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Abstract

This work introduces a new powerful framework (CECA) to model the source function that
represents the spatial and kinematic properties of a particle emission in small collision
systems like proton–proton and proton–lambda. The properties of the source have been
fixed within CECA by using an existing ALICE measurement of the p–p source size in
p–p collisions. Under the assumption of a common source, a simulation of the kinematic
properties of the p–Λ system is performed and compared to existing measurements. Due
to a disagreement, the assumption is further explored by modeling the p–Λ interaction
with different parametrizations of the state of the art model, the chiral effective field
theory, and fitting the main observable, the correlation function. The result of this work
is the conclusion that a weaker interaction for the two-body force of the p–Λ system is
required to accommodate the assumption within the framework. This conclusion could, if
proven right, further constrain the p–Λ interaction and give further insight into the inner
structure of neutron stars.
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Chapter 1

Introduction

The strong force acts on very small scales (c.a. 1 fm = 10−15 m), yet, due to its strength,
binds the protons and neutrons (nucleons (N)) together, allowing the existence of the
matter that we perceive throughout our universe. The fundamental underlying theory
is that of quantum chromodynamics (QCD), which describes the interaction between
quarks mediated by gluons. The gluon self coupling and the large coupling constant
αS are unique features of QCD, making the theory non-perturbative at low energies.
There are effective models attempting to provide the necessary tools to study the strong
interaction, where the chiral effective field theory (χEFT) is the state of the art [1, 2]. The
chiral model concentrates only on the observable bound states of quarks and gluons,
called hadrons. A hadron composed of a quark and an anti-quark is called a meson,
while bound states of three quarks, such as the nucleons, are called baryons. The
lightest meson is the pion (π), and within the χEFT it is used as an effective mediator of
the strong force.

In general, the strong force is relevant only under extreme densities, thus it is rarely
observed on a macroscopic scale. However, a notable exception are neutron stars, the
remnants of collapsed massive supergiant stars and the densest stellar objects known in
our universe. With masses of one to two times the solar mass M⊙ and radii of around
10 km, the densities of these astronomical bodies exceed that of regular nuclear matter
(ρ0 = 0.15 fm−3). These conditions lead to several interesting theoretical possibilities, for
example hyperons (Y), baryons with at least one strange quark, may be produced, and
even deconfinement of quarks might be possible [3]. Although the density and, therefore,
the pressure in the core of a neutron star is immense, it remains stable due to the interplay
between the fermion pressure of the baryons and the gravitational pull. The relation of
density to pressure is described by the nuclear equation of state (EoS) and combined
with the Tolman-Oppenheimer-Volkoff (TOV) equation, a mass–radius relation for stellar
bodies can be established. However, the EoS is determined by the microscopic properties
of the composing matter, in particular the strong force acting between the particles. In
this way a connection between the microscopic and macroscopic parts of the universe
is realized, and the strong interaction is key to understanding it. Nevertheless, our
experimental knowledge is mostly limited to scattering experiments involving nucleons,
and nuclear effects at density of ρ0. This is insufficient for the study of neutrons stars, due
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Chapter 1 Introduction

to the possible existence of hyperons at larger densities. Consequently, the theoretical
predictions are not well constrained and vary drastically. An example of several prediction
for the EoS and the corresponding mass–radius relation of a neutron star is shown in
Fig. 1.1. An interesting paradox, called the "Hyperon puzzle", is the experimentally

Figure 1.1: [4] Nuclear equation of state. The green line defines the case of pure neutron
matter, the red line includes Λs considering only the two-body NΛ interaction and the
blue line accounts for the three-body force in addition. The black dashed line contains a
non-physical strength of the three-body force. The left panel shows the EoS, the right
panel the corresponding mass–radius relation for NSs. The horizontal line at 2 M⊙
corresponds to several measurements of NS masses; any realistic EoS needs to reach
this line.

confirmed existence of neutron stars with masses above two solar masses, which stands
in contradiction with a soft EoS accommodating an attractive pΛ interaction. The latter
is confirmed by scattering experiments, thus there are certainly missing physics effects
to resolve the contradiction. Further, the density dependence of the interaction is model
dependent, and the three-body interactions could provide further repulsion. This calls for
dedicated experimental work to address these open questions.

In this work the focus is on the femtoscopy technique, which has recently been proven
a powerful tool to access the strong interaction [5, 6]. This is achieved by means of
measuring correlations between particles produced at collider experiments. As will
become evident in the rest of this chapter, the femtoscopy formalism heavily relies on
the particle emission after the collision, which has to be accurately modeled in order to
investigate the final state interaction (FSI) [7]. The present thesis deals primarily with the
modelling of the particle emission. The study is extended within the context of the pΛ
two-body interaction and the test of χEFT.
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Femtoscopy

Based on the "Hanbury Brown and Twiss effect" [8, 9], in which the intensity fluctuations
of stellar bodies are correlated to their spatial dimensions, femtoscopy is the study of the
momentum correlations between particles and the association to their wave functions [10].
In astronomy, it is achieved through an independent intensity measurement of a light
signal, split and diverted into two different detectors. Under the assumption of a coherent
emission time, a correlation between the two intensities should appear due to the
spatial distribution of the light-emitting source. In collider experiments, this method can
be applied to the subatomic scale, although some modifications are necessary. The
observables needed are the yield of particles, which replaces the intensity, and the
spatial point of their formation (hadronization). The region where the latter takes place is
described by an effective emission source.

Femtoscopy has been initially used to study identical pion (π − π) correlations, in
order to test and verify quantum statistical effects [11]. The development of a theoretical
description, driven by the Lednický-Lyuboshitz (LL) model, provided the possibility of
probing correlations by accounting, in an approximate way, for the Coulomb and strong
force [12]. Femtoscopy studies would later be performed in heavy-ion collisions, at the
Relativistic Heavy Ion Collider (RHIC), to test the hydrodynamic models used to model
the supposedly created quark-gluon plasma [10]. This was accomplished by investigating
the size of the emission source through measuring the correlation function of identical
pions, making use of their quantum statistics.

In the last several years femtoscopy has been used in a non-traditional way, where
the interaction between particles has been studied under the assumption of a known
emission profile. This has been achieved using the ALICE detector at the Large Hadron
Collider (LHC), where a dedicated analysis has been performed in proton–proton (pp)
collisions [7], demonstrating that such small collision systems have two main benefits.
First, the small size of the emission source (1 fm) is comparable with the range of the
strong force, leading to a large correlation signal. Second, the emission source has
been proven to be identical for protons and Λ hyperons, allowing the assumption of a
common source function for all baryons. Consequently, the emission can be studied
by using the correlations between particle pairs of known interaction, such as a pair
of protons, and fix the source function for any particle pair of unknown interaction. In
this way correlation studies can probe the FSI with high precision, leading to many
interesting results [5–7, 13–20]. The listed analyses performed by ALICE relied on the
"Correlation Analysis tool using the Schrödinger equation" (CATS) [21], which allows
the inclusion of any interaction and emission profile without the approximations within
the LL model. However, an accurate modelling of the emission region is essential for
the study of the interaction; there is, unfortunately, still a lack of solid understanding on
the properties of the emission function, apart from a pioneering work performed by the
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Chapter 1 Introduction

ALICE collaboration [7] that resulted in the development of the Resonance Source Model
(RSM).

Within the present thesis, I have worked alongside my supervisor Dimitar Mihaylov on
an extension of the RSM, named "Common Emission in CATS" (CECA), that is more
generic and allows to account for spacial-momentum correlations during the emission.
This is essential to reproduce certain observables linked to the collective expansion
of the collision system, such as the dependence of the source size on the transverse
momentum (kT) and mass (mT) of the emitted particles. The goal has been to anchor
the source parameters within CECA to the known p–p source, and make prediction for
the p–Λ emission profile. Finally, the source size and its mT dependence have been
compared to the measured ALICE data. A small inconsistency has been observed,
thus the measured correlation functions have been re-analyzed using several different
parameterizations of the p–Λ interaction within the χEFT model. Under the assumption
of the common source within CECA, it has been found that a slightly lower strength
of the two-body p–Λ force in vacuum provides a better description of the ALICE data.
While the results are not yet conclusive, this finding may be one of the missing pieces
needed for solving the "Hyperon puzzle". This work sets the roadmap for future related
experimental and theoretical studies.
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Chapter 2

The femtoscopy method

2.1 The correlation function

The correlation function C(k∗) of two particles offers an approach to study the underlying
subatomic interaction and the processes that lead to the particle emission. It is the main
observable in femtoscopy and is evaluated as a function of the relative momentum of the
pair

k∗ =
1
2
· (p∗

2 − p∗
1) , (2.1)

where p∗
1,2 are the single particle momenta, and the asterisk denotes the pair rest frame

(PRF). The correlation function is sensitive to the properties of the emission source
S(r∗), where r∗ is the relative distance between the particles, and the wave function
Ψ(k∗, r∗) of the pair. The work of M. A. Lisa, S. Pratt, R. Soltz and U. Wiedemann [10]
offers a summary of the field and an insight into heavy-ion collisions. It also provides
the means to construct the Koonin-Pratt equation, which is extremely important as it
relates the experimentally observable correlation function to both S(r∗) and Ψ(k∗, r∗).

C(k∗) =
P(p∗

1 ,p
∗
2)

P(p∗
1)P(p

∗
2)

= 1 +

∫
S(r∗)

[∣∣Ψ(k∗, r∗)
∣∣2 − 1

]
d3r∗ (2.2)

The free wave function is by convention normalized to 1 since it corresponds to no
interaction, therefore, the integral in Eq. 2.2 becomes 0. This in turn means that the
correlation function will be equal to 1. The first part of Eq. 2.2 is related to the statistical
definition of the two-particle correlation function. It is given as the ratio of the probability
P(p1,p2) to find, at the same time, a particle with momentum p1 and a second with
p2 to the product of the individual probabilities P(p1)P(p2). These probabilities can be
expressed in terms of the corresponding differential yields N1,2, resulting in:

Cstat(p1,p2) =
⟨P(p1,p2)⟩

⟨P(p1)⟩⟨P(p2)⟩
=

dN1,2
/
(d3p1 · d3p2)

(dN1
/
d3p1) · (dN2

/
d3p2)

(2.3)

This ratio will equate to one in absence of any correlation, which is consistent with the
convention used by Koonin-Pratt. Experimentally, the correlation function is expressed
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Chapter 2 The femtoscopy method

using the second part of Eq. 2.3, i.e. the yields of the particles. To be consistent with
definition 2.2, Cstat(p1,p2) is projected onto k∗, leading to

Cexp(k
∗) = N

Nsame(k
∗)

Nmix(k∗)
. (2.4)

The numerator, Nsame(k
∗), corresponds to the case of two correlated particles, while the

denominator Nmix(k
∗) is a reference sample composed of pairs that did not experience

any final state interaction. Experimentally it is possible to construct both. The so called
"same event" sample Nsame(k

∗) is the yield of two particles of relative momentum k∗

that were measured within the same collision (event), while the "mixed event" sample
Nmix(k

∗) is obtained by combining together particles produced in different events [5].
Further, Eq. 2.4 contains a normalization factor N, which is used to normalize the correl-
ation function at large k∗. The femtoscopic signal is typically located below 200 MeV/c,
for this reason the normalization can be applied, as long as C(k∗) becomes flat, outside
of this region. Nevertheless, the actual physics embedded in the correlation function is
related to the its shape; the normalization constant is, therefore, often irrelevant to the
final result. As will be explained later, this is connected to the non-femtoscopic signals
within the measured correlation, which are typically fitted to the data and result in a
non-flat baseline that absorbs any normalization effects.

The right side of Equation 2.2 can be rewritten as

Cth(k
∗) =

∫
S(r∗)

∣∣∣Ψ(k∗, r∗)
∣∣∣2d3r∗. (2.5)

This form represents the purely theoretical definition of the correlation function, and
considers the source function as a probability density that only depends on the magnitude
of r∗. It will be important to separate, throughout this work, between Cth(k

∗) and
Cexp(k

∗), since the latter contains many effects that come on top of the theoretical
definition. These will be discussed in the current section and will be accounted for in the
analysis.

Equation 2.5 can be simplified even further by assuming a radially symmetric source
function. Employing spherical coordinates to integrate over d3r∗ will result in a factor of
4π from the angular components. Consequently, the Koonin-Pratt equation is reduced to
the one dimensional integral

Cth(k
∗) =

∫∞
0

S4π(r
∗)
∣∣∣Ψ(k∗, r∗)

∣∣∣2dr∗, (2.6)

where
S4π(r

∗) = 4πr∗2S(r∗). (2.7)

The emission and the interaction are usually studied separately due to the loss of
differential information through the integration over the radial component. For that reason,
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2.1 The correlation function

in order to study the source function, a system of known interaction has to be measured.
The "standard candle" in the present work is the p–p correlation, because the interaction
is very well constrained by scattering experiments and can be accurately modeled by
the Argonne v18 potential [22]. By contrast, the p–Λ interaction is known with a lower
precision, thus any model predictions, in this work exclusively given by χEFT, have
to be treated under the consideration of large systematic biases. Figure 2.1 shows
examples of the p–p and p–Λ correlation functions (circles), measured by the ALICE
collaboration [7], with the corresponding fit functions (colored bands), obtained from
Cth(k

∗), and applied necessary corrections. As discussed, both correlations become flat

Figure 2.1: [7] Exemplary correlation function of p-p (left), obtained by using the Argonne
ν18 [22] potential, and p-Λ (right), using χEFT LO [23] and χEFT NLO [2] potentials.

and converge towards unity above 200 MeV/c, while a clear femtoscopic signal is present
at lower momenta. In this particular case the emission source has been assumed to
have a Gaussian profile

S(r∗) =
1

(4πr20)3/2 exp
(
−
r∗2

4r20

)
, (2.8)

with source sizes of 1.28 fm for p–p and 1.41 fm for p–Λ. The corresponding probability
density functions (PDFs) for S4π(r

∗) are shown in Fig. 2.2. These distributions peak
at around 2.5 fm, thus the bulk of the correlation signal is linked to the value of the
wave function at this distance from the scattering center. The strong force acts on
a comparable scale, therefore, it is expected to find particles closer together for an
attractive interaction and further apart for a repulsive. The overall enhancement of both
correlations in Fig. 2.1 is a manifestation of the attractive nature of the strong force
for both of these pairs. The p–Λ system is composed of non-identical particles with
the Λ being neutral in charge, thus the only contributing factor to the correlation is the
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Figure 2.2: The Gaussian source used to fit the p–p and p–Λ correlations shown in
Fig. 2.1.

strong force. Consequently, the correlation function has a monotonic rising behaviour as
k∗ → 0 is approached. However, p–p is a system of identical particles, subject to Pauli
blocking (quantum statistics), and consists of two positively charged particles, which
will experience a repulsive Coulomb force. These two effects lead to a depletion of the
correlation function, counteracting the enhancement due the strong interaction. The
repulsive contribution becomes dominant at low k∗ and manifest itself, in C(k∗), as a
peak at around 20 MeV/c, whence it decreases toward lower k∗. The broadness of the
quantum statistic term is known to be inversely proportional to the source size, therefore,
the width in a small collision system will be

∼  hc/r0 =
197 MeV · fm

1.28 fm
≈ 154 MeV,

which is partially the reason for the slight dip within C(k∗) visible between 100 and
150 MeV/c in the left panel of Fig. 2.1.

The generic ideas presented before will be discussed in further detail in the subsequent
sections. In particular:

• Section 2.2: Experimental effects

• Section 2.3: Modelling the interaction

• Section 2.4: Modelling the source
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2.2 Experimental effects

2.2 Experimental effects

The experimental effects are outside the scope of the current work, however a brief sum-
mary will be presented. For a detailed discussion the following sources are available: [5,
24].

Momentum resolution

The most trivial experimental effect is due to the finite momentum resolution. It is present
for any detector, and leads to a smearing of the correlation function. For the ALICE
experiment the effect is in the order of 4 MeV/c in k∗, and is quantified with the help
of full scale Monte-Carlo simulations. The information extracted from the simulations
is the smearing matrix M(k∗true,k∗), which quantifies how the true relative momentum
is transformed into k∗. This affects the measured yields (N(k∗)) of the same- and
mixed-event sample.

Nmeasured(k
∗) =

∫∞
0

M(k∗true,k
∗)Ntrue(k

∗
true)dk

∗
true (2.9)

There are two approaches to account for the effect of the momentum resolution. The
first one is to apply the effect on Cth(k

∗) and the second is to unfold the same- and
mixed-event distributions. The latter is generally more difficult to perform, but has the
benefit of transforming the measured correlation to an experimentally unbiased state.
In the work of the ALICE collaboration [7], related to the study of the source, the first
approach was used, as will be in the present work.

Decomposition of the correlation function

The identification of genuine primary particles in collider experiments is susceptible
to false contributions from misidentified particles and feed-down additions from decay
products of other primary particles. For example, if a fraction of the measured protons are
misidentified pions, the same fraction of the experimental p–Λ correlation function will
be linked to the π–Λ interaction. An exemplary case of a feed-down would be producing
two primary Λs in the event, that interact. Eventually they will decay (cτ = 7.89 cm) into
a proton and a pion, and in most cases the decay products are detected and, based on
their invariant mass, a Λ candidate is reconstructed. Nevertheless, it may happen that
one of the decay protons is wrongly assigned to be a primary particle, in which case it
will enter the p–Λ correlation function. The detected signal will be linked to the original
Λ–Λ interaction, modified due to the decay kinematics. There are standard methods
to account for these effects [5], in which the fraction λi and correlation signal Ci(k

∗) of
each non-genuine contribution i are evaluated. The correlation function breaks down
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Chapter 2 The femtoscopy method

into a genuine (Cgen) and a residual part.

Ctot(k
∗) = 1 + λgen · [Cgen(k

∗) − 1] +
∑
i

λi[Ci(k
∗) − 1] (2.10)

Non-femtoscopic correlations

Another effect that skews the correlation function is the non-femtoscopic background,
which mainly affects the region of large relative momentum above 200 MeV/c. These may
be related to a multitude of effects, such as conservation laws or a correlated emission,
and are very difficult, in many cases practically impossible, to model. Since they are
expected to have a reasonably smooth behaviour at low momenta, it is possible to
parameterize them by a polynomial function, which is then multiplied with the correlation
function. The parameters of this polynomial are determined by fitting the data in a region
outside the femtoscopic signal. An additional constrain may be imposed by demanding
a zero derivative at k∗ = 0 for the non-femtoscopic signal, which is typically the case
for any type of correlation due to the disappearing phase space of both, the same-
and mixed-event samples. A solid choice of a background baseline (BL) function is a
polynomial of third degree, which has a zero linear term [20].

CBL(k
∗) = a+ b · k∗2 + c · k∗3 (2.11)

Considering all experimental effects, the function which can be used to model the data is

Cmodel(k
∗) = CBL(k

∗) · Ctot(k
∗) (2.12)

where, depending on the analysis, the momentum resolution effects needs to be included
in Ctot(k

∗). Note that if Eq. 2.12 is used to fit an experiment function Cexp(k
∗) and all

baseline parameters in Eq. 2.11 are left free, the normalization constant N becomes
obsolete.

2.3 Modelling the interaction

Based on the Koonin-Pratt relation (Eq. 2.6), one of the components needed to evaluate
the correlation function, genuine or otherwise, is the wave function of the studied pair.
One straight forward approach is adopted by the Lednický-Lyuboshitz (LL) analytical
model [12]. It provides the means to describe the correlation function by simplifying
the analytical treatment of the wave function. It relies on the assumption of an isotropic
source with a Gaussian profile (Eq. 2.8) and a computation of the wave function in the
asymptotic region. The outgoing function of a scattered wave on a potential can be
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2.3 Modelling the interaction

expressed as a free wave and a scattered spherical wave with the scattering amplitude
f(θ) [25], which describes the probability of scattering in any given direction θ.

Ψ(k, r) ≈ e−ik·r + f(θ)
eikr

r
(2.13)

The effective range expansion is applied on the scattering amplitude and the result is a
function of the momentum that takes in two parameters, the scattering length f0 and the
effective range d0.

f(k) ≈
(

1
f0

+
1
2
d0k

2 − ik

)−1

(2.14)

Combining these two expressions with the Koonin-Pratt equation (Eq. 2.6) brings forth
the Lednický-Lyuboshitz equation, an expression that is analytically solvable for a
Gaussian source of width r0.

CLL(k
∗) = 1 +

1
2

∣∣∣∣f(k∗)r0

∣∣∣∣2 (1 −
d0

2
√
πr0

)
+

2 Re[f(k∗)]F1(2k∗r0)√
πr0

−
Im[f(k∗)]F2(2k∗r0)

r0
,

(2.15)

where Re[f] and Im[f] denote the real and imaginary part of the complex scattering
amplitude. F1 and F2 are analytical functions that result from the approximation with
a Gaussian source. Since the wave function is derived based on its phase-shifted
asymptotic form, it will not be accurate at small distances for non-zero potential. For
the strong interaction this corresponds to several femtometers. The bracketed term
in Eq. 2.15 is partially correcting the shape of the wave function at low distances,
nevertheless, the correction is sensible only for d0 < r0, thus the LL model remains
difficult to apply for very small source sizes; such is the case in pp collisions. The form of
the LL presented above is only valid for non-identical particle in the absence of Coulomb
interaction, although both of these effects can be accounted for by further extending the
formalism [24].

CATS framework

A different approach to study the correlation function is to compute the two-particle wave
function exactly. This can be accomplished by employing the "Correlation Analysis Tool
using the Schrödinger equation" (CATS) [21], which solves the Schrödinger equation
numerically. The solution will be accurate at any distance, which means that there is no
limitation on the source size for which the framework can be applied. Any analytical or
non-analytical function can be used as an input to the source, as the integral in Eq. 2.6 is
evaluated numerically. The only current limitation of the framework is that the interaction
potential has to be real, and means that it is applicable to purely elastic scattering.
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Chapter 2 The femtoscopy method

Nevertheless, externally evaluated wave functions can be passed into CATS, even if they
have imaginary terms, to evaluate the Koonin-Pratt integral. This allows to use the output
of sophisticated models, such as χEFT, as direct input for CATS to evaluate C(k∗) for
any desired source function.

Another benefit of the CATS framework is the ability to apply all experimental correc-
tions, described in section 2.2, on top of the genuine correlation, enabling the evaluation
of the "model" correlation (Eq. 2.12).

2.4 Modelling the source

The source distribution reflects the probability to emit a pair of particles at a distance
r∗ in their rest frame. In the case of an uncorrelated pair emission, which is typically
assumed in femtoscopy, the source function can be derived from the single particle
emission distributions. These are described in good approximation by a Gaussian of
width r0 for each spatial (Cartesian) coordinate. This ansatz leads to Eq. 2.8, which
corresponds to the two-particle Gaussian source. Figure 2.3 compares the functional
shape of sources with varying sizes, found in collider experiments. The typical size in pp
collisions is ∼ 1 fm, while heavy-ion systems have an r0 parameter of at least 5 fm. For
comparison, the strong potential has a range of c.a. 2 fm, thus smaller collision systems
have the advantage of probing the non-asymptotic part of the interaction. Apart from the
independent particle emission, this simple derivation does not account for Lorentz boost
effects, nor for anisotropic emission. Further, non-Gaussian effects, e.g. production of
particles through (exponential) decays, are not taken into account. The latter has been
claimed to be a dominant effect in small collision systems, and has been thoroughly
investigated by the ALICE collaboration [7]. It has been demonstrated that p–p and
p–Λ pairs exhibit a difference in their source sizes of c.a. 15%. This can be seen in
the left panel of Fig. 2.4. Here, the source size r0 has been plotted as a function of the
transverse mass of the pair (mT).

mT
1 =

√
kT

2 +m2, (2.16)

where m is the average mass of the particle pair and kT the average transverse mo-
mentum. The transverse mass scaling is attributed to the collective expansion of the
system [10]. This prompted the ALICE collaboration to develop the "Resonance Source
Model" (RSM2), which accounted for particle production through intermediate short
lived (∼fm/c) resonances. These decay before they develop a strong FSI signal with
the surrounding particles, thus their effective contribution is a small exponential shift of
the emission point of their daughters. The typical example is a ∆ resonance decaying

1This definition of mT is approximate and only applicable for particles of low k∗.
2Details are provided later in this section.
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2.4 Modelling the source

Figure 2.3: Examples of the source function, times the angular term of the integration
4πr2, for different sizes.

into a proton and a pion. The RSM uses a simple numerical procedure, performed
within the pair rest frame, to propagate the initial (primordial) resonances until they
decay, and the spatial coordinates of their daughters shape the source function. The
input parameters are the size rcore of the Gaussian core source of the primordials, their
kinematic properties and relative abundances. The plots in the right panel of Fig. 2.4
are obtained by treating rcore as a free fit parameter, with the kinematics fixed from the
EPOS transport model [26] and the particle abundances extracted from the statistical
hadronization model (SHM) [27]. After re-fitting the p–p and p–Λ correlation functions in
each mT bin, the resulting rcore is found to be identical.

The observation of a common core source in p–p and p–Λ has been seen as a great
success, and widely used in following analyses to fix the source function in order to study
pairs of unknown interaction [5–7, 13–20]. The recipe has been to measure the average
mT of the studied pair, and extract the corresponding value of rcore from the pp result
shown in Fig. 2.4. Nevertheless, apart from the explicit treatment of the resonances, the
other possible modifications of the source have not been accounted for. For example,
there are no Lorentz boost effect, and the mT scaling is not intrinsically in the RSM,
due to the lack of collective effects. The mT scaling seen in Fig. 2.4 is obtained by
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Chapter 2 The femtoscopy method

Figure 2.4: [7] Source radius r0 (left) as a function of the transverse mass ⟨mT ⟩, obtained
from fitting the correlation function as shown in figure (2.1). Accounting for resonances
with the RSM yields a core source radius rcore as seen on the right.

fitting each mT bin individually, but the mT itself is not a parameter of the RSM model.
These are the challenges set to be addressed by the new model CECA. This thesis is
performed as part of the development program for CECA, where the model has been
compared to ALICE data. Details on CECA are provided in chapter 3, and details on the
corresponding data analysis in chapter 4.

Details on the Resonance Source Model (RSM)

The goal of the RSM is accounting for the origin of the particles. Many stable particles
of interest, such as protons, are the decay products of resonances, and their lifetime
affect the source function. Long lived resonances (cτ ≳ 10 fm) that travel further than
the size of the source can be left out, since the FSI already occurred between the
primordial particles. On the other hand, shorter lived resonances need to be taken into
consideration. Their decay lengths are of the same order as the source size, which leads
to a very short FSI between the primordials. In this case, the experimentally observed
particles, where at least one of them is a daughter of a primordial resonances, do not
only carry the correlations related to their interaction, but also inherit the ones between
the primordial particles. However, the latter can be neglected due to the very short time
of the decays, simplifying the problem. This implies that the correlation signal is the
result of the interaction of the measured (daughter) particles only. The resonance source
model (RSM) was introduced to quantify the effect of strongly decaying resonances, and
confirm the common baryon source [7].

For the accurate description of the effects of resonances, it is necessary to know the
fraction of primordial particles. This information can be obtained with the help of the
statistical hadronization model (SHM) and for both protons and Λs it amounts to ≈ 36 %
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2.4 Modelling the source

[7, 27], which means that resonances are the dominant production mechanism and their
effect cannot be ignored. There are numerous resonances feeding into both protons
and Λs, therefore, to simplify the computation, the RSM works with the yield averaged
mass and lifetime of all relevant resonances. The same approach will be adopted in
the present analysis using CECA. For protons (Λs) these are < Mreso >=1.37 GeV/c2

(1.46 GeV/c2) and < τ >= 1.65 fm/c (4.69 fm/c). The lifetime of the resonances feeding
into Λ particles is larger, therefore, the observed apparent source size r0 (left panel in
Fig. 2.4) is also larger. Figure 2.5 shows how the RSM works schematically. An initial

Figure 2.5: [7] Illustration of primordial particles (gray), which correspond to the core
source function with a radius of r⃗∗core, decaying into particles of interest (blue) and
generating an effective width r⃗∗ of the source function.

distance r∗core is generated randomly following a Gaussian distribution (Eq. 2.8), then
the primordial particles, in case they are resonances, are propagated on a straight line
based on their momenta. The momentum vectors are not known and need to be sampled
from a realistic transport model. The default choice for the RSM has been EPOS [26].
Next, the resonances decay and the daughters form the final pair of interest. It may
be, of course, that a pair is formed from one primordial particle and a daughter of a
decay product. This would correspond to setting s∗res,1 or s∗res,2 to zero (Fig. 2.5). The
relative distance between the daughters r∗ = |r∗| is saved in a histogram to build up
the corresponding source distribution. All quantities are evaluated in the rest frame of
the daughters. A comparison between the core source and the modified p–p and p–Λ
sources is shown in Fig. 2.6, where a very pronounced exponential tail can be seen and
deviates from the Gaussian profile at large r∗. Further details on the procedure and the
results can be read in the PhD thesis of Dimitar Mihaylov [21] and the dedicated ALICE
paper [7].
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Chapter 2 The femtoscopy method

Figure 2.6: [7] Source function distributions (circles) fitted with a Gaussian profile (colored
dotted lines) to extract the width. The exponential tail shows the effect of the resonances
for protons and Λs. The core distribution (black dashed line) is identical for both p–p and
p–Λ.
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Chapter 3

Common Emission with CATS

A new tool, developed in C++, for the modeling of the source is the Common Emission
with CATS (CECA). It is an improved and more generic framework than the RSM, that
uses single particle distributions to generate the source. The RSM delivered great results
and many analyses were performed based on this model, but it had several limitations,
as discussed in section 2.4, which necessitated an upgrade.

The first step for CECA to work is the definition of a particle database containing the
properties of the simulated species. This includes their relative abundances, momenta
distributions and masses. Additionally, the lifetimes and decay channels, including the
branching ratios, are needed if short-lived resonances contribute to the production of
the studied species. With this in place, CECA generates a pool of random particles
from which only those relevant to the analysis are saved. This includes not only the
particles of interest, but also those that are required for the chain decays, from which the
studied species may be produced. The simulation is performed in terms of events, in
which a fixed number of particles are generated. The species of each particle is chosen
randomly, based on the provided abundances. The momenta are sampled from the
corresponding single particle distributions. While this takes care of the kinematics, a more
detailed modeling is required for the spatial properties at the time of the hadronization.
All particles initially start with a zero space and time component. The final point of
emission is determined by several input parameters. Although this aspect of the model
is still in development, three of the parameters, alongside their generic concepts, will be
introduced and investigated in the present work. In particular:

• The displacement point (rd): a random Gaussian distributed displacement
around the collision point, which corresponds to the origin of the coordinate system,
that can be individually set for any spatial axis. If this parameter is used alone for
the modeling of the emission, and boost effects are neglected, it is equivalent to
the definition of the two-body source described with Eq. 2.8. Alternatively, if used
in conjunction with other parameters, it can be understood as a fluctuation in the
emission point, which is related to the inner structure of the hadron.

• The hadronization length (rhl): this parameter defines the surface of an ellipsoid
located around the displacement point. It can be controlled in each individual spa-
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tial direction. This parameter is inspired from Heavy–Ion collisions, and represents
the overall geometric shape of the expanding system, which deviates from a perfect
sphere. Subsequently, the momentum vector, that has been sampled from the
corresponding momentum distribution, and its intersection point with the surface
defines the hadronization. In case no further parameters are used, it would also
be the point of emission. So far the time component remains zero, however the
"clock" of the particle is now activated in the laboratory (LAB) frame of reference.

• The time offset (τoff): This parameter is a constant, corresponding to the amount
of time needed for the effective emission to occur after the hadronization process.
The time offset can be treated as a "proper time" for each particle, which is the
default choice, or as a constant within the LAB. The propagation is performed on a
straight line, i.e. ignoring any possible FSI, based on the velocity of the particle.
After the set amount of time elapses, the position of each particle is considered the
point of emission. This parameter can be controlled individually for each particle,
however this case has not yet been extensively studied.

The above three parameters are treated as being common for all particles. This implies
that any differences in the single particle sources are attributed to differences in the
momenta/velocities of the particles. At this stage, the kinematics, spatial and time
coordinates are saved. Next, the resonances are selected, propagated and decayed
in the LAB frame, according to an exponential distribution based on their lifetime. This
brings the single particle part of the simulation to an end, as now all species of interest
have been produced. To construct the two-body source, the particles are grouped into
pairs, by making all possible permutations within the event. From here, the particles are
boosted into the pair’s rest frame. For each pair the starting time of the interaction is
decided by retrieving the value of the particle formed second. The first is propagated,
again on a straight line, in order to obtain the relative spacial coordinates of the two
particle at the same time. The latter is a condition required by femtoscopy [10].

The effects of these parameters on the source distribution can be demonstrated by
running CECA exclusively with the individual variables. The following investigation will
separate the core and total (effective) source. The core corresponds to the emission point
of the primordial particles of interest, ignoring any resonances and their decays. The
total source is evaluated by taking into consideration all particles of interest, regardless of
their origin. After setting up CECA with an arbitrary value for the displacement parameter,
the framework goes through the aforementioned processes and generates a range of
histograms related to the kinematic and spatial properties of the emission. This includes,
for example, the angle distributions and, more importantly, the source distribution. Since
the framework saves the information of the single particles, individual observables such
as the mT are easy to extract for differential studies. This simulated source distribution
is then fitted with the Gaussian profile (Eq. 2.8), from which the effective width of the
source is extracted. This is performed for pairs of k∗ < 100 MeV/c, in order to select only
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(a) Displacement of 0.8 fm

(b) Time offset of 4 fm/c (c) Hadronization scale of 4 fm

Figure 3.1: Effect of the different parameters of CECA with a Gaussian source. The black
line denotes the primordial source and the colored line the effective source size.

the candidates relevant for femtoscopy. This process will be used throughout the whole
analysis performed within the scope of this work. Figure 3.1 shows the resulting relation
between the source size and pair mT for Boltzmann distributed momenta, and particles
and resonances set to correspond to the p–p correlation, as studied by ALICE [7]. On
these plots the total effective source (colored lines) and the underlying core source
(black lines) of the primordial particles are shown. This helps to monitor the effect of
the production through resonances. Figure 3.1 provides a lot of information, all of which
will be discussed below, split into two paragraphs: one regarding the core-to-effective
Gaussian size ratio and one regrading the mT scaling.

Core-to-effective Gaussian size ratio

To begin with, the displacement parameter generates a scaling with an upward slope
shown in Fig. 3.1a, whose effective size does not increase much compared to the core.
The change is about 10%, which seems low given the comparable source size1 and
lifetime (c.a. 1.7 fm) of the resonances. However, this can be explained by the completely

1A 1 fm Gaussian source size correponds to roughly 2 fm average separation between the particles
(Fig. 2.3).

19



Chapter 3 Common Emission with CATS

random orientation of the spatial and momentum vectors, which leads to a sizeable
probability for the resonances to move toward the center (back toward the collision
point) and decay well within the volume corresponding to the primordial emission. For
this reason the total source size is only marginally increased. The effect will be more
pronounced for larger lifetimes of the resonances, since then the particles travelling
"backwards" will decay well outside the primordial source.

The next parameter is the time offset and its effect on the core is a systematic increase
in size proportional to its value. The core source function is a compact distribution while
the effective is much broader; the size difference is around 0.65 fm. The very compact
core (rcore ≈ 0.35 fm) corresponds to average distances between the primordial particles
of c.a. 0.75 fm, which is actually comparable to the proton radius, thus physically possible
to realize. In fact, the EPOS transport model also has a very compact primordial source,
that has a mean particle separation of ∼1 fm. The large increase of the total source is
associated with the strongly correlated space and momentum coordinates, which enforce
the particles to travel away from the collision point and, consequently, away from each
other. The production through a decay of a resonance gives the particles more time to
separate from one another, while the random momentum kick of the decay breaks the
perfect collective alignment of the daughters with respect to the rest of the primordials,
separating them even faster.

The hadronization length has a comparable difference in the size of the core and total
sources to the time offset. Similarly, the reason is the collective expansion of the system
away from the collision point, resulting in strong space-momentum correlations.

Source dependence on the transverse mass

The arbitrary values for the plots in Fig. 3.1 were chosen to provide similar effective size
of the compared sources. It is apparent that the mT scaling is very different for each
of the individual parameters. The data, shown in Fig. 2.4, demonstrates a source size
that decreases with mT, however the displacement parameter represent the complete
opposite trend. On the other hand, the time offset leads to an approximately flat mT
distribution, whereas the hadronization length generates, qualitatively, the correct shape
of the scaling. In a naive picture, these relations can be explained by considering the
collective behaviour of the system, related to the strong space-momentum correlations.
If these are absent, particles of large mT will have, on average, rather large momenta,
separating them faster in the LAB. This leads to an effective increase of the source size.
On the other hand, if the space and momentum coordinates are strongly correlated,
two particles of large momenta (and mT) can only be aligned to have a small relative
momentum k∗ if they were produced very close in space. This effect may become
dominant, and Fig. 3.1 shows that it is strongest under the consideration of a purely
geometrical correlation between the space and momentum coordinates.

The effect of production through resonances does not show an effect on the mT

20



scaling in any of the cases, implying similar qualitative behaviour of both the core and
total source. Given the different trend seen for each parameter, the mT dependence
observed in data is likely to be reproduced only by a combination of all three scenarios.
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Chapter 4

Analysis

4.1 χEFT and the interaction potentials

To understand the analysis and the fitting procedure of the p–Λ system, it is necessary
to look in more detail at the interaction. The p–Λ consists of two fermions, which can
be arranged in a configuration of total spin S = 0 or S = 1. The former is called a
singlet and the latter a triplet state. This reflects the 1/4 and 3/4 probability of finding
the p–Λ pair in each state, which is related to the spin degeneracy [21]. In the previous
ALICE analysis, related to the common source [7], the p–Λ interaction was modeled
with the leading order (LO) [23] and next-to-leading order (NLO) [1] χEFT. This theory
applies pseudo-scalar meson exchanges to treat the interaction in NN and YN systems,
and relies on fitting to low-energy cross sections to obtain its parameters. The YN
system is less constrained, since the data points from experiments are much more
scarce compared to NN. For the p–Λ system the fitting is performed only on 36 data
points using measurements of the cross section; an additional constraint results from
hypernuclei experiments [28, 29]. In fact, there are several tunes of the chiral model,
NLO13 [1] and NLO19 [2], predicting around 10% difference in the scattering length (at)
of the s-wave triplet (3S1) channel. Both describe the existing scattering data equally
well. This implies that there is not a unique solution and multiple choices are available
for the parameters of the model, as well as the scattering parameters. On a positive
note, this leaves room for exploring this system experimentally, which is achievable using
the ALICE experiment, as demonstrated in a dedicated study [20]. In a comparison
between the agreement of the different χEFT parameterizations to the p–Λ correlation
function, it has been shown that the LO, with at =1.23 fm, is completely incompatible
to the data, while both the NLO13 (at =1.54 fm) and NLO19 (at =1.41 fm) provide a
better, yet far from satisfactory, description of the ALICE data. In particular, the NLO13
deviates by at least 4.2 standard deviations (nσ), while NLO19 by 3.2, highlighting the
possibility to further constrain the data. The NLO19 corresponds to a weaker two-body
p–Λ interaction in vacuum. The chiral calculation has a non-physical cutoff parameter Λ,
which has a default value of 600 MeV. The ALICE analysis reevaluates the agreement to
the data for Λ ∈ [500− 650] MeV, and the best fit is achieved between 600–650 MeV. For
this reason, in the present work, the default value of 600 MeV will be exclusively used.
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The χEFT is considered a state of the art model to describe the YN interactions, as
it works within the SU(3) symmetry and describes all related interactions. In particular,
it includes the p–Σ0 and n–Σ+ channels, both of which couple to the p–Λ system. A
coupled channel is described by a quantum mechanical system of different eigenstates,
with the same quantum numbers, that allows the transition between the two states. E.g.
a measured p–Λ pair may actually stem from the inelastic NΣ → NΛ process. This is a
quantum mechanical effect, and as such will be visible in the wave function. The coupling
effect is included in the chiral model, while the ALICE data provides sufficient precision
to test it [20]. The obvious result of the coupling is a cusp structure in the p–Λ correlation
function (and cross section) appearing at k∗ ≈ 289 MeV/c, which corresponds to the
kinematic threshold at which a N–Σ pair at rest will be seen in the p–Λ spectrum. Such
a threshold exists due to the fact that the Σ has a mass of c.a. 1190MeV/c2, which is
larger than the Λ mass (1116MeV/c2). Nevertheless, the effect of the coupling is not
only limited to the cusp, and has a slight effect on the overall shape of the correlation
function, due to the interplay of all model parameters. In femtoscopy, it is often sufficient
to only include the s-wave scattering, however due to the complexity of the NΣ ↔ NΛ

system it is necessary to include the d-waves as well. The p-wave scattering is not
important for this particular case. The inclusion of the d-waves has been done in the
most recent ALICE work on p–Λ [20], but it has not been included in the analysis of the
source [7]. The latter made use only of the LO and NLO13 pure s-wave calculations. In
this work multiple scenarios will be tested and compared.

Finally, the differences between NLO13 and NLO19 produce a change in the three-
body interaction, providing further insight into neutron stars [30] and the hyperion puzzle,
mentioned in the introduction. In particular, while the NLO19 has a lower two-body
attraction in vacuum, it actually leads to stronger attraction in medium. Naively, this
leads to a softer EoS, which is in contradiction to the measurements of heavy neutron
stars. Nevertheless, a recent theoretical study shows that the three-body repulsion is
expected to be stronger for NLO19 compared to NLO13 [30], and is significant enough
in both cases to stiffen the EoS and prohibit the formation of Λ hyperons within the
neutron star matter. Although, the hyperion puzzle remains unsolved, this is, at the very
least, a step into the right direction. To quantify these ideas, it is necessary to study
further, experimentally, both the two- and three-body interaction between hyperons and
nucleons [20, 31].
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4.2 CECA configuration and prediction

The first practical trial of CECA is reproducing the mT scaling in the p–p system. This
system is used as a benchmark, as the interaction is known with high precision. To
achieve this, it is necessary to provide the framework with the momenta distribution of
the protons, the fraction of primordial particles Pp = 35.78% and their average lifetime
(1.65 fm) [7]. The distribution is taken from experimental data from ALICE and the
fraction is obtained from the SHM [7, 24, 32]. The proton and Λ pT distributions are
shown in the Appendix (Figs. A.1 and A.2), while the pseudorapidity (η) is assumed
flat within the ALICE acceptance range of |η| < 0.8. With these parameters set, a fine
tuning of the model’s source parameters is needed, with the goal of reproducing the p–p
effective radius r0(mT) (blue points in the left panel of Fig. 2.4). However, as a first step
the trivial case of a Gaussian source has to be examined, to confirm the compatibility
between RSM and CECA. For that, an arbitrary rcore = 1.0 fm is selected, and both
core and p–p effective sources are simulated using the two models. Within CECA the
displacement parameter (single particle Gaussian) is assumed identical to rcore, which is
the case for an independent emission. An issue, related to the input parameters of the
two approaches, is that the RSM uses the two-body kinematics obtained from EPOS, as
opposed to CECA that uses the measured single particle pT and η distributions. To make
a fair comparison, at present the kinematics have been simulated with CECA using the
assumption of a Boltzmann distribution of the single particles, and have been exported
into RSM. In this way, the two models obtain exactly identical kinematic properties, and
a direct comparison becomes possible. Another difference, which cannot be avoided,
arises due to the boost from the laboratory to the pair rest frame, which is performed
in CECA but not in RSM. This leads to an effective increase of rcore by 14%, for the
current setup, as can be seen in Fig. 4.1. The effect is similar for p–Λ, thus the relative
comparison of the two systems is not compromised, nevertheless, the effect will become
more relevant for mesons. Finally, the effect of the resonances is compared by plotting
the final source distributions, which look identical for both models (see Fig. 4.1).

Despite the slight non-Gaussian shape of the core and effective source distributions,
they can still be fitted with a Gaussian profile to quantify their size. This will be done
consistently throughout the following analysis and is well justified, as the mean value of
the distributions, and consequently the effective Gaussian size, is the dominant parameter
with regard to the shape of the correlation function. For the purpose of the present work,
the second-order corrections can be ignored. It should be stressed, that these effects
need to be accounted for any precision analysis, as they are likely to contribute by
several percent, which is comparable or larger than the statistical uncertainties of the
mT integrated p–Λ correlation measured by ALICE [20].

In conclusion, CECA and RSM are compatible in terms of their treatment of shortly
decaying resonances, however it is observed that even in a relatively heavy system, such
as p–p, the boost into the pair rest frame has an effect on the core source distribution.
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Figure 4.1: Source distributions, core in the left panel and total (including production
through resonances) in the right panel, produced by RSM (blue) and CECA (magenta).
The starting point is a Gaussian single particle source of 1 fm, where the corresponding
two-body source is plotted with black dashed line. The size of the core in CECA is
expanded to 1.14 fm, due to the transformation into the PRF. This core source has been
used in RSM to produce the corresponding total source.

Since CECA is more generic it must be considered more accurate. Most importantly,
it can now be used to study the mT dependence of the source. In Fig. 4.2 the mT
scaling predicted for p–p (light-blue line), given a 1.0 fm displacement, is compared to
the measured ALICE results (dark-blue points). Evidently, these two are completely
incompatible, nevertheless this is not a surprise as the observed scaling is typically
attributed to correlations between the spacial-momentum components at emission, which
is not included within the random Gaussian sampling of the spacial components. In fact,
similar mT relation is observed in the EPOS transport model. It is of course possible
to imitate the scaling, by fitting the mT bins individually, with only the displacement
parameter as a free fit variable, which is the equivalent to the analyses perfomed with
the RSM. But this means that the mT relation will be an artificial input, whereas the goal
of CECA is to start from a single configuration and, under the assumption of a common
source, predict the scaling through the introduction of spatial momentum correlations.
The enforcement of these requires the introduction of additional parameters, whose
combination will hopefully reproduce the correct scaling. The starting point are the
relations in Figure 3.1, where the effect of the displacement rd, hadronization length rhl

and time offset τoff are shown. It is clear, that the displacement generates an increasing
slope, whereas the required decrease can be generated using the hadronization length
parameter. The time offset can be used to introduce a constant shift of the source size.
With the understanding of these three parameters, it is possible to reproduce the scaling
in p–p with a crude pseudo fitter. The parameters are mostly tuned by hand to find
a combination that roughly mimics the measured mT scaling, and then automatically
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Figure 4.2: The effective source radius of p–p as a function of mT (light blue), for a value
of the displacement parameter of 1.0 fm, in comparison to the scaling from pp and pΛ
from data [7].

reiterated several times to find the best match to the data. The manual work is required
as a single evaluation of the source function, for a given set of parameters, lasts several
minutes, whereas a fully automated fitter typically requires several thousand of function
calls to converge. The result of this approach are the following values: 0.25 fm in the
transversal plane and 0 fm in the beam direction for the displacement, 3.55 fm for the time
offset and 2.3 fm in transversal and 0 fm in beam direction for the hadronization length. It
has been observed that the source extension in the beam (z) direction has only a small
effect, and it has been set to 0 arbitrarily. With this parameterization CECA is able to
provide a perfect fit to the p–p mT scaling, as seen in Figure 4.3. This indeed points to
strong space-momentum correlations, as the random component of the source amounts
to only 0.25 fm, which is comparable to the distribution of partons within the colliding
protons. The resulting core and total source distributions at mT = 1.23 GeV are shown in
Fig. 4.4. They are both fitted with a Gaussian profile to extract the corresponding effective
radii, which are rcore = 0.48 fm and reff = 1.28 fm. Both of the distributions deviate
from a Gaussian profile, nevertheless, it has been verified that this does not introduce a
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Figure 4.3: Scaling of the pp (blue) and pΛ (red) from the original analysis [7] with the
p–p prediction of CECA (light blue), for the values of 0.25 fm for the displacement, 2.3 for
the hadronization and 3.55 fm for the time offset.

great bias to the correlation function. Note that the total source distribution has a little
bump at c.a. 1 fm, which corresponds to the emission of two primordial (core) protons,
accounting for ≈ 12% of all pairs. It has to be mentioned, that these parameters might
not be a unique solution, and as a matter of fact, there is the possibility to completely
leave out the displacement parameter out from the equation and set it to zero, which
also provides a very good fit. It is possible to attempt to increase rd and compensate its
effect by increasing rhl and decreasing τoff, but the overall slope of the mT starts to alter
and becomes incompatible to the data at rd ≈ 0.4 fm. Nevertheless, the next step is to
predict the scaling of the p–Λ system, given the parameters obtained from p–p. This is
done in order to test and reconfirm the hypothesis of a common emission source. The
only changes that have to be made, are providing the momentum distribution of the Λ

and the fraction of resonances, PΛ = 35.62%, including their average lifetime (4.69 fm),
attained in the same way as for the protons.

This results in the scaling seen in Figure 4.5. What becomes apparent is that the
prediction does not agree with the p–Λ measurement. On the positive side, the scaling is
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Figure 4.4: The core (black) and total (blue) p–p source from CECA, at mT =1.23 GeV.

preserved and follows the trail of the data, which implies that the correlations introduced
by CECA carry over when switching system. The discrepancy of the amplitude of
the source is reconfirmed if the procedure is inverted, fixing the CECA parameters to
p–Λ and transferring them to p–p (Fig. 4.6). This is actually to be expected, since the
difference in the source sizes of the two systems only stems from the difference in
the average lifetimes of the resonances, and not from the rest of the parameters. The
following values describe the p–Λ system: rd = 0.2 fm, τoff = 3.85 fm and rhl = 2.85 fm.

These results seems to stand in contradiction to the assumption of a common source,
since the effective radii provided by CECA match the p–p and p–Λ only if different
primordial sources are assumed. However, there are alternative explanations, in par-
ticular that the p–Λ interaction is not accurately modeled, reflected in a systematic
shift of the obtained source size. In Fig. 4.5 it can be seen that the CECA prediction
is shifted to the edge of the experimental uncertainties, which are indeed dominated
by the systematic component. Moreover, as discussed in section 4.1, the fits to the
experimental correlations, used to create the p–Λ relation in Fig. 4.5 and in [7], are
performed using either the LO or NLO13 tune of the chiral model, accounting only for
the s-waves. This limitation enforced to fit C(k∗) well below the NΣ cusp, located at
k∗ = 289 MeV/c, leading to a fit range between 0 and 228 MeV/c. This range does not
allow for an accurate determination of the non-femtoscopic baseline, thus an additional
bias might be present. Further, the analysis performed in [7] has been done with outdated
assumptions regarding the feed-down contributions from p–Σ0 and p–Ξ, whereas the
subsequent dedicated p–Λ analysis [20] clearly shows their importance. All of these
considerations lead to the decision of taking a deeper look at the p–Λ correlation function,
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Figure 4.5: Effective source radius as a function of mT for the p–p (blue) and p–Λ (red)
system taken from [7] with the prediction of CECA (green) for the p–Λ, for the values of
0.25 fm for the displacement, 2.3 fm for the hadronization and 3.55 fm for the time offset.

and see how the updated analysis procedure influences the results on the source size.
The work related to this analysis, and in particular [20], sparked a very useful private
communication with the main author of the χEFT, Johann Haidenbauer, who provided a
modified NLO19 calculation (at = 1.41 fm), in which the strength of the attraction in the
3S1 channel has been reduced to at = 1.3 fm. Such a modification is not contradicting
the existing experimental constrains on p–Λ, and is thus of interest within the present
analysis. Next, the measured p–Λ correlation functions [7] will have to be reanalyzed
and refitted individually in mT. This was possible, as my supervisor has been one of the
analyzers of the ALICE results on p–Λ, and was able to provide me with the raw data
corresponding to the published results. These already contain the fully reconstructed
correlation functions.
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Figure 4.6: Effective source radius for the p–p (blue) and p–Λ (red) system taken from
[7] with the prediction of CECA for the p–p (light blue), tuned to the pΛ scaling (green).

4.3 Refitting of the p–Λ correlation function

4.3.1 ALICE data

In the present work, the analysed correlation functions are obtained directly from the
ALICE analysis related to the search of a common source [7]. For that reason the
experimental details are omitted in the present manuscript, and this sub-section provides
only the basics. For a detailed discussion of this topic refer to the PhD theses of either
Dimitar Mihaylov [24] or Bernhard Hohlweger [32].

Both the p–p and p–Λ correlation functions have been measured by the ALICE
experiment. It is located at the Large Hadron Collider (LHC), and the second data taking
period (RUN2) of pp collisions at 13 TeV has been used in the present analysis. A
schematic representation of the detector system is provided in Fig. 4.7. In a simplified
picture, the single particle measurement of protons and Λs is performed as follows:

• Collide two protons at the center of ALICE, which is surrounded by a variety of

31



Chapter 4 Analysis

Figure 4.7: Schematic representation of the ALICE detector during the Run-2 data taking
period (2015-2018) [33].

detector systems. The reconstructed collision point will be referred to as primary
vertex (PV).

• Activate the detector read-out system, if a certain set of criteria are fulfilled (trigger).
When the read-out is complete, the collected information is stored as an "event",
and should correspond to a single collision. The basic trigger is called minimum-
bias (MB) and it aims at introducing as little bias to the properties of the selected
events as possible. In the current work a high-multiplicity (HM) data sample is
used, where the triggering is performed only in events containing large amount of
reconstructed charged particles (>30). This maximizes the probability of finding
rare types of pairs, and is thus beneficial for femtoscopy.

• Within a single event, the charge particles first fly through the silicon based Inner
Tracking System (ITS), and the generated signal allows to determine the trajectory
(track) of the particles with high spacial resolution. Ultimately, this leads to a very
accurate (<100 µm) determination of the PV.

• The charged particles then enter the huge Time Projection Chamber (TPC). This is
a gas-filled detector, in which ionization happens when a charge particle traverses
the volume. The generated electrons drift toward the two end-plates of the detector,
and the signal is used to reconstruct (in 3D) the position (hit) of the particle. Due to
the large size of the TPC, a single charged track can generate up to 159 hits, which
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4.3 Refitting of the p–Λ correlation function

are used to determine the trajectory. Since ALICE is surrounded by a very strong
magnet, generating a field of strength 0.5 T, the charged particles fly on a curved
trajectory, and the curvature allows to measure their momenta. On the other hand,
the strength of the generated signal is related to the energy loss of the particles,
which is connected to the velocity (Bethe-Bloch relation). The latter allows to
disentangle the momentum and mass of the particles, leading to the identification
of the particle species (PID). The TPC is crucial for femtoscopy measurements, as
it allows for very accurate determination of both the momentum (<5% uncertainty)
and the PID (≈ 99% purity for protons and pions).

• The Time of Flight (ToF) detector provides complementary information about the
velocity of the particles, and boosts the PID capabilities for tracks of large momenta
(>0.75 GeV/c). The main downside of ToF is the lowering of the reconstruction
efficiency.

• The reconstruction of neutral particles, such as Λ, is done by using their charged
decay products. For example, Λ → pπ with cτ = 7.89 cm, allowing to measure the
decay daughters. Thus, all measured pπ pairs are investigated for a compatibility
with a Λ decay, which is based on the combination of the pπ invariant mass and
the topological properties of the tracks.

After the particles of interest are reconstructed, each event is analyzed to search for
p–Λ or p–Λ pairs, which exhibit the same FSI. The present analysis is performed
with c.a. 109 events, leading to the detection of over 1.3 · 106 p–Λ ⊕ p–Λ pairs with
k∗ < 200 MeV/c. This large data sample allows to perform a differential analysis in 6
mT bins, where the ranges of the bins are chosen such to result in an approximately
equal pair yields. However, not all of these pairs represent the genuine p–Λ interaction
(see chapter 2.2, Eq. 2.10). The topological selection of single particles is tuned to
reconstruct predominantly primary particles, which stem either directly from the collision
point (primordial) or are the decay products of short lived (cτ <<cm) resonances. These
two scenarios cannot be separated by the detector, due to spacial resolution of the
tracks. Nevertheless, the effect of the short lived resonances is included in the treatment
of the source. By contrast, the topological selection helps to reduce the feed-down
contribution from longer lived particles. However, these contributions are only partially
suppressed, as tightening the selection criteria too much leads to a significant loss
of signal. Nevertheless, it is possible to quantify the contribution of each feed-down
channel, as the topological properties of the reconstructed tracks have different features.
For example, the Distance of Closest Approach (DCA) of a track to the PV has a
different underlying probability density function, based on the origin of the particle. Thus,
a dedicated analysis of this distribution is capable to determine the amount of feed-
down, using Monte-Carlo (MC) simulations. These ideas are thoroughly discussed and
explained in [5, 24, 32]. In summary, the contributions considered within the correlation
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Table 4.1: Weight parameters of the individual components of the p–Λ correlation function.
The flat contributions include unaccounted feed-down and misidentifications. The default
values correspond to the analysis [20], while the values in square brackets correspond
to [7]. In the latter (older) analysis, the p–Ξ0 contribution has been treated as effectively
flat. The two last rows correspond to the values of the λ parameters within the systematic
variations.

Pair pΛ p(Σ0) p(Ξ−) p(Ξ0) Flat
λPair (%) 45.4 [45.2] 15.1 [15.1] 9.1 [9.1] 9.1 [n/a] 21.2 [30.6]

min{λPair} (%) 40.7 [43.1] 12.0 [12.7] 9.0 [7.3] 9.0 [n/a] 21.2 [28.8]
max{λPair} (%) 47.8 [47.6] 17.3 [17.2] 10.7 [10.9] 10.7 [n/a] 22.0 [32.4]

function in this analysis are listed in Table 4.1. The particles enclosed in brackets
represent feed-down contributions, e.g. p(Σ0) is the amount of residual p–Σ0 signal seen
in p–Λ. Since the present work will be compared to both ALICE works involving the p–Λ
correlation [7, 20], and the two analyses have minor differences1, two different sets of λ
parameters will be used. Further, small transformations are performed to accommodate
the differences to the present analysis, e.g. the dedicated p–Λ paper [20] works with an
unfolded data set corrected for the impurities of the Λ, while this is not done here, hence
a minor modification to the decomposition is required. Ultimately, the total correlation
function is:

Ctot(k
∗) = λpΛ ·CpΛ(k∗)+λp(Σ0)Cp(Σ0)+λp(Ξ−)Cp(Ξ−)+λp(Ξ0)Cp(Ξ0)+λflat. (4.1)

The flat component includes both the flat feed-down, as well as the contribution related
to misidentified particles. The rest of the feed-down correlation functions are computed
exactly as described in either [7] or [20], depending on the tested scenario. The latter
is a more recent paper, hence the analysis has evolved, and can overall be considered
more accurate.

4.3.2 Analysis of the correlations

The development of CECA is still ongoing, and using its source function directly in CATS
is currently not very practical. To simplify the present analysis, the source function used
to fit the p–Λ correlations is Gaussian (Eq. 2.8), while any comparisons to CECA will be
performed by using an effective Gaussian source size provided by the model, following
the procedure explained in section 4.2. In essence, the goal is to reproduce Fig. 4.5, by

1The underlying data is the same, however the analysis techniques have been improved in [20], leading to
minor differences.
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4.3 Refitting of the p–Λ correlation function

fitting the corresponding p–Λ correlations using a Gaussian source, but adopting different
settings regarding the fitter and testing several wave functions. This will demonstrate
if the prediction of CECA (green points in Fig. 4.5) correspond to a reasonably small
modification of the p–Λ interaction, and can thus be considered realistic. The following
scenarios will be tested:

I. Fit the correlation functions with exactly the same settings as used in the ALICE
paper on the emission source [7]. This is done to ensure that the code implemented
within this work is compatible with the original code used for the ALICE publication.
Here the NLO13 s-wave wave function has been used.

II. Fit the correlation functions using the settings from the dedicated ALICE p–Λ
paper [20]. The main difference is the usage of the NLO19 parameterization of
the chiral theory, including both s- and d-waves to properly model the coupling
to NΣ. This allows to extend the fit range to and above the NΣ cusp, making
possible to better constrain the non-femtoscopic baseline. There are several
further refinements, compared to the older analysis [7], such as an improved
modeling of the p–Σ0 and p–Ξ feed-down.

III. One of the conclusions done in [20] is that a weaker two-body p–Λ attraction in
vacuum is preferred by the ALICE data. This statement is based on the preference
of NLO19 over NLO13. Moreover, the final fit quality, using NLO19, is still not
satisfactory, thus in the present work the hypothesis of even lower attraction is
tested. This is achieved2 by reducing the strength of the interaction within the
triplet channel by almost 10%.

Following the analysis procedures described in both ALICE papers [7, 20] the systematic
uncertainties of the fit have been included by repeating the fit multiple times, in each
random sampling several parameters. The "topological" variations are related to the
reconstruction procedure, and account for creating 43 distinct correlation functions, each
corresponding to a random modification of the topological criteria within some set limits.
As mentioned, details can be found in the theses of D. Mihaylov and B. Hohlweger [24,
32]. Within the present work these have been included by selecting one of these 43
correlation functions, randomly, in each systematic variation. Next is the variation of the
fit range, where the upper limit is chosen randomly from 3 predefined values. These are
204, 228 and 240 MeV/c for scenario (I), and 432, 456 and 480 MeV/c for scenarios (II)
and (III). For the first scenario (I) the baseline hypothesis is randomly selected between a
constant factor and a linear function. For the updated scenarios (II) and (III) the baseline
is fixed as a polynomial of third degree (Eq. 2.11). There are two further variations, the
values of the λ parameters (see Table 4.1) and the expected production ratio of Σ:Λ,
which is important for fixing the strength of the cusp [20, 24]. The latter has been varied

2Work of Johann Haidenbauer, done within the scope of private communication.

35



Chapter 4 Analysis

within 1/3 ± 20%. This is based on the expectation considering the isospin degeneracy,
as Λ is I=0 (singlet) and Σ is I=1 (triplet). This implies that assuming a similar amount
of Λ and Σ production, each individual Σ state is only 1/3 probable compared to Λ.
As explained in section 2.2, the non-femtoscopic correlations are taken care of with a
polynomial BL function (2.11), which serves as a correction term for the total correlation
function as seen in eq. 2.12. Additionally, due to the presence of strong long-range
effects, the femtoscopic correlations cannot be reliably normalized and the constant N is
left free as well. Ultimately the following fit function is used:

Cmodel(k
∗) = N(1 + p2 · k∗2 + p3 · k∗3) · Ctot(k

∗). (4.2)

The femtoscopic signal Ctot(k
∗) is evaluated with CATS, where the parameters from the

BL are left free. The source function is assumed to be a Gaussian profile and lastly, the
p–Λ interaction is modeled using the different chiral potentials (see section 4.1).

First, the same settings for the variations are used, as was done in the analysis of
the source function in [7], with the NLO13, to show the equivalence of the two models
(scenario I). Once again, the fit is done individually for each mT bin and two example fits
are shown in Fig. 4.8. The top (middle) panel shows the correlation function (zoomed),
while the bottom panel shows the deviation between data and theory given in

nσ =
data − theory
uncertainty

(4.3)

and evaluated in each k∗ bin. This observable is the building block of the χ2, where
the ratio of the deviation of the data from the theory to the uncertainty is squared, and
provides a measurable value for the fit accuracy. The χ2 is defined as

χ2 =

entries∑
i

[
datai − theoryi

uncertaintyi

]2

. (4.4)

Further description on the χ2 can be read in [24]. Overall the fit quality deteriorates at
low k∗ and large mT, but is quite good for low mT. The extracted Gaussian source size
r0 is plotted in Fig. 4.9, where the original ALICE result is shown for comparison. Clearly
the two relations are identical, up to negligible fluctuations well below the uncertainty.
This implies that the framework developed within the present thesis delivers an output
consistent with the original ALICE analysis, and can be trusted to re-evaluate the results
using a different set-up for the interaction and an extended fit range (scenarios II and III).
The results for scenario II, which uses the NLO19 potential and the updated analysis
procedure following [20], are shown in Fig. 4.10 (fits) and Fig. 4.11 (r0(mT)). The
quality of the fits is better, in particular for large mT, while the overall extracted source
size decreases a little bit. This is attributed to the inclusion of d-waves into the model,
extending the fit range in consequence, and the slightly lower two-body attraction within
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Figure 4.8: C(k∗) (black points) for the p–Λ system in the 2nd (left) and 5th (right) mT
bin with the NLO13 potential, using the limited fit range as in [7] (scenario I).

Figure 4.9: Effective radii for the p–p and the p–Λ system, where the modeling of the
p–Λ was performed with CECA (light red) and with the RSM (dark red) for the NLO13
potential.
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Figure 4.10: C(k∗) (black points) for the p–Λ system in the 2nd (left) and 5th (right) mT
bin with the NLO19 potential, using the extended fit range as in [20] (scenario II).

Figure 4.11: Effective radii of the p–p and the p–Λ (NLO19) system alongside the
prediction of CECA for the p–Λ system (green).
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the NLO19 parameterization. The discrepancy to the CECA prediction is reduced,
nevertheless a slight systematic bias is still present. The reason for this persistent
discrepancy is not yet completely clear, as it may be attributed to either the interaction
or remaining inaccuracies in the modeling of the source. Nevertheless, one further test
was performed, in which the hypothesis of a lower strength of the two-body attraction
is assumed. This corresponds to scenario III, and the results are shown in Figs. 4.12
and 4.13. It leads to an expectation of even smaller source size, compared to II. The
quality of the fits is good and very similar to the previous case (NLO19), while the r0(mT)
relation is essentially compatible with the CECA prediction. The figures for the rest of the
mT bins can be found in the appendix.
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Figure 4.12: C(k∗) (black points) for the p–Λ system in the 2nd (left) and 5th (right) mT
bin with the NLO19 potential with reduced two-body attraction, using the extended fit
range as in [20] (scenario III).

Figure 4.13: Effective radii of the p–p and the p–Λ system alongside the prediction of
CECA for the p–Λ system (green). The interaction potential for the p–Λ is a modified
version of the NLO19 with a reduced scattering length for the 3S1 channel.
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4.4 Discussion

The modeling of the emission source in femtoscopy is very important to understand the
details of the interaction between pairs of particles. Small collision systems are expected
to posses a common source for all particle species, baryons in particular, allowing to fix
the emission source based on a system of known interaction, such as p–p. The validity
of this concept has been demonstrated by the ALICE collaboration for protons and Λ

hyperons, by developing the Resonance Source Model, which corrects the emission
source for the effect of particle production through short lived resonances. This model
had certain shortcomings, that motivated an upgrade and lead to the development of
a new framework to model the source, CECA, which was presented in this work. It is
more generic to its predecessor, due to the modeling of the two-body source based on
single particle properties. The effects of short lived resonances are again included, but in
addition it is possible to correlate the space and momentum coordinates of each particle,
mimicking the effect of collectively, leading to an mT scaling of the source size. This was
previously not properly modeled.

Within the present work, CECA was tested for the first time. The initial part of the
performed analysis was to fine tune three of the parameters within the model, in order to
reproduce the ALICE results on the mT scaling of the p–p system. This was successfully
achieved. Further, assuming a common emission for all particles, the p–Λ source
size was estimated with CECA. It was shown that the CECA prediction laid below the
published ALICE results on the p–Λ emission source, even though the mT scaling was
qualitatively reproduced. These ALICE results were obtained using the χEFT to model
the p–Λ interaction, but only accounting for the s-wave. In a newer dedicated ALICE
study, it was demonstrated that the inclusion of d-waves is essential to capture the details
related to the NΣ ↔ NΛ coupled channel. The same study argues that a lower two-body
attraction, which is allowed within the existing experimental constraints, is preferred by
the femtoscopic measurements. In this thesis, the ALICE mT differential data on the
p–Λ correlation were re-analyzed using the state-of-the-art techniques and interaction
models. With the assistance of the main author of the chiral model, it was possible to
test the hypothesis of a reduced attraction in the S=1 p–Λ channel. It was shown that
these improvements for the modeling of the p–Λ correlation lead to a lowering of the
source size, making the ALICE results fully compatible with the CECA prediction.

This observation preserves the idea of a common emission source for all baryons, and
hints at a possible overestimated two-body p–Λ attraction within the χEFT. For the future,
it will be very important to analyse the source of meson–meson or baryon–meson pairs,
using CECA, in order to fully validate the model. If done successfully, this will increase the
precision to which femtoscopy can be used to study the strong force, as it will remove one
of the main sources of systematic bias in these types of studies. For example, based on
the findings within the present work, the physics message related to the p–Λ interaction
will strengthen, implying a lower two-body attraction over the currently accepted values.
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Consequently, this will help construct a more realistic nuclear Equation of State and
lead to a better understanding of the structure of neutron stars. Such exotic studies
are to be accompanied by measurements of the three body nucleon–nucleon–hyperon
correlations, and the CECA framework will be the key to model the three-body source.
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Appendix A

pT distributions and C(k∗) graphs

Figure A.1: Transversal momentum distribution of the proton.
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Figure A.2: Transversal momentum distribution of the Λ.

44



0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 

0 50 100 150 200
)c (MeV/k* 

2−
0
2

σn 

0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 
0 50 100 150 200

)c (MeV/k* 

2−
0
2

σn 

0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 

0 50 100 150 200
)c (MeV/k* 

2−
0
2

σn 

0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 

0 50 100 150 200
)c (MeV/k* 

2−
0
2

σn 

0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 

0 50 100 150 200
)c (MeV/k* 

2−
0
2

σn 

0 50 100 150 200
)c (MeV/k* 

1

1.2

1.4

1.6

1.8

2

)
k*(

C 

 data (stat+syst)Λp

Fit

Baseline

0 50 100 150 200
)c (MeV/k* 

1

1.05

)
k*(

C 

0 50 100 150 200
)c (MeV/k* 

2−
0
2

σn 

Figure A.3: C(k∗) of the p–Λ system for the mT bins with the NLO13 potential.
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Figure A.4: C(k∗) of the p–Λ system for the mT bins with the NLO19 potential.
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Figure A.5: C(k∗) of the p–Λ system for all mT bins with the NLO19 3S1 potential.
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