirement
of uniform acceptance to |η| < 0.8, explain the pseudorapidity range. The requirement of
uniform acceptance limits the |η| range to 0.8 instead of 0.9, because after primary vertex
determination with the help of the SPD, which has a resolution of 10µm [63], events are
allowed in the range of |z| < 10 cm.

The multiplicity distributions for this kinematic region are shown in Fig. 12. They show
higher probability for low multiplicity events, exhibiting a plateau like trend before quickly
dropping at a maximum multiplicity. The graph can easily be understood in terms of the
collision geometry: Highest multiplicity events stem from the most central collisions which
are much more unlikely to happen than peripheral. For Run 1 with

√
sNN = 2.76 TeV a

maximum of about 2600 particles per event can be produced and tracked. This maximum
increases to about 2900 particles per event at Run 2 energies of

√
sNN = 5.02 TeV.

The transverse momentum distributions, respectively for Run 1 and 2 shown in Fig. 13 a)
and b), show a maximum number of detected charged particles for the lowest measured pT.
With increasing pT the probability (i.e. the number of detected particles) decreases nearly
exponentially until reaching the kinematic cutoff at pT = 5.0 GeV. In comparison with Run
1 at
√
sNN = 2.76 TeV the transverse momentum distribution at

√
sNN = 5.02 TeV has the

same course but with slightly increased mean pT.
The pseudorapidity distribution, which is shown in Fig. 14 a) for Run 1 and in Fig. 14

b) for Run 2, has a close to uniform distribution with an exception at mid-rapidity where
it shows a slight valley. This might be due to a reconstruction efficiency of the TPC close
to η = 0, but should not influence flow measurements.

The per centrality multiplicity distributions, shown in Fig. 15, reveal that for more
central collisions not only more particles are produced per event, but also in a wider mul-
tiplicity range around a mean. This mean shifts to higher multiplicities for more central
events, while at the same time broadening but shrinking. Special attention has to be payed
to events which considerably deviate in multiplicity from the otherwise concentrated peak-
like distribution. In a flow analysis these outlier events, often referred to as “grass”, might
impact the analysis depending on whether their multiplicity is higher or lower than the
typical multiplicity for a given centrality. The reasoning lies in the weighting factor of the
all event averages of multiparticle correlators one has to perform in flow analysis. As argued
before the weight has to be the number of distinct k-particle combinations one can form
for an event with multiplicity M , thus events with higher M are weighted much stronger
(∼Mk). On the other hand low multiplicity events contribute very little to the average and
do not distort the results. The data shown in Fig. 15 shows only low M grass and is thus
suitable for further analyses.

5.2 Elliptic Flow v2

In the following the elliptic flow v2 will be analyzed in more detail, by looking at the
v2 dependence on centrality and different kinematic variables like pseudorapidity η and
transverse momentum pT.

5.2.1 Centrality Dependence

Figure 16 shows the centrality dependence of elliptic flow v2 estimated with 2- and multi-
particle cumulants for Run 1 energies

√
sNN = 2.76 TeV shown in Fig. 16 a) and Run 2

energies
√
sNN = 5.02 TeV shown in 16 b). The centrality is binned into 9 different central-

ity classes, as described in section 1.3.1, ranging from 0% (central) to 80% (peripheral) with

contribute to nonflow and are treated as systematic bias in flow analyses.
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Figure 12: The multiplicity distribution of all reconstructed particles for a) Run 1 and b)
Run 2 data, for 0.2 < pT < 5.0 GeV/c and |η| < 0.8 .
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Figure 13: The transverse momentum distribution of all reconstructed particles for a) Run
1 and b) Run 2 data, for |η| < 0.8 .
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Figure 14: The pseudorapidity distribution of all reconstructed particles for a) Run 1 and
b) Run 2 data, for 0.2 < pT < 5.0 GeV/c .
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(a) (b)

Figure 16: Centrality dependence of elliptic flow, integrated in the pT range of 0.2 < pT <
5.0 GeV/c and estimated with two- and multiparticle correlation techniques for a) Run 1
and b) Run 2. (Data points are shifted horizontally for visibility.)

a bin width of 10% (except for the 0-10% bin which is subdivided at 5%). The different
marker colors indicate the number of particles used to estimate the elliptic flow, starting
at 2-particle correlations and going up to eight particles. Since systematic errors are not
dominant [121] (especially with the limited statistics), the shown errors are purely statistical
and also do not include covariance terms, which would contribute with a minus sign, thus
lowering the errors. In general a strong centrality dependence of elliptic flow can be seen,
starting with v2 values smaller than 0.02 for most central collisions, quickly increasing with
growing centrality up to a maximum of about 0.1 around 50% and then starting to slowly
decrease again for the peripheral collisions. The low initial values and subsequent rise in
elliptic flow can be understood in terms of initial geometrical overlap. For central collisions
the, to leading order, ellipsoidal overlap region is not appropriately anisotropic but is almost
circular. The decreasing elliptic flow for peripheral collisions is due to the limited area of
overlap. Only a small number of partons interact, leading to a system which is to small
to properly thermalize. A significant splitting between flow estimated from two- and mul-
tiparticle correlations is visible. This splitting arises from event-by-event fluctuating flow
values as well as nonflow contributions. Statistical flow fluctuations contribute, to leading
order, with a plus sign for the 2-particle cumulant flow estimator and with a minus sign to
all higher order cumulants (see section 4.6.5). As discussed in section 4.6.6, 2-particle cor-
relations are plagued by nonflow, whereas multiparticle correlations systematically suppress
nonflow. This argumentation is consistent with the results in a sense, that all multiparticle
flow estimates agree within errors. In particular 6- and 8- particle estimates are in excel-
lent agreement with the 4-particle estimate, indicating that already 4-particle cumulants
suppress nonflow significantly. Furthermore this implies, that the “true” flow value has to
lie between the 2-particle estimate and the multiparticle estimate, but more towards the
multiparticle result, since this is less influenced by nonflow.

To compare the results at
√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV, differences get more

clear by taking the ratios as shown in Fig. 17. The left plot shows v2 estimated via 2-particle
correlations as a function of centrality, as well as the ratio between v2 in Run 1 and Run
2, fitted with a constant. The right plot shows the same information but for elliptic flow
estimated via 4-particle correlations. Both flow estimates show an increase in elliptic flow
going from Run 1 to Run 2 energies, which is, independently of the centrality, flat within
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Figure 17: Ratios of elliptic flow v2 measured in Run 1 and Run 2, estimated with a)
2-particle correlations and b) 4-particle correlations. (For the fit values see text.)

the errors. Quantitatively, v2{2} increased by 3.30± 0.31 % and v2{4} by 3.29± 1.77 %.

5.2.2 Transverse Momentum Dependence

Instead of integrating over a transverse momentum range, it is also interesting to do a pT

differential flow analysis. Elliptic flow as a function of pT, estimated from 2- up to 8-particle
correlations (where numerically feasible) in various centrality classes for Run 1 as well as Run
2 is shown in Fig. 18. The binning, indicated by horizontal error bars, was chosen in such
a way, that each bin has approximately the same amount of particles and hence statistics.
It can be seen that for most centrality classes there is not enough statistics needed for the
higher order cumulants, therefore the same analysis is done in Fig. 19, but only for the 2-
particle flow estimator, however with finer binning. Throughout all centralities the elliptic
flow starts to increase linearly for low pT, but saturates starting around pT ≈ 2.0 GeV/c.
Over the measured pT range the differential flow magnitude for a given centrality class is
proportional to the centrality dependence shown in Fig. 16, however if one would measure
the flow for even higher pT than 5.0 GeV/c the possibility of jets increases, which would
pollute the pure flow signal29.

The transverse momentum dependence of flow is also interesting, because it probes
the hydrodynamic picture. Hydrodynamics as an effective theory successfully describing
collective properties of the produced system cannot model high pT particles, which are fast
enough to escape the created medium before reaching equilibrium. This can be used as an
estimate up to which pT hydrodynamics is applicable and also explains the flow saturation.

Although the center of mass energy nearly doubled between Run 1 and 2 and integrated
flow as a function of centrality increased in all centrality classes by about 3%, an increase
in pT differential flow cannot be seen. Therefore the increase in integrated flow should be

29In fact, after the saturation region the pT differential flow eventually starts to decrease again, but will
keep a decently large magnitude (≈ 0.1) even up to pT ≈ 20.0 GeV/c [122], which is not due to the expansion
of a thermalized system, but due to the dominance of high energy parton fragmentation. Produced in hard
initial scatterings, these partons traverse the nuclear matter, loosing energy depending on the path length
(and color charge density of the medium), which again is dependent on azimuthal emission angle [53]. This
phenomenon of jet quenching introduces an azimuthal momentum space anisotropy for high pT and thus
nonzero contribution to 2- and multiparticle azimuthal correlations.
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(a)

(b)

Figure 18: Transverse momentum dependence of elliptic flow v2 estimated with two- and
multiparticle correlation techniques, presented for different centrality classes for a) Run 1
and b) Run 2. (Data points are shifted horizontally for visibility.)
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(a)

(b)

Figure 19: Transverse momentum dependence of elliptic flow v2 estimated with two-particle
correlation techniques, presented for different centrality classes for a) Run 1 and b) Run 2.
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due to an increase in mean transverse momentum 〈pT〉 [123], which implies an increase in
radial flow [118].

5.2.3 Pseudorapidity Dependence

In Fig. 20 differential elliptic flow as a function of pseudorapidity η, estimated with up to 8-
particle correlations (where numerically feasible) is shown for different centrality classes for
Run 1 and Run 2 data. It is observed that in the measured pseudorapidity range of |η| < 0.8
elliptic flow exhibits very little pseudorapidity dependence and stays constant within the
statistical errors. Just as for the pT dependence, the per centrality mean flow develops as
expected from Fig. 16 and a splitting between 2- and multiparticle correlations due to flow
fluctuations is visible.

An η differential analysis can help to understand flow contributions from different stages
of the collision evolution. This is because at larger |η| the multiplicity density becomes
smaller, which corresponds to a smaller initial entropy density, which in turn means sooner
hadronization of the strongly interacting medium [61].

Since in Fig. 20 it was observed that v2 stays constant as a function of pseudorapidity
(in the measured range), this result can be used to estimate nonflow. As already indicated in
section 4.6.6 nonflow of a 2-particle correlation scales roughly like 1/M . Figure 21 shows the
elliptic flow pseudorapidity dependence estimated with 2-particle correlations, but binned
in two different ways. In the left plot the binning was done equally in 0.2 width bins. The
right plot however has increasing bin sizes or in other words η integrated flow. Here all
bins start at -0.8 but increase by 0.2 per bin, i.e. the third marker has a bin width of -0.8
to -0.2 . As a consequence the multiplicity increases leading to a decrease of v2{2} with
roughly 1/M . Since v2{2} vs η is flat, any change in flow is now due to nonflow, which is
visible as a slope in Fig. 21 b).

5.3 Higher Harmonics

In addition to the detailed elliptic flow studies presented in this thesis also higher harmonics
were measured. In particular triangular flow v3, quadrangular flow v4, pentagonal flow v5

and hexagonal flow v6, which progressively decrease in the magnitude of the flow signal.
Fig. 22 shows these higher flow harmonics as a function of centrality. All four coefficients
show an increase with centrality, however not as steep as v2. If v2, which is assumed to
mainly arise from the anisotropic overlap shape, is compared with e.g. v3, which on the
other hand is assumed to arise solely from fluctuations, it can be seen that for ultra-central
collisions where the overlap is close to isotropic both have about equal magnitude. Compared
between Run 1 and Run 2 v3 and v4 show an increase in all centralities, although for v4

it increased especially in central collisions. The next two flow coefficients v5 and v6 seem
to also increase, but for in higher centrality percentiles errors become too big to give a
clear interpretation. Respectively the over the centrality range 0-70% fitted values show an
flow increase of (7.70 ± 0.71)% for v3, (19.76 ± 1.62)% for v4, (7.88 ± 3.94)% for v5 and
(24.22± 6.48)% for v6. Since all flow coefficients were estimated with 2-particle cumulants,
due to insufficient statistics for multiparticle correlators, the value is nonflow and fluctuation
biased (see discussion in section 4.6.5 and 4.6.6) leading in general for the 2-particle estimate
to higher values than the true one.
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Figure 20: Pseudorapidity dependence of elliptic flow v2 estimated with two- and multipar-
ticle correlation techniques, presented for different centrality classes for a) Run 1 and b)
Run 2.
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Figure 21: Pseudorapidity dependence of elliptic flow v2 estimated with two-particle corre-
lation techniques, at

√
sNN = 2.76 TeV and 40-50% centrality. Figure a) has constant bin

widths of 0.2, figure b) has bin widths which all start at -0.8 and increase by 0.2 per bin.
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Figure 22: a) Triangular flow v3, b) quadrangular flow v4, c) pentagonal flow v5 and d)
hexagonal flow v6 as a function of centrality and their corresponding ratios between Run 1
and Run 2, estimated with 2-particle correlations. (For the fit values see text.)
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6 Symmetry Plane Correlations (SPC)
As indicated in section 3.1.2 and 3.1.3 the flow field is steering into an era of event-by-event
fluctuations, which are caused by the fluctuations in the initial nucleon and parton density
distributions of the colliding nuclei. Event-by-event measurements lead to many new ob-
servables, because they not only give information about all event averaged quantities like
〈vn〉, but measure the underlying p.d.f., examples which are under investigation are flow dis-
tributions p(vn) [124], flow amplitude correlations p(vn, vm), symmetry plane correlations
p(Ψn,Ψm, . . . ) [125], mixed correlations p(vl,Ψn,Ψm, . . . ) [126]. This section will focus on
symmetry plane correlations, which open new degrees of freedom apart from the flow coef-
ficients in the Fourier series. A general overview of existing methods is not given (for this
see e.g. [126],[127]), but instead novel observables will be presented. The prevailing ques-
tion in this section is therefore how to measure pure symmetry plane correlations without
mixed effects of flow harmonics and how to achieve this goal using multiparticle correlation
techniques.

6.1 Constructing the Observables

Starting with an mixed harmonic m-particle correlator, it can be rewritten [85] as〈〈
ei(n1ϕ1+n2ϕ2+···+nmϕm)

〉〉
=

〈〈
ein1ϕ1

〉〈
ein2ϕ2

〉
. . .
〈
einmϕm

〉〉
+ nonflow (117)

=
〈
vn1e

in1Ψn1vn2e
in2Ψn2 . . . vnme

inmΨnm

〉
+ nonflow (118)

=
〈
vn1vn2 . . . vnme

i(n1Ψn1+n2Ψn2+···+nmΨnm)
〉

+ nonflow

(119)

where the inner brackets indicate an average over all m particles in an event and the outer
brackets an average over all events, thus the harmonics have to be isotropic

∑
i ni = 0 to not

trivially average to 0 in the all event average, i.e. invariance under global phase shift holds
Ψi → Ψi + α ∀i ∈ [1,m]. Furthermore symmetry plane Ψn has an n-fold symmetry and
should therefore be invariant under phase shifts Ψn → Ψn + 2π/n. It is reminded that the
LHS of Eq. (119) can be calculated using multiparticle cumulants, also in event-by-event
analyses (for the generic framework see [102]). For idealized initial geometry all symmetry
planes Ψn coincide and the imaginary part of Eq. (119) is identically zero for isotropic
correlators (see section 3.1.2).

In recent studies [125] an adjusted and resolution corrected version of the event plane
method was used, as well as a scalar product method. Following the discussion of section
4.2 these methods (especially the EP method) should be avoided, therefore in the following
methods making use of multiparticle cumulants are introduced.

6.2 “Ratio Method”

The idea of this method is to use Eq. (119) and take event-by-event a ratio of multiparticle
correlators expressed in mixed harmonics, choose in such a way that the flow harmonics
cancel and the symmetry correlation part in the denominator equals 1. To clarify this
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concept an example using 6-particle correlators is given:〈
exp
[
in (+2ϕ1 + 2ϕ2 − 1ϕ3 − 1ϕ4 − 1ϕ5 − 1ϕ6)

]〉〈
exp
[
in (+2ϕ1 − 2ϕ2 + 1ϕ3 − 1ϕ4 + 1ϕ5 − 1ϕ6)

]〉 (120)

=
v2

2nv
4
n exp

[
in (2Ψ2n + 2Ψ2n − 1Ψ1n − 1Ψ1n − 1Ψ1n − 1Ψ1n)

]
v2

2nv
4
n exp

[
in (2Ψ2n − 2Ψ2n + 1Ψ1n − 1Ψ1n + 1Ψ1n − 1Ψ1n)

] (121)

=
exp
[
i4n (Ψ2n −Ψn)

]
exp[0]

(122)

= exp
[
i4n (Ψ2n −Ψn)

]
(123)

This expression has the wanted effect of removing on a per event basis flow magnitude
contributions while correlating a symmetry plane in harmonic n with another plane of
harmonic 2n. One notices that for the denominator SPC to vanish each harmonic has to be
taken an even amount of times, each half of the particles with opposite sign, while in the
numerator every isotropic combination of harmonics is possible. A mathematical expression
can be derived for a general (kn, n) SPC

exp
[
i2kn (Ψkn −Ψn)

]
=

〈
exp

n(kϕ1 + kϕ2 −
2k+2∑
j=3

ϕj

)〉
〈

exp

n(kϕ1 − kϕ2 +
2k+2∑
j=3

(−1)jϕj

)〉 (124)

as well as for a type (kn,mn, n) SPC where it is w.l.o.g. assumed that k > m

exp
[
i2n

(
kΨkn −mΨmn − (k −m)Ψn

)]
=

〈
exp

n(kϕ1 + kϕ2 −mϕ3 −mϕ4 −
2(k−m)+4∑

j=5
ϕj

)〉
〈

exp

n(kϕ1 − kϕ2 −mϕ3 +mϕ4 +
2(k−m)+4∑

j=5
(−1)jϕj

)〉 .

(125)

To find the minimal SPC the number of m-terms Nm has to be maximized and hence has
to be the closest even number that fulfill Nm = 2k−1

m .
In theory in such a way any amount of particles can be used in the correlator, however

in practice experience tells a feasible order up to about 14 particles. Formulas for 2- and
3-SPC were given, but to achieve higher order SPC higher order correlators are needed. In
particular to achieve a 4-SPC 8-particle correlators are needed, for 5-SPC 10-particle, etc.

Furthermore other constructions using correlators are possible, for example it in not
mandatory to use a correlator of the same order in the denominator as in the numerator.
The denominator could consist of more than one correlator, though the same order might
be the better choice because in that way both numerator and denominator are influenced
in the same way by effects like nonflow.

6.3 “Normalization and Phase Method”

The idea of these two methods lie in the properties of complex numbers. In the first method
the SPC is obtained by plain normalization of the correlator, hence canceling the flow
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magnitudes, again event-by-event:〈
e−i(n1ϕ1+...+nkϕk)

〉
∣∣∣〈e−i(n1ϕ1+...+nkϕk)

〉∣∣∣ = ei(n1Ψn1+...+nkΨnk) . (126)

A problem with this procedure is that the normalization prevents the real part from fluctu-
ating past ±1 and therefore systematically biases the estimate.

The second method also takes advantage of fundamental properties of complex numbers,
namely the argument, which is used to extract the phase:

n1Ψn1 + ...+ nkΨnk
(127)

= arg

[〈
e−i(n1ϕ1+...+nkϕk)

〉]
(128)

= atan2
(
=m
〈
exp(−i [n1ϕ1 + ...+ nkϕk])

〉
,<e

〈
exp(−i [n1ϕ1 + ...+ nkϕk])

〉)
(129)

The problem here is similar, the phase is limited to the interval [0, 2π) and unfolding prob-
lems arise.

6.4 Flow Scaling and Optimizer

The error σvn of a per-event flow estimate using an m-particle correlator scales roughly like

σvn ∼
1

Mm/2

1

vm−1
n

(130)

whereM is the multiplicity, n the harmonic andm the number of particles used to construct
the correlator. Since the SPC methods presented in this thesis are based on multiparticle
correlators this scaling can be used to investigate how to modify them in order to reduce the
error. This leads to the concept of optimizer. Analytically there infinitely many correlator
ratios yielding the same observable, e.g. coming back to the example Eq. (120) a second
ratio can be constructed〈

exp
[
in (+2ϕ1 + 2ϕ2 − 1ϕ3 − 1ϕ4 − 1ϕ5 − 1ϕ6 + 2ϕ7 − 2ϕ8)

]〉〈
exp
[
in (+2ϕ1 − 2ϕ2 + 1ϕ3 − 1ϕ4 + 1ϕ5 − 1ϕ6 + 2ϕ7 − 2ϕ8)

]〉 (131)

=
v2

2n

v2
2n︸︷︷︸

new

v2
2nv

4
4n

v2
2nv

4
4n

cos(4n[Ψ2n −Ψn])

cos(0)
(132)

= exp
[
i4n (Ψ2n −Ψn)

]
(133)

which gives the same result but with 8- instead of 6-particle correlators. The last two
term in the numerator and denominator correlator is called an optimizer. In principle any
amount of optimizer can be added to a correlator. In practice there are limitations in
computation time, available number of particles per event, etc. The question is will such
a transformation increase or decrease the error? For a correlator with l added optimizer
terms the error roughly scales

σvn ∼
1

M (2l+m)/2

1

v2l+m−1
n

. (134)

Since M > 1 (can be anywhere from 1 to 2600) and vn < 1 there are two opposing effects.
The idea is that if the harmonic used for the optimizer is picked as the highest measured
flow coefficient (mostly v2) and the multiplicity is large, then the error will be suppressed.
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A Derivation of Flow Coefficients vn

Given a 2π-periodic probability density function30 (p.d.f.) f(ϕ) with sample space ϕ ∈
[0, 2π) one can always represent it formally by its Fourier series (which does not necessarily
converge):

f(ϕ) =
∑
n∈Z

cne
inϕ, cn =

∫ 2π

0
f(ϕ)e−inϕdϕ ∈ C . (135)

The expression can be rewritten as

f(ϕ) =
+∞∑

n=−∞
cne

inϕ =
1∑

n=−∞
cne

inϕ

︸ ︷︷ ︸
∞∑
n=1

c−ne
−inϕ

+
∞∑
n=1

cne
inϕ + c0 = c0 +

∞∑
n=1

(
c−ne

−inϕ + cne
inϕ
)
.

(136)

A probability density, here f(ϕ), has to be a real function, i.e. f(ϕ) = f(ϕ)∗ and therefore
the complex Fourier coefficients satisfy

c−n = c∗n . (137)

Using this, f(ϕ) can again be rewritten as

f(ϕ) = c0 +
∞∑
n=1

[
cne

inϕ +
(
cne

inϕ
)∗]

(138)

= c0 +
∞∑
n=1

2 · <e
(
cne

inϕ
)

(139)

cn∈C⇒cn=|cn|ei arg (cn)︸ ︷︷ ︸
= c0 +

∞∑
n=1

2 · <e
(
|cn| einϕ+arg cn

)
(140)

arg cn≡−nΨn∈R
|cn|≡vn∈R
c0≡v0︸ ︷︷ ︸

= v0 + 2
∞∑
n=1

vn<e
(
ein(ϕ−Ψn)

)
(141)

= v0 + 2
∞∑
n=1

vn cos[n(ϕ−Ψn)] . (142)

Here some redefinitions were applied to match the typically used notation of the field.

30Which is per definition normalized, but also every function f(ϕ) can w.l.o.g. be normalized:
fnormal(ϕ) = f(ϕ)∫

f(ϕ) dϕ
.
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Taking the mean, defined by 〈x〉 =
∫ 2π

0 xf(x)dx, of cos
(
n(ϕ−Ψn)

)
yields:

〈
cos[n(ϕ−Ψn)]

〉
=

∫ 2π

0
cos[n(ϕ−Ψn)] · f(ϕ) dϕ (143)

=

∫ 2π

0

1

2

(
ein(ϕ−Ψn) + e−in(ϕ−Ψn)

)(
v0 + 2

∞∑
m=1

vm
1

2

(
eim(ϕ−Ψm) + e−im(ϕ−Ψm)

))
dϕ

(144)

=
1

2

∫ 2π

0
2v0

(
ein(ϕ−Ψn) + e−in(ϕ−Ψn)

)
︸ ︷︷ ︸

=0

+

+
∞∑
m=1

vm
[
ei(nϕ−nΨn+mϕ−mΨm) + e−i(nϕ−nΨn+mϕ−mΨm)

+ ei(nϕ−nΨn−mϕ+mΨm) + e−i(nϕ−nΨn−mϕ+mΨm)
]
dϕ

(145)

=
1

2

∞∑
m=1

vm

∫ 2π

0
ei(n+m)ϕe−i(nΨn+mΨm)︸ ︷︷ ︸

=0

+ e−i(n+m)ϕei(nΨn+mΨm)︸ ︷︷ ︸
=0

+ ei(n−m)ϕe−i(nΨn−mΨm)︸ ︷︷ ︸
=2πδnme−i(nΨn−mΨm)

+ e−i(n−m)ϕei(nΨn−mΨm)︸ ︷︷ ︸
=2πδnmei(nΨn−mΨm)

dϕ .
(146)

The integrals over the individual terms are always 0 (because of the 2π symmetry of eix)
except for when n + m = 0 or n −m = 0. Knowing that the summation indices n,m ∈ N
(N without 0), n+m = 0 isn’t possible. Because of n−m = 0 one gets

=
1

2

∞∑
m=1

vm

(
2πδnme

−i(nΨn−mΨm) + 2πδnme
i(nΨn−mΨm)

)
(147)

=
1

2
vn2π

e−i(nΨn−nΨn)︸ ︷︷ ︸
=1

+ ei(nΨn−nΨn)︸ ︷︷ ︸
=1

 (148)

= 2πvn . (149)

The factor of 2π can be canceled with the 1
2π in vn (remember: vn was the Fourier series

coefficient vn = cn = 1
2π

∫ 2π
0 f(ϕ)e−inϕ dϕ ∈ C). This is just a matter of defining the Fourier

series. In the above part the 1
2π factor was left inside vn for shorter equations. During this

thesis it we will be pulled out so it cancels.
In summary:

f(ϕ) =
+∞∑
−∞

vne
inϕ =

v0

2π
+

1

π

∞∑
n=1

vn cos[n(ϕ−Ψn)] , (150)

vn =
〈
cos[n(ϕ−Ψn)]

〉
. (151)
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B Statistical Errors
In this appendix the statistical errors of the flow estimators defined in Eqs. (87) – (94)
is derived, however, neglecting covariance terms. Since every event-averaged multiparticle
correlator 〈〈m〉〉 is calculated separately with a separate uncertainty and only at the end
combined via Eqs. (87) – (94) to get the final flow estimate, each correlator will be treated
as a variable with uncertainty. The uncertainty for the flow estimator is then derived using
standard error propagation.

B.1 vn{2}

The error of

vn{2} =
√
〈〈2〉〉 (152)

is calculated via propagation of uncertainty as

σvn{2} =

√(
∆〈〈2〉〉

)2
·
(
∂〈〈2〉〉

√
〈〈2〉〉

)2
=

∆〈〈2〉〉
2
√
〈〈2〉〉

. (153)

B.2 vn{4}

For

vn{4} = 4
√
−cn{4} (154)

the error can be calculated via propagation of uncertainty:

σvn{4} =

√(
∆〈〈2〉〉

)2
·
(
∂〈〈2〉〉f

(
〈〈2〉〉, 〈〈4〉〉

))2
+
(

∆〈〈4〉〉

)2
·
(
∂〈〈4〉〉f

(
〈〈2〉〉, 〈〈4〉〉

))2
,

(155)

where

f
(
〈〈2〉〉, 〈〈4〉〉

)
= 4
√

2〈〈2〉〉2 − 〈〈4〉〉 . (156)

That leads to

σvn{4} =

√
16〈〈2〉〉2∆2

〈〈2〉〉 + ∆2
〈〈4〉〉

4
(
2〈〈2〉〉2 − 〈〈4〉〉

)3/4 . (157)

B.3 vn{6}

The error of

vn{6} =
6

√
1

4
cn{6} (158)

is calculated via

σvn{6} =

√(
∆〈〈2〉〉

)2
·
(
∂〈〈2〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉

))2
+
(

∆〈〈4〉〉

)2
·
(
∂〈〈4〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉

))2

+
(

∆〈〈6〉〉

)2
·
(
∂〈〈6〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉

))2
(159)
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where

f
(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉

)
=

6

√
1

4

(
〈〈6〉〉 − 9〈〈4〉〉〈〈2〉〉

)
+ 12〈〈2〉〉3 . (160)

This results in

σvn{6} =

√
∆2
〈〈6〉〉 + 81

(
16〈〈2〉〉4∆2

〈〈2〉〉 + 〈〈2〉〉2
(

∆2
〈〈4〉〉 − 8〈〈4〉〉∆2

〈〈2〉〉

)
+ 〈〈4〉〉2∆2

〈〈2〉〉

)
6 3
√

2
(
12〈〈2〉〉3 − 9〈〈4〉〉〈〈2〉〉+ 〈〈6〉〉

)5/6 .

(161)

B.4 vn{8}

The error of

vn{8} =
8

√
− 1

33
cn{8} (162)

is calculated via the propagation of uncertainty

σvn{8} =

√(
∆〈〈2〉〉

)2
·
(
∂〈〈2〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉, 〈〈8〉〉

))2
+
(

∆〈〈4〉〉

)2
·
(
∂〈〈4〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉, 〈〈8〉〉

))2

(163)

+
(

∆〈〈6〉〉

)2
·
(
∂〈〈6〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉, 〈〈8〉〉

))2
+
(

∆〈〈8〉〉

)2
·
(
∂〈〈8〉〉f

(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉, 〈〈8〉〉

))2

(164)

where

f
(
〈〈2〉〉, 〈〈4〉〉, 〈〈6〉〉, 〈〈8〉〉

)
=

8

√
− 1

33

(
〈〈8〉〉 − 16〈〈6〉〉〈〈4〉〉 − 18〈〈4〉〉2 + 144〈〈4〉〉〈〈2〉〉2 − 144〈〈2〉〉4

)
.

(165)

That leads to the error

σvn{8} =
1√

8 8
√

33

(
2
(
−72〈〈4〉〉〈〈2〉〉2 + 8

(
9〈〈2〉〉3 + 〈〈6〉〉

)
〈〈2〉〉+ 9〈〈4〉〉2

)
− 〈〈8〉〉

)7/8

×
√

16
(

20736〈〈2〉〉6∆2
〈〈2〉〉 + 1152〈〈6〉〉〈〈2〉〉3∆2

〈〈2〉〉 − 576〈〈4〉〉〈〈6〉〉〈〈2〉〉∆2
〈〈2〉〉

)

+16

(
1296〈〈2〉〉4

(
∆2
〈〈4〉〉 − 16〈〈4〉〉∆2

〈〈2〉〉

)
+ 16〈〈6〉〉2∆2

〈〈2〉〉 + 81〈〈4〉〉2∆2
〈〈4〉〉

)

+16

(
8〈〈2〉〉2

(
2∆2
〈〈6〉〉 + 81〈〈4〉〉

(
8〈〈4〉〉∆2

〈〈2〉〉 −∆2
〈〈4〉〉

)))
+ ∆2

〈〈8〉〉 . (166)
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