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Abstract

In heavy-ion collisions extreme conditions arise which result in Quark-Gluon-
Plasma (QGP). This QGP is then studied through anisotropic �ow. This is
the transport of an initial anisotropy in coordinate space, via the thermalized
medium in which anisotropic pressure gradients develop, to an anisotropy in
momentum space. The latter anisotropy can be observed by the detected
particles produced in the collision. One uses a Fourier series to describe
the distribution of the produced particles, and analysis its �ow amplitudes
through multiparticle correlations.

When analysing anisotropic �ow by multiparticle azimuthal correlators,
one is always confronted with systematic biases due to non�ow phenom-
ena. Non�ow are all possible measured phenomena that are not a result of
anisotropic �ow. Due to the construction of multiparticle azimuthal corre-
lators, non�ow is negligible with high multiplicities. On the other hand in
smaller systems, lighter ion collisions such as p-p and p-A, the multiplicity
is lower and non�ow e�ects cannot be neglected any more.

In this thesis, after giving a brief introduction, non�ow scaling of a few
selected multiparticle azimuthal correlators are analysed. To do that, �rst
�ow and non�ow are removed by looking at the random walk of Q-vectors
and how powers of them scale with the multiplicity. It is derived how any
power/combination of Q-vectors scales in the random walk. The resulting
�ndings are then applied to azimuthal correlators and Q-Cumulants con-
taining them. Non�ow is then introduced by overcounting azimuthal angles
(corresponding to track splitting) and it's non�ow scaling analytically found.
This is then veri�ed in a simple Monte Carlo study. It is then shown how
the widely used probabilistic argument for leading-order non�ow scaling in k-
particle azimuthal correlators deviates and even can fail at low multiplicities.
Further a comparison on the non�ow scaling as a function of the multiplicity
M between Q-Cumulants and the raw multiparticle correlators is done.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics (QCD)

The strong interaction, one of the four fundamental forces in nature, is de-
scribed as a quanti�ed �eld theory in Quantum Chromodynamics (QCD).
QCD describes the interaction between quarks and gluons. Similar to the
electric charge in Quantum Electrodynamics, particles can have a colour
charge. In QCD quarks can carry a red, green or blue (and the corresponding
anti-colors) as charge. By taking the color charge to de�ne a local symmetry,
QCD yields in a non-abelian gauge theory of the SU(3) gauge group. The
requirement of local symmetry of "gauge invariance" results in the introduc-
tion of the gauge bosons of QCD - the gluons. Although Quarks only carry
one unit of colour charge, gluons as "force carrier" additionally have a unit
of anti-colour charge.

An important character of the strong force is con�nement. If tried to iso-
late quarks and antiquarks the energy used to separate them is at some point
favoured to be used to form new quarks and antiquarks from vacuum. Thus
quarks and antiquarks can't be found isolated in nature but only con�ned in
hadrons.

But because of the nature of the non-abelian group, gluon-gluon inter-
actions are possible. This e�ects the vacuum-polarisation which is related
to the phenomena of the running of the strong coupling. Connected to this
is the asymptotic freedom. Due to the running of the strong coupling, the
strong interaction gets very weak at high energies or small distances. Under
these conditions quarks and gluons start to behave like free particles.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: A schematic QCD phase diagram [9].

1.2 Quark-Gluon-Plasma (QGP)

Quark-Gluon-Plasma (QGP) is a state of nuclear matter directly related to
the mentioned asymptotic freedom. It was realized that this implies a transi-
tion at high temperatures and high energy density to a phase of decon�ned
quarks and gluons [1].

Further it was shown with Lattice QCD calculations that the transition
temperature from hadronic to decon�ned state is achievable in the labora-
tory [2]. Scientists at European Organization for Nuclear Research (CERN)
as well as at the Brookhaven National Laboratory's Relativistic Heavy Ion
Collider (RHIC) soon announced they had created QGP [3, 4]. First it was
thought QGP would behave simply like a weakly interacting gas, but early
discoveries found that QGP behaves more like a perfect �uid with small
shear viscosity to entropy density ratio (η/s) [5, 6]. The characteristic of
this behaviour becomes important with new theoretical developments, as an
example a lower bound on the shear viscosity over entropy density ratio η/s
> ~/4πkB is given by using string theory methods [7]. Current experiments
show that the created QGP is very close to this boundary (e.g. [8]).

Such a decon�ned state of matter is believed to have existed a few mi-
croseconds after the Big Bang. By producing and studying properties of QGP
in heavy-ion collisions essentially the same conditions of the distant past of
our Universe are recreated at RHIC and the Large Hadron Collider (LHC).
Our current understanding of strongly interacting matter can be qualitatively
summarized in a QCD phase diagram in Fig. 1.1.
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1.3 Heavy-Ion collisions

Figure 1.2: Space-time evolution of an ultra-relativistic heavy-ion collision
[10].

To experimentally produce these extreme conditions under which QGP can
exist, ultrarelativistic heavy-ion collisions is the way to go. From the centre
of mass system each incoming nucleus is Lorentz-contracted and a coherent
cloud of partons. Being nearly thermalized, the system evolves further under
relativistic �uid dynamics, expanding, decreasing in energy density, cooling
and hadronizing [9]. At �rst these hadrons have enough energy to scatter
elastically as well as inelastically. When the energy per hadron does not allow
any further inelastic processes, one speaks about the chemical freeze-out. As
soon as all elastic processes stop, the thermal or kinetic freeze-out is reached.
The produced hadrons now �y towards detectors, which are discussed in the
next chapter. This evolution is illustrated in Fig. 1.2.

Heavy-ions are extended objects and hence the system created in periph-
eral collisions will be di�erent than to the one created in head-on (central)
collisions. Therefore, it is convenient to specify collisions by their centrality
which is de�ned by the impact parameter b. The impact parameter describes
the length of the vector connecting the two nuclei centres projected onto a
plane transverse to the beam axis as can be seen in Fig. 1.3. There can
also be seen that not all partons participate in the particle production. By
looking at the multiplicity M (number of produced particles) distribution
dN/dM , assuming the particle multiplicity M is monotonic as a function
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of b, one can infer the centrality classes which are de�ned by binning the
distribution as fractions of its total integral e.g. centrality 5%-10%:∫ N05

∞
dN
dM
dM∫ 0

∞
dN
dM
dM

= 0.05 (1.1)

and ∫ N10

∞
dN
dM
dM∫ 0

∞
dN
dM
dM

= 0.1. (1.2)

High multiplicity events stem from central collisions and low multiplicity
events from peripheral.

The Glauber model is a commonly used model in ultra-relativistic heavy-
ion physics to calculate geometric quantities [11, 12]. First one takes two
nuclei as the superposition of the constituent nucleons which are build from
scratch from the Woods-Saxon distribution. Then one projects them into
the transverse plane and determines if the nucleons collided. This occurs
if their distance d to each other satis�es d ≤

√
σNN
inel/π; here σNN

inel is the
total inelastic nucleon-nucleon cross section. Now we can measure indepen-
dently the number of participating nucleons (or wounded nucleons) Npart(b)
and the number of colliding nucleons Ncoll(b). We can also conveniently use
Glauber model to calculate eccentricities in the initial state, which quan-
tify the coordinate-space anisotropies and which are the starting point in
anisotropic �ow development. [13]

Figure 1.3: Two ultra-relativistic heavy-ions before colliding and shortly after
collision [14].
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Experimental setup

Figure 2.1: The CERN accelerator complex [15].

2.1 The Large Hadron Collider (LHC)

The LHC is located at CERN close to the French-Swiss border next to the
Swiss city Geneva. It's the world's largest collider where thousands of scien-
tists and engineers from all over the world produce 50 PB of data per year.
The main storage ring of the synchrotron type accelerator is 100 meter be-
neath the ground and has a circumference of 27 km. After the 2015 upgrade
the LHC achieved proton-proton (p-p) collisions with a centre of mass energy
of up to

√
s = 13 TeV and lead-lead (Pb-Pb) collisions up to

√
sNN = 5.02

TeV per nucleon pair. It will eventually achieve
√
s = 14 TeV for p-p and

5
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Figure 2.2: ALICE depicted in it's inner detectors [19].

√
sNN = 5.52 TeV per nucleon pair in Pb-Pb. To achieve these p-p energies

the LHC accelerates 1.1 × 1011 protons as a bunch, with 2808 bunches per
beam seperated by 25 ns, to 99.9999991% of the speed of light, meaning cir-
cling 11,245 times per second the ring, and colliding. This results in a design
luminosity of 1034 cm−2s−1 and ≈ 600 million p-p collsions per second. [16]

As illustrated in Fig. 2.1 there are four main experiments located around
the LHC ring: A Large Ion Collider Experiment (ALICE), A Toroidal LHS
Apparatus (ATLAS), Compact Muon Solenoid (CMS) and the Large Hadron
Collider beauty (LHCb). ATLAS's and CMS's general purpose is to �nd new
particles as they did with the Higgs [17, 18], LHCb is focused on bottom-
quark physics in the forward regions and the study of matter-antimatter
asymmetry in Universe. ALICE is the only dedicated heavy-ion experiment
and is discussed in the following section.

2.2 ALICE

The ALICE detector is located in Saint-Genis-Pouilly, France. The goal of
ALICE is to investigate the strongly interacting QCD matter created in the
ultra-relativistic heavy-ion collisions, QGP being one main �eld of interest.
The ALICE detector, shown in Fig. 2.2, is 16 × 16 × 26 m3 big, weighs 10
000 t and has 18 subdetectors, as they were used directly in the experimental
part of this project. At three of them we will have a closer look. These
achieve high- momentum resolution, good particle identi�cation (PID) and
track reconstruction over a broad range of momentum, although having to
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(a) (b)

Figure 2.3: ALICE's Time Projection Chamber (TPC) in (a) and ALICE's
Inner Tracking System (ITS) in (b) [13, 21].

deal with extreme particle multiplicities in the heavy-ion collisions. [20]
Starting at the centre in Fig. 2.2 of the ALICE detector, �rst is the

Inner Tracking System (ITS) with six layers of high-resolution Silicon Pixel
Detectos (SPD), Silicon Drift Detectors (SDD) and Silicon Strip Detectors
(SSD), then follows a cylindrical Time Projection Chamber (TPC) and three
particle identi�cation arrays consisting of Time-of-Flight (TOF), Ring Imag-
ing Cherenkov and Transition Radiation Detectors (TRD) followed by two
Electromagnetic Calorimeters (Photon Spectrometer - PHOS and EMCal).

2.2.1 Time Projection Chamber (TPC)

The TPC detector [20, 22] is one of the biggest and most important tracking
detectors. As can be seen in Fig. 2.3a it is cylindrical and separated into two
parts with a cathode in the middle. It has a longitudinal length of 5 m, with
an innermost radius of 85 cm and outer radius of 250 cm. It is �lled with
90 m3 of gas (90% Ne, 10% CO2). When a charged particle traverses, the
gas is being ionized and the liberated electrons drift towards the end plates
where they get detected by Multi- Wire Proportional Chambers (MWPC).
Now the drift time is used to determine the z-coordinate, while the r- and
ϕ coordinates are directly obtained by the MWPC's. The drift time of ≈
90 µs is the limiting factor for the luminosity ALICE can cope with. The
TPC is capable of detecting the particles in the transverse momentum range
of 0.1 < pT < 100 GeV/c, with a transverse momentum resolution of about
6% for pT ≤ 20 GeV/c in central Pb-Pb collisions, and about 4.5% for pT ≤
20 GeV/c in p-p collisions. The track �nding e�ciency saturates at about
90% for pT > 1 GeV/c and the azimuthal resolution is about ∆ϕ = 0.7 mrad
for the whole pT range. Although the TPC covers full azimuth acceptance, a
dead zone between the neighbouring sectors (there are 16 sectors altogether)
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Figure 2.4: VZERO detectors on both sides of ITS. [13]

exist, essentially limiting the e�ciency. Furthermore it has a pseudorapidity
coverage of |η| ≤ 0.9 for tracks traversing the whole radial length.

Although the TPS's main purpose is tracking, it can also be used for
particle identi�cation by dE/dx analysis and centrality estimations. Overall
the uniform azimuthal coverage of the TPC makes it an ideal detector and for
�ow studies, since non-uniform acceptance would result in systematic biases
which otherwise one has to correct for.

2.2.2 Inner Tracking System (ITS)

The ALICE Inner Tracking System [20, 23, 24] is shown in Fig. 2.3b. It
consists of 6 silicon layers, with three groups of two layers forming three
distinct detectors. The innermost two silicon layers are composed of Silicon
Pixel Detector (SPD), the third and fourth layer consists of Silicon Drift
Detector (SDD), and the outermost two layers are based on Silicon Strip
Detector (SSD). The ITS covers a pseudorapidity range of |η| ≤ 0.9 for
interaction vertices within 5 cm along the beam, although the �rst SPD
layer has a coverage of |η| ≤ 2.0. Combined, the layers of the ITS can locate
the primary vertex with a resolution better than 100 µm. It can also give
information about low pT particles (≤ 100MeV/c), which do not reach the
TPC. If the particle traversed all 6 layers, a track can be �tted and charge
and momentum of the particle can be found. Furthermore dE/dx analysis is
possible in the 4 outer layers.
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2.2.3 VZERO

The VZERO detector [20, 25] seen in Fig. 2.4 consists of two separate arrays
of scintillator counters, V0A and V0C, placed on di�erent sides of the central
barrel detectors along the beam line. V0A and V0C are placed asymmetri-
cally with respect to the interaction point. Because of this asymmetry, V0A
and V0C have di�erent pseudorapidity coverages. V0A covers a pseudora-
pidity range of 2.8 < η < 5.1, while V0C covers -3.7 < η < -1.7. Each set
of VZERO arrays contain 32 elementary counters arranged in 4 rings and 8
sectors of 45◦ each.

The VZERO detector serves various purposes such as centrality determi-
nation. There it has a resolution of about 0.5% centrality bin width in the
most central collisions, and a resolution still better than 2% centrality bin
width for peripheral collisions. [24]
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Anisotropic �ow

In Fig. 3.1 the collision of two heavy-ions can be seen in the transverse
plane, which is perpendicular to the beam axis z. The properties of QGP
in ultra-relativistic heavy-ion collisions are studied by azimuthal angle ϕ
anisotropies enabled by anisotropic �ow. Anisotropic �ow is the transition
of the anisotropy from the initial coordinate space, due to the initial colli-
sion geometry, into the �nal momentum space via the thermalized medium.
The medium needs to be thermalized, so that anisotropic pressure gradients
can develop and through �ow, transfer the anisotropy from the initial spatial
state into the momentum space of the �nal state which are experimentally
accessible via the produced particles and their azimuthal angle ϕ. The dis-
tributions of the produced particles are described by a Fourier series:

f(ϕ) ∝ 1

2π
[1 + 2

∞∑
n=1

vn cos (n[ϕ−Ψn])], (3.1)

in which vn are anisotropic �ow amplitudes, and Ψn the corresponding sym-
metry planes. Here v1 is direct �ow, v2 is elliptic �ow, v3 is triangular �ow
etc. [28]

Since the initial anisotropy in coordinate space is due to the initial colli-
sion geometry, it depends on the centrality classes how strong �ow is e.g. in
the mid-central collisions elliptic �ow v2 is dominant, but in the most head
on collisions all (lower) order harmonics are equally probable as all of them
originate solely from �uctuations. This superposition can be seen in Fig. 3.2.
[13]

10



CHAPTER 3. ANISOTROPIC FLOW 11

(a) (b)

Figure 3.1: Schematic view of a non-central nucleus-nucleus collision drawn in
the transverse plane perpendicular to the beam axis z showing in (a) together
with the reaction plane ΨR. The di�erence between a reaction plane and the
participant plane ΨPP can be seen in (b) [26, 27].

Figure 3.2: Superposition of di�erent �ow amplitudes.

These anisotropic �ow amplitudes can now be connected to transport
coe�cients of QGP (e.g. in [29]). As an example a large anisotropic �ow
goes hand in hand with a small shear viscosity.

An important assumption in distinguishing �ow correlations from other
sources of correlations is the �ow principle. It says that the correlations
among all particles produced is solely induced by the correlation of each
single particle to the collision geometry if the only source of correlations is
anisotropic �ow. Thus whether or not particles are emitted simultaneously or
one by one, their trajectories are the same. [13] This results in the statistical
independence

f(ϕ1, ..., ϕi) = f(ϕ1) · · · f(ϕi). (3.2)

To observe �ow, di�erent observables with di�erent sensitivities are used.
One can directly measure the �ow amplitudes v1, v2, v3, ... or correlations
between harmonics (e.g. 〈v2

mv
2
n〉 − 〈v2

m〉〈v2
n〉) as well as symmetry plane cor-

relations.
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Q-Cumulants and multiparticle

correlations

Generally, the azimuthal angles ϕi, the �ow amplitudes vn and the symmetry
planes Ψn are analytically connected by [30]:

〈ei(n1ϕ1+···+nmϕm)〉 = vn1 · · · vnmei(n1Ψ1+···+nmΨnm ). (4.1)

Here the average 〈...〉 goes over all tuples of m di�erent azimuthal angles ϕi.
There is one necessity which results in the isotropic condition. It con-

strains the di�erent harmonics n ∈ Z:∑
i

ni = 0. (4.2)

This isotropic condition has to be the case when one imagines a detector that
is simply rotated along the beam-axis. The results should stay the same, so
this rotation angle must cancel out.

The correlation techniques introduced in the following can always be con-
nected via Eq. (4.1) to the �ow amplitudes vkn. These di�erent �ow moments
carry independent information about the underlying p.d.f. f(vn):

〈vkn〉 =

∫
vknf(vn)dvn. (4.3)

A priori it is not guaranteed that a p.d.f. f(vn) is uniquely determined by
its moments 〈vkn〉. But this is the case if the Krein-Lin conditions are met.1

[31]

1K[f ] ≡
∫∞

0
− ln f(x2)

1+x2 dx ⇒ K[f ] =∞ and L(x) ≡ −xf ′(x)
f(x) ⇒ limx→∞ L[x] =∞.

12
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4.1 Correlation techniques

Since our data is cyclic, one has to be careful when analysing the azimuthal
angles. For example if one calculates the average of two angles simply di-
rectly, e.g. 10◦ degree and 350◦, one gets 180◦ instead of the actual average
0◦. A simple solution is to move into the complex plane and look at the
azimuthal angles as phase shifts. As a result one has to de�ne Q-vectors and
can now add angles for multiparticle correlations by multiplication.
Furthermore one has to exclude autocorrelations. This results in some im-
plementation problems. If getting rid of them by simply using nested loops,
the computation time simply blows up. Thus a di�erent approach has to
be taken. This autocorrelation problem can also be solved by using the
Q-vectors.

4.1.1 Q-vectors

One of the most important objects in anisotropic �ow analysis is the so-called
Q-vector (or �ow vector) evaluated in the harmonic n:

Qn ≡
M∑
i=1

einϕi . (4.4)

By using Q-vectors we can now immediately evaluate all particles and their
correlation with a single pass over the data, for any harmonic n. The key
point is, that all multi-particle azimuthal correlations can be expressed and
evaluated analytically in terms of Q-vectors in di�erent harmonics.

4.1.2 m-particle correlation

In the most general form them-particle correlation, in harmonics n1, n2, ..., nm,
is [32]:

〈m〉n1,...,nm
≡

〈
ei(n1ϕ1+n2ϕ2+···+nmϕm)

〉

≡

M∑
k1,k2,...,km=1
k1 6=k2 6=... 6=km

wk1wk2 · · ·wkm ei(n1ϕk1
+n2ϕk2

+···+nmϕkm )

M∑
k1,k2,...,km=1
k1 6=k2 6=... 6=km

wk1wk2 · · ·wkm

.(4.5)

Analytically the m-particle correlation can be expressed in Q-vectors. But
the higher the particle correlation, the more terms arise in order to remove the
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autocorrelations. In fact the number of terms blow up rapidly, following the
Bell sequence [32]. Thankfully the m-particle correlation can be expressed
recursively and thus save coding lines and deliver an easy to compile code
[32].

The weights in Eq. (4.5) can be used to remove any systematic biases
originating from the detector. This will be demonstrated in a later follow-
ing Toy Monte Carlo study. Generally w can depend on azimuthal angle,
transverse momentum, pseudorapidity, etc.:

w = w(ϕ, pT , η, ...). (4.6)

If we only have unit weights we can rewrite Eq. (4.5) to [32]:

〈m〉 ≡ 〈cos[n1ϕ1 + n2ϕ2 + ...+ nm−1ϕm−1 + nmϕm]︸ ︷︷ ︸
ϕ1 6=ϕ2 6=... 6=ϕm−1 6=ϕm

(4.7)

=
1(

M
m

)
m!

M∑
i,j,...,k,l=1

(i 6=j 6=... 6=k 6=l)

ei(niϕi+njϕj+...+nkϕk+nlϕl). (4.8)

If we want to expand the m-particle correlation purely with Q-vectors,
over which we can loop in a single pass, we �rst have to remove any au-
tocorrelations. For instance the 2-particle correlation, without any weights,
simply is:

〈2〉 ≡ 〈cos (n(ϕ1 − ϕ2)) =
1(

M
2

)
2!

M∑
i,j=1
(i 6=j)

ein(ϕi−ϕj) =
1(

M
2

)
2!
×
[
|Qn|2 −M

]
.

(4.9)
This is easy to see since we simply exclude the case i = j:

|Qn|2 = QnQ
∗
n =

M∑
i,j=1

ein(ϕi−ϕj) =
M∑
i,j=1
(i 6=j)

ein(ϕi−ϕj) +M. (4.10)

To leading order the statistical spread of a �ow amplitude v, estimated
with am-particle correlator, in the data sample consisting of N events, where
M is the multiplicity of an event, is given by [13]:

σv ∝
1√
N

1

Mm/2

1

vm−1
. (4.11)

In heavy-ion collisions with large v and M , this results in �ow analyses with
very high precision. On the other hand for small collision systems, with small
v and M , these techniques are for some reason not reliable.
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4.1.3 Toy Monte Carlo study

In this Toy Monte Carlo (MC) study, we remove any systematic bias from
the detector, reproducing the results of [32].

A normalized Fourier-like function is used as probability density function
(p.d.f.), f(ϕ), to sample the azimuthal angles, parametrized with harmonics
up to v6 and reaction plane ΨRP :

f(ϕ) =
1

2π
(1 + 2v1 cos (ϕ−ΨRP ) + 2v2 cos [2(ϕ−ΨRP )] (4.12)

+ 2v3 cos [3(ϕ−ΨRP )] + 2v4 cos [4(ϕ−ΨRP )] (4.13)

+ 2v5 cos [5(ϕ−ΨRP )] + 2v6 cos [6(ϕ−ΨRP )]). (4.14)

The reaction plane ΨRP �uctuates randomly per event and is sampled uni-
formly on the interval [0, 2π). The input values of

vn = 0.04 + n · 0.01, n = 1, 2, ..., 6, (4.15)

are used as �ow amplitudes.
Now we select one example from each isotropic correlator from Eq. (4.5)

and Eq. (4.1):

〈2〉 ≡ 〈2〉−2,2 = v2
2 = 3.6× 10−3,

〈3〉 ≡ 〈3〉−5,−1,6 = v1v5v6 = 4.5× 10−4,

〈4〉 ≡ 〈4〉−3,−2,2,3 = v2
2v

2
3 = 1.764× 10−5,

〈5〉 ≡ 〈5〉−5,−4,3,3,3 = v3
3v4v5 = 2.4696× 10−6,

〈6〉 ≡ 〈6〉−2,−2,−1,−1,3,3 = v2
1v

2
2v

2
3 = 4.41× 10−8.

We have three separate runs in our Toy MC study. First we run our simu-
lation for the case of uniform azimuthal acceptance of our detector. In the
second run we use a non-uniform azimuthal acceptance by reducing the par-
ticles registered in the azimuthal range of 60◦ ≤ ϕ < 120◦ by 50%, resulting
in the azimuthal acceptance distribution seen in Fig. 4.1. Now we calculate
our particle correlators with no modi�cation to the weights (setting them to
1).

In the third and last run we create weights to get rid of the systematic bias
of the non-uniform azimuthal acceptance. To do this we invert the azimuthal
acceptance, resulting in Fig. 4.2. Note that particle weights obtained from
Fig. 4.2 do not have to be normalized, e.g. can be randomly displaced by a
constant, because of the de�nition of the m-particle correlator in Eq. (4.5),
which automatically enforces the normalization via the denominator term.
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Figure 4.1: Non-uniform azimuthal acceptance, reducing the particles regis-
tered in the azimuthal range of 60◦ ≤ ϕ < 120◦ by 50%.
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Figure 4.2: Weights derived from non-uniform azimuthal acceptance in Fig.
4.1

.

We can now use these weights and calculate the particle correlators again.
In Fig. 4.3 we can see that the values now agree, within the errors, with
the uniform azimuthal acceptance and the induced values of the particle
correlators/corresponding harmonic �ows.
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Figure 4.3: Multiparticle observables corrected for non-uniform acceptance
using ϕ weights compared to input values and values for uniform acceptance.

4.2 Multiparticle cumulants

Cumulants can be used to describe p.d.f.'s and are an alternative to the mo-
ments of a distribution in a sense that for two p.d.f.'s whose moments are
identical, also the cumulants will be and vice versa. They were originally in-
troduced in order to be less sensitive to non�ow than the single multiparticle
correlators in Eq. (4.5). [13, 33]

If two random variables X1 and X2 are statistically independent of each
other, their joint p.d.f. f(X1, X2) factorises

f(X1, X2) = fX1(X1) · fX2(X2). (4.16)

However if X1 and X2 aren't statistically independent, we can quantify this
with a genuine 2-particle p.d.f. fc(X1, X2). Thus for a genuine 2-particle
correlation we have the decomposition:

f(X1, X2) = fX1(X1) · fX2(X2) + fc(X1, X2), (4.17)

which can be directly transfered to its expectation values

〈X1X2〉 = 〈X1〉〈X2〉+ 〈X1X2〉c. (4.18)

In practice we rarely know the exact form of p.d.f's in Eq. (4.17). However,
we can use measured (sampled) values of the random variables X1 and X2

for the expectation values in Eq. (4.18). We are interested in the genuine
2-particle correlation from fc(X1, X2) and its contribution to 〈X1X2〉. Thus



CHAPTER 4. Q-CUMULANTS AND MULTIPARTICLE
CORRELATIONS 18

we solve for 〈X1X2〉c, which is by de�nition the 2-particle (or 2nd order)
cumulant1: [13]

〈X1X2〉c = 〈X1X2〉c − 〈X1〉〈X2〉. (4.19)

Figure 4.4: The decomposition of a 3rd order cumulants [34]

This can be generalised to any order of multiparticle cumulants [35]. But
the number of terms grow rapidly. As an example the decomposition of the
3-particle correlation in Fig. 4.4 can be seen. Mathematically written out
this results in

〈X1X2X3〉 = 〈X1〉〈X2〉〈X3〉 (4.20)

+ 〈X1X2〉c〈X3〉+ 〈X1X3〉c〈X2〉+ 〈X2X3〉c〈X1〉 (4.21)

+ 〈X1X2X3〉c. (4.22)

Working now recursively from higher order of cumulants to lower order ones,
we can now insert our result of the 2nd order cumulant, in Eq. (4.18), and
obtain:

〈X1X2X3〉c = 〈X1〉〈X2〉〈X3〉 (4.23)

− 〈X1X2〉〈X3〉 − 〈X1X3〉〈X2〉 − 〈X2X3〉〈X1〉 (4.24)

+ 2〈X1〉〈X2〉〈X3〉. (4.25)

It is important to note, that a cumulant 〈XiXj. . . 〉c is zero if the elements
Xi, Xj. . . are divided in two or more groups which are statistically indepen-
dent. This results in the fact that a cumulant is zero if one of the variables
in it is independent of the others. Conversely, a cumulant is not zero if - and
only if - the variables in it are statistically connected. [35]

We can apply this formalism to our random variables, the Q-vectors, in the
harmonic n:

Xi = einiϕi . (4.26)

1Note that if X1 and X2 are statistically independent, 〈X1X2〉=〈X1〉〈X2〉, 〈X1X2〉c
collapses to 0.
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Therefore, the multiparticle cumulants read:

cn{1} ≡ 〈〈einϕ1〉〉, (4.27)

cn{2} ≡ 〈〈ein(ϕ1−ϕ2)〉〉 − 〈〈einϕ1〉〉〈〈e−inϕ2〉〉, (4.28)

cn{3} ≡ 〈〈ein(ϕ1+ϕ2−ϕ3)〉〉 (4.29)

− 〈〈ein(ϕ1+ϕ2)〉〉〈〈e−inϕ3〉〉 (4.30)

− 〈〈ein(ϕ1−ϕ3)〉〉〈〈einϕ2〉〉 (4.31)

− 〈〈ein(ϕ2−ϕ3)〉〉〈〈einϕ1〉〉 (4.32)

+ 2 · 〈〈einϕ1〉〉〈〈einϕ2〉〉〈〈e−inϕ3〉〉, (4.33)

and so on. The notation cn{m} means cumulant estimated with m-particle
correlations in harmonic n.

4.2.1 Q-Cumulants

After the all-event average, due to the isotropic condition
∑

i ni = 0 with all
harmonics �xed as ni = n, all odd particle number correlations m vanish.
Using our unbiased m-particle correlation from Eq. (4.8) we can get [13]:

QC{2} ≡ 〈〈2〉〉, (4.34)

QC{4} ≡ 〈〈4〉〉 − 2 · 〈〈2〉〉2, (4.35)

QC{6} ≡ 〈〈6〉〉 − 9 · 〈〈2〉〉〈〈4〉〉+ 12 · 〈〈2〉〉3, (4.36)

QC{8} ≡ 〈〈8〉〉 − 16 · 〈〈6〉〉〈〈2〉〉 − 18 · 〈〈4〉〉2 (4.37)

+ 144 · 〈〈4〉〉〈〈2〉〉2 − 144 · 〈〈2〉〉4. (4.38)

These are the �rst few non-trivial isotropic cumulants evaluated in the same
harmonics, when cumulants are de�ned as all-event averages.

4.2.2 Cumulants and �ow

We could have used the connection to our �ow amplitudes vn in Eq. (4.1) to
apply directly to cn{2} in Eq. (4.33). This results in

〈〈ein(ϕ1−ϕ2)〉〉 = v2
n. (4.39)

Thus we obtain

vn{2} ≡
√
〈〈ein(ϕ1−ϕ2)〉〉c =

√
cn{2}, (4.40)

and analogous for the 4-particle cumulant

vn{4} ≡ 4

√
−〈〈ein(ϕ1+ϕ2−ϕ3−ϕ4)〉〉c = 4

√
−cn{4}. (4.41)
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Flow Fluctuations

To derive cumulants, such as in Eq. (4.41), it was assumed that event-by-
event �uctuations are negligible (e.g. 〈v2

n〉2 = 〈v4
n〉). But vn{2} and vn{4}

must be di�erent in the presence of event-by-event �uctuations. To estimate
the e�ect of such statistical �ow �uctuations, one can use the Taylor series
around the mean to expand to leading (second) order in the variance σvn . [13]

This results in

vn{2} ≈ 〈vn〉+
σ2
vn

2〈vn〉
, (4.42)

vn{4} ≈ 〈vn〉 −
σ2
vn

2〈vn〉
. (4.43)

The true mean value is always in-between these two estimates due to �ow
�uctuations.

4.2.3 Data selection and result

In this analysis, data from the ALICE detector recorded in 2010 (Pb�Pb
collisions at a centre-of-mass energy of

√
sNN= 2.76 TeV) from the runs

137161 and 138275 were taken for analysis.

First let's have a look at a few quality assurance (QA) plots to validate the
dataset and track/event selection criteria. In Fig. 4.5) the azimuthal accep-
tance for central (0-5% centrality in Fig. 4.5a), midcentral(30-40% centrality
in Fig. 4.5b) and peripheral(70-80% centrality in Fig. 4.5c) collisions can be
seen. The resulting distribution looks clearly uniform and thus no additional
weights have to be used for further analysis.
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(a) (b)

(c)

Figure 4.5: Distribution of azimuthal distribution for central (0-5% central-
ity in (a)), mid-central (30-40% centrality in (b)) and peripheral (70-80%
centrality in (c)) collisions.

As we can see in Fig. 4.6 the multiplicity drops for central Fig. (4.6a),
mid-central Fig. 4.6b and peripheral Fig. 4.6c collisions. In the case of
the low multiplicities the statistical uncertainty gets bigger and bigger. In
Fig. 4.7, we see the results of two and four-particle cumulants for elliptic
�ow v2 and in Fig. 4.8 the results for the triangular �ow v3. Here we can
clearly see that for the most central collisions v2 and v3 diminish since here
the anisotropy in the coordinate space is rather low and thus the anisotropic
�ow. Further we see a maximal elliptic �ow v2 at about 50 % centrality. The
decreasing value of v2 is due to the lower multiplicity and therefore weaker
�ow, which goes hand in hand with higher uncertainties. But the 2-particle
cumulant v2{2} deviates a bit from the 4-particle cumulant v2{4} since, as
mentioned in the statistical spread of the m-particle correlation in section
4.1.2, it is more sensitive to nonl�ow e�ects and �ow �uctuations appear
with a negative sign for v2{4} in Eq. (4.41). Nevertheless the obtained re-
sults are in agreement with the ALICE results of Elliptic �ow of charged
particles in Pb�Pb collisions at

√
sNN= 2.76 TeV [36].
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(a) (b)

(c)

Figure 4.6: Distribution of multiplicity for central (0-5% centrality in (a)),
mid-central (30-40% centrality in (b)) and peripheral (70-80% centrality in
(c)) collisions.
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Figure 4.7: The elliptic �ow v2 in dependence of the centrality in Pb�Pb
collisions at a centre-of-mass energy of

√
sNN= 2.76 TeV recorded by the

ALICE detector.

Figure 4.8: The triangular �ow v3 in dependence of the centrality in Pb�Pb
collisions at a centre-of-mass energy of

√
sNN= 2.76 TeV recorded by the

ALICE detector.



Chapter 5

Non�ow scaling in azimuthal

correlators

All other sources of contributions to azimuthal correlators, besides �ow cor-
relations, are classi�ed as non�ow. These can be due to physical non�ow
phenomena (resonance decays, jets, etc.), detector artefacts (track splitting
in the reconstruction, etc.) or simply by the way we compute correlations
when analysing �ow (like autocorrelations).

The important di�erence is that �ow is a collective e�ect and thus cor-
relates all particles whereas non�ow is generally a correlation among few
particles.

5.1 Non�ow scaling: the probabilistic argument

(a) (b) (c) (d)

Figure 5.1: Illustration of the probabilistic argument.

There is a simple probabilistic argument resulting in a non�ow scaling in
leading order of:

δk ∝
1

Mk−1
. (5.1)

24
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Here k is the order chosen for the m-particle correlation. The mentioned
scaling can easily be explained by an example illustrated in Fig. 5.1. If one
chooses in this example to use a 4-particle correlation and some particles are
correlated to each other due to non�ow (indicated in red), the question is
what is the probability to choose only the particles that are correlated to
each other due to this non�ow? After the �rst particle was selected there is
one option less remaining etc., resulting in

δ4(nonflow) ≈ 3

M − 1

2

M − 2

1

M − 3
≈ 1

M3
. (5.2)

On the other hand �ow is not e�ected by this probabilistic argument since
it is a collective phenomena. It does not matter which particle we choose:

δ4(flow) ∝ M − 1

M − 1

M − 2

M − 2

M − 3

M − 3
∝ 1. (5.3)

Usually the probabilistic argument is su�cient to neglect any non�ow
implications in heavy-ion collisions, since the multiplicity is very high. It is
one of the most important non�ow argument that is used in practice in the
�ow community. But if �ow is being tried to be observed in small collisions
systems like p-p or p-A, in which the multiplicity is lower, non�ow e�ects
simply cannot be ignored any more. Thus a new understanding of non�ow
scaling is absolutely necessary.

To get to the root of this problem one �rst has to understand how precisely
the multiparticle correlators are a�ected by non�ow at low multiplicities, and
whether in that regime non�ow contributions to azimuthal correlators exhibit
any sort of universal scaling. To do this we set up Monte Carlo simulations,
in which conditions are fully under control, and have a closer look at an
induced non�ow scaling. This is done by �rst removing any �ow and non�ow,
and afterwards inducing non�ow by overcounting (corresponding to track
splitting in the detector) resulting in an analytic expression of how non�ow
should scale under these conditions.

5.2 Random walk - removal of �ow and non�ow

To remove any �ow or non�ow e�ects the random walk is used in order to
inspect the genuine scaling of Q-vector with multiplicity, in the absence of
any correlations. Since the sampled azimuthal angles are completely random,
�ow and non�ow can't be present [13]:

〈2〉 = 〈3〉 = ... = 〈k〉 = 0. (5.4)
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First we will set up some general rules for the random walk, and then calculate
recursively the three cases 〈2〉 = 〈3〉 = 〈4〉 = 0 as done in [13]. After that, a
new original procedure established in this project is used to get 〈6〉 = 〈8〉 = 0
directly. By doing it �rst recursively, we will get some intuition of what is
actually happening and are then able to generalize our �ndings.

For further analysis we will need the 2-,3-,4-,6- and 8-particle correlations
written in terms of Q-vectors and removed of any autocorrelation, these can
be found in the Appendix A.1.

5.2.1 General rules for random walk

In order not to get confused later and to use results we obtained recursively,
we have to establish some general rules.

• Notation: For the average in the statistical limit of the random walk, the
obtained result will be distinguished by using a comment over the equal

sign
stat.
= or expectation brackets 〈...〉 (eg. Eq. (5.10) and Eq. (5.11)).

One has to be careful to not raise |Qn| in (〈...〉) to any power, since
〈|Qn|2〉2 6= 〈|Qn|4〉.

• Angle additions have no impact: It doesn't matter if we add any other
additional value α ∈ R to the azimuthal angle ϕi, since

Qn =
M∑
j=1

ein(ϕj+α) = einα
M∑
j=1

eiϕj , (5.5)

and the whole Q-vector expression has to follow the isotropic condi-
tion. Thus the additional angle cancel e.g. |Qn|2 = QnQ

∗
n and thus

einαe−inα = 1.1 Thus as an example, the subtraction or addition of any
angle α will have no e�ect on |Qn|k, with k ∈ N.

• factors in the exponent must be n ∈ Z \ {0}: This arises from2∫ 2π

0

einϕdϕ =

∫ 2π

0

(cos(nϕ) + i sin(nϕ))dϕ =
sin(2πn)

n
+ i

2 sin2(πn)

n
,

(5.6)

which has to be zero for the argument of the average in the statistical
limit of the random walk.

1This would basically correspond to simply rotating the laboratory frame in which
azimuthal angles are measured. But since all measurements have to be invariant under
such rotation this rotation shift must cancel.

2Here the trigonometric relation 2 sin2(x/2) = 1− cos(x) was used.
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This will later be necessary to treat 〈|Q2n|2〉 with the results obtained
from 〈|Qn|2〉.

• Linear combination of azimuthal angles: Furthermore the here appear-
ing linear combination of randomly sampled azimuthal angles, are at
�rst also assumed to be randomly distributed. For the linear com-
bination the notation ∆ϕ̄ is used. Where any linear combination of
azimuthal angles is meant, e.g.: ∆ϕ̄ = ϕ1 +ϕ2− 2 ·ϕ3, or more general
∆ϕ̄ = m1ϕ1 + ... + mnϕn (n ∈ N and mn ∈ Z \ {0}). There will be
many of these additional terms, but since we will see that they have a
small, almost negligible, contribution in the statistical limit let's simply
write O(ei∆ϕ̄) for them. If ∆ϕ̄ is randomly distributed 〈O(ei∆ϕ̄)〉 will
disappear. This is derived in Appendix B.1.1.

Notice one important thing: One has to be careful that the amount
of i linear angles added doesn't get too big. This would result in further
non trivial behaviour, because the central limit theorem would have the
result that ∆ϕ̄ follows a normal distribution. As a result the argument
in Appendix B.1.1 doesn't hold and 〈O(ei∆ϕ̄)〉 6= 0 is the case.
Although the central limit theorem has a weak-convergence we will still
see minor e�ects. But these can be estimated as shown in Appendix
B.1.2. On the other hand, for |Qn|k the linear combined azimuthal
angles ϕi are maximal k.

Let's start with our �rst case of the random walk for 〈2〉 and work recur-
sively.

Case: 〈2〉 = 0

Starting from Eq. (5.4) it directly follows for the 2-particle correlation, Eq.
(A.1), that:

〈2〉 = 0 =
|Qn|2 −M
M(M − 1)

⇔ |Qn|2 = M. (5.7)

This can be interpreted as the distance travelled, on average, in the complex
plane via random walk from the origin. As an example a possible random
walk can be seen in the quick sketch in Fig. 5.2a or for 500 steps in Fig.
5.2b.
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(a) Q-vector walk (b) 500 steps

Figure 5.2: The random walk of a Q-vector in (a), and 500 random steps in
(b)

By doing M steps in the complex plane it is well known that the average
distance travelled is

√
M . So the result in Eq. (5.7) has some straight forward

intuition to it. But actually carrying out the complete calculation with the
Q-vector in Eq. (5.7) one gets a di�erent result:

|Qn|2 = QnQ
∗
n =

M∑
i=1

einϕi
M∑
j=1

einϕj (5.8)

=
M∑
i,j=1

ein(ϕi−ϕj) (5.9)

= M︸︷︷︸
from i=j

+
M∑
i,j=1
(i 6=j)

ein(ϕi−ϕj) (5.10)

But since ϕi is sampled randomly from a uniform distribution between [0, 2π),
the last part disappears if n ∈ Z as can be seen in Eq. (5.6).

In order to not get confused with the actual Q-vector, in Eq. (5.10), and
its average result in the statistical limit of the random walk, Eq.(5.11), let's
write instead:

|Qn|2
stat.
= 〈|Qn|2〉 = M. (5.11)



CHAPTER 5. NONFLOW SCALING IN AZIMUTHAL
CORRELATORS 29

Case: 〈3〉 = 0

From Eq. (5.4) the case of the 3-particle correlation, Eq. (A.2), leads to:

〈3〉 = 0 =
<[Q2nQ

∗
nQ
∗
n]− 2|Qn|2 − |Q2n|2 + 2M

M(M − 1)(M − 2)
(5.12)

⇔ (5.13)

<[Q2nQ
∗
nQ
∗
n] = 2 · |Qn|2︸ ︷︷ ︸

recursively Eq.(5.11)

+ |Q2n|2︸ ︷︷ ︸
recursively Eq.(5.11)

−2M (5.14)

⇒ (5.15)

<[Q2nQ
∗
nQ
∗
n]

stat.
= 2M +M − 2M = M. (5.16)

Now the obtained result in Eq. (5.16) is somewhat surprisingly equivalent to
Eq. (5.11). But of course:

<[Q2nQ
∗
nQ
∗
n] 6= |Qn|4. (5.17)

One sees that there appear additional Q-vectors, which can be rewritten
but nontheless not get rid o�. But we assume that linear combinations of
azimuthal angles are equally uniformly random. Thus in the average each
〈ei∆ϕ̄〉 is simply 0. The only terms remaining are those were i = j = k. The
diagonal of the i× j × k cube. We will elaborate on this later. Let's rewrite
this generally with the ∆ϕ̄ notation:

<[Q2nQ
∗
nQ
∗
n] = <[

M∑
i,j,k=1

ein(2ϕi−ϕj−ϕk)] (5.18)

=
1

2
[

M∑
i,j,k=1

ein(2ϕi−ϕj−ϕk) +
M∑

i,j,k=1

e−in(2ϕi−ϕj−ϕk)] (5.19)

=
1

2
[2M +O(ei∆ϕ̄)︸ ︷︷ ︸

〈ei∆ϕ̄〉=0

] (5.20)

Thus as average in the statistical limit we get:

〈<[Q2nQ
∗
nQ
∗
n]〉 stat.= 〈|Qn|2〉 = M. (5.21)



CHAPTER 5. NONFLOW SCALING IN AZIMUTHAL
CORRELATORS 30

Case: 〈4〉 = 0

Again from Eq. (5.4) the 4-particle correlation, in Eq. (A.3), leads via
recursive procedure to:

〈4〉 = 0 =
|Qn|4 + |Q2n|2 − 2 · <[Q2nQ

∗
nQ
∗
n]

M(M − 1)(M − 2)(M − 3)
− 2

2(M − 2)|Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)

⇔
|Qn|4 + |Q2n|2︸ ︷︷ ︸

rec. Eq.(5.11)

−2 · <[Q2nQ
∗
nQ
∗
n]︸ ︷︷ ︸

rec. Eq.(5.21)

−4(M − 2) · |Qn|2︸ ︷︷ ︸
rec. Eq.(5.11)

+2M(M − 3) = 0

⇒

|Qn|4
stat.
= M(2M − 1). (5.22)

Comparing the result obtained in Eq. (5.22) with Eq. (5.11), again some-
thing non trivial is happening.

When explicitly writing out the sum, we realize that somehow

|Qn|4 = QnQnQ
∗
nQ
∗
n =

M∑
i,j,k,l=1

ein(ϕi+ϕj−ϕk−ϕl) (5.23)

= M(2M − 1) +O(ei∆ϕ̄)︸ ︷︷ ︸
〈ei∆ϕ̄〉=0

, (5.24)

must be the case. Later we will see why. To conclude let's write:

|Qn|4
stat.
= 〈|Qn|4〉 = M(2M − 1). (5.25)

As the number of arguments in the m-particle correlation grow with the
Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, 21147,... (sequence A000110
in the OEIS) [32], this used recursive process gets very ine�cient. It's even
worse if generally removing autocorrelations as in [37], n! steps are necessary.

If one calculated the case 〈5〉 = ... = 〈k〉 = 0 or higher, one would have
to solve all previous cases to get 〈|Qn|k〉. Instead let's try to solve 〈|Qn|k〉
directly. As we will see, by this approach the number of terms in one power k
of 〈|Qn|k〉 grows with (1,) 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, . . . (sequence
A000041 in the OEIS).

5.3 General 〈|Qn|k〉 random walk scaling

To obtain the general 〈|Qn|k〉 scaling, one has to �nd a way to calculate the
number of autocorrelations, depending on the multiplicity M , for a given
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power k.1

Just to clarify: We are not interested how exactly the autocorrelations,
caused by the Q-vectors, look like, but only how many autocorrelations there
are that survive the random walk. When generally removing autocorrelations
additional terms appear [32, 37], whereas in our case some of these autocor-
relations average to zero, because some are attached to other 〈k〉-particle
correlations and these by themself are zero in the case of the random walk.

5.3.1 Even powers of k

Let us �rst look at the general scaling for even powers. We will see that the
method found can easily be generalized to all other cases. In fact, the even
powers are actually the most elaborate ones.

Generally we can write:

|Qn|k = QnQn...Q
∗
nQ
∗
n︸ ︷︷ ︸

k−times

=
M∑

i, j, ..., l,m︸ ︷︷ ︸
k−indices

=1

ein(ϕi+ϕj+...−ϕl−ϕm). (5.26)

It is now interesting how often the exponent cancels to zero:

ϕi + ϕj + ...− ϕl − ϕm = 0. (5.27)

Here each index i, j, ... is summed separately from 1 to M .
Let us look at the second power (k = 2) as an example:

ϕi − ϕj = 0. (5.28)

One notices immediately that this is the case for i = j, M -times. It is the
most obvious and simplest general solution to Eq. (5.27): all indices have
the same value. With higher powers, more possibilities arise and more and
more solutions emerge.

Let us use a simpler notation. As we are only interested in the indices
just the azimuthal-angles are numbered: ϕi ⇒ 1, ϕj ⇒ 2..., ϕn ⇒ k. We will
separate the indices at k/2 with "|" because of the sign change. Next we will
circle the indices that are the same e.g.:

k = 8: 1 2 3 4 | 5 6 7 8 .

Here three indices are the same and one is di�erent. Of course we could have
also said that 2,3,4 with 5,6,7 have the same indices value. But at �rst we

1Actually any combination of Q-vectors in the random walk. But these are actually
less elaborate cases as we will see.
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are merely interested in how many indices have to be the same, and not how
many combinations there are to pick which are the same.

The �rst thing to notice in the case of all Q-vectors in the same harmonic
n is, that we only have to evaluate half of the indices because of the change of
the sign in the exponent.1 The other half also has to have the same number
of same indices, or the entire sum in Eq. (5.27) would not be 0. Therefore
we only look at the �rst half (k/2-indices), and write "|" to remind us that
there is always a corresponding set with an opposite sign. As example here
are all possibilities for k = 10 and k = 12.

• k = 10:
1 2 3 4 5 |

1 2 3 4 5 |

1 2 3 4 5 | + 1 2 3 4 5 |2

1 2 3 4 5 | + 1 2 3 4 5 | 3

1 2 3 4 5 |

• k = 12:
1 2 3 4 5 6 |

1 2 3 4 5 6 |

1 2 3 4 5 6 | + 1 2 3 4 5 6 |

1 2 3 4 5 6 | + 1 2 3 4 5 6 | + 1 2 3 4 5 6 |

1 2 3 4 5 6 | + 1 2 3 4 5 6 | + 1 2 3 4 5 6 |

1 2 3 4 5 6 |

As noted one has to be careful: In one grouping (i are the same) the same
or only lower orders of groupings (i are the same or i-n are the same)
can appear additionally.

This points out what we are actually doing. We are looking at all possible
partitions and the rule that only lower orders of groupings are allowed,
is analogue for Young-diagrams.

1This originates from the complex conjugate for the absolute value of a complex number.
2Note one does not distinguish between "1,2,4" same or "1,2,5" same. This is due to

the fact that we will deal with these combinatorial choices later.
3"Two same" and "three same" was already dealt with previously, so there are no

additional possibilities.
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Partitions

When searching for the possible partitions it is completely analogue to the
question of how many integer partitions there are for a number n ∈ N. Using
the partition function P (n), which gives the total number of ways of writing
the number n, we can �nd out how many terms we have to add in order to
calculate the number of autocorrelations.
Example:

P (5) = 7. (5.29)

All possibile partitions are:

5 =

= 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

It turns out that the number of possible partitions we have to evaluate in-
creases with P (n) and are: (1,) 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, . . .
(sequence A000041 in the OEIS) [38]. It grows as an exponential function of
the square root of its argument.

The conclusion is that, if the power k is even, one has P (k/2) terms to
add. One can also express the possible partitions with the help of Young-
diagrams. Here is an example:

k=10:

+
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+

This is an analogue representation of the case of k = 10 which was shown
above.4 Unfortunately no closed-form expression for the partition function
P (n) is known and each Young-diagram has to be calculated in an recursive
algorithm. This results in the fact that we cannot just directly write an an-
alytic equation resolving this problem.

Permutations and combination of indices

In the following our only interest is how many permutations (arrangement of
indices) and combinations (selection of indices from a collection of indices)
are possible, but not yet how many variations (carrying out the indices from
1 toM) there are that result in the cancelling of the exponent of our Q-vector
(in Eq. (5.27)).

We consider the number of combinations to choose which indices
are the same. Here the order of selection doesn't matter, because they are
all the same. Thus it is given by the binomial coe�cient:(

n

k

)
=

(
number of indices places to choose

number of same indices

)
. (5.30)

As an example let's look at k = 10, with 1 2 3 4 5 | + 1 2 3 4 5 |:(
k
2

= 5

2

)
+

(
k
2

= 5

2

)(
5− 2 = 3

2

)
. (5.31)

In the second term we �rst choose to place the �rst two coupled indices and
are then left with three places to pick in order to place the second two coupled
indices.

After that we have a look at the number of permutations (with repe-
tition) of the indices. This is of course not relevant for the case in which
all indices are identical, as there is only one single option.5

4Horizontal boxes represent indices that are the same (circled in the other notation).
5Note: we are still not "�lling in" values from 1 to M into the indices. Thus we have

only one option. Later we can "�ll in" and say that "all indices coupled" occurs M times.
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For each indices there are (k
2
)!-possible permutations, but we can't dis-

tinguish between the indices that are the same and the blocks that have the
equal number of coupled indices. Thus the permutations with repetition
are:

(k
2
)!∏

all blocks

(number of same indices)!
∏

frequency of blocks ≥2

(number of same blocks)!
.

(5.32)

Example at k = 10, with 1 2 3 4 5 | + 1 2 3 4 5 |:

(
5

2

)
︸︷︷︸

from before

·
(k

2
= 5)!

2!
+

(
5

2

)(
3

2

)
︸ ︷︷ ︸
from before

·
(k

2
= 5)!

2!2!(number of same blocks = 2)!
(5.33)

=

(
5

2

)
5!

2!
+

(
5

2

)(
3

2

)
5!

2!2!2!
. (5.34)

Variations (without repetition) of indices

We �nally have to �ll in the possible values of the indices that run from
1 to M . This is a simple variation without repetition.

The �rst thing we have already realized was that the case of all indices
values are the same occurs M -times. The other simple circumstance is when
all indices values are di�erent. For the �rst indices we have M options, for
the second M − 1, the third M − 2,... That means we have the obvious case:

(
k

2
)!︸︷︷︸

from before

M !

(M − k
2
)!
. (5.35)

In all the other cases we can write symbolically:

∗︸︷︷︸
stuff from before

· M · ... · (M − n)︸ ︷︷ ︸
different things to fill

. (5.36)
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This results for k = 10, with 1 2 3 4 5 | + 1 2 3 4 5 | in:

(
5

2

)
5!

2!︸ ︷︷ ︸
from before

· M︸︷︷︸
1 2

(M − 1)︸ ︷︷ ︸
3

(M − 2)︸ ︷︷ ︸
4

(M − 3)︸ ︷︷ ︸
5

(5.37)

+

(
5

2

)(
3

2

)
5!

2!2!2!︸ ︷︷ ︸
from before

· M︸︷︷︸
1 2

(M − 1)︸ ︷︷ ︸
3 4

(M − 2)︸ ︷︷ ︸
5

(5.38)

=

(
5

2

)
5!

2!

M !

(M − 4)!
+

(
5

2

)(
3

2

)
5!

2!2!2!

M !

(M − 3)!
. (5.39)

5.3.2 General expression

In conclusion one could write symbolically:

possible partitions∑
(permutations w. rep.) · (combinations no rep.) · (variations no rep.).

The problem to write an analytic expression lies within the possible partitions
and that no closed form for them is known.

Although no closed formula for all possible partitions is known, we can
still think of a recursive algorithm and thus write a code that gives us the
number of autocorrelations for any even power k of a Q-vector. A general
recursive formula, written in C/C++ is given in the Appendix B.3.1 and a
visual representation in Appendix B.3.2.

General isotropic conditions

One can generalise and look at cases in which (ni ∈ Z):

M∑
i=1

niϕi = 0. (5.40)

These cases can be calculated analogous by using a coupling for the ni-
times reoccurring azimuthal angle ϕi, which cannot be broken down, and
looking at the |n1| + |n2| + ... + |nm−1| + |nm| = k power of the resulting
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Figure 5.3: Here M = 50 random azimuthal angles were sampled from a
uniform distribution and up to 2000-times simulated. In each simulation
step the average 〈|Qn=1|2〉 and the error was calculated. This resulted after
the 2000 simulation steps in 〈|Qn=1|2〉 = 49.4 ± 1.1, which is close to the
expected value of 50 from Eq. (5.4) although the number of simulations was
low. The blue band is the error and the red line the obtained result in each
simulation step.

Q-vector (m ∈ N):

|Q|k = Qn1Qn2 ...Q
∗
nm−1

Q∗nm︸ ︷︷ ︸
m−times

=
M∑

i, j, ..., l,m︸ ︷︷ ︸
m−indices

=1

ei(n1ϕi+n2ϕj+...−nm−1ϕl−nmϕm).

(5.41)

These couplings simplify the number of arguments that survive the random
walk, meaning that the case n1 = n2 = ... = nm−1 = nm in Eq. (5.27)
is actually the most elaborate one. Cases with these couplings, due to an
uneven power, are calculated in the Appendix C.

5.3.3 Veri�cation via simple Monte Carlo study

To verify Eq. (5.11), a very simple Monte Carlo study was done. To see how
the random walk converges, the example 〈|Qn=1|2〉 with M = 50 can be seen
in Fig. 5.3.

In Fig. 5.4 results for di�erent Multiplicities M of the random walk of
〈|Qn|2〉, 〈|Qn|4〉 and 〈|Qn|6〉 are displayed. The lines are the expected results
of the number of autocorrelations from Eqs. (5.11), (5.25) and (B.16). As
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shown, the data points follow the expected result of O(ei∆ϕ̄) = 0 quite well.
Although in 〈|Qn|6〉 small e�ects of the central limit theorem, which result in
O(ei∆ϕ̄) 6= 0, can be seen. For example the data pointM = 18 was simulated
to be

〈|Qn|6〉 = (32247± 37). (5.42)

But from Eq. (B.16) one would expect 〈|Qn|6〉 = 32148. Although this is
only a 0.3% deviation from the originally expected value, the data point can't
�t within error. This deviation could be explained by a central limit e�ect
mentioned beforehand. It's e�ect is calculated in Appendix B.1.2.

5.3.4 Conclusion

As 〈O(ei∆ϕ̄)〉 has no main contributions in the random walk, only the parts
where the azimuthal angles cancel to (ei·0) remain dominant. This is of course
precisely a part of the autocorrelation which is removed in the m-particle
correlation in Eq. (4.5). Thus one could also write simply:

〈|Qn|k〉 =
M∑

i,j,...,k,l=1

ein(ϕi+ϕj+...−ϕk−ϕl) −
M∑

i,j,...,k,l=1
(i 6=j 6=... 6=k 6=l)

ein(ϕi+ϕj+...−ϕk−ϕl)

︸ ︷︷ ︸
autocorrelations + 〈O(ei∆ϕ̄)〉

(5.43)

〈|Qn|k〉
stat.
= |Qn|k − 〈m〉

(
M

m

)
m! + 〈O(ei∆ϕ̄)〉 (5.44)

Since one still has to �nd out at all possible autocorrelation cases dependent
on M this of course is more symbolically.

By setting a m-particle correlation to 〈2〉 = 〈3〉 = 〈4〉 = 0, one is able to
solve, by recursive procedure, for Q-vectors in the appearing powers. Since the
m-particle correlation already has all autocorrelations removed through Q-
vectors, these solved for Q-vector powers now result in the autocorrelations
they removed and thus giving the number of autocorrelations of 〈|Qn|k〉.
One starts with 〈|Qn|2〉 from 〈2〉 = 0, which is the seed for the rest. But as
mentioned before, just to get the 〈|Qn|k〉 autocorrelations, that pop out on
the way, this recursive method would be very ine�cient compared to directly
evaluating 〈|Qn|k〉 in the manner just examined.
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(a)

(b)

(c)

Figure 5.4: 〈|Qn|2〉, 〈|Qn|4〉 and 〈|Qn|6〉 calculated with 10.000.000 sim-
ulations per data point. The line is the expected value in the case of
〈O(ei∆ϕ̄)〉 = 0.
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5.4 Introduction of non�ow to the Random walk

5.4.1 Overcounting

After having understood the built-in Q-vector scaling in the random walk, we
can use this knowledge to calculate an analytically exact non�ow scaling for
track splitting. To do this we start with our 2-, 4-, 6- and 8-particle correlator
and calculate the number of autocorrelations of the occurring Q-vectors. This
is explicitly done in Appendix A.1. We will also need them for higher order Q-
cumulants. Since we know now the autocorrelations of |Qn|k as a function of
M , we do not have to �rst recursively solve 〈5〉 = 〈6〉 = 〈7〉 = 〈8〉 = ... = 0 to
get these additional Q-vector combinations which we would insert recursively.

We introduce non�ow by letting each track split k-times [13]. This cor-
responds to a realistic scenario in which due to detector ine�ciencies each
track gets split k times during reconstruction. But since we don't actually
know how often a particle is split in the detector when observing, we must
look at the total multiplicity Mtot. So if we start with a sample M per event
and we take each particle k-times it results in:

Mtot = k ·M, (5.45)

Qn,tot = k ·Qn. (5.46)

In Appendix A.2 we implement Eq. (5.45) and Eq. (5.46) into our multipar-
ticle correlators.

After that we can do a simple Monte Carlo study. We sample M az-
imuthal angles ϕ from a uniform distribution [0, 2π), overcount them k-times
and calculate the multiparticle correlation of our Mtot particles. Since only
non�ow is present, we can compare our analytic expression for the non�ow
scaling with the simulated non�ow correlation. These results for k = 2, 3 and
4 for the 4- and 6- particle correlator can be seen in Fig. 5.5. As shown, the
results �t our analytical scaling nicely. The entire analytic expression of the
2-, 4-, 6- and 8- particle correlator can be found in the Appendix A.2.

5.4.2 Q-Cumulants

Now we insert our results from our previous section of the non�ow scaling of
the multiparticle correlators into our Q-Cumulants from Eq. (4.2.1). Again
we obtain an exact analytic expression how non�ow should scale. The next
step is to check the results obtained in an analogue Monte Carlo study. The
results can be seen in Fig. 5.6 and Fig. 5.7. As can be seen, the simulated
data points �t perfectly to their expected non�ow behaviour.
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(a) (b)

Figure 5.5: The non�ow scaling of the 4- and 6-particle correlator compared
to the analytically derived result of the non�ow scaling. The non�ow was
induced by overcounting each particle k-times.

(a) (b)

Figure 5.6: Comparison of calculated non�ow correlation to expected non�ow
scaling of QC{2} and QC{4} for k = 2, 3 and 4.
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(a)

Figure 5.7: Comparison of calculated non�ow correlation to expected non�ow
scaling of QC{6} for k = 2, 3 and 4.

Further we can compare the non�ow sensitivity of the Q-cumulants to
the m-multiparticle correlators for k = 2, 3 and 4. QC{4}, QC{6} with their
corresponding 4- and 6-particle correlator are shown in Fig. 5.8 with red
indicating the Q-Cumulant.

(a) (b)

Figure 5.8: Non�ow scaling of QC{4}, QC{6} (in red) with their correspond-
ing 4- ad 6-particle correlator for k = 2, 3 and 4.

We see that non�ow is suppressed faster in the Q-Cumulants than in the
starting azimuthal correlators, as multiplicity increases. From Fig. 5.9a we
see that QC{4} only has 1% of the non�ow of the 4-particle correlator as soon
as the multiplicity is larger than Mk=2 ≥ 40, Mk=3 ≥ 100 and Mk=4 ≥ 200.
The same is the case in Fig. 5.9b in which we see that QC{6} only has 1%
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of the non�ow of the 6-particle correlator as soon as the multiplicity is larger
then Mk=2 ≥ 40, Mk=3 ≥ 70 and Mk=4 ≥ 130. Further in Fig. 5.10 we

(a) (b)

Figure 5.9: The ratio of Q-Cumulant to corresponding multiparticle correla-
tor. The line indicates when the Q-Cumulant is only 1% as sensitive as the
corresponding multiparticle correlator.

(a) (b)

Figure 5.10: The ratio of Q-cumulant to corresponding multiparticle corre-
lator for low multiplicities M .

can see that also for low multiplicities QC{4} is less sensitive than 〈〈4〉〉 to
non�ow. The same is true for QC{6} in comparison to 〈〈6〉〉, of course here
the multiplicity M must be larger then 6.
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5.4.3 Comparison of the probabilistic argument to exact
non�ow scaling

The exact non�ow scaling expressions can be found in Appendix A.3.
The leading order terms for the considered multiparticle correlators in

the limit of Mtot are:

〈2〉 ∝ k − 1

Mtot

(5.47)

〈4〉 ∝ (k − 1)(2k − 2)

M2
tot

(5.48)

〈6〉 ∝ (k − 1) (6k2 − 12k + 6)

M3
tot

(5.49)

〈8〉 ∝ 24k4 − 96k3 + 144k2 − 96k + 24

M4
tot

. (5.50)

This suggests a scaling of ∝ 1/Mm/2. Therefore, in the limit of high Mul-
tiplicities the probabilistic argument, suggesting a scaling of ≈ 1/Mm−1, un-
derestimates the non�ow e�ects. If we compare our obtained non�ow scaling
expressions to the probabilistic argument it turns out that it fails for speci�c
k. This can be seen in Fig. 5.11 were the obtained non�ow scaling of the 4-
and 6-particle correlator is compared to a �t of the probabilistic argument of:
a/Mm−1 + b (a and b beeing �tting parameters). In the case of the 4-particle
correlator in Fig. 5.11a we can see the probabilistic argument always under-
estimates the non�ow e�ect for k = 2, 3 and 4. On the other hand for the
6-particle correlator in Fig. 5.11b we can see that the probabilistic argument
scaling fails at k ≥ 3. The exact non�ow scaling expressions can be found in
Appendix A.3. The leading orders of the Q-cumulants in the limit of Mtot

are:

QC{2} ∝ k − 1

Mtot

, (5.51)

QC{4} ∝ (k − 1) (−k2 + 5k − 2)

M3
tot

, (5.52)

QC{6} ∝ 4(k − 1) (k4 − 14k3 + 44k2 − 31k + 6)

M5
tot

. (5.53)

These follow the probabilistic argument perfectly.



CHAPTER 5. NONFLOW SCALING IN AZIMUTHAL
CORRELATORS 45

(a) (b)

Figure 5.11: Comparison of actual non�ow scaling with the probabilistic ar-
gument. Therefore a/Mm−1 + b was �tted to the data points, indicated in
red.



Chapter 6

Summary

To summaries, �rst any �ow or non�ow correlations were removed via random
walk. Then the general scaling of Q-vectors in the random walk for any
power or combination, in dependence of the multiplicity M , was derived
and veri�ed in a Monte Carlo study. After that non�ow was introduced by
overcounting azimuthal angles, corresponding to track splitting. The results
obtained of the Q-vectors in the random walk were then applied for a few
chosen multiparticle correlators, and an analytic expression for the resulting
non�ow found. This non�ow was then simulated in a Monte Carlo study.
It's scaling was compared to the widely used probabilistic argument for high
and low multiplicities. Analogue the non�ow scaling of the corresponding
Q-Cumulants was derived and veri�ed. At last the non�ow sensitivity of the
direct multiparticle correlators was compared to the Q-Cumulants.

The next step is to con�rm this non�ow scaling in Hijing, a heavy-ion
collision simulator that models non�ow realistic, and having a closer look at
p-p and p-A collisions and the appearing non�ow scaling.
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Appendix A

Multiparticle correlations and

Q-Cumulants

A.1 Multiparticle correlators

If we remove any autocorrelations via Q-vectors, this results in the following
2-/3-/4-/6- and 8-particle correlators [13]:

〈2〉 = 〈exp[in(ϕ1 − ϕ2)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2

=
|Qn|2 −M
M(M − 1)

,

(A.1)

〈3〉 = 〈exp[in(2ϕ1 − ϕ2 − ϕ3)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3

=
<[Q2nQ

∗
nQ
∗
n]− 2 · |Qn|2 − |Q2n|2 + 2M

M(M − 1)(M − 2)
,

(A.2)

〈4〉 = 〈exp[in(ϕ1 + ϕ2 − ϕ3 − ϕ4)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4

=
|Qn|4 + |Q2n|2 − 2 · <[Q2nQ

∗
nQ
∗
n]

M(M − 1)(M − 2)(M − 3)
− 2

2(M − 2)|Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
,

(A.3)
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〈6〉 = 〈exp[in(ϕ1 + ϕ2 + ϕ3 − ϕ4 − ϕ5 − ϕ6)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6

=
1(

M
6

)
6!
× [|Qn|6 + 9 · |Q2n|2|Qn|2 − 6 · <[Q2nQnQ

∗
nQ
∗
nQ
∗
n]

+4 · <[Q3nQ
∗
nQ
∗
nQ
∗
n]− 12 · <[Q3nQ

∗
2nQ

∗
n]

+18(kM − 4)<[Q2nQ
∗
nQ
∗
n] + 4 · |Q3n|2

−9(M − 4)(|Qn|4 + |Q2n|2) + 18(M − 2)(M − 5)|Qn|2

−6kM(kM − 4)(kM − 5)]

.

(A.4)

〈8〉 ≡ 〈exp[in(ϕ1 + ϕ2 + ϕ3 + ϕ4 − ϕ5 − ϕ6 − ϕ7 − ϕ8)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6 6=ϕ7 6=ϕ8

=
1(

M
8

)
8!
× [|Qn|8 − 12 ·Q2nQnQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n

+6 ·Q2nQ2nQ
∗
nQ
∗
nQ
∗
nQ
∗
n + 16 ·Q3nQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n

−96 ·Q3nQnQ
∗
2nQ

∗
nQ
∗
n − 12 ·Q4nQ

∗
nQ
∗
nQ
∗
nQ
∗
n

−36 ·Q2nQ2nQ
∗
2nQ

∗
nQ
∗
n + 96(M − 6) ·Q2nQnQ

∗
nQ
∗
nQ
∗
n

+72 ·Q4nQ
∗
2nQ

∗
n + 48 ·Q3nQnQ

∗
2nQ

∗
2n

−64(M − 6) ·Q3nQ
∗
nQ
∗
nQ
∗
n + 192(M − 6) ·Q3nQ

∗
2nQ

∗
n

−96 ·Q4nQ
∗
3nQ

∗
n − 36 ·Q4nQ

∗
2nQ

∗
2n

−144(M − 7)(M − 4)Q2nQ
∗
nQ
∗
n + 36|Q4n|2 + 64|Q3n|2|Qn|2

−64(M − 6)|Q3n|2 + 9|Q2n|4 + 36|Qn|4|Q2n|2 − 144(M − 6)k4|Q2n|2|Qn|2

+72(M − 7)(M − 4)(|Q2n|2 + |Qn|4)− 16(M − 6)|Qn|6

−96(M − 7)(M − 6)(M − 2)|Q2n|2

+24M(M − 7)(M − 6)(M − 5)]
(A.5)

A.2 Multiparticle correlators non�ow scaling

Induce non�ow to 〈2〉

We start with the 2-particle correlation, Eq. (A.1), and apply Eq. (5.45)
and Eq. (5.46). After that we insert our results of the random walk of the
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Q-vectors (|Qn|2 from Eq. (5.11)):

〈2〉 ≡ 〈exp[in(ϕ1 − ϕ2)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2

(A.6)

=
k2|Qn|2 − kM
kM(kM − 1)

(A.7)

=
k − 1

kM − 1
(A.8)

=
k − 1

Mtot − 1
. (A.9)

Induce non�ow to 〈4〉

Again we start with the 4-particle correlation, Eq. (A.3), and apply Eq.
(5.45) and Eq. (5.46). Finally we replace our results of the random walk of
the Q-vectors (|Qn|2 from Eq. (5.11), <[Q2nQ

∗
nQ
∗
n] from Eq. (5.21)):

〈4〉 ≡ 〈exp[in(ϕ1 + ϕ2 − ϕ3 − ϕ4)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4

(A.10)

=
k4|Qn|4 + k2|Q2n|2 − 2 · k3<[Q2nQ

∗
nQ
∗
n]

kM(kM − 1)(kM − 2)(kM − 3)
(A.11)

− 2
2(kM − 2)|Qn|2 − kM(kM − 3)

kM(kM − 1)(kM − 2)(kM − 3)
(A.12)

= −(k − 1) (k2 − 2kMtot + 3k + 2Mtot − 6)

(Mtot − 3)(Mtot − 2)(Mtot − 1)
. (A.13)

Induce non�ow to 〈6〉

To the 6-particle correlation, Eq. (A.4), we apply Eq. (5.45) and Eq. (5.46).
After that we substitute our results of the random walk of the Q-vectors for
all present combination and powers of them. They are explicitly calculated
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in the Appendix B.1.

〈6〉 ≡ 〈exp[in(ϕ1 + ϕ2 + ϕ3 − ϕ4 − ϕ5 − ϕ6)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6

(A.14)

=
1(

kM
6

)
6!
× [k6|Qn|6 + 9 · k4|Q2n|2|Qn|2 − 6 · k5<[Q2nQnQ

∗
nQ
∗
nQ
∗
n]

(A.15)

+ 4 · k4<[Q3nQ
∗
nQ
∗
nQ
∗
n]− 12 · k3<[Q3nQ

∗
2nQ

∗
n] (A.16)

+ 18(kM − 4)k3<[Q2nQ
∗
nQ
∗
n] + 4k2 · |Q3n|2 (A.17)

− 9(kM − 4)(k4|Qn|4 + k2|Q2n|2) + 18(kM − 2)(kM − 5)k2|Qn|2
(A.18)

− 6kM(kM − 4)(kM − 5)] (A.19)

=
(−1 + k)(120− 2k(50 + 27M) + k4(4− 9M + 6M2)

(−5 + kM)(−4 + kM)(−3 + kM)(−2 + kM)(−1 + kM)
(A.20)

− 2k3(−8 + 9M + 6M2) + k2(−16 + 81M + 6M2))

(−5 + kM)(−4 + kM)(−3 + kM)(−2 + kM)(−1 + kM)
(A.21)

=
(k − 1)(4k4 + k3(16− 9Mtot) + 2k2 (3M2

tot − 9Mtot − 8))

(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)
(A.22)

+
(k − 1)k (−12M2

tot + 81Mtot − 100) + 6 (M2
tot − 9Mtot + 20)

(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)
. (A.23)

Induce non�ow to 〈8〉

To the 8-particle correlation, Eq. (A.5), we apply Eq. (5.45) and Eq. (5.46).
Then we substitute our results of the random walk of the Q-vectors for all
present combination and powers of them. They are explicitly calculated in
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the Appendix B.2.

〈8〉 ≡ 〈exp[in(ϕ1 + ϕ2 + ϕ3 + ϕ4 − ϕ5 − ϕ6 − ϕ7 − ϕ8)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6 6=ϕ7 6=ϕ8

(A.24)

=
1(

kM
8

)
8!
× [k8|Qn|8 − 12 · k7Q2nQnQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n (A.25)

+ 6 · k6Q2nQ2nQ
∗
nQ
∗
nQ
∗
nQ
∗
n + 16 · k6Q3nQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n (A.26)

− 96 · k5Q3nQnQ
∗
2nQ

∗
nQ
∗
n − 12 · k5Q4nQ

∗
nQ
∗
nQ
∗
nQ
∗
n (A.27)

− 36 · k5Q2nQ2nQ
∗
2nQ

∗
nQ
∗
n + 96(kM − 6) · k5Q2nQnQ

∗
nQ
∗
nQ
∗
n (A.28)

+ 72 · k4Q4nQ
∗
2nQ

∗
nQ
∗
n + 48 · k4Q3nQnQ

∗
2nQ

∗
2n (A.29)

− 64(kM − 6) · k4Q3nQ
∗
nQ
∗
nQ
∗
n + 192(kM − 6) · k3Q3nQ

∗
2nQ

∗
n (A.30)

− 96 · k3Q4nQ
∗
3nQ

∗
n − 36 · k3Q4nQ

∗
2nQ

∗
2n (A.31)

− 144(kM − 7)(kM − 4)k3Q2nQ
∗
nQ
∗
n + 36k2|Q4n|2 + 64k4|Q3n|2|Qn|2

(A.32)

− 64(kM − 6)k2|Q3n|2 + 9k4|Q2n|4 + 36k6|Qn|4|Q2n|2 (A.33)

− 144(kM − 6)k4|Q2n|2|Qn|2 (A.34)

+ 72(kM − 7)(kM − 4)(k2|Q2n|2 + k4|Qn|4)− 16(kM − 6)k6|Qn|6
(A.35)

− 96(kM − 7)(kM − 6)(kM − 2)k2|Q2n|2 (A.36)

+ 24kM(kM − 7)(kM − 6)(kM − 5)] (A.37)

=
k7 (24M3 − 72M2 + 82M − 33)− 4k6 (24M3 − 50M + 33)

(kM − 7)(kM − 6)(kM − 5)(kM − 4)(kM − 3)(kM − 2)(kM − 1)
(A.38)

+
2k5 (72M3 + 432M2 − 448M + 153)

(kM − 7)(kM − 6)(kM − 5)(kM − 4)(kM − 3)(kM − 2)(kM − 1)
(A.39)

− 8k4 (12M3 + 234M2 + 158M − 87)

(kM − 7)(kM − 6)(kM − 5)(kM − 4)(kM − 3)(kM − 2)(kM − 1)
(A.40)

+
k3 (24M3 + 1512M2 + 6754M − 1521)

(kM − 7)(kM − 6)(kM − 5)(kM − 4)(kM − 3)(kM − 2)(kM − 1)
(A.41)

− 4k2 (108M2 + 1846M + 1329) + 12k(214M + 875)− 5040

(kM − 7)(kM − 6)(kM − 5)(kM − 4)(kM − 3)(kM − 2)(kM − 1)
.

(A.42)
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Rewriting with the total multiplicity Mtot results in:

〈8〉 = (A.43)

=
−4k2

(
108M2

tot

k2 + 1846Mtot

k
+ 1329

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.44)

−
4k6

(
24M3

tot

k3 − 50Mtot

k
+ 33

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.45)

+
k3
(

24M3
tot

k3 +
1512M2

tot

k2 + 6754Mtot

k
− 1521

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.46)

+
k7
(

24M3
tot

k3 − 72M2
tot

k2 + 82Mtot

k
− 33

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.47)

+
2k5

(
72M3

tot

k3 +
432M2

tot

k2 − 448Mtot

k
+ 153

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.48)

−
8k4

(
12M3

tot

k3 +
234M2

tot

k2 + 158Mtot

k
− 87

)
(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)

(A.49)

+
12k

(
214Mtot

k
+ 875

)
− 5040

(Mtot − 7)(Mtot − 6)(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)
.

(A.50)

A.3 Q-Cumulants non�ow scaling

Now we introduce our results from Eq. (A.9), Eq. (A.13) and Eq. (A.23)
into our Q-Cumulants:

QC{2} ≡ 〈〈2〉〉 =
k − 1

kM − 1
=

k − 1

Mtot − 1
(A.51)
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QC{4} ≡ 〈〈4〉〉 − 2 · 〈〈2〉〉2

= −(k − 1)[k3M − k2(5M + 1) + k(2M + 9)− 6]

(kM − 1)2(kM − 2)(kM − 3)

= −(k − 1) (k2(Mtot − 1) + k(9− 5Mtot) + 2(Mtot − 3))

(Mtot − 3)(Mtot − 2)(Mtot − 1)2

(A.52)

QC{6} ≡ 〈〈6〉〉 − 9 · 〈〈2〉〉〈〈4〉〉+ 12 · 〈〈2〉〉3

=
4(−1 + k)(120 + k6M2 − 2k5M(1 + 7M)− 2k(170 + 27M))

(−5 + kM)(−4 + kM)(−3 + kM)(−2 + kM)(−1 + kM)3

+
4(−1 + k)(k2(266 + 227M + 6M2)− k3(41 + 238M + 31M2))

(−5 + kM)(−4 + kM)(−3 + kM)(−2 + kM)(−1 + kM)3

+
4(−1 + k)(k4(1 + 55M + 44M2))

(−5 + kM)(−4 + kM)(−3 + kM)(−2 + kM)(−1 + kM)3

=
4(k − 1) (k4(Mtot − 1)2 + k3 (−14M2

tot + 55x− 41))

(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)3

+
4(k − 1) (k2 (44M2

tot − 238Mtot + 266) + k (−31M2
tot + 227Mtot − 340))

(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)3

+
4(k − 1) (6 (M2

tot − 9Mtot + 20))

(Mtot − 5)(Mtot − 4)(Mtot − 3)(Mtot − 2)(Mtot − 1)3
.

(A.53)
In the last step we replaced k ·M = Mtot.



Appendix B

Random walk of 〈|Qn|k〉

B.1 〈O(ei∆ϕ̄)〉 contributions and central limit ef-

fects

Let's �rst have a look at the case if one did not consider the central limit the-
orem and then later calculate its e�ects. For further calculations we assume
the �ow-principle as ful�lled. So all azimuthal angles ϕi are independent of
each other and follow the same underlying p.d.f., with the identical 〈ϕi〉 and
(∆ϕi)

2.

Of course to generally calculate the expectation value of a function f(ϕ1, ..., ϕn)
with the p.d.f. p(ϕ1, ..., ϕn) one has to evaluate:

〈f(ϕ1, ..., ϕn)〉 =

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(ϕ1, ..., ϕn)p(ϕ1, ..., ϕn)dϕ1 · · · dϕn. (B.1)

Furthermore, we are looking at Q-vector powers in di�erent harmonics:

f(ϕ1, ..., ϕn) = ei(±m1ϕ1±...±mnϕn), (B.2)

with m1, ...,mn ∈ N while the whole exponent follows the isotropic condition.

B.1.1 〈O(ei∆ϕ̄)〉 = 0 is the case

Since we are looking at the random walk, each azimuthal angle ϕi is uniformly
distributed [0, 2π). Thus the normalized p.d.f. is:

p(ϕ1, ..., ϕn) =
1

(2π)n
Θ(2π − ϕ1)Θ(ϕ1) · · ·Θ(2π − ϕn)Θ(ϕn). (B.3)
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We can now calculate the expectation value:

〈ei(±m1ϕ1±...±mnϕn)〉 =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ei(±m1ϕ1±...±mnϕn)dϕ1 · · · dϕn

(B.4)

=
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ei(±m2ϕ1±...±mnϕn)dϕ2 · · · dϕn
∫ 2π

0

eim1ϕ1dϕ1︸ ︷︷ ︸
mi∈N, ⇒ =0

(B.5)

= 0. (B.6)

B.1.2 〈O(ei∆ϕ̄)〉 6= 0 is the case

Central limit theorem: If X1, ..., XN are independent random variables with
identical p.d.f. (〈Xi〉 and (∆Xi)

2), then the p.d.f of Y = X1 + ... + XN , in
the limit of N →∞, is given by [39]:

p∞(Y ) =
1√

2πN(∆X)2
· e−

(Y−〈X〉N)2

2(∆X)2N . (B.7)

Since all boundary conditions are ful�lled, let us apply the now emerging
normal distribution and calculate with the random variable ϕ̄ = ±m1ϕ1 ±
... ± mnϕn. Notice here, that the condition Y = X1 + ... + XN is still
ful�lled as we can simply shift their identical p.d.f. to a uniform distribution
between [−π, π). This p.d.f. is now symmetric and a positive or negative
value is equally probable. Thus it doesn't matter if we add or subtract any
ϕi. Furthermore we are not adding N random variables but ñ =

∑n
i=1mi.

The central limit e�ect ∆centr.lim. results in
1:

∆centr.lim. =〈eiϕ̄〉 =
1√

2πñ(∆ϕ̄)2
·
∫ +∞

−∞
dϕ̄eiϕ̄e

− (ϕ̄−〈ϕi〉ñ)2

2(∆ϕi)
2ñ (B.8)

= ei·ñ〈ϕi〉−
ñ(∆ϕi)

2

2 = ei·〈ϕi〉
∑n
i=1 mi−

(∆ϕi)
2 ∑n

i=1 mi
2 . (B.9)

This is true if <[2(∆ϕi)
2ñ] > 0 which is of course the case since ñ is the total

sum of miϕi which we have, and thus ñ ∈ N. We can calculate (∆ϕi)
2 by

(∆ϕi)
2 = 〈ϕ2

i 〉 − 〈ϕi〉2.
For our random walk, uniformly distributed between [−π, π), we obvi-

ously get:

〈ϕi〉 =
1

2π

∫ π

−π
dϕiϕi = 0, (B.10)

1This result was obtained by the usage of Mathematica [40].



APPENDIX B. RANDOM WALK OF 〈|QN |K〉 56

Figure B.1: The central limit e�ect of the combination of only four, each
uniformly sampled, azimuthal angles ϕi and the resulting normal distribution
after 100 000 iterations.

∆ϕ2
i = 〈ϕ2

i 〉 − 〈ϕi〉2 =
1

2π

∫ π

−π
dϕiϕ

2
i =

π2

3
. (B.11)

Substituting in Eq. (B.9) it results in:

∆centr.lim. = 〈eiϕ̄〉 = e−
ñπ2

6 = e−
π2 ∑n

i=1 mi
6 . (B.12)

As illustrated in Fig. B.1 already four linear combined azimuthal angles
ϕ̄′ = ϕi + ϕj − ϕk − ϕl (ñ = 4), each of them sampled from a uniform
distribution, result in a collective approximate normal distribution after only
100 000 repetitions. 100 000 terms with these ϕ̄′ combinations in the fourth
power of a Q-vector are already met at Multiplicity ofM>19. The brown and
grey strips have a width of π and indicate which parts of the distribution will
result in a positive (grey) or negative (brown) contribution to the Q-vector
scaling in <eiϕ̄′ = cos ϕ̄′.2

The |Qn|6 case with central limit e�ects:

Now looking at Eq. (B.12) we see that we get a deviation depending on ñ.
Thus we have to �nd out how often ñ occurs. The �rst thing to realise is,
that ñ is even, since the whole expression ϕ̄ = ±m1ϕ1 ± ...±mnϕn still has

2Note: in the statistical limit 〈eiϕ̄〉 = ei〈ϕ̄〉 is the case. This is due to the fact that in∑∞
n=0(iϕ̄)n/n!, 〈ϕ̄n〉 = 〈ϕ̄〉n happens, since ∆ϕ̄/N = 1/N(〈ϕ̄2〉 − 〈ϕ̄〉2) → 0, because of

the behaviour of the central limit theorem in the statistical limit.
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(a) (b)

Figure B.2: The Q-vector scaling of |Qn|6 with central limit e�ect highlighted
in red.

to follow the isotropic condition (e.g. ϕ̄ = 2ϕ1 +ϕ2− 2ϕ3−ϕ4 in e
in(ϕ̄)). We

can estimate the central limit e�ect by looking at the dominant case were
all azimuthal angles ϕi are di�erent (the majority of the terms with ñ = 6).
This leads to

∆centr.lim. ≈
M !

(M − 6)!
e−π

2

. (B.13)

In Fig. B.2a and as close up in Fig. B.2b, the deviation from the pure auto-
correlations through the central limit e�ect is indicated by the red band. As
can be seen, the simulated values now lay perfectly within. But as mentioned
the central limit e�ects seen are very small and can be neglected.

B.2 Derivation of 〈|Qn|k〉: k = 2, k = 4, k = 6,

k = 8, k = 10

All these autocorrelations have been separately veri�ed with Mathematica
[40] up to k = 10.

〈|Qn|2〉:

1 | ⇒ M
This sums up to:

〈|Qn|2〉 = M + 〈O(ei∆ϕ̄)〉. (B.14)
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〈|Qn|4〉:

1 2 | ⇒ M

1 2 | ⇒ 2! M !
(M−2)!

This sums up to:

〈|Qn|4〉 = M(−1 + 2M) + 〈O(ei∆ϕ̄)〉. (B.15)

〈|Qn|6〉:

1 2 3 | ⇒ M

1 2 3 | ⇒ 1
2!

3!
(

3
2

)
M(M − 1)

1 2 3 | ⇒ 3! M !
(M−3)!

This sums up to:

〈|Qn|6〉 = M(4− 9M + 6M2) + 〈O(ei∆ϕ̄)〉. (B.16)

〈|Qn|8〉:

1 2 3 4 | ⇒ M

1 2 3 4 | ⇒ 1
3!

4!
(

4
3

)
M(M − 1)

1 2 3 4 | + 1 2 3 4 |

⇒ 1
2!

4!
(

4
2

)
M(M − 1)(M − 2) + 1

2!2!2!
4!
(

4
2

)(
4−2

2

)
M(M − 1)

1 2 3 4 | ⇒ 4! M !
(M−4)!

This sums up to:

〈|Qn|8〉 = M(−33 + 82M − 72M2 + 24M3) + 〈O(ei∆ϕ̄)〉. (B.17)

〈|Qn|10〉:

1 2 3 4 5 | ⇒ M

1 2 3 4 5 | ⇒ 1
4!

5!
(

5
4

)
M(M − 1)

1 2 3 4 5 | + 1 2 3 4 5 |

⇒ 1
3!

5!
(

5
3

)
M(M − 1)(M − 2) + 1

2!3!
5!
(

5
3

)(
2
2

)
M(M − 1)

1 2 3 4 5 | + 1 2 3 4 5 |

⇒ 1
2!

5!
(

5
2

)
M(M − 1)(M − 2)(M − 3) + 1

2!2!2!
5!
(

5
2

)(
3
2

)
M(M − 1)(M − 2)
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1 2 3 4 5 | ⇒ (k
2
)! M !

(M−5)!

This sums up to:

〈|Qn|10〉 = M(456− 1225M + 1250M2 − 600M3 + 120M4) + 〈O(ei∆ϕ̄)〉.
(B.18)

B.3 Algorithm for any even power 〈|Qn|k〉

B.3.1 C/C++ Code for number of autocorrelations in
any even power 〈|Qn|k〉

Constrains: k must be even, M ≥ k.

#include <iostream >

#include <fstream >

#include <algorithm >

#include <vector >

using namespace std;

void printArray(int p[], int n)

{

for (int i = 0; i < n; i++)

{

cout << p[i] << " ";

}

cout << endl;

}

vector <int > storePartitions(int p[], int n)

{

vector <int > rowPart;

for (int i = 0; i < n; i++)

{

rowPart.push_back(p[i]);

}

return rowPart;

}

long int fakultaet(long int x)

{

if(x > 1) {
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return x * fakultaet(x-1);

}else {

return 1;

}

}

// calculate all combinations with no repetitions

long int combinations(int k, vector <int > *rowPart)

{

long int combinations = 1;

long int leftOptions = 0;

long int temp = 0;

for(int i=0; i<rowPart ->size (); i++)

{

if(!( rowPart ->at(i)==1))

{

leftOptions = k/2-temp;

combinations *= fakultaet(leftOptions )/

(fakultaet(rowPart ->at(i))* fakultaet(leftOptions -rowPart ->at(i)));

temp = rowPart ->at(i);

}

}

return(combinations );

}

// calculate all permutations with repetition

long int permutations(int k, vector <int > *rowPart , vector <int > *sameElementsPart)

{

long int counterPermutatations = fakultaet(k/2);

long int partElementsPart = 1;

long int partSameElementsPart = 1;

for(int i=0; i<rowPart ->size (); i++)

{

partElementsPart *= fakultaet(rowPart ->at(i));

}

for(int i=0; i<sameElementsPart ->size (); i++)

{

partSameElementsPart *= fakultaet(sameElementsPart ->at(i));

}

return(counterPermutatations /( partElementsPart*partSameElementsPart ));

}

// calculate all variations with no repetitions
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long int variations(int numberPartElements , int M)

{

if(numberPartElements > 0)

{

return M * variations(numberPartElements -1, M-1);

}

else

{

return 1;

}

}

//find how many identical partitions (excluding 1) exist

vector <int > numberSameEntries(vector <int > rowPart)

{

vector <int >sameElementsPart;

int temp = 1;

for(int i=0; i<rowPart.size (); i++)

{

if(!( rowPart.at(i)==1)&&!( rowPart.at(i)== temp))

{

sameElementsPart.push_back(count(rowPart.begin(),

rowPart.end(), rowPart.at(i)));

temp = rowPart.at(i);

}

}

return sameElementsPart;

}

// Calculate the total number of autocorrelations for any power of a Q-vector

// Constrains: k must be even , M >= k

void QvectorNumberAuto(int k, int M)

{

const int n = k/2;

int p[n];

int m = 0;

p[m] = n; //first: all indices are the same

//to store a possible partitions combination (p.p.c.)

vector <int > rowPart;

//to store how many identical partitions exist in one p.p.c.

vector <int > sameElementsPart;

long long int result = 0;
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while (true)

{

//print partitions

printArray(p, m+1);

// safety clear and store current p.p.c.

rowPart.clear ();

rowPart = storePartitions(p,m+1);

// safety clear and store number of

// identical partitions in p.p.c. (excluding 1)

sameElementsPart.clear ();

sameElementsPart = numberSameEntries(rowPart );

// calculate add number of autocorrelations in p.p.c.

result += combinations(k,& rowPart )* permutations(k,

&rowPart , &sameElementsPart )* variations(rowPart.size(),M);

// Generate next partition

int r_val = 0;

while (m >= 0 && p[m] == 1)

{

r_val += p[m];

m--;

}

if (m < 0)

{

cout

<<"Number of autocorrelations for the Q-vector to the power "

<<k<<" and the multiplicity "<<M<< " is: "<< result <<endl;

return;

}

p[m]--;

r_val ++;

while (r_val > p[m])

{

p[m+1] = p[m];

r_val = r_val - p[m];

m++;

}

p[m+1] = r_val;

m++;

}
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}

int main()

{

// example

QvectorNumberAuto (8,9);

return 0;

}

B.3.2 Visual representation of autocorrelation in even
power 〈|Qn|k〉

The recursiveness and visual representation of how many autocorrelations
cases there actually are, can be seen in Fig. B.3 and Fig. B.4. In them, all
possible values of the indices for M = 8 in the cases |Qn|2, |Qn|4 and |Qn|6
are shown. Since |Qn|4 and |Qn|6 would be a 4- or 6-dimensional array, they
are simply �attened to 1D and chopped for a square in 2D. Nevertheless,
the recursiveness can be seen as Fig. B.3a appears in all possible alterations
8× 8-times in Fig. B.3b. Fig. B.3b appears in all possible alterations 8× 8-
times in Fig. B.4.

(a) This is the case |Qn|2 (b) This is the case |Qn|4

Figure B.3: Visual representation of all possible indices combinations �at-
tened with M = 8. White squares are vanishing indices/autocorrelations.
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Figure B.4: Visual representation of all possible indices combinations �at-
tened with M = 8. White squares are vanishing indices/autocorrelations.
This is the case |Qn|8.



Appendix C

〈6〉 = 0 and 〈8〉 = 0

The obtained results for the number of autocorrelations were independently
veri�ed via Mathematica [40].

C.1 Case: 〈6〉 = 0

Let's �rst look at the 6-particle correlator:

〈6〉 = 〈exp[in(ϕ1 + ϕ2 + ϕ3 − ϕ4 − ϕ5 − ϕ6)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6

(C.1)

=
1(

M
6

)
6!
× [|Qn|6 + 9 · |Q2n|2|Qn|2 − 6 · <[Q2nQnQ

∗
nQ
∗
nQ
∗
n] (C.2)

+ 4 · <[Q3nQ
∗
nQ
∗
nQ
∗
n]− 12 · <[Q3nQ

∗
2nQ

∗
n] (C.3)

+ 18(M − 4)<[Q2nQ
∗
nQ
∗
n] + 4 · |Q3n|2 (C.4)

− 9(M − 4)(|Qn|4 + |Q2n|2) + 18(M − 2)(M − 5)|Qn|2 (C.5)

− 6M(M − 4)(M − 5)]. (C.6)

Let's look at all the occurring Q-vectors and their scaling in the random
walk.

C.1.1 |Qn|6:

1 2 3 | ⇒ M

1 2 3 | ⇒ 1
2!

3!
(

3
2

)
M(M − 1)

1 2 3 | ⇒ 3! M !
(M−3)!

This sums up to:

65
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〈|Qn|6〉 = M(4− 9M + 6M2) + 〈O(ei∆ϕ̄)〉. (C.7)

C.1.2 |Qn|2 or |Q2n|2 or |Q3n|2:
1 | ⇒ M
This sums up to:

〈|Qn|2〉 = M + 〈O(ei∆ϕ̄)〉. (C.8)

C.1.3 <[Q2nQnQ
∗
nQ
∗
nQ
∗
n]:

Q2nQnQ
∗
nQ
∗
nQ
∗
n =

M∑
i,j,k,l,m=1

ein(ϕi+ϕi+ϕj−ϕk−ϕl−ϕm). (C.9)

Here of course two azimuthal angles are coupled, since the whole argument
has to be isotropic. Let's reduce this and calculate the terms that survive

the random walk: 1 2 3 |+ 1 2 3 | or + .

No further partitions are possible due to the coupling. Additionally due
to the coupling, the choice of the "two same indices" is "forced" and thus(

3
2

)
can't occur. (We have no option to choose which indices should be the

same.) This translates into:

〈Q2nQnQ
∗
nQ
∗
nQ
∗
n〉 = M +

3!

2!
·M(M − 1) + 〈O(ei∆ϕ̄)〉 (C.10)

= M(3M − 2) + 〈O(ei∆ϕ̄)〉. (C.11)

Since our result is real we directly get:

〈<[Q2nQnQ
∗
nQ
∗
nQ
∗
n]〉 = M(3M − 2) + 〈O(ei∆ϕ̄)〉. (C.12)

C.1.4 <[Q3nQ
∗
nQ
∗
nQ
∗
n] and <[Q3nQ

∗
2nQ

∗
n] and <[Q2nQ

∗
nQ
∗
n]:

Now we have 3 indices coupled 1 2 3 | ⇒ M

This sums up to:

〈<[Q3nQ
∗
nQ
∗
nQ
∗
n]〉 = M + 〈O(ei∆ϕ̄)〉. (C.13)

Or we have 2 indices coupled 1 2 | ⇒ M

This sums up to:

〈<[Q2nQ
∗
nQ
∗
n]〉 = M + 〈O(ei∆ϕ̄)〉. (C.14)
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C.1.5 〈|Qn|4〉:

1 2 | ⇒ M

1 2 | ⇒ 2! M !
(M−2)!

This sums up to:

〈|Qn|4〉 = M(−1 + 2M) + 〈O(ei∆ϕ̄)〉. (C.15)

C.2 Case: 〈8〉 = 0

Let's �rst look at the 8-particle correlator

〈8〉 = 〈exp[in(ϕ1 + ϕ2 + ϕ3 + ϕ4 − ϕ5 − ϕ6 − ϕ7 − ϕ8)]〉︸ ︷︷ ︸
ϕ1 6=ϕ2 6=ϕ3 6=ϕ4 6=ϕ5 6=ϕ6 6=ϕ7 6=ϕ8

=
1(

M
6

)
6!
× [|Qn|8 − 12 ·Q2nQnQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n

+6 ·Q2nQ2nQ
∗
nQ
∗
nQ
∗
nQ
∗
n + 16 ·Q3nQnQ

∗
nQ
∗
nQ
∗
nQ
∗
n

−96 ·Q3nQnQ
∗
2nQ

∗
nQ
∗
n − 12 ·Q4nQ

∗
nQ
∗
nQ
∗
nQ
∗
n

−36 ·Q2nQ2nQ
∗
2nQ

∗
nQ
∗
n + 96(M − 6) ·Q2nQnQ

∗
nQ
∗
nQ
∗
n

+72 ·Q4nQ
∗
2nQ

∗
nQ
∗
n + 48 ·Q3nQnQ

∗
2nQ

∗
2n

−64(M − 6) ·Q3nQ
∗
nQ
∗
nQ
∗
n + 192(M − 6) ·Q3nQ

∗
2nQ

∗
n

−96 ·Q4nQ
∗
3nQ

∗
n − 36 ·Q4nQ

∗
2nQ

∗
2n

−144(M − 7)(M − 4)Q2nQ
∗
nQ
∗
n + 36|Q4n|2 + 64|Q3n|2|Qn|2

−64(M − 6)|Q3n|2 + 9|Q2n|2 + 36|Qn|4|Q2n|2

−144(M − 6)|Q2n|2|Qn|2

+72(M − 7)(M − 4)(|Q2n|2 + |Qn|4)− 16(M − 6)|Qn|6

96(M − 7)(M − 6)(M − 2)|Qn|2

24M(M − 7)(M − 6)(M − 5)].

(C.16)

Here 6 Q-vector combinations appear that we haven't calculated yet. All
results have been veri�ed through Mathematica [40].

C.2.1 Q2nQnQnQ
∗
nQ
∗
nQ
∗
nQ
∗
n

1 2 3 4 | ⇒ M

1 2 3 4 | ⇒ 1
3!

4!
(

2
1

)
M(M − 1)
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1 2 3 4 |+ 1 2 3 4 | ⇒ 1
2!

4!M(M − 1)(M − 2) + 1
2!2!

4!
(

4−2
2

)
M(M − 1)

This sums up to:

〈Q2nQnQnQ
∗
nQ
∗
nQ
∗
nQ
∗
n〉 = M(11− 22M + 12M2) + 〈O(ei∆ϕ̄)〉. (C.17)

C.2.2 Q2nQ2nQ
∗
nQ
∗
nQ
∗
nQ
∗
n

1 2 3 4 | ⇒ M

1 2 3 4 | ⇒ 1
2!2!

4!M(M − 1)

Through the coupling some decisions where forced. This sums up to:

〈Q2nQ2nQ
∗
nQ
∗
nQ
∗
nQ
∗
n〉 = M(−5 + 6M) + 〈O(ei∆ϕ̄)〉. (C.18)

C.2.3 Q3nQnQ
∗
nQ
∗
nQ
∗
nQ
∗
n

1 2 3 4 | ⇒ M

1 2 3 4 ⇒ 1
3!

4!M(M − 1)

Through the coupling some decisions were forced. This sums up to:

〈Q3nQnQ
∗
nQ
∗
nQ
∗
nQ
∗
n〉 = M(−3 + 4M) + 〈O(ei∆ϕ̄)〉. (C.19)

C.2.4 Q3nQnQ
∗
2nQ

∗
nQ
∗
n

1 2 3 4 | 5 6 7 8 ⇒ M

1 2 3 4 | 5 6 7 8 ⇒ 2M(M − 1)

Through the coupling some decisions were forced. This sums up to:

〈Q3nQnQ
∗
2nQ

∗
nQ
∗
n〉 = M(−1 + 2M) + 〈O(ei∆ϕ̄)〉. (C.20)

C.2.5 Q2nQ2nQ
∗
2nQ

∗
nQ
∗
n

1 2 3 4 | 5 6 7 8 ⇒ M

1 2 3 4 | 5 6 7 8 ⇒ 2M(M − 1)

Through the coupling some decisions were forced. This sums up to:

〈Q2nQ2nQ
∗
2nQ

∗
nQ
∗
n∗〉 = M(−1 + 2M) + 〈O(ei∆ϕ̄)〉. (C.21)
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C.2.6 Q3nQnQ
∗
2nQ

∗
2n

1 2 3 4 | ⇒ M

Through the coupling some decisions were forced. Summed up this results
in:

〈Q3nQnQ
∗
2nQ

∗
2n〉 = M + 〈O(ei∆ϕ̄)〉. (C.22)



Appendix D

Statistical error propagation

D.1 Statistical error propagation in Q-Cumulants

The statistical error of the Q-Cumulants

QC{2} ≡ 〈〈2〉〉, (D.1)

QC{4} ≡ 〈〈4〉〉 − 2 · 〈〈2〉〉2, (D.2)

QC{6} ≡ 〈〈6〉〉 − 9 · 〈〈2〉〉〈〈4〉〉+ 12 · 〈〈2〉〉3, (D.3)

(D.4)

are given through the Gaussian error propagation:

∆g =

√
∆x2[

∂g

∂x
]2x̄,ȳ,... + ∆y2[

∂g

∂y
]2x̄,ȳ,... + .... (D.5)

This results in:

∆QC{2} = ∆〈〈2〉〉, (D.6)

∆QC{4} =
√

(∆〈〈4〉〉)2 + 16(∆〈〈2〉〉) · (〈〈2〉〉)2, (D.7)

∆QC{6} =
√

(∆〈〈6〉〉)2 + 81 · (∆〈〈2〉〉)2(〈〈4〉〉)2 + (∆〈〈2〉〉)2)(9 · 〈〈4〉〉 − 36 · (〈〈2〉〉)2)2.
(D.8)

D.2 Statistical error propagation of vn{2} and
vn{4}

Applying the Gaussian error propagation to

vn{2} =
√
〈〈2〉〉, (D.9)

vn{4} = 4
√
−cn{4}, (D.10)
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it results in

σvn{2} =
∆〈〈2〉〉

2
√
〈〈2〉〉

, (D.11)

σvn{4} =

√
16〈〈2〉〉2(∆〈〈2〉〉)2 + (∆〈〈4〉〉)2

4 · (2〈〈2〉〉2 − 〈〈4〉〉)3/4
. (D.12)
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