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“Sometimes science is more art than science”
- Rick



Abstract

Multi-particle correlations built from azimuthal angles whose distributions were parame-
trized with the Fourier series expansion, depend generically on two distinct degrees of
freedom: flow amplitudes vn and symmetry-planes Ψn. While analyses techniques for
flow amplitudes vn have advanced over the past years, robust and unbiased techniques for
analyzing symmetry-planes Ψn still need to be developed.
Previous analyses of symmetry-plane correlations neglect any correlation between the flow
amplitudes. Such an assumption is leading to a biased result as recent analyses in the
direction of Symmetric Cumulants have shown that flow amplitudes are correlated [1].
Thus a new, bias-free method has to be used to avoid such a wrong contribution.
In this thesis, different approaches for symmetry-plane correlations in the final state are
being presented and their behaviour investigated. Furthermore, results from initial state
studies of symmetry-plane correlations with the Monte Carlo-Glauber model will be shown
and discussed. Lastly, a first look at experimental analyses of different symmetry-plane
correlations will be presented and shortly discussed.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics
1Interactions between quarks can - according to the Standard Model - be described via
the strong nuclear force which is carried by elementary particles called gluons. The
corresponding “charge” of the strong nuclear force is the color, a quantity with three pos-
sibilities: red, blue and green as well as negative colors anti-red, anti-blue and anti-green.
Quarks carry only a single positive (or negative for anti-quarks) unit of color. Gluons, on
the other hand, carry a positive and negative color at the same time, they are bicolored.
As gluons do not carry any further electromagnetic charge, flavour or mass, interactions
between quarks, which is transmitted via gluons, can only change the color of the par-
ticipating particles (in a discrete way). Therefore, the underlying theory of the strong
nuclear force is called Quantum Chromodynamics (QCD).
Regarding QCD, three fundamental phenomena have to be mentioned. The first being
confinement, which describes that quarks (or anti-quarks) cannot exist freely as indepen-
dent elementary particles but can only be found in bounded systems like baryons (system
consisting of three quarks) or mesons (systems consisting of a quark and an anti-quark).
The phenomenon of asymptotic freedom states the strength of interaction between quarks
depending on their energy: At large energies (equivalent to short distances), quarks inter-
act weakly while their interaction (and therefore their interaction energy) becomes greater
with increasing relative distance. Therefore, quarks are prevented from separation: if their
relative distance (and their interaction energy) becomes too large, new quark -anti-quark
pairs will be produced which create new bounded systems with the now separated initial
quarks. At last, the phenomenon of chiral symmetry restoration is to be named. Only
in the case of massless quarks, the chiral symmetry is an exact symmetry. However, it is
restored approximately at sufficiently high temperatures and energy densities as in these
regimes the quark masses are reduced from the large effective values (found in hadronic
matter) to the smaller bare ones.
Furthermore, the Lagrangian of QCD reads

L = ψ̄i
(
iγµDµij −mδij

)
ψj −

1

4
FµναFµνα . (1.1)

In Eq. (1.1), ψi denotes a quark field, γµ the Dirac matrices, Dµ a covariant derivative,
m the quark mass, δ the Kronecker symbol and Fµνα the field strength of gluons. In this
representation of the Lagrangian, natural units ( ~ = c = kB = 1) and the Minkowski
metric (gµν = diag(1,−1,−1,−1)) have been used. It has to be mentioned that, in QCD,
interactions between gluons themselves are possible.

1Section based on [2] and references therein.
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1.2 Quark Gluon Plasma

Figure 1.1: Schematic QCD phase-diagram, taken from [3].

Firstly suggested by Edward Shuryak in 1978 [4], the Quark Gluon Plasma (QGP)
is a state of matter in which the quarks and gluons are deconfined. This deconfinement
can be linked to the asymptotic freedom described before, leading to the production of
QGP in laboratories at high temperatures and/or high energy densities. Previously, it
had been theorized that such a state of matter would behave like a weakly interacting gas.
However, such behaviour would contradict experimental studies of heavy ion collisions.
In such collision systems - if they are non-central - the initial geometric shape of the
interacting matter (i.e. the QGP) has an anisotropic shape. The transfer of this anisotropy
in coordinate space via the thermalized medium into an anisotropy in momentum space
(which is experimentally accessible) is called anisotropic flow. A more detailed explanation
of anisotropic flow will follow in the corresponding Sec. 1.4.1. If QGP would behave like
a weakly interacting gas, the anisotropic flow would be small and therefore only a small
- if any - anisotropy in momentum space could be observed. Results from e.g. the STAR
Collaboration at Relativist Heavy Ion Collider (RHIC) [5] or the ALICE Collaboration at
the Large Hadron Collider (LHC) [6] have shown that anisotropic flow is not negligible.
As such QGP is found to behave more like a strongly coupled fluid [7], not like a weakly
interacting gas. Furthermore, experimental results at RHIC and LHC show that QGP
has a shear-viscosity over entropy density (η/s) close to the theorized lower universal
boundary of ~/4πkB [8]. Thus QGP can be described as a “perfect fluid”. However, many
questions about the phase-diagram of the QCD (Fig. 1.1) and about properties of QGP
still remain open:

• When does the phase transition occur?

• Does the critical point exist, and if so, where is its placement in the phase diagram?

• Does the phase transition behave like a cross over or perhaps like a first order phase
transition?

As it is theorized that the QGP existed in the early stage of the universe, the under-
standing of its behaviour can lead to new insights into the evolution of our universe.
Furthermore, QGP is hypothesized to make up the cores of extremely dense neutron stars
[9]. Therefore, also in this regard more knowledge about QGP is needed.
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1.3 Heavy Ion Collisions

1.3.1 Time Evolution

Figure 1.2: Time evolution of a heavy ion collision, taken from [10].

2In ultra-relativistic heavy ion collisions (Fig. 1.2) the colliding nuclei are extremely
Lorentz-contracted. The collisions can be described as the shattering of colour-glass-
condensate plates [12]. During this shattering a significant amount of kinetic energy is
stored in the overlapping region, leading to a fireball with a high energy density. This
non-equilibrate state is called glasma [12]. As the number of collisions between partons
increase, the glasma starts to thermalize locally at a time of about 1 fm/c. This state
of local glasma thermalization is the QGP. Further processes can be described by rela-
tivistic hydrodynamics. The system will expand, cool and it will become dilute. Finally,
hadronization will start, forming hadrons which will interact elastically and inelastically.
These last stages starting from the hadronization are described by relativistic kinetic the-
ories. As soon as inelastic processes cease, the system reaches the chemical freeze-out.
With the end of elastic processes, the kinetic freeze-out is reached. At a time of about
10-15 fm/c after the collision occurred, hadrons leave the system and travel towards the
detectors.

1.3.2 Geometric Description

Taking the beam axis as the z-axis, the geometric quantities of a heavy ion collision (see
Fig. 1.3) can be described as follows. As the collision occurs, the colliding/interacting
nucleons are called participants and the nucleons which do not interact directly in the
collision process are called spectators. The distance between the centres of mass between
the colliding nuclei is the impact parameter b. The corresponding vector of the impact
parameter b with respect to the fixed laboratory system has a randomly fluctuating
orientation per event. The plane spanned by the beam axis z and the impact parameter
vector is called reaction plane, its orientation in the fixed laboratory system characterised
by ΨRP . The transverse plane is spanned perpendicular to the beam axis, intersecting

2This section is based on [11].
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Figure 1.3: Schematic geometry of a heavy ion collision. The green region contains the
participants.

the beam axis at the interaction point. Due to fluctuations (e.g. due to fluctuating
density profiles of the colliding nuclei) additional planes, the so-called symmetry-planes
(characterized by Ψn) are introduced. They are spanned by the beam axis z and the
minor axis of the nth − order shape of the participant-region, where the 2nd order is an
ellipsoid, the 3rd order a triangle and so on (see Fig. 1.4). A further explanation of the
symmetry-planes and their use-case will be presented in Sec. 1.4.1. At this point, it has
to be mentioned that in the absence of fluctuations, all symmetry-planes Ψn would be
consistent with the reaction plane ΨRP .

Figure 1.4: Orientations of the symmetry-planes Ψ2 and Ψ3 in the initial distribution of
the participants, taken from [13].

1.4 Flow

1.4.1 Anisotropic Flow
3Properties of the QGP produced in high-energy heavy ion collisions can be studied by the
investigation of azimuthal anisotropies (with azimuthal angle ϕ measured in the trans-
verse plane perpendicular to the beam axis, see Fig. 1.3). Such phenomena can only
occur as collective effects of strongly interacting matter, not if the collision consists of

3Information of the section taken from [11], [14], [15].
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Figure 1.5: Particle distribution in case that anisotropic flow did not (a) and did (b)
develop, taken from [2].

pure nucleon-nucleon interactions.
In non-central heavy ion collisions, the geometry of the interacting matter is anisotropic
in the initial state (so-called anisotropy in coordinate space). If the medium thermalizes,
pressure gradients in the hot and dense matter develop, transferring the initial coordinate
anisotropy into an anisotropy in momentum space. This transfer is called anisotropic
flow. The anisotropy in momentum space can be observed as an anisotropic azimuthal
distribution of the emitted particles, which originate from the interacting matter (see Fig.
1.5).
The flow principle is an assumption that if only flow as a collective effect is present,
the anisotropically emitted particles are solely correlated to the geometry of the emitting
source (i.e. emitted independently from the strongly interacting matter). Therefore, the
trajectories of emitted particles are the same, whether the particles are emitted simulta-
neously, or one by one. As the underlying distribution of particles per azimuthal angle ϕ
is 2π-periodic around the beam axis it can be described by a Fourier series [16]:

E
d3N

d3p
=

d3N

pTdpTdηdϕ
=

1

2π

d2N

pTdpTdη

[
1 + 2

∞∑
n=1

vn(pT , η) cos [n (ϕ−Ψn)]

]
. (1.2)

In Eq. (1.2), ϕ describes the azimuthal angle of a particle, E its energy and p its 3-
momentum vector. Furthermore, the transverse momentum is represented by pT and
the pseudorapidity by η. The symmetry-planes Ψn have been described in Sec. 1.3.2,
but again it has to be stressed that they are non-trivial as collisions have event-by-event
fluctuations (e.g. due to fluctuating density profiles of the colliding nuclei).
The vn are the so-called flow amplitudes, with v1 for the directed flow, v2 for the elliptic
flow, v3 for the triangular and so on. As it is shown in Appendix A.1, the flow amplitudes
can be related to

vn(pT , η) = 〈cos[n(ϕ−Ψn)]〉 . (1.3)
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As vn in general depends on the transverse momentum pT and pseudorapidity η, it is
referred to as the nth harmonic differential flow. Averaging over pT and η leads to the
integrated flow

〈vn(pT , η)〉 = 〈〈cos[n(ϕ−Ψn)]〉〉 . (1.4)
where 〈·〉 denotes the single-event average and 〈〈·〉〉 the all-event average in a correspond-
ing pT , η bin. This notation will be kept throughout this thesis.
Therefore, the number of particle N per azimuthal angle ϕ can be written as

dN

dϕ
=
〈N〉
2π

[
1 + 2

∞∑
n=1

〈vn(pT , η)〉 cos [n (ϕ−Ψn)]

]
, (1.5)

which links the anisotropic distribution of emitted particles per azimuthal angle ϕ to the
flow amplitudes vn and the symmetry-planes Ψn.

1.4.2 Flow vs Non-Flow

In general two kind of phenomena have to be taken into account when using correlation
techniques to estimate anisotropic flow in heavy ion collisions: flow as a collective effect
and non-flow. Flow affects all emitted particles where each particle is emitted indepen-
dently from the source (i.e. the hot and strongly interaction matter). Anisotropic flow as
a genuine multi-particle phenomenon is such a collective effect, i.e. flow. Therefore, the
underlying probability density function (p.d.f.) of a collision with M emitted particles
(and only flow) can be factorised into the marginal Fourier like p.d.f.’s (Eq. (1.2)):

f(ϕ1, ϕ2, ...ϕM) = fϕ1(ϕ1)fϕ2(ϕ2)...fϕM
(ϕM) . (1.6)

In contrast to that, non-flow typically involves only few particles. Non-flow can be any
kind of correlation that is present between particles and which is not directly linked to
the emitting source geometry. Phenomena that can be accounted to non-flow are momen-
tum conservation, jet fragmentation, final state interaction (e.g. Coulomb-interactions),
resonance decays, etc. All these effects break the factorization in Eq. (1.6) and bias flow
measurements.

1.5 Multi-Particle Correlation Techniques

1.5.1 Basics of Multi-Particle Correlation and Notations

As stated before, 〈·〉 denotes the single-event average and 〈〈·〉〉 the all-event average.
Presented in [17], the general k-particle correlation for one event can be written as

〈k〉n1,n2,...,nk
≡
〈
ei(n1ϕl1

+n2ϕl2
+...+nkϕlk)

〉

≡

M∑
l1,l2,...lk=1
l1 6=l2 6=...6=lk

wl1wl2 · · · wlke
i(n1ϕl1

+n2ϕl2
+...+nkϕlk)

M∑
l1,l2,...lk=1
l1 6=l2 6=... 6=lk

wl1wl2 · · · wlk
.

(1.7)

In Eq. (1.7),M is the multiplicity, {n1, n2, ..., nk} the set of harmonics and {ϕ1, ϕ2, ..., ϕk}
the azimuthal angles. The weights {w1, w2, ..., wk} are the so-called particle weights and
can be the most general function i.e.

wi = wi (ϕ, pT , η, ...) . (1.8)
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They can depend on the transverse momentum pT , the pseudorapidity η as well as the
azimuthal angle ϕ (and much more). They, for example, can be used to correct for
various detector inefficiencies. Furthermore, event weights have to be used, where each
single-event average of azimuthal correlators is weighted individually in the process of
building the all-event average. Throughout this thesis for any kind of k-particle correlation
multiplicity weights

w〈k〉 =

(
M

k

)
k! (1.9)

will be used as event weights. In Eq. (1.9)M is the multiplicity of the given event. These
weights represent the number of combinations of the event and correct for fluctuating
multiplicity between events.
Additionally, the set of correlators {n1, n2, ..., nk} of the k-particle correlation have to
satisfy the so-called isotropy condition i.e.

k∑
i=1

ni = 0 . (1.10)

If this condition is not satisfied, the result of the given multi-particle correlation will triv-
ially lead to 0 when the single-event averages are extended to the all-event averages. This
can be linked to the angle of the impact parameter vector which fluctuates randomly each
event [18]. It has to be noted that this effect only occurs in detectors which cover the full
azimuth (which is given for the ALICE main detector, more details in the corresponding
Sec. 2.2).
Furthermore, the condition l1 6= l2 6= ... 6= lk in Eq. 1.7 has to be applied. It removes
exactly all autocorrelations which would otherwise bias the result of the multi-particle cor-
relation. This can be further understood if one takes a 2-particle correlation in harmonics
n and −n as an example (setting the particle-weights to 1 for simplicity):

〈2〉n,−n ≡
〈
ei(n(ϕl1

−ϕl2
))
〉

≡
M∑

l1,l2=1
l1 6=l2

ei(n(ϕl1
−ϕl2

)) .
(1.11)

The neglect of l1 6= l2 in Eq. (1.11) would lead to the addition of a 1 for the real part (i.e.
cos (n(ϕl1 − ϕl2)) ) for each case where ϕl1 = ϕl2 . The real part is the part one is mostly
interested in due to its link to the Fourier series (Eq. (1.2)) and the flow observables,
(see Sec. 1.5.2). This addition of a 1, which is the maximum value for the cosine, will
occur M times for a event consisting of M particles. Thus the final result will be biased
strongly, demonstrating the importance of the removal of autocorrelations.

1.5.2 Link to Flow

As it is shown in [18] a k-particle correlation with correlators {n1, n2, ..., nk} and azimuthal
angles {ϕ1, ϕ2, ..., ϕk} can be linked to the flow observables as

〈cos (n1ϕ1 + n2ϕ2 + ...+ nkϕk)〉 = vn1vn2 ...vnk
cos(n1Ψn1 + n2Ψn2 + ...+ nkΨnk

) . (1.12)

In Eq. (1.12), vn are the flow amplitudes and Ψn the symmetry-planes. This link between
the flow observables and the k-particle correlation is made with the real part of the multi-
particle correlation (Eq. (1.7)), i.e. < (〈kn1,n2,...,nk

〉) due to its connection to the Fourier
series (Eq. (1.2)).
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1.5.3 Q-vectors

As stated before, for any k-particle correlation, autocorrelations must be prevented. One
way to compute Eq. (1.7) is the usage of nested loops with the condition to remove
autocorrelations applied. This leads to precise results, though for a k-particle correlation
in total k nested loops have to be used. As such, this approach would computationally not
be feasible within reasonable time for higher order correlators and the high multiplicities
in heavy ion events. Therefore, a different, more efficient approach in the calculation of
multi-particle correlations has to be used.
The so-called Q-vector can be defined as

Qn =
M∑
k=1

einϕk (1.13)

where M is the multiplicity of the event and n the harmonic. The advantage of using the
Q-vector becomes clear if one takes a look at the 2-particle correlation as an example.
Now one can write analytically the single-event average of the 2-particle correlation in
harmonics n and −n (〈2〉n,−n) as

〈2〉n,−n ≡
〈
ein(ϕ1−ϕ2)

〉
(1.14)

=
1(

M
2

)
2!

M∑
j,k=1
(j 6=k)

ein(ϕj−ϕk) (1.15)

=
1(

M
2

)
2!
× [|Qn|2 −M ] . (1.16)

The derivation of this example can be found in Appendix A.2. Instead of two nested
loops, the Q-vector can be built “in one go” over all azimuthal angles and the 2-particle
correlation of the given event can be calculated. Such an expression for the single-event
average can be written for any kind of k-particle correlation, when on the RHS only Q-
vectors evaluated (in general) in different harmonics and multiplicity M appear, all of
which can be calculated in a single pass over azimuthal angles. For more details see [17].

1.6 Glauber Model

1.6.1 Monte Carlo-Glauber

The Monte Carlo-Glauber (MC-Glauber) approach is a model that allows calculations of
initial geometric properties in heavy ion collisions. In preparation for this thesis, a new
version of the MC-Glauber has been coded in ROOT [19] (code in Appendix H) with the
concepts taken from [20]. The basic steps of this approach per “event” are:

1. Sampling of two nuclei A and B by using the Woods-Saxon distribution

ρ(r) = ρ0
1 + w

(
r
R

)2
1 + exp

(
r−R
a

) (1.17)

where ρ0 is the nucleon density in the centre of the nucleus and R the nuclear radius.
The “sphere-parameter” w describes deviations from a spherical shape, a the “skin
depth” of the nucleus. The radial component of a nucleon is drawn from ∝ ρ(r) r2.
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The angle ϕ is uniformly distributed in the interval [0, 2π), the angle θ is sampled
from p.d.f. sin (θ) within the interval [0, π). No difference between protons and
neutrons is taken into account for the nucleon sampling. Furthermore, the code
provides two options for the sampling:

Default : No minimal distance between the nucleons is taken into account.
Minimal Distance: A minimal distance between the nucleons of the same nucleus

is being set. The default value of this minimal distance is 0.8 fm between the centres
of the nucleons, where a nucleon hard core radius of Rn = 0.4 fm is assumed (as
it is in [20], with recent experimental results [21] suggesting a similar regime for Rn).

Commonly used values for the parameters in Eq. (1.17) can be found in Appendix
Tab. B.1 (taken from [22]).

2. Projection of both nuclei into the x-y-plane and shift of the x-coordinate of nucleus
A by −b/2 and x-coordinate of nucleus B by b/2. Here b represents the impact
parameter, i. e. the distance between the centre of masses of the two nuclei (in the
x-y-projection-plane). The impact parameter b is taken as an input for this MC-
Glauber model, therefore no link to the collisions cross-section is made. Due to this
last fact, the implemented MC-Glauber code is not used for centrality estimation,
yet later versions will be updated to achieve this.

3. Check that the centres of mass of the projections (x,y) are set correctly: nucleus A
at (−b/2,0) and nucleus B at (b/2,0).

4. “Collision” of the nuclei: If a nucleon experiences an interaction, it is a so-called
participant. It is assumed that a nucleon can interact multiple times with different
nucleons while remaining on a straight trajectory after a collision. Additionally, it is
assumed that nucleon-nucleon cross-sections remain constant and are independent
from the number of collisions a nucleon experienced. The total number of partic-
ipants within the collisions of two nuclei is referred as NPart, the total number of
binary collisions of the participating nucleons as NColl. Two options are available
for this step:

Black-Disc: Probability of interaction between two nucleons is given as

pBD(b) = Θ (R− b) (1.18)

where b is their distance in the transverse plane and R is a parameter which is linked
with the total inelastic nucleon-nucleon cross-section σNNinel (see Appendix B.3).

Gaussian Nucleon-Nucleon Overlap: The probability of two nucleons interacting
is given by

p(b) = 1−
[
1− α exp

(
−γb2

)]2 (1.19)
where b describes the distance of the two nucleons in the transverse plane (taken from
[23]). The parameter α and γ can be related to the total inelastic nucleon-nucleon
cross-section σNNinel and the total nucleon-nucleon cross-section σNNtot (see Appendix
B.4). It has to be mentioned that these nucleon-nucleon cross-section are measured
independently and used as an experimental input to the Glauber model.

5. By using the coordinates of the participants, one can calculate eccentricities εn and
symmetry-planes in the initial state Φn as

εn =

√
〈rn · cos (n · ϕ)〉2 + 〈rn · sin (n · ϕ)〉2

〈rn〉
(1.20)
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and
Φn =

1

n
· [atan2 (〈rn · sin (n · ϕ)〉 , 〈rn · cos (n · ϕ)〉) + π] . (1.21)

Anisotropies in coordinate space are quantified with εn and Φn, while in the mo-
mentum space they are quantified by vn and Ψn. Therefore, it is very interesting to
study the relation between εn and Φn.
Equation (1.20) and (1.21) have been taken from [24]. In the calculation of the ec-
centricities εn and symmetry-planes in the initial state Φn two options are available:

Default: The positions of the nucleons are being taken as delta functions.

Gaussian Smearing: The nucleons are smeared around their initial position
(xi, yi).

1.6.2 Validation

To validate the Monte Carlo-Glauber code a simulation of Gold-Gold (Au-Au) collisions
at
√
sNN = 200 GeV has been carried out (Fig. 1.6, left). For this, the MC-Glauber code

has been set up to the following properties: Black Disc - NN overlap, Minimal Distance
between nucleons and no Gaussian-Smearing. The obtained result of eccentricities ε1 to
ε6 vs. number of participants NPart has been compared to Fig. 1.6 right, taken from [25].
The results obtained with the simple, self-written version of the MC-Glauber model are
in good agreement with the published ones.
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Figure 1.6: Eccentricities εn for Au-Au Collisions with
√
sNN = 200 GeV. Results by

the self-written MC-Glauber code (left) and results of the MC-Glauber code used in [25]
(right).



Chapter 2

Experimental Setup

2.1 Large Hadron Collider (LHC)

Figure 2.1: The LHC and its pre-accelerators, taken from [26].

1Located at the European Organization for Nuclear Research (Conseil Européen pour
la Recherche Nucléaire - CERN), the Large Hadron Collider (LHC) (Fig. 2.1) is the
biggest particle collider in the world. The LHC is a synchrotron-type accelerator with
a circumference of its main storage ring of 27 km, placed 100 m underground. It has 8
radio-frequency cavities per beam for particle acceleration. In total, about 9600 super-
conducting magnets (cooled to 1.9 K) with maximum magnetic fields of 8.33 T guide the
particles through the vacuum tube which has a vacuum pressure of about 10−13 atm.
The first collection of data at LHC (so-called “Run 1”) reached centre of mass energies per
nucleon pairs of

√
s = 7 TeV for proton-proton (p-p) collisions and

√
sNN = 2.76 TeV for

lead-lead (Pb-Pb) collisions. After the 2015 upgrade the LHC provides “Run 2” data with√
s = 13 TeV for p-p collisions and

√
sNN = 5.02 TeV Pb-Pb collisions. At the moment

LHC undergoes an additional upgrade to increase its current luminosity to about 50 kHz
in Pb-Pb collisions [29], thus preparing the accelerator for “Run 3”.

1Section based on [2], [26], [27] and [28].

17
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Stationed at LHC are seven detector experiments: ALICE (A Large Ion Collider Exper-
iment), ATLAS (A Toroidal LHC Apparatus), CMS (Compact Muon Solenoid), LHCb
(Large Hadron Collider beauty), LHCf (Large Hadron Collider forward), TOTEM (TOTal
Elastic and diffractive cross section Measurement) and Monopole and Exotics Detector at
the LHC (MoEDAL). Some of the main goals of these experiments is the research about:

• Existence and properties of the Higgs boson ([30], [31])

• Asymmetry between matter and anti-matter

• Dark matter and Dark energy

• Properties of QGP

• Search for the existence of supersymmetric particles

2.2 A Large Ion Collider Experiment (ALICE)

Figure 2.2: Schematic of ALICE, taken from [32].

2Designed for the study of strongly interacting QCD matter, the main purpose of
ALICE is the investigation of properties of the QGP. ALICE, which is the only dedi-
cated heavy ion experiment at LHC, can provide information of the colliding events with
high-momentum resolution and good particle identification (PID). At the same time, the
experiment is able to cope with the extreme amount of particles that are produced in
Pb-Pb collisions at LHC energies. The barrel-shaped experiment (see Fig. 2.2) consists
of multiple layers of different detectors, starting with the Inner Tracking System (ITS)

2The information of this part are taken from [32].
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as the most inner one. The ITS consists of six layers of Silicon detectors (detailed de-
scription in the ITS section). Following the ITS is the cylinder-shaped Time Projection
Chamber (TPC) and three arrays for particle identification: Time of Flight (TOF), High
Momentum Particle Identification (HMPID) - a Ring Imaging Cherenkov Detector, fi-
nally followed by two Electromagnetic Calorimeters (EMCal).
Placed directly around the beam pipe, the ITS is used in the determination of the primary
vertex and secondary vertices of fast decaying heavy flavour and strange particles. It al-
lows the tracking of low momentum particles (which do not reach TPC). Furthermore, it
has the highest spatial resolution in comparison with the other ALICE detectors which is
necessary due to its close placement to the beam pipe.
The TPC is a gas detector used for tracking and high resolution PID (further details in
the corresponding section of TPC).
Momentum resolution in the regime of high momenta can be further improved by the
Transition Radiation Detector (TRD), the identification of charged hadrons can be further
done with TOF. The HMPID provides information in PID for high momentum particles.
EMCal as an electromagnetic calorimeter is used in the energy measurement of charged
particles, as a trigger for high momentum particles as well as in the improvement of jet
measurements. Photons and neutral mesons are identified by the Photon Spectrometer
(PHOS). All of these detectors are surrounded by a solenoid magnet with a magnetic
field of B = 0.5 T. Besides the previously described detectors, ALICE has detectors in
forward and backward direction which are located close to the beam pipe. Acting as a
trigger and estimator for longitudinal vertex positions the V0 detector is to be named,
consisting of Photo Multiplier Tubes (PMT). The Forward Multiplicity Detector (FMD)
is used in the multiplicity measurement of charged particles. Similarly, the Photon Mul-
tiplicity Detector (PMD) provides information of photon multiplicities. The Zero Degree
Calorimeters (ZDC) are located 116 m away from the beam time and used in the central-
ity determination as they provide information about spectator nucleons. Furthermore,
muon spectrometers for the detection of muon pairs can be found.
Currently, ALICE is undergoing an upgrade, preparing the experiment for the high lumi-
nosities which are aimed with LHC “Run 3”.

2.2.1 Time Projection Chamber
3 Having a fine track reconstruction with a large amount of points per track while being
able to cope with collisions at a rate of 10 kHz, the TPC (Fig. 2.3) has been chosen as
the primary detector of ALICE. The cylindrical detector is filled with 90 m3 of gas which
consists of 90 % Ne and 10 % CO2. Its dimensions are 5 m along the beam axis, an inner
radius of 85 cm and an outer radius of 2.5 m while being separated by a cathode in the
middle. TPC as a gas detector is able to recognize charged particles traversing as those
particles ionize the gas along their path. The electrons released in such ionisation processes
are accelerated in a uniform electric field towards end plates. These end plates create the
electric field as a potential is applied to them. As the electrons reach the end plates
they will be registered by Multi-Wire Proportional Chambers (MWPC) which amplify
the incoming signal of primary electrons. The r and φ coordinate of the electron can be
reconstructed directly by the MWPC’s, the z coordinate can be extracted from the time
of flight that the electron needs to reach the end plate. From these three coordinates, the
origin of the electron and therefore the place of its creating particle can be reconstructed.
Thus a full three-dimensional track of charged particles can be obtained.

3Information of this subsection have been taken from [32], [33], [34].



CHAPTER 2. EXPERIMENTAL SETUP 20

Figure 2.3: Schematic of TPC, taken from [32].

TPC covers a transverse momentum range of 0.1GeV/c < pT < 100GeV/c. It has a
resolution of 6 % for pT < 20GeV/c in central Pb-Pb collisions and a track finding
efficiency of about 90 % for pT > 1GeV/c. Over the whole pT range TPC provides a
azimuthal resolution of ∆ϕ = 0.7 mrad and although a full coverage of azimuthal angles
is provided, the detector has dead zones in between neighbouring sectors, thus leading
to a loss in efficiency. Concerning the pseudorapidity range, TPC provides a uniform
azimuthal coverage for |η| < 0.9.
Furthermore, TPC can be used for particle identification: The measured amplitude in the
MWPC provides information about dE/dx. In combination with the momentum of the
charged particle (radius of its track within the magnetic field) the particle identification
can be processed. Additionally, TPC can be used for the centrality estimation of the
collisions.

2.2.2 Inner Tracking System
4The ITS (Fig. 2.4) is built of six layers of silicon detectors. In total, three different
types of these silicon detectors are used, with the two innermost layers being Silicon Pixel
Detector (SPD), followed by two layers of Silicon Drift Detectors (SDD) and the two
outermost layers of Silicon Strip Detectors (SSD).
The SPD have the highest spatial resolution, necessary as they are the closest to the
beam pipe. Each of the SPD layers is made out of 9.8 × 106 binary readout cells. Thus
SPD can still well separate two tracks in the region of 50 tracks per cm2 while providing
a pseudorapidity coverage of |η| < 2.0. Additionally, SPD can be used as a centrality
estimator.
The two middle layers of SSD have, due to their greater distance to the beam pipe, a
track density of 1 track per cm2. Therefore, the spatial resolutions of these detectors can
be smaller.

4Information of this subsection have been taken from [32], [34], [35] and [36].
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Figure 2.4: Schematic of ITS, taken from [32].

Combining all layers of ITS the primary vertex can be located within 100 µm. The
coverage for transverse momentum is 0.1GeV/c < pT < 3GeV/c with a resolution of 2 %
for pions.
ITS provides a pseudorapidity coverage of |η| < 0.9 and is used in the determination of the
main interaction vertex as well as secondary vertices. ITS can provide information about
fast decaying heavy flavour and strange particles and allows tracking of low momentum
particles.



Chapter 3

Theoretical SPC

As shown in Sec. 1.4.1, the phenomenon of anisotropic flow can be described by a Fourier
series (Eq. (1.2)), parametrized by the flow amplitudes vn and the symmetry-planes
Ψn. The goal is the measurement of symmetry-plane correlations (SPC) in the form
cos [α(Ψm −Ψn)] (with α a correlator dependent pre-factor). Such new observables allow
a better understanding of correlations between the phases themselves and, as the main
purpose, enable additional constraints and independent information about properties of
the QGP.
Previous attempts [37] to measure these kind of observables were based on building ratios
in the form of

〈cos (c1Ψ1 + 2c2Ψ2 + ...+ lclΨl)〉

=
〈vc11 vc22 ...v

cl
l cos (c1Ψ1 + 2c2Ψ2 + ...+ lclΨl)〉√〈

v2c11

〉 〈
v2c22

〉
...
〈
v2cll

〉 . (3.1)

In Eq. (3.1) the isotropy of the correlators has to be ensured, i.e.

l∑
j=1

jcj = 0 . (3.2)

As it is shown in [1], correlations between flow amplitudes vn themselves can be observed.
This result leads to

〈vnvm〉 6= 〈vn〉 〈vm〉 . (3.3)

Therefore, the cancelling of flow amplitudes vn in the numerator by factorised vn in the
denominator as done in [37] will lead to a biased result.
This statement holds true even if one assumes no correlation between flow amplitudes
vn and cos(n1Ψn1 + n2Ψn2 + ... + nkΨnk

) (for a k-particle correlation). This will be
demonstrated in Sec. 3.3.1. The goal of this thesis is the examination of new approaches
to measure SPC without neglecting correlations between flow amplitudes vn themselves.
The basic concept lies in building ratios where the denominator is not factorised. Two
main approaches and their properties will be investigated:

• All-Event-Approach (AE)

• Event-by-Event-Approach (EbE)

Furthermore, the concepts of two additional approaches

• Expansion-Approach

• Tan-Approach

22
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will be presented. The details of each approach will be explained later. Again it has to
be stressed that all of these four approaches are based on the removal of flow-amplitudes
vn "in one go".

3.1 General (m,n)-SPC
For the derivation of the general SPC, it does not matter which approach is used (AE, EbE
or Expansion), as for all of them the sets of correlators have to fulfil the same constraints
(removal of flow amplitudes with non-factorised denominator). The azimuthal angles ϕ
are taken as an input. The aim is to provide an output correlator of symmetry-planes
Ψm, Ψn without any contribution from flow amplitudes.
The general approach for the SPC presented here is the usage of ratios between two sets
of correlators. In this derivation, the EbE-Approach will be used to build the ratio per
event (the sets of correlators stay the same in the other approaches, their results will
be presented in their corresponding section). In the most general case, this ratio can be
written as:

〈cos (n1 · ϕ1 + ...+ nk · ϕk)〉
〈cos (p1 · ϕ1 + ...+ pl · ϕl)〉

=
vn1 · ... · vnk

cos (n1 ·Ψn1 + ...+ nk ·Ψnk
)

vp1 · ... · vpl cos (p1 ·Ψp1 + ...+ pl ·Ψpl)
.

(3.4)

This can be written in a more compact way〈
cos
(∑k

j=1 nj · ϕj
)〉

〈
cos
(∑l

j=1 pj · ϕj
)〉

=

∏k
i=1 vni

cos
(∑k

j=1 nj ·Ψnj

)
∏l

i=1 vpi cos
(∑l

j=1 pj ·Ψpj

) ,
(3.5)

where {n1, n2, ..., nk} is the set of harmonics of the numerator, {p1, p2, ..., pl} the harmonics
of the denominator, ϕ the azimuthal angles, vn (vp) the flow amplitudes and Ψn (Ψp) the
symmetry-planes. Now {n1, n2, ..., nk} and {p1, p2, ..., pl} have to be chosen in such a way
that the flow amplitudes will cancel while at the same time any contribution of symmetry-
planes stays only in the numerator. These constraints will be presented in the following
section.

3.1.1 Constraints

The first constraint in SPC is the isotropy of the correlators both in numerator and
denominator. This constraint must hold true for any multi-particle correlator. Therefore

k∑
j=1

nj = 0 , (3.6)

l∑
j=1

pj = 0 . (3.7)

Furthermore, the sum of symmetry-planes appearing in the numerator must not be equal
to 0 whereas the one in the denominator has to i.e.
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k∑
j=1

nj ·Ψnj
6= 0 , (3.8)

l∑
j=1

pj ·Ψpj = 0 . (3.9)

The flow amplitudes vn of the numerator and denominator have to cancel each other, so
that one is left only with the correlator of symmetry-planes in the numerator. Therefore,
their product has to be the same i.e.

k∏
i=1

vni
=

l∏
i=1

vpi . (3.10)

From Eq. (3.10):
⇒ k = l , (3.11)

which means that the multi-particle correlators in the numerator and the denominator
have to be of the same order.
Furthermore, the sets of “absolute values” have to be equal as v−n = vn:

{|n1| , |n2| , ..., |nk|} = {|p1| , |p2| , ..., |pk|} . (3.12)

As presented in the following section, it is possible to construct sets of correlators for a
(m,n)-SPC in such a way that the previously presented constraints Eq. (3.6) to Eq. (3.10)
are satisfied.

3.1.2 Generalisation

Given the constraints Eq. (3.8) to Eq. (3.10) to measure a Ψm-Ψn SPC, the general sets
of correlators in harmonics m and n (where m 6= n) can be set up for

• the numerator as:

m, ...,m︸ ︷︷ ︸
am times

,−n, ...,−n︸ ︷︷ ︸
an times


• and the denominator as:

m,−m...,m,−m︸ ︷︷ ︸
am times

, n,−n, ..., n,−n︸ ︷︷ ︸
an times


where am, an ∈ N. Given the constraints Eq. (3.6) and Eq. (3.7) the following constraints
for am and an appear as

am∑
j=1

m+
an∑
k=1

(−n) ≡ am ·m− an · n = 0 =⇒ am
n

=
an
m
, (3.13)

am∑
j=1

(−1)j ·m+
an∑
k=1

(−1)k · n = 0 =⇒ am ∧ an even , (3.14)

where ∧ is the logical “and”. This way, the constraints from Eq. (3.8) and Eq. (3.9) are
satisfied as well. Possible choices for am and an are
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1. Direct Method

{
am = n and an = m for m ∧ n even
am = 2n and an = 2m for m ∨ n odd

2. LCM -Method: am = 2·LCM(m,n)
m

and an = 2·LCM(m,n)
n

where LCM(m,n) denotes the least common multiple of m and n, ∧ the logical “and”
and ∨ the logical “or” (this notation will be kept through this thesis).
It has to be noted that for the LCM -Method the pre-factor 2 has to be used to ensure
that am and an are both even as

@m,n ∈ N :
LCM(m,n)

m
= 2j ∧ LCM(m,n)

n
= 2k with j, k ∈ N . (3.15)

The proof of this statement can be found in Appendix C.1.

The order of the multi-particle correlators used in both approaches are

1. Direct Method

{
n+m for m ∧ n even
2 (n+m) for m ∨ n odd

2. LCM -Method: 2 · LCM(m,n)
(

1
m

+ 1
n

)
As it is shown in Appendix C.2 for any integers m and n the order of the correlators in the
LCM -Method is always smaller equal compared to the Direct Method. This is favourable
as SPC deal with high order of correlators in general. To reach feasibility, the order of
the correlators has to be reduced as much as possible.
As a conclusion, the LCM -Method will be used for any further (m,n)-SPC approaches.
Therefore, the sets of correlators for any (m,n)-SPC are given for

• the numerator as:

m, ...,m︸ ︷︷ ︸
am times

,−n, ...,−n︸ ︷︷ ︸
an times


• and the denominator as:

m,−m...,m,−m︸ ︷︷ ︸
am times

, n,−n, ..., n,−n︸ ︷︷ ︸
an times


with

am = 2
LCM(m,n)

m
(3.16)

and

an = 2
LCM(m,n)

n
. (3.17)

These sets of correlators satisfy the constraints Eq. (3.6) to Eq. (3.10) while minimizing
the order of the correlators (compared to the "Direct-Method" shown before).

Therefore, the SPC between ψm and ψn in the EbE-method is given by
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〈
cos
(∑am

j=1m · ϕj −
∑an

k=1 n · ϕam+k

)〉
〈

cos
(∑am

j=1(−1)j ·m · ϕj +
∑an

k=1(−1)k · n · ϕam+k

)〉

=
(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1m ·Ψm −
∑an

k=1 n ·Ψn

)
(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1(−1)j ·m ·Ψm +
∑an

k=1(−1)k · n ·Ψn

)
= cos [2 · LCM(m,n) · (Ψm −Ψn)] .

(3.18)

The transition from the first to the second line in Eq. (3.18) has been obtained with
Eq. (1.12). Furthermore, the order of the particle correlators used in the numerator and
denominator in Eq. (3.18) is the size of 2 · LCM(m,n)

(
1
m

+ 1
n

)
.

It has to be stressed that the previous formula for a (kn, n)-SPC [38] given by

cos [2kn (Ψkn −Ψn)] =

〈
cos
[
n
(
kϕ1 + kϕ2 −

∑2k+2
j=3 ϕj

)]〉
〈

cos
[
n
(
kϕ1 − kϕ2 −

∑2k+2
j=3 (−1)jϕj

)]〉 (3.19)

can be obtained by Eq. (3.18) as a special case for m = kn as in this case LCM(kn, n) =
kn.

3.2 Preliminary (m,n,q)-SPC
A general (m,n,q)-SPC has to satisfy the previously presented constraints Eq. (3.6) to
Eq. (3.10).
Having the constraints Eq. (3.8) to Eq. (3.10) in mind, the general sets of correlators in
harmonics m, n and q (where m 6= n 6= q) can be set up for

• the numerator as:

m, ...,m︸ ︷︷ ︸
am times

,−n, ...,−n︸ ︷︷ ︸
an times

,−q, ...,−q︸ ︷︷ ︸
aq times


• and the denominator as:

m,−m...,m,−m︸ ︷︷ ︸
am times

, n,−n, ..., n,−n︸ ︷︷ ︸
an times

, q,−q, ..., q,−q︸ ︷︷ ︸
aq times


where am, an, aq ∈ N. Given the constraints Eq. (3.6) and Eq. (3.7) the following
constraints for am, an and aa are given by

am∑
j=1

m+
an∑
k=1

(−n) +

aq∑
k=1

(−q) ≡ am ·m− an · n− aq · q = 0 , (3.20)

am∑
j=1

(−1)j ·m+
an∑
k=1

(−1)k · n+

aq∑
k=1

(−1)k · q = 0 =⇒ am ∧ an ∧ aq even . (3.21)

In such a way, the constraints from Eq. (3.8) and Eq. (3.9) are satisfied as well. Choices
that come up for am, an and aq are
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1. Direct Method

{
am = 2nq, an = mq and aq = mn for all even or 1 odd
am = 4nq, an = 2mq and aq = 2mn for all odd or 1 even

2. LCM -Method:



am = 2m′, an = n′ and aq = q′ for n′ ∧ q′ even
am = 3m′, an = n′ and aq = 2q′ for (m′ ∧ n′ even) ∧ q′ odd
am = 3m′, an = 2n′ and aq = q′ for (m′ ∧ q′ even) ∧ n′ odd
am = 4m′, an = 2n′ and aq = 2q′ for [m′ odd ∧ (n′ ∨ q′ odd)]

∨ [m′ even ∧ (n′ ∧ q′ odd)] .

The following abbreviations have been used:

m′ =
LCM(m,n, q)

m

n′ =
LCM(m,n, q)

n

q′ =
LCM(m,n, q)

q

where LCM(m,n, q) denotes the least common multiple of m, n and q.
For the LCM of two integers m and n it has been shown (Appendix C.1) that

@m,n ∈ N :
LCM(m,n)

m
= 2j ∧ LCM(m,n)

n
= 2k with j, k ∈ N . (3.22)

This limited the ways of building am and an for two numbers as at least one ratio of
LCM(m,n)/m or LCM(m,n)/n is odd. This statement can be extended for three inte-
gers:

@m,n, q ∈ N :
LCM(m,n, q)

m
= 2i ∧ LCM(m,n, q)

n
= 2j ∧ LCM(m,n, q)

q
= 2k

with i, j, k ∈ N .
(3.23)

A proof of this can be found in Appendix C.3.
The order of the correlators is

1. Direct Method

{
2nq +mq +mn for all even or 1 odd
4nq + 2mq + 2mn for all odd or 1 even

2. LCM -Method:



LCM(m,n, q)
(

2
m

+ 1
n

+ 1
q

)
for n′ ∧ q′ even

LCM(m,n, q)
(

3
m

+ 1
n

+ 2
q

)
for (m′ ∧ n′ even) ∧ q′ odd

LCM(m,n, q)
(

3
m

+ 2
n

+ 1
q

)
for (m′ ∧ q′ even) ∧ n′ odd

LCM(m,n, q)
(

4
m

+ 2
n

+ 2
q

)
for [m′ odd ∧ (n′ ∨ q′ odd)]

∨ [m′ even ∧ (n′ ∧ q′ odd)]
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with
m′ =

LCM(m,n, q)

m

n′ =
LCM(m,n, q)

n

q′ =
LCM(m,n, q)

q
.

In cases of m, n and q all being odd or at maximum one even, the order of correla-
tors in the LCM -Method is smaller than or equal to the ones in the Direct-Method, as
LCM(m,n, q) ≤ mnq.
A proof that the LCM -Method reduces the order of the correlators in case of all integers
being even or one odd is left open at this point.

It has to be mentioned that in the special case of a (kn,mn, n)-SPC (without loss of
generality k > m), the SPC given by [38]

cos [2n(kΨkn −mΨmn − (k −m)Ψn)]

=

〈
cos
[
n(kϕ1 + kϕ2 −mϕ3 −mϕ4 −

∑2(k−m)+4
j=5 ϕj)

]〉
〈

cos
[
n(kϕ1 − kϕ2 +mϕ3 −mϕ4 −

∑2(k−m)+4
j=5 (−1)jϕj)

]〉 (3.24)

is leading to a smaller correlator.

3.3 All-Event SPC
The All-Event SPC (AE-SPC) is using the general sets of correlators presented in Sec.
3.1 in such a way that the averages over all events of numerator and denominator are cal-
culated individually. Afterwards, the ratio between the averaged numerator and averaged
denominator is built. This approach assumes no correlation between flow amplitudes and
cos [2 · LCM(m,n) · (Ψm −Ψn)]. Based on this idea, one can write the general AE-SPC
as

〈〈
cos
(∑am

j=1m · ϕj −
∑an

k=1 n · ϕam+k

)〉〉
〈〈

cos
(∑am

j=1(−1)j ·m · ϕj +
∑an

k=1(−1)k · n · ϕam+k

)〉〉

=

〈
(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1m ·Ψm −
∑an

k=1 n ·Ψn

)〉
〈

(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1(−1)j ·m ·Ψm +
∑an

k=1(−1)k · n ·Ψn

)〉
= 〈cos [2 · LCM(m,n) · (Ψm −Ψn)]〉 .

(3.25)

To validate that the AE-SPC is leading to an unbiased result in case of correlated flow
amplitudes vn, two sets of Toy Monte Carlo studies (TMC) have been carried out. In
these studies, the Fourier series Eq. (1.5) is given as an input. It serves as a probability
density function to sample the azimuthal angles ϕ. These angles are then passed to the
analysis framework, whose output is stored. Lastly, the averaged output of the analysis
framework is compared to the theoretical expected value given by the parameters plugged
into the Fourier series.
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3.3.1 TMC: Correlation Study

To verify the AE-SPC in different cases of correlations between flow amplitudes vn, a
Toy Monte Carlo study has been carried out. In this study, no correlation between flow
amplitudes vn and symmetry-planes Ψn has been implemented.
A ratio with factorised denominator (similar to the approach in [37]) is being compared
with the AE-SPC for four different cases

1. Fixed flow amplitudes v1 = 0.05 and v2 = 0.08, else vn = 0

2. Fluctuating but not correlated flow amplitudes v1 ∈ [0.05,0.08] (uniformly dis-
tributed) and v2 ∈ [0.05,0.08] (uniformly distributed) , else vn = 0

3. Fluctuating and correlated flow amplitudes: v1 ∈ [0.03,0.06] (uniformly distributed)
and v2 = v1 + 0.03, else vn = 0

4. Fluctuating and anti-correlated flow amplitudes: v1 ∈ [0.03,0.06] (uniformly dis-
tributed) and v2 = 0.12− v1, else vn = 0.

The symmetry-planes Ψ1 and Ψ2 are correlated by

Ψ2 = Ψ1 +
π

12
. (3.26)

Therefore, the theoretically expected value is

〈cos [4 (Ψ2 −Ψ1)]〉theo =
1

2
. (3.27)

For each case and each approach 4.5 ·106 events have been sampled with 50000 “particles”
per event. This unrealistically large amount of particles per event has been chosen to
easily suppress statistical errors. The error has been obtained with error propagation
under the neglect of any covariance terms (see G.1).
In Fig. 3.1 the statistical error bars are so small that the markers are covering them. A
closer representation of the relevant data points can be seen in Fig. 3.2. It becomes obvious
that in the case of correlated flow amplitudes the approach with a factorised denominator
leads to a biased result. A non-factorised denominator as used in the proposed AE-
SPC leads to results which are in good agreement with the theoretical input value. It is
therefore, that any approaches using factorised denominators (as proposed in [37]) have
to be rejected since correlated flow fluctuations are unavoidable in reality.
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Figure 3.1: Study of the AE-approach for constant, uncorrelated, correlated and anti-
correlated flow amplitudes. Comparison made to an approach with factorised flow am-
plitudes in the denominator. The dashed line indicates the theoretical expected value
〈cos [4 (Ψ2 −Ψ1)]〉theo = 1

2
.

Figure 3.2: Zoom on case-study for constant, uncorrelated, correlated and anti-
correlated flow amplitudes. The dashed line indicates the theoretical expected value
〈cos [4 (Ψ2 −Ψ1)]〉theo = 1

2
.
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3.3.2 TMC: Multiplicity Study

The second type of Toy Monte Carlo study looks at the behaviour of the AE-SPC with
different amounts of particles per event. The following input values of the Fourier series
have been used: Fluctuating and correlated flow amplitudes: v1 ∈ [0.03,0.06] (uniformly
distributed) and v2 = v1 + 0.03, else vn = 0.
The symmetry planes Ψ1 and Ψ2 are correlated by

Ψ2 = Ψ1 +
π

12
(3.28)

and the theoretically expected value is

〈cos [4 (Ψ2 −Ψ1)]〉theo =
1

2
. (3.29)

The study has been carried out for multiplicities 250 to 50000, each with 4.5 · 106 events.
The result is shown in Fig. 3.3, a zoomed version for high multiplicities in Fig. 3.4.
The statistical error has been obtained by error propagation under the neglect of any
covariance terms (see G.1).
Again, biased results of the approach with the factorised denominator can be observed.
The AE-SPC (non-factorised denominator) is in good agreement with the theoretical
expected value. It has to be stressed that this is also true for multiplicities up to 5000
which represent the multiplicity range of heavy ion collisions at LHC energies.

Figure 3.3: Multiplicity study for the AE-SPC in case of correlation v2 = v1 + 0.03. The
dashed line indicates the theoretical expected value 〈cos [4 (Ψ2 −Ψ1)]〉theo = 1

2
.
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Figure 3.4: Zoom in multiplicity study for the AE-SPC in case of correlation v2 = v1+0.03.
The dashed line indicates the theoretical expected value 〈cos [4 (Ψ2 −Ψ1)]〉theo = 1

2
.

3.3.3 TMC: Signature of Correlations

To study the signature of a SPC in the context of the AE-approach, a TMC with the
following input values of the Fourier series has been set up: Fluctuating and correlated
flow amplitudes v1 ∈ [0.03,0.06] (uniformly distributed) and v2 = v1 + 0.03, else vn = 0.
The correlations between the symmetry-planes Ψ1 and Ψ2 differ between the following
five cases

1. Fixed symmetry-planes: Ψ1 = 0 and Ψ2 = π
12

2. Fluctuating, but equal symmetry-planes: Ψ1 ∈ [0, 2π] (uniformly distributed)
and Ψ2 = Ψ1

3. Fluctuating and uncorrelated symmetry-planes: Ψ1 ∈ [0, 2π] (uniformly distributed)
and Ψ2 ∈ [0, π] (uniformly distributed)

4. Fluctuating and correlated symmetry-planes: Ψ1 ∈ [0, 2π] (uniformly distributed)
and Ψ2 = Ψ1 + π

12

5. Fluctuating and anti-correlated symmetry-planes: Ψ1 ∈ [0,2π] (uniformly distributed)
and Ψ2 = Ψ1 − π

12
.

For each set-up 4.5 · 106 events have been sampled with 50000 “particles” per event. This
unrealistically large amount of particles per event has been chosen to easily suppress sta-
tistical error. The error has been obtained with error propagation under neglect of any
covariance terms (see G.1).
The results of this study can be seen in Fig. 3.5, a zoomed version of the most upper
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Figure 3.5: Signature study for the AE-SPC in case of correlation v2 = v1 + 0.03.

and most lower point in Fig. 3.6 and Fig. 3.7. A zoomed version in the cases of fixed
symmetry-planes and correlated/anti-correlated symmetry-planes is not presented, their
results are still consistent with their theoretical expected value of 0.5, as it has been in
the previous studies which covered these cases. As one can see, in case of uncorrelated
symmetry-planes, the AE-approach will lead to 0. This result stems from the fact, that in
absence of correlation between the symmetry-planes, the cosine will fluctuate uniformly
between -1 and 1, therefore its average will lead to 0. This study, especially the case
of uncorrelated symmetry-planes, raises the following question: How can one distinguish
uncorrelated symmetry-planes (leading to 0 in the AE-approach) and symmetry-planes
with such a correlation, that the AE-approach will also lead to 0?
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Figure 3.6: Zoom on upper line of the
signature study, case Ψ2 = Ψ1.

Figure 3.7: Zoom on lower line of the signa-
ture study, case Ψ2 and Ψ1 are uncorrelated.

Such a differentiation can be made by a parallel measurement of the SPC built from
the sine. In case of uncorrelated symmetry-planes, also the sine will fluctuate uniformly
between -1 and 1, leading again in its average of the AE-approach to 0. However, in
cases that the symmetry-planes are correlated and the cosine term will lead to 0 in the
AE-approach, the sine term should lead to a 1 in the AE-approach.
To demonstrate this, a TMC with the following input values of the Fourier series has been
set up: Fluctuating and correlated flow amplitudes v1 ∈ [0.03,0.06] (uniformly distributed)
and v2 = v1 + 0.03, else vn = 0.
Two cases for the correlations between the symmetry-planes Ψ1 and Ψ2 have been chosen

1. Fluctuating and uncorrelated symmetry-planes: Ψ1 ∈ [0, 2π] (uniformly distributed)
and Ψ2 ∈ [0, π]

2. Fluctuating and correlated symmetry-planes: Ψ1 ∈ [0, 2π] (uniformly distributed)
and Ψ2 = Ψ1 + π

8
.

For both cases, the AE-SPC consisting of the cosine term and of the sine term have been
measured separately. Per case, in total 4.5 · 106 events have been sampled with 50000
“particles” per event. Again the error has been obtained by error propagation under the
neglect of any covariance terms (see G.1).
The results can be seen in Fig. 3.8 , zoomed versions in Fig. 3.9 and Fig. 3.10. This
study proves that in absence of any correlation between the symmetry-planes, the SPC
built from cosine terms and sine terms will lead to 0, in case of a correlation their results
in the AE-approach will differ. It has to be noted that this interpretation of the signature
of SPC by differing between the SPC built from cosine terms and sine terms can be in
principle extended to other approaches (e.g. EbE, Expansion). It is therefore, that hereby
a new observable

DOC [2 · LCM(m,n) (Ψm −Ψn)] (3.30)

:=

√
〈cos [2 · LCM(m,n) (Ψm −Ψn)]〉2 + 〈sin [2 · LCM(m,n) (Ψm −Ψn)]〉2 , (3.31)

called “Degree of correlation between Ψm and Ψn”, is being introduced. This observ-
able should lead to 0 if the symmetry-planes are not correlated because in this case,
the SPC for both the cosine and the sine will lead to 0 (as demonstrated before). In
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case of a “perfect correlation” (i.e. a correlation that is constant for all events), the
DOC [2 · LCM(m,n) (Ψm −Ψn)] should lead to a 1. Therefore, this new observable
should indicate “how strong” the symmetry-planes are correlated.

Figure 3.8: Comparison of the signature of the SPC obtained by cosine and by sine terms
for uncorrelated and correlated symmetry-planes.

Figure 3.9: Zoom on Fig. 3.8, lower line. Figure 3.10: Zoom on Fig. 3.8, upper line.
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3.3.4 Correlations between Eccentricities εn and Symmetry-Planes
in the Initial State Φn

A key question is whether there is a correlation between flow amplitudes vn and symmetry-
planes Ψn. Such correlation has to be taken into account - especially as this would lead
to biased results in the AE-SPC approach. Since these kind of correlations cannot be
studied directly, correlations between eccentricities εn and symmetry-planes in the initial
state Φn have been examined as they can be used as an indicator for similar correlations
between vn and Ψn. For this three MC-Glauber studies have been carried out, all with
the following set-up: Pb-Pb collisions at

√
sNN = 2.76 TeV, minimal distance between the

nucleons, Gaussian nucleon-nucleon overlap function and Gaussian smearing. For each
study, in total 50000 events have been carried out, however events with no interaction
have not been taken into account which leads to a smaller number of events for very
peripheral collisions.
The first study shows correlation plots between ε2 and Φ2 for selected impact parameters
b (Fig. 3.11).

Figure 3.11: Correlation plots between ε2 and Φ2 for impact parameters b = 8 fm and
b = 14 fm.

More plots of this study are presented in Appendix D, Fig. D.1. Figure 3.11 shows
that for rising impact parameter b, non trivial structures appear in the correlation plot.
Such a result would indicate a correlation between ε2 and Φ2. This result however is not
correct as it is an artefact of the fixed frame of the MC-Glauber implementation.
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Figure 3.12: Correlation plots between ε2 and Φ2 + ΦRP for impact parameters b = 8 fm
and b = 14 fm.

In real heavy ion collisions, a random reaction plane ΨRP occurs each event which
shifts all symmetry-planes of a fixed frame to Ψ̃n = Ψn + ΨRP . This random shift should
remove any correlation between phases and amplitudes. To demonstrate this, a second
MC-Glauber study has been set up. In each event, a random ΦRP ∈ [0, π) has been
generated to simulate the reaction plane. After this the measured symmetry-plane in the
initial state Φn has been shifted to Φ̃n = Φn + ΦRP and brought back to the interval
Φ̃n ∈ [0, π). Figure 3.12 shows the correlation plot between ε2 and Φn + ΦRP for some
selected impact parameters b. More plots of this study can be found in Appendix D, Fig.
D.2. It is shown that there is no correlation between ε2 and Φn + ΦRP .

Figure 3.13: Correlation plots between ε2 and Φ2 − Φ4 for impact parameters b = 8 fm
and b = 14 fm.

However, this argument of shifted symmetry-planes does not hold true if one looks
at any sum of symmetry-planes with isotropic correlators (for example the difference of
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two symmetry-planes). For such sums the added reaction planes cancel themselves. In
the third MC-Glauber study of this kind, the correlation plot between Φ2 − Φ4 and ε2 is
shown in Fig. 3.13 . It is shown that for rising impact parameter b, non trivial structures
appear which indicate a non-trivial correlation between ε2 and Φ2−Φ4. More plots of this
study are presented in Appendix D Fig. D.3. The distance between the peaks for high
impact parameter b (e.g. Fig. 3.13, right) can be calculated as every symmetry-planes
Φn has a underlying periodicity of

Φn = Φn +
2π

n
. (3.32)

Therefore, the distance of the peaks in Fig. 3.13 (right) can be computed as

Φ2 − Φ4 =

(
Φ2 +

2π

2

)
−
(

Φ4 +
2π

4

)
= Φ2 − Φ4 +

π

2︸︷︷︸
peak distance

. (3.33)

Further properties of the structures in Fig. 3.13 (right) still have to be studied in more
detail.
These results clearly show that there is a possible correlation between vn and Ψn − Ψm.
Therefore, the factorisation as it is performed in the AE-SPC will lead to a biased re-
sult. As a consequence, the AE-SPC approach is rejected as a candidate for a complete
bias-free SPC observable, even though this approach can correct for the bias caused by
correlations among the flow amplitudes themselves. It has to be mentioned that the ap-
proach of building SPC with a factorised denominator [37] is not solely biased through the
correlated flow amplitudes themselves, but additionally through this correlation between
flow amplitudes and the (difference of) symmetry-planes.

3.4 Event-by-Event SPC

The AE-SPC approach is only feasible if (and only if) flow amplitudes vn and symmetry-
planes Ψn are not correlated. Otherwise, the result will be biased. However, as it is shown
in Sec. 3.3.4, such an assumption of no correlation cannot be made (at least based on the
Monte Carlo-Glauber model). To overcome this, the Event-by-Event SPC (EbE-SPC)
approach has been developed.

The EbE-SPC approach is the computation of the ratio between the correlators per
event where each event has a unit weight in absence of multiplicity fluctuations. In the
real data analysis, multiplicity weights have to be used. The EbE-SPC is therefore given
as 〈

cos
(∑am

j=1m · ϕj −
∑an

k=1 n · ϕam+k

)〉
〈

cos
(∑am

j=1(−1)j ·m · ϕj +
∑an

k=1(−1)k · n · ϕam+k

)〉

=
(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1m ·Ψm −
∑an

k=1 n ·Ψn

)
(
∏am

i=1 vm)
(∏an

j=1 vn

)
cos
(∑am

j=1(−1)j ·m ·Ψm +
∑an

k=1(−1)k · n ·Ψn

)
= cos [2 · LCM(m,n) · (Ψm −Ψn)] .

(3.34)
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To study the behaviour of this approach in the context of the analysis framework, a Toy
Monte Carlo study has been set up with the following input values of the Fourier series Eq.
(1.5): Fluctuating and correlated flow amplitudes v1 ∈ [0.03,0.06] (uniformly distributed)
and v2 = v1 + 0.03, else vn = 0.
The study has been carried out for multiplicities 250 to 50000, each with 4.5 · 106 events.
The result is shown in Fig. 3.14 and zoomed in for higher multiplicities in Fig. 3.15.

Figure 3.14: Multiplicity study for the EbE-SPC in case of correlation v2 = v1 + 0.03.
The dashed line indicates the theoretical expected value 〈cos [4 (Ψ2 −Ψ1)]〉theo = 1

2
.
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Figure 3.15: Zoom on the multiplicity study for the EbE-SPC in case of correlation v2 =
v1+0.03. The dashed line indicates the theoretical expected value 〈cos [4 (Ψ2 −Ψ1)]〉theo =
1
2
.

This result shows a huge statistical error for multiplicities up to 5000, even for a
relatively large number of events. This statistical instability can be explained by “outlier
events” which have an unusually small denominator. This leads to an abnormally large
value in the ratio of this event which biases the whole average. It is therefore necessary
to get rid of the “outliers”. Regarding the unrealistically large multiplicities (i.e. 25000
and 50000), the results do not align with the expected value of 0.5, even though the error
bars are small.
This statistically instability and the offset, which both are believed to be caused by the
outlier events, lead to the result that a direct use of the EbE-approach is not feasible at
the moment and more work has to be done in this direction. However, it again has to be
stressed that this approach holds the potential to measure SPC without any bias caused
by correlations between flow amplitudes vn themselves and by correlations between flow
amplitudes and the (difference) of symmetry-planes.

3.5 Expansion-Approach

As presented above, the AE-Approach is rejected due to possible correlation between the
flow amplitudes and cos [2 · LCM(m,n) · (Ψm −Ψn)]. The EbE-Approach, which would
not be biased by such a correlation, is statistically not stable. It is therefore that in this
section the “Expansion-Approach” is being presented. The main idea of this approach is
the approximation of the unbiased EbE-Approach so that this approximation itself is only
linked to statistically stable observables.
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Consider two observables X and Y with mean E(X), E(Y ). As shown in Appendix
E, the second order expansion of the mean of the ration distribution X

Y
can be derived as

E

(
X

Y

)
≈ E(X)

E(Y )
·
(

1 +
E(Y 2)

E(Y )2

)
− E(XY )

E(Y )2
. (3.35)

In Eq. (3.35) it assumed that E(Y ) 6= 0, E(XY ) is the mean of the product of X and Y .
The third order expansion (derivation see Appendix E) reads

E

(
X

Y

)
≈ E(X)

E(Y )

[
1 + 3

E(Y 2)

E(Y )2
− E(Y 3)

E(Y )3

]
− 3

E(XY )

E(Y )2
+

E(XY 2)

E(Y )3
. (3.36)

For both cases (second and third order expansion), the first order error propagation is
applied

Var

(
X

Y

)
=

E(X)2

E(Y )2
·
(

Var(X)

E(X)2
+

Var(Y )

E(Y )2
− 2

Cov(X, Y )

E(X) E(Y )

)
(3.37)

where Cov(X, Y ) is the covariance of X and Y , Var(X) the variance of X and Var(Y )
the variance of Y (as shown in [39]).

Considering the SPC in flow analyses, the variables X and Y will be chosen as

X =

〈
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(
am∑
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(3.38)

with
am = 2

LCM(m,n)

m
(3.39)

and
an = 2

LCM(m,n)

n
. (3.40)

Properties of this approach have to be investigated further.

3.6 Tan-Approach
As stated in [38], SPC can be extracted from a k-particle correlation by taking advantage
of fundamental properties of complex numbers, i.e.

n1Ψ1 + ...+ nkΨk (3.41)

= arg
[〈
e−i(n1ϕ1+...+nkϕk)

〉]
(3.42)

= atan2
(
=
〈
e−i(n1ϕ1+...+nkϕk)

〉
,<
〈
e−i(n1ϕ1+...+nkϕk)

〉)
(3.43)
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In this approach, only one set of correlators {n1, n2, ..., nk} has to be used, which has to
fulfil

k∑
j=1

nj = 0 (3.44)

and
k∑
j=1

nj ·Ψnj
6= 0 . (3.45)

Though, as also stated in [38], the phase is limited to [0, 2π), thus unfolding problems
arise.
This can be improved by introducing the cosine to this approach

cos (n1Ψ1 + ...+ nkΨk) (3.46)

= cos
(
arg
[〈
e−i(n1ϕ1+...+nkϕk)

〉])
(3.47)

= cos
(
atan2

(
=
〈
e−i(n1ϕ1+...+nkϕk)

〉
,<
〈
e−i(n1ϕ1+...+nkϕk)

〉))
(3.48)

as the 2π-periodicity of the cosine will overcome the limited phase. Further investigations
of the approach still have to be done.
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First Look at Experimental SPC

4.1 Data Selection and Quality Assurance

The data used in this first look at experimental SPC have been recorded by ALICE at
LHC. For this analysis, “Run 1” data of Pb-Pb collisions at

√
sNN = 2.76 TeV (taken in

2010) have been used (a list of the used runs can be found in Appendix F.1). In this
analysis, TPC and ITS have been used as the main detectors. The azimuthal angles
provided by TPC have full azimuth coverage (Fig. 4.1), therefore no particle weights will
be applied. Regarding event weights, the previously introduced (Sec. 1.5.1) multiplicity
weights have been used to correct for fluctuating multiplicities between the events. The
centrality of the given events has been estimated by SPD. Overall, minimum bias data
have been used. The used tracks are hybrid tracks (filter 768).
As a global quality assurance, events that do not satisfy a z-Vertex of −10 cm < z <
10 cm are rejected (Fig. 4.2). Furthermore, a cut to remove high multiplicity outliers
(see Appendix F.2) has been applied.
The track selection of the kinematic variables (transverse momentum pT and pseudora-
pidity η) was applied as follows: 0.2 GeV/c < pT < 5.0 GeV/c and −0.8 < η < 0.8.
Distributions of pT (Fig. 4.3), η (Fig. 4.4) and multiplicity (Fig. 4.5) after the track
selection are presented below.

Figure 4.1: Distribution of azimuthal
angle ϕ of all used runs after track
selection.

Figure 4.2: Distribution of z vertex of
all used runs after z vertex cut.

43



CHAPTER 4. FIRST LOOK AT EXPERIMENTAL SPC 44

Figure 4.3: Distribution of transverse
momentum pT of all used runs after
track selection.

Figure 4.4: Distribution of pseudorapidity η
of all used runs after track selection.

Figure 4.5: Multiplictiy distribution of all
used runs after track selection. All centrali-
ties are presented.
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4.2 Centrality-dependent SPC

Figure 4.6: SPC for Ψ2 and Ψ1 for centrality 0 % to 70 %.

The results of the first look at experimental SPC are presented in this section. They
have been obtained with the AE-approach, thus they represent SPC without any contribu-
tions of correlations between the flow amplitudes vn. Though, a bias through correlations
between flow amplitudes in the (difference) of symmetry-planes cannot be excluded. Only
statistical errors, which were obtained by the “bootstrap-method” (see Appendix G.2), are
presented. The EbE-approach and the Expansion-approach will not be presented due to
problems with statistical instability.

Figure 4.6 shows the obtained SPC between Ψ2 and Ψ1. These results show that Ψ2

and Ψ1 are different. The DOC [4 (Ψ2 −Ψ1)] is consistent with 0 for centrality classes
bigger 10 %. This hints to the possible observation, that Ψ2 and Ψ1 are not correlated
for mid-central and peripheral collisions. For very central collisions, there might be an
indication for a slight correlation, as here the DOC is not consistent with 0.

The SPC between Ψ3 and Ψ1 is presented in Fig. 4.7. The errors of the obtained re-
sults are very large within the presented centrality classes. Thus, more data have to be
analysed to constraint more precise information about this correlation as this is not fea-
sible with the current statistics.
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Figure 4.7: SPC for Ψ3 and Ψ1 for centrality 0 % to 50 %.

Figure 4.8 presents the SPC between Ψ3 and Ψ2. It can be observed that Ψ3 and Ψ2

differ and for centralities up to 30 % seem to be uncorrelated. For higher centralities this
statement is less certain, more data have to be analysed to gain further constraints.

The SPC between Ψ4 and Ψ2 is shown in Fig. 4.9. The results show that Ψ4 and Ψ2 are
not the same, further the results show that these symmetry-planes seem to be correlated
(in mid-central collisions). The degree of correlation has a maximum for mid-central colli-
sions (centrality ≈ 40 %), thus the symmetry-planes tend to be “more strongly” correlated
in this regime. For very central and increasing peripheral collisions, Ψ4 and Ψ2 seem to
be less correlated, in the extreme cases even uncorrelated.
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Figure 4.8: SPC for Ψ3 and Ψ2 for centrality 0 % to 50 %.

Figure 4.9: SPC for Ψ4 and Ψ2 for centrality 0 % to 70 %.



Chapter 5

Summary

In this thesis, new approaches for the measurement of symmetry-plane correlations (SPC),
which correct for the bias originating from correlated flow amplitudes vn, have been pre-
sented. Such bias is not negligible and it affects all currently available measurements of
SPC. Study of quantities in the initial geometry of heavy ion collisions, obtained by the
Monte Carlo-Glauber model, indicated a possible correlation between flow amplitudes and
symmetry-planes. Therefore, various additional approaches have been introduced which
hold the potential for a complete bias-free SPC by additionally removing bias through
correlations between flow amplitudes and the (difference of) symmetry-planes. In future
studies, properties of these completely bias-free approaches will be investigated to further
improve measurements in the field of SPC.
Lastly, a first look at experimental analyses of different SPC built in terms of the AE-
approach have been presented and shortly discussed. These results present the first mea-
surement of SPC without any bias from correlations between flow amplitudes vn. Further
analyses and systematic checks will be done in this direction in the future.
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Appendix A

Flow

A.1 Flow harmonic

One has to prove that
〈cos[n(ϕ− ψn)]〉 = vn (A.1)

The mean value of a random observable x can be written as

〈x〉 =

∫ 2π

0

x · f(x) dx . (A.2)

We define z(n) := cos[n(ϕ− ψn)] and use a normalized version of Eq. (1.5)

f(z(n)) :=
1

2π

[
1 + 2

∞∑
n=1

vnz(n)

]
, (A.3)

which leads to

〈cos[n(ϕ− ψn)]〉 =

∫ 2π

0

z(n) · 1

2π

[
1 + 2

∞∑
n=1

vn · z(n)

]
dϕ (A.4)

(A.5)

=
1

2π

∫ 2π

0

z(n)dϕ︸ ︷︷ ︸
=0

+2

∫ 2π

0

z(n)
∞∑
n=1

vn · z(n) dϕ

 . (A.6)

For the second integral one can write∫ 2π

0

z(n)
∞∑
n=1

vn · z(n) dϕ (A.7)

=

∫ 2π

0

∞∑
n=1

vn · z(n) · z(m) dϕ (A.8)

=
∞∑
n=1

vn

∫ 2π

0

z(n) · z(m) dϕ . (A.9)

The sum and the integral can be switched, as both of them have to converge (and we
assume they converge). Flow amplitudes vn can be taken out of the integral as they are
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independent of ϕ. With the help of the orthogonality relations of trigonometric functions,
one gets ∫ 2π

0

z(n) · z(m) dϕ (A.10)

=

∫ 2π

0

cos[n(ϕ− ψn)] · cos[m(ϕ− ψm)] dϕ (A.11)

= cos(n · ψn −m · ψm) · π · δmn , (A.12)

where δmn is the Kronecker delta symbol. Therefore,

∞∑
n=1

vn

∫ 2π

0

z(n) · z(m) dϕ (A.13)

=
∞∑
n=1

vn cos(n · ψn −m · ψm) · π · δmn . (A.14)

By explicitly using the properties of the Kronecker delta in the case of m = n, it simplifies
to

cos(n · ψn −m · ψm) = cos(n · ψn − n · ψn) = cos(0) = 1 . (A.15)

In all other cases δmn = 0. Therefore, the sum simplifies to:

∞∑
n=1

vn cos(n · ψn −m · ψm) · π · δmn (A.16)

= πvn (A.17)

This leads to the wanted result

〈cos[n(ϕ− ψn)]〉 =
1

2π
· 2π · vn = vn . (A.18)

A.2 Q-vector in two-particle correlation
By introducing the so-called Q-vector

Qn =
M∑
j=1

einϕj , (A.19)

one can show that

〈2〉 ≡
〈
ein(ϕ1−ϕ2)

〉
(A.20)

=
1(

M
2

)
2!

M∑
j,k=1
(j 6=k)

ein(ϕj−ϕk) (A.21)

=
1(

M
2

)
2!
× [|Qn|2 −M ] . (A.22)

Here
〈
ein(ϕ1−ϕ2)

〉
is the sum of all possible pairs between the azimuthal angles ϕ1 and ϕ2

divided by the total number of all possible pairs (i.e. the event weight).
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As mentioned in Sec. 1.5, one has to be aware of autocorrelations. Therefore, the sum of
all possible pairs between the two azimuthal angles is given as

M∑
j,k=1
(j 6=k)

ein(ϕj−ϕk) . (A.23)

The number of all possible pairs N for a event consisting of M particles can be derived as
the following: Taking the first particle, one can correlate it with M − 1 particles as one
must not correlate it with itself. As there are M particles, this process can be repeated
M times, therefore the number of all possibles pairs is N = M · (M − 1). This expression
can be rewritten as

N = M · (M − 1) =
M !

(M − 2)!
= 2! · M !

2!(M − 2)!
=

(
M

2

)
2!, (A.24)

representing the event weight of the 2-particle correlation. This results to

〈
ein(ϕ1−ϕ2)

〉
=

1(
M
2

)
2!

M∑
j,k=1
(j 6=k)

ein(ϕj−ϕk) (A.25)

To prove 〈
ein(ϕ1−ϕ2)

〉
≡ 1(

M
2

)
2!
× [|Qn|2 −M ] (A.26)

one has to prove that

|Qn|2 =
M∑

j,k=1

ein(ϕj−ϕk) . (A.27)

As shown in [2]

|Qn|2 = QnQ
∗
n =

M∑
j=1

einϕj ·
M∑
k=1

e−inϕk =
M∑

j,k=1

ein(ϕj−ϕk) . (A.28)

Therefore,

|Qn|2 =
M∑

j,k=1

ein(ϕj−ϕk) =
M∑

j,k=1
(j 6=k)

ein(ϕj−ϕk) +M . (A.29)

As the autocorrelation is removedM times, one has to addM itself again. This results out
of the fact, that for any autocorrelation (j = k) the term exp(in(ϕj−ϕk)) = exp(in·0) = 1
is taken out. In the end this provides the wanted result

〈2〉 ≡
〈
ein(ϕ1−ϕ2)

〉
(A.30)

=
1(

M
2

)
2!

M∑
j,k=1
(j 6=k)

ein(ϕj−ϕk) (A.31)

=
1(

M
2

)
2!
× [|Qn|2 −M ] . (A.32)



Appendix B

Monte Carlo-Glauber

B.1 Parameters for Woods-Saxon-Distribution

Nucleus R in fm a in fm w in fm
2H 0.01 0.5882 0
16O 2.608 0.513 -0.51
28Si 3.34 0.580 -0.233
32S 2.54 2.191 0.16
40Ca 3.766 0.586 -0.161
58Ni 4.309 0.517 -0.1308
62Cu 4.2 0.596 0
186W 6.58 0.480 0
197Au 6.38 0.535 0
207Pb 6.62 0.546 0
238U 6.81 0.6 0

Table B.1: Parameters for Woods-Saxon-Distribution, taken from [22].

B.2 Nucleon-Nucleon Overlap Function

The nucleon-nucleon interaction takes a function p(b) which gives the probability of in-
teraction between those nucleons. Here b represents the distance of the two nucleons in
the transverse plane. For this Monte Carlo-Glauber model, two options are available:

1. Black Disk: The interaction function p(b) is given as

pBD(b) = Θ (R− b) (B.1)

where Θ represents the Heaviside function. This leads to an interaction of two
different nucleons if they undershoot a certain distance R.

2. Gaussian Overlap: The Gaussian overlap function is given as

pG(b) = 1−
[
1− α exp

(
−γb2

)]2 (B.2)

with two parameters α and γ (taken from [23]).
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As stated in [23], Eq. (B.2) has two fulfil∫
d2bp(b) = σNNinel (B.3)

and

2

∫
d2bΓ(b) = σNNtot , with Γ(b) = 1−

√
1− p(b) (B.4)

where σNNinel is the total inelastic nucleon-nucleon cross-section and σNNtot the total nucleon-
nucleon cross-section. Values for these cross-sections at certain energies can be found Tab.
B.2.
Furthermore, Eq. (B.1) has to fulfil Eq. (B.3). Using Eq. (B.3) and (B.4) one obtains
dependencies of the parameters R in Eq. (B.1) and α and γ in Eq. (B.2).

√
s (GeV) σNNel σNNtot (mb) σNNinel = (σNNtot − σNNel ) (mb)
200 10 52 42
2760 19 83 64

Table B.2: pp cross-sections, taken from [40] and [41].

B.3 Parameter Calculation Black Disk NN-Overlap

Using Eq. (B.1) and Eq. (B.3), one obtains∫
d2b pBD(b)

= 2π

∫ ∞
0

db Θ (R− b)

= 2π

∫ R

0

db = σNNinel .

(B.5)

Therefore,

R =

√
σNNinel
π

. (B.6)

B.4 Parameter Calculation Gaussian NN-Overlap

Using the Gaussian NN-overlap function pG(b) (Eq. (B.2)) one obtains

ΓG(b) = 1−
√

1− pG(b)

= 1−
√√√√[1− α exp

(
−γb2

)]2︸ ︷︷ ︸
>0 ∀ b, γ≥0 (Assumption)

= α exp
(
−γb2

)
.

(B.7)
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for Γ(b) in Eq. (B.4). Therefore, using Eq. (B.4)

2

∫
d2b ΓG(b)

= 2π

∫ ∞
0

db 2b α exp
(
−γb2

)
= 2π

α

γ
= σNNtot

(B.8)

leads to the relation
γ

2π
=

α

σNNtot
. (B.9)

between the parameters α and γ of the Gaussian NN-overlap function. From Eq. (B.3)
it follows that ∫

d2b pg(b) = 2π

∫ ∞
0

db b pG(b)

= 2π

∫ ∞
0

db
[
2αb exp

(
−γb2

)
− α2b exp

(
−2γb2

)]
= 2π

[
α

γ
− α2

4γ

]
Eq.(B.9)

=

= σNNtot − α
σNNtot

4
= σNNinel .

(B.10)

Therefore,

α = 4
σNNtot − σNNinel

σNNtot
. (B.11)

The parameter γ is implicitly given by

γ = 2π
α

σNNtot
= 8π

σNNtot − σNNinel
(σNNtot )

2 . (B.12)



Appendix C

General SPC

C.1 Proof of Eq. (3.15)
It has to be shown that

@m,n ∈ N :
LCM(m,n)

m
= 2j ∧ LCM(m,n)

n
= 2k with j, k ∈ N . (C.1)

Proof :
Taking the fundamental theorem of arithmetic, every positive natural number a can be
built up as a unique product of prime numbers:

a =
∏
p

pap (C.2)

where
∏

p denotes the product of all prime numbers starting from 2 and ap are the unique
exponents of the prime number p to build a. Taking a second integer

b =
∏
p

pbp , (C.3)

the least common multiple between a and b (LCM(a, b)) can be written as

LCM(a, b) =
∏
p

pmax(ap,bp) . (C.4)

For an integer a we now use the notation

a = 2a2 · ã (C.5)

with
ã =

∏
p̃

p̃ ap̃ . (C.6)

∏
p̃ denotes the product of all prime numbers starting from 3 and ap̃ are the unique

exponents of the prime number p̃ to build ã. ã is odd as it is a product of odd numbers.
Using the same notation with p̃ being the prime numbers starting from 3, the LCM(m,n)
can be written as

LCM(m,n) = 2max(m2,n2) · β̃ (C.7)

where
β̃ =

∏
p̃

p̃ max(mp̃,np̃) . (C.8)
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It has to be stressed that β̃ is odd as it is a product of odd numbers. Possible combinations
between

m = 2m2 · m̃ and n = 2n2 · ñ .

m odd (m2 = 0) m even (m2 > 0)

n odd (n2 = 0) LCM(m,n) = β̃ (odd) LCM(m,n) = 2m2 β̃ (even)

LCM(m,n)

m
=
β̃

m̃
=⇒ odd

LCM(m,n)

m
=
β̃

m̃
=⇒ odd

LCM(m,n)

n
=
β̃

ñ
=⇒ odd

LCM(m,n)

n
= 2m2

β̃

ñ
=⇒ even

n even (n2 > 0) w.l.o.g. m2 ≥ n2

LCM(m,n) = 2n2 β̃ (even) LCM(m,n) = 2m2 · β̃ (even)

LCM(m,n)

m
= 2n2

β̃

m̃
=⇒ even

LCM(m,n)

m
=
β̃

m̃
=⇒ odd

LCM(m,n)

n
=
β̃

ñ
=⇒ odd

LCM(m,n)

n
= 2m2−n2

β̃

ñ

=⇒

{
odd for m2 = n2

even for m2 > n2

Table C.1: All possible combinations between m = 2m2 · m̃ and n = 2n2 · ñ in respect to
LCM(m,n)

Note: The Ratio of two dividable odd numbers is odd again. As seen in Tab. C.1:

@m,n ∈ N :
LCM(m,n)

m
= 2j ∧ LCM(m,n)

n
= 2k with j, k ∈ N � (C.9)

C.2 LCM-Method Smaller Order
It has to be shown that for any integer m and n the order of the correlators using the
LCM -Method is always smaller equal than the ones for the Direct Method presented
above. The orders of the correlators are given as

1. Direct Method

{
n+m for m ∧ n even
2 (n+m) for m ∨ n odd

2. LCM -Method: 2 · LCM(m,n)
(

1
m

+ 1
n

)
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Proof:
In general, LCM(m,n) ≤ m · n. Therefore, in cases of m ∨ n odd, the LCM -Method
reduces the order of the particle correlator compared to the Direct Method as

2 · LCM(m,n)

(
1

m
+

1

n

)
≤ 2 (n ·m)

(
1

m
+

1

n

)
≡ 2(n+m) . (C.10)

In case of m ∧ n even, the order of the particle correlator of the Direct Method is also
bigger equal than the LCM -Method:
For two positive integers m,n > 0

GCD(m,n) · LCM(m,n) = m · n (C.11)

where GCD(m,n) is the greatest common divisor of m and n.

As m and n are both even, we can show that GCD(m,n) is even:

GCD(m,n) = 2k with k ∈ N . (C.12)

An integer a can be written as
a = 2a2 · ã (C.13)

with
ã =

∏
p̃

p̃ ap̃ (C.14)

due to the fundamental theorem of arithmetic.
∏

p̃ denotes the product of all prime
numbers starting from 3 and ap̃ are the unique exponents of the prime number p̃ to build
ã. ã is odd as it is a product of odd numbers. The greatest common divisor of a and b
(GCD(a, b)) is given as

GCD(a, b) = 2min(a2,b2) · γ̃ (C.15)
where

γ̃ =
∏
p̃

p̃ min(ap̃,bp̃) . (C.16)

It has to be stressed that γ̃ is odd as it is a product of odd numbers and p̃ denotes all
prime numbers starting from 3. As a and b are even, we know that a2 > 0 and b2 > 0.
Therefore, min(a2, b2) > 0:

2min(a2,b2) = 2k with k ∈ N =⇒ GCD(a, b) even . (C.17)

Taking this statement into account

GCD(m,n) · LCM(m,n) = m · n
⇔ 2k · LCM(m,n) = m · n

⇔ 2k · LCM(m,n) · (m+ n) = m · n︸ ︷︷ ︸
6=0

(m+ n)

⇔ 2k · LCM(m,n) · ( 1

m
+

1

n
) = (m+ n) .

(C.18)

As k is a positive integer

2 · LCM(m,n) · ( 1

m
+

1

n
) ≤ 2k · LCM(m,n) · ( 1

m
+

1

n
) = (m+ n) (C.19)

and therefore also in this case, the LCM -Method is in general a smaller set of correlators.
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C.3 Proof Eq. (3.23)

It has to be shown that

@m,n, q ∈ N :
LCM(m,n, q)

m
= 2i ∧ LCM(m,n, q)

n
= 2j ∧ LCM(m,n, q)

q
= 2k

with i, j, k ∈ N .
(C.20)

Proof:
As before, using the fundamental theorem of arithmetic, an integer a can be built up as
a multiplication of prime numbers:

a = 2a2 · ã , (C.21)

with

ã =
∏
p̃

p̃ ap̃ . (C.22)

∏
p̃ denotes the product of all prime numbers starting from 3 and ap̃ are the unique ex-

ponents of the prime number p̃ to build ã. ã is odd as it is a product of odd numbers.
Using the same notation with p̃ being the prime numbers starting from 3, the LCM(m,n, q)
can be written as

LCM(m,n, q) = 2max(m2,n2,q2) · β̃ , (C.23)

where

β̃ =
∏
p̃

p̃ max(mp̃,np̃,qp̃) . (C.24)

It has to be stressed that β̃ is odd as it is a product of odd numbers.
Possible combinations between

m = 2m2 · m̃, n = 2n2 · ñ and q = 2q2 · q̃

where we use w.l.o.g.

m2 ≥ n2 ≥ p2 . (C.25)
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m odd (m2 = 0) m even (m2 > 0)

n odd (n2 = 0) not possible as not possible as
m2 ≥ n2 ≥ q2 m2 ≥ n2 ≥ q2

n even (n2 > 0) not possible as LCM(m,n, q) = 2m2 · β̃ (even)

m2 ≥ n2 ≥ q2
LCM(m,n, q)

m
=
β̃

m̃
=⇒ odd

LCM(m,n, q)

n
= 2m2−n2

β̃

ñ

=⇒

{
odd for m2 = n2

even for m2 > n2

=⇒

{
odd for m2 = q2

even for m2 > q2

Table C.2: Case p even (q2 > 0).
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m odd (m2 = 0) m even (m2 > 0)

n odd (n2 = 0) LCM(m,n, q) = β̃ (odd) LCM(m,n, q) = 2m2 β̃ (even)

LCM(m,n, q)

m
=
β̃

m̃
=⇒ odd

LCM(m,n, q)

m
=
β̃

m̃
=⇒ odd

LCM(m,n, q)

n
=
β̃

ñ
=⇒ odd

LCM(m,n, q)

n
= 2m2

β̃

ñ
=⇒ even

LCM(m,n, q)

q
=
β̃

q̃
=⇒ odd

LCM(m,n, q)

q
= 2m2

β̃

q̃
=⇒ even

n even (n2 > 0) not possible as LCM(m,n, q) = 2m2 · β̃ (even)

m2 ≥ n2 ≥ q2
LCM(m,n, q)

m
=
β̃

m̃
=⇒ odd

LCM(m,n, q)

n
= 2m2−n2

β̃

ñ

=⇒

{
odd for m2 = n2

even for m2 > n2

LCM(m,n, q)

q
= 2m2

β̃

q̃
=⇒ even

Table C.3: Case q odd (q2 = 0).
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Appendix D

Wolverine-Plots

Figure D.1: Correlation plots between ε2 and Φ2 for impact parameters b ∈ [0 fm, 16 fm].
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Figure D.1: Correlation plots between ε2 and Φ2 for impact parameters b ∈ [0 fm, 16 fm].
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Figure D.2: Correlation plots between ε2 and Φ2 + ΦRP for impact parameters
b ∈ [0 fm, 16 fm].
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Figure D.2: Correlation plots between ε2 and Φ2 + ΦRP for impact parameters
b ∈ [0 fm, 16 fm].
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Figure D.3: Correlation plots between ε2 and Φ2 − Φ4 for impact parameters
b ∈ [0 fm, 16 fm].
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Figure D.3: Correlation plots between ε2 and Φ2 − Φ4 for impact parameters
b ∈ [0 fm, 16 fm].



Appendix E

Expansion Approach

E.1 Second Order Expansion
1The second order Taylor Expansion T2(f(X, Y )) of the function f(X, Y ) = X

Y
around

the expansion point Θ = (µX , µY ) (with µY 6= 0) is

T2(f(X, Y )) =
µX
µY

[
1− 1

µY
(Y − µY ) +

1

µ2
Y

(Y − µY )2
]

+
(x− µX)

µY

[
1− 1

µY
(Y − µY )

]
.

(E.1)

By using the approximation

E(f(x, y)) = E

(
X

Y

)
≈ E(T2(f(X, Y ))) (E.2)

one obtains the second order approximation of the mean of the ratio distribution E
(
X
Y

)
as

E

(
X

Y

)
≈ E(X)

E(Y )

[
1 +

E(Y 2)

E(Y )2

]
− E(XY )

E(Y )2
. (E.3)

E.2 Third Order Expansion
Analogous to the second order expansion, in this section the third order expansion will
be presented. The third order Taylor expansion T3(f(X, Y )) of a function f(X, Y ) = X

Y

around the expansion point Θ = (µX , µY ) (with µY 6= 0) is

T3(f(X, Y )) =
µX
µY

[
1− 1

µY
(Y − µY ) +

1

µ2
Y

(Y − µY )2 − 1

µ3
Y

(Y − µY )3
]

+
(x− µX)

µY

[
1− 1

µY
(Y − µY ) +

1

µ2
Y

(Y − µY )2
] (E.4)

Taking the approximation that

E(f(x, y)) = E

(
X

Y

)
≈ E(T3(f(X, Y ))) (E.5)

the mean of the ratio distribution of E
(
X
Y

)
can be approximated as

E

(
X

Y

)
≈ E(X)

E(Y )

[
1 + 3

E(Y 2)

E(Y )2
− E(Y 3)

E(Y )3

]
− 3

E(XY )

E(Y )2
+

E(XY 2)

E(Y )3
. (E.6)

1This section is based on [39].
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Appendix F

First Look at Experimental SPC

F.1 List of Runs

The runs used in the presented first look at experimental data analyses are taken from
LHC10h. The list of used runs is:
139510, 139507, 139505, 139503, 139465, 139438, 139437, 139360, 139329, 139328, 139314,
139310, 139309, 139173, 139107, 139105, 139038, 139037, 139036, 139029, 139028, 138872,
138871, 138870, 138837, 138732, 138730, 138666, 138662, 138653, 138652, 138638, 138624,
138621, 138583, 138582, 138578, 138534, 138469, 138442, 138439, 138438, 138396, 138364,
138275, 138225, 138201, 138197, 138192, 138190, 137848, 137844, 137752, 137751, 137724,
137722, 137718, 137704, 137693, 137692, 137691, 137686, 137685, 137639, 137638, 137608,
137595, 137549, 137546, 137544, 137541, 137539, 137531, 137530, 137443, 137441, 137440,
137439, 137434, 137432, 137431, 137430, 137243, 137236, 137235, 137232, 137231, 137230,
137162, 137161

F.2 High Multiplicity Outliers

1High multiplicity outliers (HMO’s) describe peripheral events (centrality > 60 %), in
which the reconstruction went wrong in such a way, that this event carries an unrealisti-
cally large multiplicity. This happens only on a per-mill level. However, as multiplicity
weights are used as event weights in multi-particle correlation techniques, such HMO’s
will strongly bias the measurement in high centrality classes (peripheral collisions).
The removal of the HMO’s was performed by introducing a rejection criteria based on
the number of tracks in the filter 768 (hybrid tracks) and filter 256 (global hybrid tracks).
Filter 768 is used as the primary filter in the analysis due to its uniform azimuthal cov-
erage. Though, as Fig. F.1 shows, this filter contains HMO’s. As the rejection criteria{

(Tracks-Filter-768) > 1.63 · ( Tracks-Filter-256 ) + 70 =⇒ reject event
(Tracks-Filter-768) < 1.14 · ( Tracks-Filter-256 )− 35 =⇒ reject event

is applied, HMO’s in filter 768 are removed (Fig. F.2).

1See acknowledgements.
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Figure F.1: Correlation plot between filter 256 and filter 768 without application of the
HMO-cut (indicated by the lines).

Figure F.2: Correlation plot between filter 256 and filter 768 with application of the
HMO-cut (indicated by the lines).



Appendix G

Error Propagation

G.1 All-Event-Average Approach

In general, an observable Z which is built as

Z =
〈X〉
〈Y 〉

(G.1)

has a first order error propagation of

σZ = |Z|

√(
σ〈X〉
〈X〉

)2

+

(
σ〈Y 〉
〈Y 〉

)2

− 2
Cov(X, Y )

〈X〉 〈Y 〉
. (G.2)

In Eq. (G.2), 〈X〉 is the mean of X and σ2
〈X〉 its variance (same notation for Y ). Addi-

tionally, Cov(X, Y ) denotes the covariance between X and Y .
Under neglect of the covariance term, the error propagation of Eq. (G.2) leads to

σZ = |Z|

√(
σ〈X〉
〈X〉

)2

+

(
σ〈Y 〉
〈Y 〉

)2

. (G.3)

In case of an AE-Approach with factorised denominator

P =
〈A〉
〈B〉 〈C〉

(G.4)

the error propagation under neglect of covariance terms can be written as

σP = |P |

√(
σ〈A〉
〈A〉

)2

+

(
σ〈B〉
〈B〉

)2

+

(
σ〈C〉
〈C〉

)2

. (G.5)

G.2 Bootstrap

The bootstrap method allows the estimation of statistical errors of compound observables
which would otherwise need to be estimated by a possibly more complicated error prop-
agation.
Consider a general compound observable x, which represents the observable of interest.
First, the initial sample will be divided into N subsamples with about the same statistics
(in this analyses by default N = 10). For each subsample i (i ∈ {1, ..., N}), its compound
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observable xi can be computed. With the mean 〈x〉 of our observable of interest, its
standard deviation σx can be computed as

σx =

√√√√ 1

N(N − 1)

N∑
i=1

(〈x〉 − xi)2 . (G.6)



Appendix H

MC-Glauber Code

#include "TComplex.h"

#include "TProfile.h"

#include "TStopwatch.h"

#include "Riostream.h"

#include "TMath.h"

#include "TGraphErrors.h"

#include "TF1.h"

#include <iostream >

#include <fstream >

#include <cmath >

#include <cstdio >

#include "TMultiGraph.h"

#include "TGraph.h"

#include "TAxis.h"

#include "TCanvas.h"

#include "TList.h"

#include "TFile.h"

#include "TDirectory.h"

#include "TObject.h"

#include "TDirectoryFile.h"

#include "TRandom3.h"

#include "TClass.h"

#include "TROOT.h"

#include "TString.h"

#include "TH1.h"

#include <string >

#include "TH2.h"

#include "TAxis.h"

#include "TPaveStats.h"

using namespace std;

// Global

TFile *file = new TFile("output.root","recreate");

const Int_t Steps = 22;

TProfile *Ecc[Steps] = {NULL}; //will store epsilon_1 (Bin 1) to epsilon_8 (Bin 8)

TProfile *Ecc_Sqr[Steps] = {NULL}; //will store (epsilon_1 )^2 (Bin 1) to (epsilon_8 )^2 (Bin 8)

TProfile *Ecc_Quadr[Steps] = {NULL}; //will store (epsilon_1 )^4 (Bin 1) to (epsilon_8 )^4 (Bin 8)

TProfile *SP[Steps] = {NULL}; //will store symmetryplane psi_1 (Bin 1) to psi_8 (Bin 8)

TProfile *CollStats[Steps] = {NULL}; //will store Impactparameter in fm (Bin 1), <N_Part > (Bin 2) and <N_Coll > (Bin 3)

TDirectoryFile *Basics = new TDirectoryFile("Basics","Basics");

TList *List[Steps] = {NULL};

Bool_t bMinDist = kTRUE; //if kTrue: Hard -core nucleons with radius 0.4 fm -> min. distance of 0.8 fm between nucleon centres of same nucleus

Bool_t bModWoodsSaxon = kTRUE; //if kTRUE: Usage of normal Woods -Saxon -Distribution for building the nuclei (usage of sphere parameter)

Bool_t bGaussianSmearing = kTRUE; //if kTRUE: Usage of Gaussian Smearing

Bool_t bGaussianOverlap = kTRUE; //if kTRUE: Usage of Gaussian NN overlap function

// ===============================================================================================================================================

// Function declaration

void Glauber ();

void Cosmetics(const Int_t Num);

void Storing(const Int_t Number );

void GetNucleusData(string Nucleus_Typ , Float_t Data[4], Float_t *Impact , const Int_t Counter );

void GetEnergyData(string Energy , Float_t Data [2]);

void BuildNucleus(const Int_t Mass_Number , const Float_t Impact_Parameter , const Float_t Radius , const Float_t Skin ,const Float_t Sphere_Parameter ,

Float_t *Nuc , Int_t *Nuc_Inter );
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void CollideNuclei(const Int_t Mass_Number , Float_t *Nuc_1 , Float_t *Nuc_2 , Int_t *Nuc_1_Inter , Int_t *Nuc_2_Inter ,

Int_t *Coll_Para , Float_t Energy [2]);

void EccentricityAndSymmetryplanes(const Int_t NuPart , Float_t *Coordinates_Participants , Float_t *Ecco , Float_t *Symmo );

void ReFill(const Int_t NuPart , const Int_t Mass_Number , Float_t *Coordinates_Participants , Float_t *Nuc_1 , Float_t *Nuc_2 ,

Int_t *Nuc_1_Inter , Int_t *Nuc_2_Inter );

void PlotNucleus(const Int_t Mass_Number , Float_t* Nuc_1 , Float_t* Nuc_2 , Int_t* Nuc_1_Inter , Int_t* Nuc_2_Inter , Int_t* Coll_Para );

// =================================================================================================================================================

void Glauber () {

if(gRandom) delete gRandom;

gRandom = new TRandom3 (0);

//List of actions:

//1. Cosmetics

//2. Get Nucleus and Energy Data

//3. Setup the Nuclei

//4. Collide the Nuclei

//5. Refill Participant Coordinates

//6. Calculate Exccentricities

//7. Plot

//8. Monitor Progress

//9. Store Data

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//1. Cosmetics

Cosmetics(Steps); //Book everything

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//2. Get Nucleus and Energy Data

Float_t Data [4] = {0.}; //Data [0] Mass_Number , Data [1] Radius , Data [2] Skin depth , Data [3] Sphere parameter

Float_t b_Arr[Steps] = {0.};

Float_t Energy_Data [2] = {0.};

GetNucleusData("Pb207",Data ,b_Arr ,Steps);

GetEnergyData("2.76 TeV",Energy_Data );

const Int_t A = (Int_t)(Data [0]); // number of nucleons in the nucleus

//for Woods -Saxon -Distribution:

const Float_t R = Data [1]; // radius of the nucleus in fm

const Float_t a = Data [2]; //skin depth in fm

const Float_t w = Data [3]; // sphere parameter

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Measure total execution time:

TStopwatch timerRecursion;

timerRecursion.Start ();

// output for tracing what setup was used:

if(bMinDist == kFALSE ){cout <<"No␣minimal␣distance␣between␣nucleons␣within␣the␣same␣atom"<<endl;}

else{cout <<"Minimal␣distance␣between␣centre␣of␣nucleons␣within␣the␣same␣atom:␣0.8␣fm.␣(nucleons␣with␣hard␣core)"<<endl;}

if(bModWoodsSaxon == kFALSE ){cout <<"Usage␣of␣stripped␣Woods -Saxon␣distribution␣for␣building␣the␣nuclei␣(no␣sphere␣parameter)"<<endl;}

else{cout <<"Usage␣of␣normal␣Woods -Saxon␣distribution␣for␣building␣the␣nuclei␣(usage␣of␣sphere␣parameter)"<<endl;}

if(bGaussianSmearing == kFALSE ){cout <<"No␣Gaussian␣Smearing"<<endl;}

else{cout <<"Usage␣of␣Gaussian␣Smearing"<<endl;}

if(bGaussianOverlap == kFALSE ){cout <<"Black␣disk␣NN␣overlap"<<endl;}

else{cout <<"Usage␣of␣Gaussian␣NN␣overlap"<<endl;}

const Int_t NE =1000; // number of events per impact parameter

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for(Int_t q=0; q<Steps; q++){

Float_t b = b_Arr[q];

CollStats[q]->Fill (0.5,b);

for(Int_t j=0; j<NE; j++){

//Data storing for each Nucleus

Float_t *Nucleus_1 = new Float_t [2*A]; // x_1 , ... , x_A , y_1 , ... y_A
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Int_t *Nucleus_1_Inter = new Int_t[A]; // no interaction if interaction_n = 0 , interaction if interaction_n = 1

Float_t *Nucleus_2 = new Float_t [2*A];

Int_t *Nucleus_2_Inter = new Int_t[A];

//Data storing collision for each event

//Int_t *Coll = new Int_t [4];

Int_t Coll [4] = {0}; // {N_Part , N_Coll , N_Part_1 , N_Part_2}

// N_Part number of participants

// N_Coll number of collisions

// N_Part_1 number of participants in nucleus 1

// N_Part_2 number of participants in nucleus 2

Coll [0] = 0;

Coll [2] = 0;

Coll [1] = 0;

Coll [3] = 0;

Float_t Eccent [9] = {0.}; //EbE data storing of epsilon_0 (dummy), epsilon_1 ... epsilon_9

Float_t Symm [9] = {0.};

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

//3. Setup the nuclei

BuildNucleus(A,b,R,a,w,Nucleus_1 ,Nucleus_1_Inter );

BuildNucleus(A,-b,R,a,w,Nucleus_2 ,Nucleus_2_Inter );

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

//4. Collide the nuclei

CollideNuclei(A,Nucleus_1 ,Nucleus_2 ,Nucleus_1_Inter ,Nucleus_2_Inter ,Coll ,Energy_Data );

if(Coll [0]>0) //take only events into account that actually collide!

{

//Fill in stats about N_Part and N_Coll for this collision

CollStats[q]->Fill (1.5,( Float_t )(Coll [0]));

CollStats[q]->Fill (2.5,( Float_t )(Coll [1]));

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

// 5. Refill Participant Coordinates

const Int_t NPart = Coll [0]; //get new constant for number of participants for this event

Float_t *Participants = new Float_t [2* NPart]; //will store x and y coordinates of the participants

ReFill(NPart , A, Participants , Nucleus_1 , Nucleus_2 , Nucleus_1_Inter , Nucleus_2_Inter ); // Refill into new array

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

//6. Calculate Exccentricities

EccentricityAndSymmetryplanes(NPart ,Participants ,Eccent ,Symm);

for(Int_t r=1; r<9; r++)

{

Ecc[q]->Fill(( Float_t )(r)-0.5, Eccent[r],1.); //Unit weight

SP[q]->Fill(( Float_t )(r)-0.5,Symm[r],1.);

Ecc_Sqr[q]->Fill(( Float_t )(r)-0.5, Eccent[r]* Eccent[r],1.); //Unit weight

Ecc_Quadr[q]->Fill(( Float_t )(r)-0.5, Eccent[r]* Eccent[r]* Eccent[r]* Eccent[r],1.);

}//for(Int_t r=0; r<9; r++)

delete [] Participants;

} //if(Coll [0]>0)

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

//7. Plot

// PlotNucleus(A,Nucleus_1 ,Nucleus_2 ,Nucleus_1_Inter ,Nucleus_2_Inter ,Coll);

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

//8. Monitor Progress

if(j%20==0){

cout <<Form("␣␣␣␣␣=>␣Calculations␣for␣%d.-Impact -Parameter ...␣␣␣␣␣␣␣",q)<<Form("%.1f%%\r" ,100.*(j)/NE)<<"␣␣␣"<<flush;

}

delete [] Nucleus_1; //no memory leak

delete [] Nucleus_2;

delete [] Nucleus_1_Inter;

delete [] Nucleus_2_Inter;

}//end for(Int_t j=0; j<NE; j++)

}//end for(Int_t q=0; q<Steps; q++)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//9. Store Data

Storing(Steps);

Basics ->Write(Basics ->GetName(),TObject :: kSingleKey ); // dumping TDirectoryFile in the ROOT file:
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file ->Close ();

delete file;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

timerRecursion.Stop ();

cout <<""<<endl;

cout <<"cpu␣time␣is␣"<<timerRecursion.CpuTime()<<"␣s"<<endl; // giving out the cpu time , measured by the stopwatch

return;

}//void Glauber ()

// ===================================================================================================================================================

void Cosmetics (const Int_t Num){

for(Int_t c=0;c<Num;c++)

{

Ecc[c] = new TProfile("Ecc","Ecc" ,8,0.,8.); //will store epsilon_1 (Bin 1) to epsilon_8 (Bin 8)

CollStats[c] = new TProfile("CollStats","CollStats" ,3,0.,3.); //will store impact parameter in fm (Bin 1), <N_Part > (Bin 2) and <N_Coll > (Bin 3)

SP[c] = new TProfile("SP","SP" ,8,0.,8.); //will store symmetryplane Psi_1 (Bin 1) to Psi_8 (Bin 8)

Ecc_Sqr[c] = new TProfile("Ecc_Sqr","Ecc_Sqr" ,8,0.,8.); //will store (epsilon_1 )^2 (Bin 1) to (epsilon_8 )^2 (Bin 8)

Ecc_Quadr[c] = new TProfile("Ecc_Quadr","Ecc_Quadr" ,8,0.,8.); //will store (epsilon_1 )^4 (Bin 1) to (epsilon_8 )^4 (Bin 8)

Ecc[c]->SetDirectory (0);

Ecc[c] -> Sumw2 ();

Ecc_Sqr[c]->SetDirectory (0);

Ecc_Sqr[c] -> Sumw2 ();

Ecc_Quadr[c]->SetDirectory (0);

Ecc_Quadr[c] -> Sumw2 ();

SP[c]->SetDirectory (0);

SP[c] -> Sumw2 ();

CollStats[c]->SetDirectory (0);

} // end of for(Int_t c=0;c<Num;c++)

}//void Cosmetics (const Int_t Num)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void Storing(const Int_t Number ){

for(Int_t c=0;c<Number;c++)

{

List[c] = new TList ();

List[c]->SetName(Form("%d",c));

List[c]->Add(Ecc[c]);

List[c]->Add(Ecc_Sqr[c]);

List[c]->Add(Ecc_Quadr[c]);

List[c]->Add(CollStats[c]);

List[c]->Add(SP[c]);

Basics ->Add(List[c]);

}// end of for(Int_t c=0;c<Number;c++)

}//void Storing(const Int_t Number)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void GetNucleusData(string Nucleus_Typ , Float_t Data[4], Float_t *Impact , const Int_t Counter)

{

if(Nucleus_Typ == "Pb207")

{

Data [0] = 207;

Data [1] = 6.62;

Data [2] = 0.546;

Data [3] = 0.;

Float_t b[22] = {0. ,1. ,2. ,3. ,4. ,5. ,6. ,7. ,8. ,9. ,10. ,11. ,12. ,13. ,14. ,15. ,16. ,17. ,18. ,19. ,20. ,21.};

for(Int_t c=0;c<Counter;c++)

{

Impact[c] = b[c];

}

cout <<"Nucleus␣Typ:␣Pb207"<<endl;

}
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else if(Nucleus_Typ == "Au197")

{

Data [0] = 197;

Data [1] = 6.38;

Data [2] = 0.535;

Data [3] = 0.;

Float_t b[22] = {0., 0.3, 0.6, 1. ,2. ,3. ,4. ,5. ,6. ,7. ,8. ,9. ,10. ,11. ,12. ,13. ,14. ,15. ,15.5 ,16. ,16.5 ,17.};

for(Int_t c=0;c<Counter;c++)

{

Impact[c] = b[c];

}

cout <<"Nucleus␣Typ:␣Au197"<<endl;

}

else if (Nucleus_Typ == "Cu62") {

Data [0] = 62;

Data [1] = 4.2;

Data [2] = 0.596;

Data [3] = 0.;

Float_t b[22] = {0., 0.3, 0.6, 1.,2., 2.5 ,3. ,3.5 ,4. ,5. ,5.5 ,6. ,7. ,7.5 ,8. ,9. ,10. ,11. ,11.5 ,12. ,12.5 ,13.};

for(Int_t c=0;c<Counter;c++)

{

Impact[c] = b[c];

}

cout <<"Nucleus␣Typ:␣Cu62"<<endl;

}

else { cout <<"Nucleus␣typ␣not␣in␣data␣bank"<<endl; exit (0);

}

}//end void GetNucleusData(string Nucleus_Typ , Float_t Data[4], Float_t* Impact , const Int_t Counter)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void GetEnergyData(string Energy , Float_t Data [2])

{

if(Energy == "2.76 TeV")

{

Data [0] = 8.3; // sigma_tot in fm^2

Data [1] = 6.4; // sigma_inel in fm^2

cout <<"Energy:␣2.76␣TeV"<<endl;

}

else if(Energy == "200 GeV")

{

Data [0] = 5.2; // sigma_tot in fm^2

Data [1] = 4.2; // sigma_inel in fm^2

cout <<"Energy:␣200␣GeV"<<endl;

}

else { cout <<"Energy␣not␣in␣data␣bank"<<endl; exit (0); }

}// end void GetEnergyData(string Energy , Float_t Data [2])

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void BuildNucleus(const Int_t Mass_Number , const Float_t Impact_Parameter , const Float_t Radius , const Float_t Skin ,

const Float_t Sphere_Parameter , Float_t *Nuc , Int_t *Nuc_Inter)

{

TF1* Woods_Saxon;

if(bModWoodsSaxon ==kTRUE) // normal Woods -Saxon

{

Woods_Saxon = new TF1("Woods_Saxon","4*TMath ::Pi()* TMath ::Power(x ,2.)*((1.+[1]* TMath ::Power(x/[2] ,2.))/(1.+ TMath ::Exp((x -[2])/[3])))", 0., 50.);

Woods_Saxon ->SetParameter (1, Sphere_Parameter );

Woods_Saxon ->SetParameter (2, Radius );
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Woods_Saxon ->SetParameter (3, Skin);

} // if(bModWoodsSaxon == kTRUE)

if(bModWoodsSaxon == kFALSE) // stripped Woods -Saxon

{

Woods_Saxon = new TF1("Woods_Saxon","4*TMath ::Pi()* TMath ::Power(x ,2.)*(1./(1+ TMath::Exp((x -[2])/[3])))", 0., 50.);

Woods_Saxon ->SetParameter (2, Radius );

Woods_Saxon ->SetParameter (3, Skin);

} // if(bModWoodsSaxon == kTRUE)

// spherical coordinates

Float_t r=0.;

Float_t phi =0.;

Float_t theta =0.;

//polar angle distribution

TF1* polar = new TF1("polar","TMath::Sin(x)" ,0.,TMath ::Pi());

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if(bMinDist == kFALSE) //no min. distance between nucleons

{

for(Int_t i=0; i<Mass_Number; i++)

{

//Get spherical coordinates

r=Woods_Saxon ->GetRandom (); // radius

phi=gRandom ->Uniform (0.,TMath:: TwoPi ()); //phi

theta = polar ->GetRandom (); //theta

// convert to standard cartesian coordinates and fill Nuc with x and y coordinates

Nuc[i] = TMath::Sin(theta) * TMath::Cos(phi) * r + Impact_Parameter /2.;

//fill x + shift it from centering at 0 to centering at b/2 (for Nuclues 1)/ - b/2 for Nucleus 2

Nuc[i+Mass_Number] = TMath::Sin(theta) * TMath::Sin(phi) * r; //fill y

Nuc_Inter[i] = 0; //no interaction (yet)

} //end for(Int_t i=0; i<Mass_Number; i++)

} //end if(bMinDist == kFALSE)

// .....................................................................

if(bMinDist == kTRUE)

{

Float_t *z = new Float_t[Mass_Number ]; //z-component. Will not be stored in final projection output

Int_t Counter =0;

while(Counter <Mass_Number)

{

//Get spherical coordinates

r = Woods_Saxon ->GetRandom (); // radius

phi = gRandom ->Uniform (0.,TMath::TwoPi ()); //phi

theta = polar ->GetRandom (); //theta

// convert to standard cartesian coordinates and fill Nuc with x and y coordinates

Nuc[Counter] = TMath::Sin(theta) * TMath::Cos(phi) * r + Impact_Parameter /2.;

//fill x + shift it from centering at 0 to centering at b/2 (for Nuclues 1)/ - b/2 for Nucleus 2

Nuc[Counter+Mass_Number] = TMath::Sin(theta) * TMath::Sin(phi) * r; //fill y

Nuc_Inter[Counter] = 0; //no interaction (yet)

z[Counter ]= r* TMath::Cos(theta );

if(Counter >0)

{

for(Int_t i=0; i<Counter; i++)

{

Float_t x_square = pow(Nuc[i]-Nuc[Counter ] ,2.);

Float_t y_square = pow(Nuc[i+Mass_Number]-Nuc[Counter+Mass_Number ] ,2.);

Float_t z_square = pow(z[i]-z[Counter ] ,2.);

if(x_square + y_square + z_square < 0.64) //if under minimal distance

{

//reset latest nucleon back to 0

Nuc[Counter] = 0.;

Nuc[Counter+Mass_Number] = 0.;

z[Counter ]=0.;
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--Counter; //step one back

break;

} //end if(x_square + y_square + z_square < 0.64)

} //end for(Int_t i=0; i<Counter; i++)

}// end if(Counter >0)

Counter ++;

} //end while(Counter <Mass_Number)

delete [] z;

}//end if(bMinDist == kTrue)

// .....................................................................

//Set center of mass correctly

Float_t Mean_x = 0.;

Float_t Mean_y = 0.;

for(Int_t i=0; i<Mass_Number; i++)

{

Mean_x += Nuc[i];

Mean_y += Nuc[i+Mass_Number ];

} //for(Int_t i=0; i<Mass_Number; i++)

Mean_x /= Mass_Number;

Mean_y /= Mass_Number;

for(Int_t i=0; i<Mass_Number; i++)

{

Nuc[i] = Nuc[i] + Impact_Parameter /2. - Mean_x;

Nuc[i+Mass_Number] = Nuc[i+Mass_Number] - Mean_y;

} //for(Int_t i=0; i<Mass_Number; i++)

// .....................................................................

// clearing up space

delete Woods_Saxon;

delete polar;

} //void BuildNucleus(const Int_t Mass_Number , const Float_t Impact_Parameter ,

// const Float_t Radius , const Float_t Skin , const Float_t Sphere_Parameter , Float_t* Nuc)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void CollideNuclei(const Int_t Mass_Number , Float_t *Nuc_1 , Float_t *Nuc_2 , Int_t *Nuc_1_Inter , Int_t *Nuc_2_Inter , Int_t *Coll_Para , Float_t Energy [2])

{

if(bGaussianOverlap == kFALSE)

{

const Float_t d_square = Energy [1]/ TMath ::Pi();

for(Int_t i=0; i<Mass_Number; i++)

{

for(Int_t j=0; j<Mass_Number; j++)

{

Float_t x_square = pow(Nuc_1[i]-Nuc_2[j],2.);

Float_t y_square = pow(Nuc_1[i+Mass_Number]-Nuc_2[j+Mass_Number ],2.);

if(x_square+y_square <= d_square)

{

Coll_Para [1]++; //one collision more

//if no interaction accounted yet , raise N_Part and N_Part_n and set collision indicator to 1

if(Nuc_1_Inter[i]==0) { Coll_Para [0]++; Coll_Para [2]++; Nuc_1_Inter[i]=1;}

if(Nuc_2_Inter[j]==0) { Coll_Para [0]++; Coll_Para [3]++; Nuc_2_Inter[j]=1;}

}//if(abs(Nuc_1[i] - Nuc_2[j] )<d.)

} //for(Int_t j=0; j<Mass_Number; j++)

} //for(Int_t i=0; i<Mass_Number; i++)

} //if(bGaussianOverlap == kFALSE)

if(bGaussianOverlap ==kTRUE)
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{

const Float_t para_1 = 4. *( (Energy [0]- Energy [1])/ Energy [0] );

const Float_t para_2 = (TMath::TwoPi ()* para_1 )/ Energy [0]; //fm^-2

for(Int_t i=0; i<Mass_Number; i++)

{

for(Int_t j=0; j<Mass_Number; j++)

{

Float_t x_square = pow(Nuc_1[i]-Nuc_2[j],2.);

Float_t y_square = pow(Nuc_1[i+Mass_Number]-Nuc_2[j+Mass_Number ],2.);

Float_t dist_square = x_square + y_square;

Float_t prob = 1 - pow((1- para_1*TMath::Exp(-para_2*dist_square )) ,2.); // interaction probability

Float_t random = gRandom ->Uniform (0. ,1.); // random value

if(random <=prob)

{

Coll_Para [1]++; //one collision more

//if no interaction accounted yet , raise N_Part and N_Part_n and set collision indicator to 1

if(Nuc_1_Inter[i]==0) { Coll_Para [0]++; Coll_Para [2]++; Nuc_1_Inter[i]=1;}

if(Nuc_2_Inter[j]==0) { Coll_Para [0]++; Coll_Para [3]++; Nuc_2_Inter[j]=1;}

}//if(random <=prob)

} //for(Int_t j=0; j<Mass_Number; j++)

} //for(Int_t i=0; i<Mass_Number; i++)

} //if(bGaussianOverlap ==kTRUE)

} // end void CollideNuclei(const Int_t Mass_Number , Float_t* Nuc_1 , Float_t* Nuc_2)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void EccentricityAndSymmetryplanes(const Int_t NuPart , Float_t *Coordinates_Participants , Float_t *Ecco , Float_t *Symmo ){

Float_t Coso [9]={0.};

Float_t Sino [9]={0.};

Float_t Ro [9]={0.};

if(bGaussianSmearing == kFALSE)

{

Float_t Mean_x = 0.;

Float_t Mean_y = 0.;

Float_t Mean_x_sqr = 0.;

Float_t Mean_y_sqr = 0.;

for(Int_t i=0; i<NuPart; i++)

{

Mean_x += Coordinates_Participants[i];

Mean_y += Coordinates_Participants[i+NuPart ];

}//for(Int_t i=0; i<NuPart; i++)

Mean_x /= NuPart;

Mean_y /= NuPart;

for(Int_t g=1; g<9; ++g)

{

for(Int_t i=0; i<NuPart; i++)

{

Float_t x = Coordinates_Participants[i] - Mean_x;

Float_t y = Coordinates_Participants[i+NuPart] - Mean_y;

Float_t r = TMath::Sqrt((x*x)+(y*y));

Float_t phi = TMath::ATan2(y,x);

Float_t w = (Float_t )(g);

if (g==1){w = 3.;} // use r^3 weighting for Ecc1/Psi1

Coso[g] += TMath::Power(r,w)*TMath ::Cos(( Float_t )(g)*phi);

Sino[g] += TMath::Power(r,w)*TMath ::Sin(( Float_t )(g)*phi);

Ro[g] += TMath:: Power(r,w);

} //end for(Int_t i=0; i<NuPart; i++)
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}//end for(Int_t g=0; g<9; g++)

} //end if(bGaussianSmearing == kFALSE)

if(bGaussianSmearing == kTRUE)

{

const Int_t SmearingCounter = 100;

const Float_t kSigma = 0.4; //sigma -parameter in fm

TF1* Smearing = new TF1("Smearing","x*TMath::Exp(-(x*x/(2.*[1]*[1])))", 0., 5.* kSigma );

Smearing ->SetParameter (1, kSigma );

Float_t *Smeared_Coordinates = new Float_t [2* NuPart ];

for(Int_t p=0; p<SmearingCounter; p++)

{

Float_t Mean_x = 0.;

Float_t Mean_y = 0.;

Float_t Mean_x_sqr = 0.;

Float_t Mean_y_sqr = 0.;

for(Int_t i=0; i<NuPart; i++)

{

Float_t radius = Smearing ->GetRandom ();

Float_t varphi = gRandom ->Uniform (0.,TMath ::TwoPi ());

Smeared_Coordinates[i] = Coordinates_Participants[i] + radius*TMath::Cos(varphi );

Smeared_Coordinates[i+NuPart] = Coordinates_Participants[i+NuPart] + radius*TMath ::Sin(varphi );

Mean_x += Smeared_Coordinates[i];

Mean_y += Smeared_Coordinates[i+NuPart ];

}//for(Int_t i=0; i<NuPart; i++)

Mean_x /= NuPart;

Mean_y /= NuPart;

for(Int_t g=1; g<9; ++g)

{

for(Int_t i=0; i<NuPart; i++)

{

Float_t x = Smeared_Coordinates[i] - Mean_x;

Float_t y = Smeared_Coordinates[i+NuPart] - Mean_y;

Float_t r = TMath::Sqrt((x*x)+(y*y));

Float_t phi = TMath::ATan2(y,x);

Float_t w = (Float_t )(g);

if (g==1){w = 3.;} // use r^3 weighting for Ecc1/Psi1

Coso[g] += TMath::Power(r,w)*TMath::Cos(( Float_t )(g)*phi);

Sino[g] += TMath::Power(r,w)*TMath::Sin(( Float_t )(g)*phi);

Ro[g] += TMath:: Power(r,w);

} //end for(Int_t i=0; i<NuPart; i++)

}//end for(Int_t g=0; g<9; g++)

} //end for(Int_t p=0; p<SmearingCounter; p++)

delete [] Smeared_Coordinates;

delete Smearing;

} //end if(bGaussianSmearing == kTRUE)

for(Int_t g=1; g<9; ++g){

Ecco[g] = TMath ::Sqrt(Sino[g]*Sino[g] + Coso[g]*Coso[g]) / Ro[g];

Symmo[g] = (TMath ::ATan2(Sino[g],Coso[g]) + TMath::Pi ())/( Float_t )(g);

}//end for(Int_t g=0; g<9; g++)

} //end void EccentricityAndSymmetryplanes(const Int_t NuPart , Float_t* Coordinates_Participants , Float_t Ecco[9], Float_t Symmo [9]);

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void ReFill(const Int_t NuPart , const Int_t Mass_Number , Float_t *Coordinates_Participants , Float_t *Nuc_1 , Float_t *Nuc_2 , Int_t *Nuc_1_Inter , Int_t *Nuc_2_Inter)
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{

Int_t Counter =0; //will check if we found all participants

for(Int_t i=0; i<Mass_Number; i++)

{

if(Nuc_1_Inter[i]==1) //take only participants into account

{

Coordinates_Participants[Counter] = Nuc_1[i];

Coordinates_Participants[Counter+NuPart] = Nuc_1[i+Mass_Number ];

++ Counter;

} //if(Nuc_1_Inter[i]==1)

if(Nuc_2_Inter[i]==1)

{

Coordinates_Participants[Counter] = Nuc_2[i];

Coordinates_Participants[Counter+NuPart] = Nuc_2[i+Mass_Number ];

++ Counter;

} //if(Nuc_2_Inter[i]==1)

} //end for(Int_t i=0; i<Mass_Number; i++)

if(Counter != NuPart)

{

cout <<"Error␣with␣refilling!"<<endl; exit (0);

}

} //end void ReFill(const Int_t NuPart , const Int_t Mass_Number , Float_t* Coordinates_Participants , Float_t* Nuc_1 , Float_t* Nuc2)

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void PlotNucleus(const Int_t Mass_Number , Float_t* Nuc_1 , Float_t* Nuc_2 , Int_t* Nuc_1_Inter , Int_t* Nuc_2_Inter , Int_t* Coll_Para)

{

const Int_t Part_1 = Coll_Para [2];

const Int_t Part_2 = Coll_Para [3];

if(Part_1 != 0) //if part_1 is not 0, then part_2 is not as well

{

TCanvas *c1 = new TCanvas("c1","Glauber" ,800 ,800);

Float_t *dx = new Float_t[Mass_Number ]; //no errors

Float_t *dy = new Float_t[Mass_Number ]; //no errors

Float_t *x_1_Part = new Float_t[Part_1 ]; //x coordinates of participants of nucleus 1

Float_t *y_1_Part = new Float_t[Part_1 ]; //y coordinates of participants of nucleus 1

Float_t *x_2_Part = new Float_t[Part_2 ];

Float_t *y_2_Part = new Float_t[Part_2 ];

const Int_t No_Part_1 = Mass_Number - Part_1;

const Int_t No_Part_2 = Mass_Number - Part_2;

Float_t *x_1_No_Part = new Float_t[No_Part_1 ]; //x coordinates nucleons from nucleus 1 which did not interact

Float_t *y_1_No_Part = new Float_t[No_Part_1 ]; //y coordinates nucleons from nucleus 1 which did not interact

Float_t *x_2_No_Part = new Float_t[No_Part_2 ];

Float_t *y_2_No_Part = new Float_t[No_Part_2 ];

Int_t Counter_1_Part = 0; // counter for participants of nucleus 1

Int_t Counter_1_No_Part = 0; // counter for nucleons without interaction of nucleus 1

Int_t Counter_2_Part = 0;

Int_t Counter_2_No_Part =0;

for(Int_t i=0; i<Mass_Number; i++)

{

dx[i] = 0.;

dy[i] = 0.;

if(Part_1 != 0) {

if(Nuc_1_Inter[i]==1)

{

x_1_Part[Counter_1_Part] = Nuc_1[i];

y_1_Part[Counter_1_Part] = Nuc_1[i+Mass_Number ];

Counter_1_Part +=1;
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}

if(Nuc_2_Inter[i]==1)

{

x_2_Part[Counter_2_Part] = Nuc_2[i];

y_2_Part[Counter_2_Part] = Nuc_2[i+Mass_Number ];

Counter_2_Part +=1;

}

}

if(Nuc_1_Inter[i]==0)

{

x_1_No_Part[Counter_1_No_Part] = Nuc_1[i];

y_1_No_Part[Counter_1_No_Part] = Nuc_1[i+Mass_Number ];

Counter_1_No_Part ++;

}

if(Nuc_2_Inter[i]==0)

{

x_2_No_Part[Counter_2_No_Part] = Nuc_2[i];

y_2_No_Part[Counter_2_No_Part] = Nuc_2[i+Mass_Number ];

Counter_2_No_Part ++;

}

} //end for(Int_t i=0; i<Mass_Number; i++)

TGraphErrors *Nuc_1_Part = new TGraphErrors(Part_1 ,x_1_Part ,y_1_Part , dx , dy);

TGraphErrors *Nuc_2_Part = new TGraphErrors(Part_2 ,x_2_Part ,y_2_Part , dx , dy);

TGraphErrors *Nuc_1_No_Part = new TGraphErrors(No_Part_1 ,x_1_No_Part ,y_1_No_Part , dx , dy);

TGraphErrors *Nuc_2_No_Part = new TGraphErrors(No_Part_2 ,x_2_No_Part ,y_2_No_Part , dx , dy);

Nuc_1_Part ->SetMarkerStyle(kFullCircle );

Nuc_1_Part ->SetMarkerColor(kRed);

Nuc_1_Part ->SetMarkerSize (2.7);

Nuc_2_Part ->SetMarkerStyle(kFullCircle );

Nuc_2_Part ->SetMarkerColor(kBlue);

Nuc_2_Part ->SetMarkerSize (2.7);

Nuc_1_No_Part ->SetMarkerStyle(kFullCircle );

Nuc_1_No_Part ->SetMarkerColor (46);

Nuc_1_No_Part ->SetMarkerSize (2.7);

Nuc_2_No_Part ->SetMarkerStyle(kFullCircle );

Nuc_2_No_Part ->SetMarkerColor (38);

Nuc_2_No_Part ->SetMarkerSize (2.7);

TMultiGraph *Collision = new TMultiGraph (); // creating a multigraph for all the particular graphs

Collision ->Add(Nuc_1_No_Part );

Collision ->Add(Nuc_2_No_Part );

Collision ->Add(Nuc_1_Part );

Collision ->Add(Nuc_2_Part );

Collision ->Draw("ap");

Collision ->GetXaxis()->SetLimits ( -15. ,15.);

Collision ->GetYaxis()->SetRangeUser ( -15. ,15.);

Collision ->Draw("ap");

// IMPORTANT: release back the allocated memory. Without this line , you have a memory leak , which is usually very difficult to debug.

delete [] dx;

delete [] dy;

delete [] x_1_Part;

delete [] y_1_Part;

delete [] x_2_Part;

delete [] y_2_Part;

delete [] x_1_No_Part;

delete [] y_1_No_Part;

delete [] x_2_No_Part;

delete [] y_2_No_Part;

} //end if(Part_1 != 0) //if part_1 is not 0, then part_2 is not as well

// ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’#

if(Part_1 == 0){

TCanvas *c1 = new TCanvas("c1","Glauber" ,800 ,800);

Float_t *dx = new Float_t[Mass_Number ]; //no errors
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Float_t *dy = new Float_t[Mass_Number ]; //no errors

Float_t *x_1 = new Float_t[Mass_Number ]; //x coordinates of participants of nucleus 1

Float_t *y_1 = new Float_t[Mass_Number ]; //y coordinates of participants of nucleus 1

Float_t *x_2 = new Float_t[Mass_Number ];

Float_t *y_2 = new Float_t[Mass_Number ];

for(Int_t i=0; i<Mass_Number; i++)

{

x_1[i]= Nuc_1[i];

y_1[i]= Nuc_1[i+Mass_Number ];

x_2[i]= Nuc_2[i];

y_2[i]= Nuc_2[i+Mass_Number ];

}

TGraphErrors *Nuc_1_All = new TGraphErrors(Mass_Number ,x_1 ,y_1 , dx, dy);

TGraphErrors *Nuc_2_All = new TGraphErrors(Mass_Number ,x_2 ,y_2 , dx, dy);

Nuc_1_All ->SetMarkerStyle(kFullCircle );

Nuc_1_All ->SetMarkerColor (46);

Nuc_1_All ->SetMarkerSize (2.7);

Nuc_2_All ->SetMarkerStyle(kFullCircle );

Nuc_2_All ->SetMarkerColor (38);

Nuc_2_All ->SetMarkerSize (2.7);

TMultiGraph *Collision = new TMultiGraph (); // creating a multigraph for all the particular graphs

Collision ->Add(Nuc_1_All );

Collision ->Add(Nuc_2_All );

Collision ->Draw("ap");

Collision ->GetXaxis()->SetLimits ( -15. ,15.);

Collision ->GetYaxis()->SetRangeUser ( -15. ,15.);

Collision ->Draw("ap");

delete [] dx;

delete [] dy;

delete [] x_1;

delete [] y_1;

delete [] x_2;

delete [] y_2;

} //end if(Part_1 == 0)

} //end void PlotNucleus(const Int_t Mass_Number , Float_t* Nuc)
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