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Chapter 1

Introduction

1.1 Motivation - Strange Particles in Neutron Stars

When a star’s life comes to an end, it may explode into a supernova. The result of
this massive last outburst mainly depends on the former object’s mass. While heavy
stars collapse into a black hole, stars of intermediate mass can form a neutron star,
which is a very dense and very cold1 astronomical object. The radius of neutron
stars is typically around 10 km and they rotate at a rate of over 100 revolutions per
second [1].
Because of their extreme properties, they are among the most interesting phenomena
observed in astrophysics. Neutron stars serve as laboratories to examine matter un-
der conditions that can hardly be implemented in earthbound experiments. Although
they are subject to intensive ongoing research, their structure and the processes in-
side them are far from being entirely understood. An overview of what we already
believe to know is given in Fig. 1.1.
Depending on their mass and rotation speed, neutron stars are thought to reach core
densities up to a multiple of the normal nuclear density ρ0 ≈ 2.48× 1014 g/cm3, i.e.
the average density of atomic nuclei in everyday matter [3]. Being the remains of
an ordinary star, a young neutron star consists mainly of nucleons and electrons,
all of which are fermions obeying Pauli’s exclusion principle. Thus, it develops an
enormous Fermi pressure, which prevents it from an ultimate gravitational collapse
into a black hole.
At the same time, the Fermi pressure thermodynamically enables various subatomic
processes mediated by the weak and strong interactions of the Standard Model2.
Since it is inversely proportional to the mass of the considered particles3, the light
electrons feel the strongest urge to undergo transitions. They will perform inverse

1In the notion of a degenerate Fermi gas. Considering actual temperatures, it is extremely hot
due to its high density.

2In this thesis, all statements are made under the assumptions of the Standard Model of particle
physics. Physics beyond the Standard Model will not be discussed.

3The Fermi pressure PF is given by PF = h2

20m

(
3
π

)2/3
ρ5/3, where m is the mass of the particles

forming the Fermi gas and ρ is their number density.
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Chapter 1 Introduction

Figure 1.1: Artist’s impression of the known structures inside neutron stars. The
question mark suggests the existence of poorly understood processes in the core of
the star. [2], [3]

β decays e− + p→ n+ νe, where the neutrinos νe escape the star due to their evanes-
cent mass and low likeliness to interact. As a consequence, the neutron star lowers
its lepton number and accumulates the eponymous neutrons. However, the baryon
number of the star stays basically the same. Since it is a fundamental conserved
quantity, it cannot be changed by internal processes.
Closer to the core of the star, the pressure rises further. There will be almost no
leptons left, so these regions can be described with a model of purely hadronic mat-
ter. This is usually achieved by combining nuclear physics and thermodynamics in
order to develop an equation of state (EoS) of baryonic matter. Since an EoS de-
pends on many parameters and assumptions, a multitude of competitive theories
have emerged. Combining an EoS and general relativity provides a relation between
size and mass of a neutron star, which are important observables in neutron star
astronomy and offer a possibility to test the theories.
Most models of dense baryonic matter predict phase transitions for high tempera-
tures or pressures. A simplified phase diagram is shown in Fig. 1.2. Apart from the
actual transitions, the density-dependent occurrence of hyperons (i.e. baryons like
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1.1 Motivation - Strange Particles in Neutron Stars

Figure 1.2: Simple phase diagram for baryonic matter. Ordinary atomic nuclei are
located in the region of both low temperature and density. Neutron stars are still
cold, but quite dense. [5]

Λ, Σ or Ξ which contain strange, but no heavier quarks; collective symbol Y ) and
baryon resonances (e.g. ∆) was hypothesized [4]. These particles are not stable in
a vacuum, but can exist permanently in the extreme environment of a neutron star.
They form individual Fermi gases and thus ease the Fermi pressure, providing a fa-
vorable configuration with lower energy. Their decay is inhibited, because there are
no free quantum states available for daughter particles (“Pauli blocking”). The order
of appearance of the different particle species (see Fig. 1.3) still strongly depends on
the interactions between the particles, though.
The creation of new degrees of freedom through new particles is said to “soften” the
equation of state, because it leads to a higher compressibility of the neutron star. As
a consequence, the star will shrink, if it tries to accumulate more mass. This leads
to an upper limit for the mass of the star, which depends on the assumptions of
the considered model. Popular models with a rather soft EoS postulate a boundary
around 1.5 solar masses ([4], see Fig. 1.4). However, astronomical observations have
revealed the existence of neutron stars with 2 solar masses [1], which would require
a “stiff” equation of state.
This conflict between theoretical predictions and experimental results is known as
the “hyperon puzzle”. To be able to discuss this problem, it is necessary to have
detailed knowledge about the particles that are supposed to appear in dense bary-
onic matter and their interactions, both with particles of the same species and with
others.

3



Chapter 1 Introduction

Figure 1.3: Particle fractions for baryon densities ρB up to 13ρ0. The successive
occurrence of ∆ resonances and hyperons (Λ, Ξ) generates new degrees of freedom.
[4]

Figure 1.4: Several mass-radius relations from theoretical models. For soft equations
of state with additional particles (colored curves), there is a mass limit well below
the observed value of 2 solar masses. The green curve, which illustrates the sole
occurrence of hyperons (i.e. there are no ∆s), is in particular interesting for our
analysis, since it demonstrates the “hyperon puzzle”. With neutrons only (dotted
curve), theory would be able to reproduce the observed masses. [4]
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1.2 Research Aim

1.2 Research Aim

Due to its neutral charge and relatively low mass, the Λ hyperon4 might be a can-
didate for an early appearance in the row of additional particles in dense baryonic
matter. However, this issue also depends on the forces that act upon a Λ while being
embedded inside the interacting medium. We can imagine these interactions as an
effective potential which adds5 to the Λ mass to constitute the actual energy that is
needed to create one particle. This is the relevant quantity for a thermodynamical
description of the system.
The mean potential is derived from the interactions between the Λ and the other
particles present in the medium. In the many-body system, the relationships are
quite intricate, but some processes can be observed in a vacuum as well. The pa-
rameters of these isolated interactions can be calculated theoretically using different
approaches. In this thesis, we execute an analysis on experimental data in order to
assess a set of parameters of pΛ interaction obtained from [6].
The data was collected with the HADES spectrometer located at GSI in Darmstadt,
Germany, in a setup with a 1.7 MeV/c beam of π− and a segmented tungsten (W )
target. It is examined in a final state correlation analysis, where we will also obtain
an estimate for the size of the pΛ source. Furthermore, we test the applicability
of the so-called “kinematic refit”, which is a mathematical tool for the analysis of
particle reactions, on the reconstruction of inclusively produced Λ hyperons.

4See Sec. 3.1 for details.
5Attractive forces are represented by a negative potential, which effectively results in a subtraction.
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Chapter 2

The HADES Experiment

Figure 2.1: Exploded view of the HADES detector. The beam arrives from the
bottom right and traverses the visible components RICH, MDC I and II, the magnet,
MDC III and IV and the META system.

2.1 The HADES Experiment and Its Objective

The High Acceptance Di-Electron Spectrometer HADES is a particle detector lo-
cated at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Ger-
many. As its name suggests, it was primarily designed to measure electron-positron
pairs. Creating a detector specialized on this particular task is motivated by the
theoretical prediction that hadrons have different properties depending on whether
they are in a vacuum or inside some strongly interacting medium. To provide such an
environment, HADES is used in fixed target experiments. Short-lived hadronic par-
ticles like the light vector mesons ρ, ω and φ produced in particle reactions will decay
mostly inside the target material, which allows us to test these theoretical in-medium
models. While the daughter particles from their dominant hadronic decay modes are
distorted themselves by the strongly interacting environment, the information about
the rare electromagnetic decays of the mesons into an electron-positron pair (typical

7



Chapter 2 The HADES Experiment

branching ratios1 of 10−5 − 10−4) leaves the target almost unaltered. The precise
measurement of these decays is the main objective of HADES.
Although it is optimized for detecting leptons, HADES is also capable of examin-
ing charged mesons and baryons, which can be either primary reaction products or
daughter particles of short-lived intermediates. This is used to access other fields
of hadron physics like the production of particles with strangeness (e.g. kaons and
hyperons) and their behavior when embedded in a strongly interacting medium like
an atomic nucleus.
The HADES program focuses mainly on heavy-ion experiments at beam energies
of 1-2 GeV per nucleon. The required particle beams are provided by SIS18, GSI’s
216 meter circumference heavy-ion synchrotron. Among the conducted experiments
are 12C+12C, Ar+KCl and Au+Au. Additionally, there have been some elementary
setups like proton-proton, deuterium-proton (both with a liquid hydrogen target),
p+Nb and π−+W (see Sec. 2.2.6).

2.2 Experimental Setup

This section describes the design of the HADES detector and the subcomponents
used in our analysis. A more detailed explanation can be found in [8].

2.2.1 Basic Design

The HADES detector system has a sixfold symmetry, which is evident in Fig. 2.1. It is
imposed by the use of six superconducting magnetic coils and following this principle,
most parts of the detector consist of six identical segments that are arranged radially
around the beam axis to give an almost full azimuthal coverage of about 85%. The
longitudinal structure (see Fig. 2.2) is made up of several layers tilted towards the
target region, all of which have their specific tasks that are explained below. This
arrangement results in a large polar coverage from Θ = 18◦ to Θ = 85◦.

2.2.2 The Target

HADES is only used for fixed-target experiments. Because the moving center of
mass of the reactions will usually make the particles move in a uniform longitudinal
direction (which is the direction of the beam), the target is placed in front of the
detector. The target also features a start detector, which gives the zero point for the
reaction time measurement.
In the π−W setup for our analysis, the target consists of three tungsten foils in a
row along the beam axis (cf. Sec. 4.1).

1All particle data (i.e. masses, mean lifetimes, branching ratios etc.) is taken from the Particle
Data Group (PDG, [7]), unless otherwise specified.
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2.2 Experimental Setup

Figure 2.2: Longitudinal cross section of the HADES detector. As they do not play
a role for this analysis, there will be no explanation about RICH and the Forward
Wall. [9]

2.2.3 The Multi-wire Drift Chambers

The Multi-wire Drift Chambers form (together with the magnet described below)
the central part of the detector, which is responsible for the actual tracking and
momentum determination of the particles. There are 24 trapezoidal MDC elements,
which are arranged in four layers (I - IV) along the beam axis. As a consequence,
every particle has to cross multiple elements, which is fundamental for reconstructing
a particle track.
Each of the MDC elements consists of six layers of tungsten wires, which are tilted
with respect to each other and embedded inside a chamber filled with a counting gas
(see Fig. 2.3). If a charged particle traverses this gas, it will ionize some of the gas
molecules and thus create free electrons. These electrons are accelerated by a voltage
applied to the different layers of wires. The avalanche effect will then multiply the
electrons, which leads to a measurable electric signal when they reach the wires. The
amount of electrons can be related to the energy deposition dE inside the gas2. The
position of the wires which gain the signal is used to determine a hit position.

2.2.4 The Magnet

The superconducting magnetic coils of the HADES detector are located between
MDC II and III. They create a strong inhomogeneous toroidal field with up to

2Together with the flight distance dx inside the gas, this gives the energy loss dE/dx of the particle.
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Chapter 2 The HADES Experiment

Figure 2.3: Schematic view of the arrangement of tungsten wires inside one MDC
element. [8]

B = 3.6 T. Though, the region of the RICH, including the target, is almost field-
free. Moving charged particles feel a Lorentz force inside the magnetic field. This
will bend their tracks with a curvature inversely proportional to the particle momen-
tum p.
As we only have up to four MDC hits, a major effort has to be put into reconstructing
the particles’ paths through the detector’s “magnetic landscape”. This is achieved
by using the Runge-Kutta method to solve the equations of motion inside the field
with sets of MDC hits as boundary conditions. Each fit result will both yield a track
momentum and a χ2 value, which is used in track sorting (see Sec. 4.2).

2.2.5 The Time-of-flight Detectors

There are three time-of-flight detectors in the HADES system, which form
the Multiplicity Electron Trigger Array (META): TOF, RPC (Resistive Plate
Chambers) and Pre-Shower. They represent the counter part to the start detec-
tor and allow a determination of the particle speed β. Furthermore, they may give
an additional hit for momentum reconstruction.
Together with the momentum signal, the speed can be used to determine the particle
mass according to special relativity:

m = p

√
1

β2
− 1 (2.1)

10



2.2 Experimental Setup

Figure 2.4: Beam line optics and tracking devices used in the preparation of the GSI
pion beam. [10]

2.2.6 The Pion Beam

A special feature of the setup with which the analyzed experiment was conducted, is
the fact that the π− beam is a secondary beam. Since it is impossible to store pions
for a longer period of time due to their instability, they have to be produced right
before their use as beam particles. This is achieved with the pion production target,
where ions from SIS18 impinge on beryllium (Be).
To select negative pions of the desired momentum from the variety of produced
particles, sophisticated beam-line optics comprising dipole and quadrupole magnets
are used. Furthermore, there is a pion tracking system to monitor the beam and
improve the momentum resolution (see Fig. 2.4).
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Chapter 3

Background and Theory

In the following sections, we want to give some background information about the
physics examined in the correlation analysis. We will introduce the most important
theoretical formulae and facts that will be needed in the experimental sections.

3.1 The Λ Baryon

In this section, we introduce some details about the Λ baryon, which plays a major
role in our analysis and has already been mentioned in Ch. 1.

The Λ (Lambda) or Λ0 particle is a neutral baryon with quark content uds. Be-
cause of the strange quark s, it is also referred to as the Λ hyperon. It can be found
in the baryon octet or “Eightfold Way”, where it takes the role of the isospin singlet
(see Fig. 3.1). It has a mass of mΛ = 1115.683(6) MeV and quantum numbers I = 0,
S = −1 and JP = 1

2

+.
It is the lightest baryon with strange content and its mass difference to the lighter
nucleons is below the kaon mass1, so all of its decays have to violate the conservation

1∆mΛn = 176 MeV, ∆mΛp = 177 MeV, mK± = 494 MeV

Figure 3.1: The baryon octet of flavor SU(3). The Λ hyperon is an isospin singlet
with one strange quark. [11]
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Chapter 3 Background and Theory

Λ decay mode branching ratio (Γi/Γ)
pπ− 63.9(5)%
nπ0 35.8(5)%

Table 3.1: The dominant decay modes for the Λ baryon and their branching ratios.

of strangeness which is granted for the strong and electromagnetic interaction. This
means that there is no Λ decay that does not involve weak interactions, which are
the only ones allowing a change of strangeness. Since these decays are rather slow,
the Λ has a comparably large mean lifetime of τΛ = 2.632(20)× 10−10 s2, resulting
in a cτΛ of 7.89 cm. Hence, a Λ will usually travel a macroscopically measurable
distance before its decay, producing clearly distinct formation and decay vertices.
This is going to play an important role in our analysis.
However, Λ baryons themselves cannot be detected with the HADES detector due to
their electrical neutrality. Luckily, most of them decay before reaching the MDCs,
dominantly into a pion and a nucleon, for which the branching ratios are given in
Tab. 3.1. The neutral configuration nπ0 cannot be detected for the same reason, so
about one third of the Λ signal is a priori lost, but the charged one can be measured
inside the hadron sensitive part of the detector3 and then used to reconstruct its
mother particle (see Sec. 4.4).

3.2 Pion Nucleus Experiments and Strangeness
Production

In this section, we want to give some information about the physics of pion (π)
nucleus (A) collisions and the production of particles with strangeness S 6= 0 inside
them.

An atomic nucleus is a complex bound state consisting of baryons called nucle-
ons N (collective term for protons p(uud) and neutrons n(udd)). They are held
together by the strong force, but since they are color neutral hadrons, they will only
interact by the exchange of mesons. While the isolated NN interaction is well un-
derstood (e.g. [12]), the description of the nucleus as a whole is a very challenging
task, because there are too many particles for an analytic solution and too few for
a statistical approach. These difficulties lead to the development of an own field,
nuclear physics, which is subject to ongoing research until today.

2E.g. the Σ0, which has a comparable mass of mΣ0 = 1192.642(24) MeV, only lives for
τΣ0 = 7.4(7)× 10−20 s on average, because it will almost always decay electromagnetically,
Σ0 → Λ0 + γ.

3With cτπ being greater than 7 meters, charged pions are considered to be stable. This is a good
approximation for our analysis.
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3.2 Pion Nucleus Experiments and Strangeness Production

Because of the complex structure of atomic nuclei, the description of their interac-
tions is very challenging as well. A simple picture is that of a Fermi gas (or rather
two Fermi gases, one for protons and one for neutrons), since all baryons, including
nucleons, are fermions that obey Pauli’s exclusion principle. If a particle (‘bullet’)
travels through a nucleus (‘target’), this “gas” can be treated as a rather homogeneous
medium by the use of an effective model. Inside the target, the bullets motion is de-
scribed via a mean potential accounting for the elastic scattering processes between
the bullet and the nucleons. However, this model is only valid for bullet momenta |~pB|
that are much larger than the characteristic nucleon momentum, which is the Fermi
momentum pF.
In addition to elastic scattering, the bullet can also perform an inelastic reaction with
one of the nucleons. This refers to processes, where not only energy and momentum
of the particles are changed, but also their quantum numbers. Even entirely new
particles can be produced. These processes have to be treated separately and can be
calculated using quantum field theory.
In the case of our analysis, the bullet particle is a negative pion π− and the target
nucleus is tungsten (symbol W , proton number Z = 74, average nucleon number
A = 183.8). We have no strangeness in the initial state, so a strange quark s can
only occur, if there is a compensating anti-strange s̄ as well. Since at our energy
scale of

√
s ≈ 2 GeV, we are well below the ΛΛ̄ production threshold4, the s̄ quark

has to be bound in a kaon, which can either be a K+(us̄) or a K0(ds̄). We want to
form a Λ, so we either have a neutral (K0Λ) or a positive (K+Λ) configuration in the
final state. However, we can only have a negative (π−n) or a neutral (π−p) initial
state, so additional negative pions may have to be produced in order to balance the
charge. This leads to the basic reactions

• π− + p→ K+ + Λ + π−,

• π− + p→ K0 + Λ,

• π− + n→ K+ + Λ + π− + π− and

• π− + n→ K0 + Λ + π−.

If there is enough energy available, there can still be more pions, provided that they
have neutral charge (e.g. π0 or π+π−). The dominant appearance of negative pions
supports the abundance of π− in our experimental data (see Sec. 4.1).
The actual mechanisms of strangeness production is shown in Fig. 3.2 using the
example of the simple π− + p→ K0 + Λ reaction. There can be several different
intermediate nucleon resonances N∗, each giving their own contribution. The most

4A ΛΛ̄ pair has baryon number B = 0, but there is always one baryon in the initial state (B = 1).
Thus, we would need energy for at least three (anti-)baryons in the final state, ≈ 3 GeV.

15



Chapter 3 Background and Theory

(a) (b)

Figure 3.2: Strangeness production using the example of the reaction
π− + p→ K0 + Λ. There is either an intermediate nucleon resonance N∗ formed,
which then decays into the strange particles, or proton and pion exchange a K∗.

N∗(m/MeV) Γ(N∗ → KΛ)/Γtot

N(1650) 3-11%
N(1710) 5-25%
N(1720) 1-15%
N(1900) 0-10%

Table 3.2: List of nucleon resonances with decay channels into a kaon and a Λ.
The line-up is not exhaustive, but represents the most important candidates for our
energy range (

√
s ≈ 2 GeV).

important representatives for our energy range with notable branching ratios into
KΛ are listed in Tab. 3.2. For the K∗, there is usually only one diagram regarded,
which is the K(892).
Both the Λ and the K will be produced with a considerable momentum. As a
Λ hyperon is not very strongly bound inside a nucleus (typical binding energies are
of the order of few MeV [13]), it will usually escape, generating a potential event for
our analysis5.
The weak binding also allows other nucleons to leave the nucleus, if they get a
sufficient kick from elastic scatterings. If a proton is freed in a Λ event, both particles
can fly alongside for some distance. Their interaction will generate some correlation,
which will be examined in this analysis.

5A decay of the Λ into the detectable pπ− channel is still necessary.
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3.3 General Scattering Theory

3.3 General Scattering Theory

This section deals with the basics of scattering and lays the foundation for under-
standing the following two sections.

In classical physics, the term “scattering” refers to the phenomenon that waves
(light, sound, water waves etc.) can be forced to deviate from a straight line by
some object or geometry. In particle physics, however, the notion of scattering is
much more general, applying to virtually every interaction between particles. This
association originates at the very roots of quantum mechanics, when Louis de Broglie
hypothesized in 1924 that matter, i.e. particles, can exhibit wave-like behavior [14].
Since then, this idea has developed a lot. In 1950, Lippmann and Schwinger published
an equation which provides stationary solutions for a free, non-relativistic particle of
mass m with momentum ~p, p ≡ |~p| (modeled as a plane wave function φ~p(~x)) being
elastically scattered by some local potential V (~x′). It is an integral equation for the
total wave function ψ(~x) that has to be solved self-consistently: [15]

ψ(~x) = φ~p(~x)− 2m

∫
d3x′

eip|~x−~x′|

4π|~x− ~x′|
V (~x′)ψ(~x′) (3.1)

For a large distance r ≡ |~x| of the observer (compared to the extent of the potential
V (~x′), thus r � |~x′|), we can approximate the solution by [16]

ψ(~x) = φ~p(~x)− 2m

4π

eipr

r

∫
d3x′e−i~p′·~x′V (~x′)ψ(~x′)

=
1

(2π)3/2

(
ei~p·~x +

eipr

r
f(p, θ)

)
,

(3.2)

where ~p′ is the momentum with which the scattered particle flies towards the spec-
tator, i.e. ~p′ = |~p|~xr . Hence, we can see that the scattering process basically turns
the incoming plane wave into an outgoing spherical wave. The measured distribu-
tion of final state particles6 depends on this superposition, which is governed by the
complex coefficient f(p, θ), called the “scattering amplitude” (θ gives the deviation
of the particle from ~p to ~p′). With this scattering amplitude, it is easy to obtain the
differential cross section of the scattering process via

dσ

dΩ
= |f(p, θ)|2 . (3.3)

Because the full solution of a scattering problem can still be very tedious, another
mathematical technique was developed, the partial wave analysis. It takes advantage

6Of course, we cannot determine the whole distribution from one single particle. Instead, we use
a sufficiently large ensemble of identically prepared particles.
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Chapter 3 Background and Theory

of the fact that the orbital angular momentum L of a two-body system (the incoming
particle and the scatterer) is quantized in multiples of h̄, represented by the quantum
number l ≥ 0. The incoming wave is decomposed into the corresponding angular
momentum components, called “partial waves”. The scattering problem can then be
solved for each l independently to obtain partial-wave amplitudes fl(p). These now
give an expansion for the total scattering amplitude [16]

f(p, θ) =
∞∑
l=0

(2l + 1)fl(p)Pl (cos(θ)). (3.4)

Furthermore, the partial-wave amplitudes themselves can be expressed in terms of a
phase shift δl(p):

fl(p) =
eiδl(p) sin δl(p)

p
(3.5)

An important parameter for experimental measurements is the “scattering length”
f0, which is the limit of the l = 0 partial-wave amplitude (usually referred to as the
s-wave amplitude) for low momenta7:

f0 ≡ − lim
p→0

f0(p) (3.6)

3.4 Correlation functions

In this section, we introduce the concept of correlation functions, which is an impor-
tant part of our experimental analysis.

Back in 1956, Hanbury Brown and Twiss (HBT) published an experimental method
called intensity interferometry [17]. They used it to correlate the signals of two spa-
tially separated detectors measuring photons from a very distant, extra-terrestrial
light source (e.g. a star). In doing so, they could extract information about the
(angular) size of the source, which would not have been possible with conventional
methods of astronomy.
The important aspect of the HBT approach is the examination of correlations be-
tween two distinct particles, in contrast to the well-known amplitude interferometry,
which is based on the autocorrelation of one particle and can be demonstrated with
the famous double-slit experiment. This fundamental difference is depicted schemat-
ically in Fig. 3.3.
More in detail, the measured quantities for intensity interferometry are the two-
particle coincidence yield n12 and the single particle yields n1 and n2. If both

7In our analysis, a positive scattering length represents an attractive interaction. However, some
authors use the opposite sign convention.
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3.4 Correlation functions

(a)

(b)

Figure 3.3: Illustration of the two kinds of interferometry.
Intensity interferometry (left) correlates the signals of two distinct particles from the
same source. Amplitude interferometry (right) correlates the wave function of one
particle with itself.

particles were entirely uncorrelated, the average 〈n12〉 would factorize into the prod-
uct 〈n1〉〈n2〉. Hence, the quantity

C(~p1, ~p2) =
〈n12〉
〈n1〉〈n2〉

(3.7)

is called a “correlation function”, because its deviation from 1 indicates some corre-
lation between the particles. This correlation is caused by the particles’ interactions
on their way to the detector. By fitting experimental data with some theoretical
model for C(~p1, ~p2), it is therefore possible to extract properties of the source and of
the interaction.
In 1960, Goldhaber et al. independently discovered a similar effect, however, among
like sign pions π±π± in a particle physics experiment [18]. They were able to explain
their results using Bose-Einstein statistics, which describes the symmetrization of the
collective wave function of identical bosons (e.g. pions), introducing another effect
that has to be taken into account for correlation functions. The applicability of the
HBT effect on particle reactions opened an entire new field in nuclear and particle
physics, which is known today as “femtoscopy”. The name illustrates the capability
to resolve events down to the fermi scale (∼ 10−15 m).
The full quantum mechanical description of two-particle correlation functions, which
is essential for applications in particle physics, was developed in 1977 by Koonin and
Pratt [19]. It involves the so-called “source function” g(~p, x), which gives a measure
for the probability that a particle with momentum ~p is emitted at the space-time
point x = (t, ~r)T . In terms of the total pair momentum ~P and the relative momentum
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Chapter 3 Background and Theory

~q in the pair’s center of momentum frame, the universal Koonin-Pratt two-particle
correlation function reads:

C
(
~P , ~q
)

=

∫
d4x1d4x2g

(
~P/2, x1

)
g
(
~P/2, x2

) ∣∣∣φ(~q, ~r1 − ~r2 − t1−t2
2m

~P
)∣∣∣2∫

d4x1g
(
~P/2, x1

)∫
d4x2g

(
~P/2, x2

) (3.8)

The relative wave function φ
(
~q, ~r1 − ~r2 − t1−t2

2m
~P
)

contains all interactions of the
particles and has to be derived problem-specific. However, this model is only valid
under certain assumptions, for instance the independence of successive emission pro-
cesses and the negligibility of interactions between particle and source after the
emission.

3.5 pΛ Scattering and Correlation Function
(Lednický-Lyuboshits model)

This section gives the most important properties of pΛ interaction and finally intro-
duces the theory function used in our experimental correlation analysis.

As already mentioned in Sec. 3.2, baryons are color-neutral objects, which prevents
them from interacting via the exchange of gluons. Furthermore, Λ has no electrical
charge, so electromagnetic interaction does neither play a role. Thus, disregarding
any weak processes, the only contribution to elastic pΛ scattering arises from the
exchange of mesons. This mechanism, however, is a very complex superposition of
many individual processes (“Feynman diagrams”). It is beyond the scope of this the-
sis to cover this topic to its full extent, but we will give a brief insight. A detailed
treatment can be looked up in [20].
The most basic processes (leading order, LO) apart from contact interactions are
one-meson exchanges. There are two possibilities for the pΛ system (see Fig. 3.4),
one with an exchange of strangeness (K meson, p and Λ “swap places”) and one
without (η meson). There can be no π exchange, since Λ is an isospin singlet.
The next order in the perturbation series (NLO) consists of two-meson exchanges.
Because now virtual intermediate baryons come into play, the number of contribut-
ing diagrams rises drastically. The general configurations (“master diagrams”) for
exchanging two mesons are depicted in Fig. 3.5. However, the full set with labeled
propagators will not be shown due to the sheer number of diagrams. In addition to
kaons and η mesons, now also pions appear. As the Λ is located in the center of the
flavor SU(3) octet (see Fig. 3.1), all eight spin-1/2 baryons will occur. Furthermore,
there are also contributions from the spin-3/2 decuplet, where all but the ∆− and
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3.5 pΛ Scattering and Correlation Function (Lednický-Lyuboshits model)

(a) (b)

Figure 3.4: One-meson exchange diagrams for pΛ scattering. The η meson (left)
leaves the baryons unchanged, whereas the K leads to an exchange of strangeness.
Pions cannot appear due to IΛ = 0.

Figure 3.5: Master diagrams for the two-meson exchange. For pΛ scattering, these
diagrams describe the next-to-leading order (NLO) in the perturbation series. [20]

the Ω− baryon can be reached.
From these theoretical considerations, the fundamental parameters of pΛ interaction
can be calculated, which are the scattering lengths fS0 (cf. Eq. 3.6) and effective
ranges dS0 of the potential. Since we are dealing with spin-1/2 baryons, we have
to take different spin configurations into account, i.e. three triplets (S = 1) and a
singlet state (S = 0). The values we will use for our analysis are taken from [6] and
displayed in Tab. 3.3. It has yet to be mentioned that the theoretical calculations
for these values are in turn dependent on the parameters of the underlying theory,
which have themselves to be obtained from scattering experiments.
For small one particle momenta k ≡ 1

2 |~q| in the pair center of momentum frame, the
dominant contribution to the scattering amplitude will come from the s-wave. Thus,
it can be expressed in an effective range approximation as [21]

fS(k) =

(
1

fS0
+

1

2
dS0 k

2 − ik

)−1

. (3.9)

Under the assumption that proton and Λ are emitted with low time separation and
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total spin parameter value

S = 0
f0

0 2.91 fm
d0

0 2.78 fm

S = 1
f1

0 1.54 fm
d1

0 2.72 fm

Table 3.3: Parameters of pΛ interaction. Only s-wave contributions are listed, both
for total spin S = 0 and S = 1. The listed values have been calculated in [6] using
NLO chiral effective field theory.

the spatial source is a Gaussian distribution in the space separation ~r∗

g(~r∗) ∼ exp(−~r∗2/4r2
0), (3.10)

the parameter r0 can be considered as the effective size of the source, from which
the Λ and the proton are emitted.
Lednický and Lyuboshits derived an analytical solution for the pΛ correlation func-
tion [22]:

C(k) = 1 +
∑
S

ρS

[
1

2

∣∣∣∣fS(k)

r0

∣∣∣∣2(1− dS0
2
√
πr0

)
+

2 Re fS(k)√
πr0

F1(2kr0)− Im fS(k)

r0
F2(2kr0)

] (3.11)

with F1(z) =
z∫
0

dxex
2−z2

/z and F2(z) = (1− e−z
2
)/z. ρS gives the fraction of pΛ

pairs with total spin S, which is ρ0 = 1/4 and ρ1 = 3/4 for unpolarized particle
production. In Fig. 3.6, this theory function is shown for different source sizes for
the set of parameters given in Tab. 3.3.

22



3.5 pΛ Scattering and Correlation Function (Lednický-Lyuboshits model)
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Figure 3.6: Example plots of the Lednický-Lyuboshits model for different pΛ source
sizes r0. (red = 1 fm, green = 2 fm, blue = 4 fm)
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Chapter 4

Experimental methods

This chapter describes the experimental techniques we use in our analysis. It contains
all intermediate results and leads to the final results which will be discussed in Ch. 5.

4.1 General Information about the Dataset

A summary of information about the dataset analyzed in this thesis is given in Tab.
4.1. However, it anticipates some of the procedures which will be explained in the
following sections. To understand the target geometry, the experimental primary
vertex distribution in Fig. A.2 may come in handy.

beamtime 5 Jul till 11 Jul 2014

beam particles π−

momentum 1.7 GeV

target

material 183.8
74 W (tungsten)

diameter 12 mm
segment length 2.4 mm
segment positions −51.5 mm, −33.5 mm, −15.5 mm

center of mass energy
√
s ≈ 2 GeV

number of events 74845422

average number of
... per event

tracks 2.30
sorted tracks 1.66
identified particles 1.18
protons 0.72
π+ 0.13
π− 0.33
Λ candidates 0.14

Table 4.1: Summary of the analyzed data set.
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4.2 Track Sorting

As already mentioned in Ch. 2, the HADES detector was primarily designed for the
precise measurement of leptons. However, in our analysis we need to determine the
properties of pions and protons, which are hadrons. Because of that, we cannot use
the hadron blind RICH detector, but have to rely on the universal MDCs. From
Sec. 2.2.4, we know that the MDC detector hits are connected to tracks by using
the Runge-Kutta method to solve the equations of motion inside the magnetic field.
Still though, there may be tracks sharing ambiguous detector hits, of which only one
is thought to be real.
The discrimination of fake tracks and a preliminary differentiation between leptons
and hadrons is performed by the track sorter provided by the HYDRA framework
of GSI [23]. It evaluates the product of the χ2 value of the Runge-Kutta result and
a number called “META match quality”, which rates how well a possible hit in the
META system (see Sec. 2.2.5) fits into the MDC track.
All further analysis steps are conducted after the application of the sorter. Events
with no track accepted by the sorter are rejected. This is in particular important
for this analysis, because tracks sharing a detector hit will obviously resemble each
other in their momentum or spatial properties. Including such fake correlations
would severely deteriorate our result.

4.3 Particle Identification

With the magnet and MDC information about the momentum p, polarity q and
energy loss dE/dx of the particles, we can create a histogram like the one displayed
in Fig. 4.1. In this diagram, we can see peculiar, bend shaped structures, which can
be understood using theoretical considerations about the energy loss of fast particles
in a homogeneous medium. This phenomenon was treated by Bethe and Bloch,
resulting in their famous relativistic Bethe-Bloch formula [24]

−
〈

dE

dx

〉
= 4πNAr

2
emez

2Z

A

1

β2

[
ln

(
2meβ

2γ2Tmax

I2

)
− β2 − δ

2

]
, (4.1)

with the notations:

z: charge of the impinging particle

Z,A: proton and mass number of the material’s atoms

me: electron rest mass

re: Bohr radius of the electron
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Figure 4.1: Histogram of the energy-loss momentum spectrum. The three bend-like
shapes are interpreted as π−, π+ and protons (left to right). The black boundaries
indicate the graphical cuts, inside of which a track is regarded as an identified particle
of the corresponding type.

NA: Avogadro number

I: mean ionization potential of the material’s atoms

δ: density correction

Tmax: maximum kinetic energy which can be transferred

The relations β2γ2 = p2/m2 and β2 = p2/(p2 +m2) from special relativity show that
energy loss can not only be seen as a function of speed β, but also of momentum p.
However, we then have a dependence on the mass m of the impinging particle.
In fact, we can put graphs of the Bethe-Bloch formula through the structures ob-
served in the dE/dx vs. pq spectrum and compare the corresponding m’s to known
particle masses to associate a particle identification (PID).
The deviation of the measured dE/dx from the Bethe-Bloch value, which causes the
non-line-like shape of the “particle regions”, is due to the statistical nature of energy
loss. Bethe and Bloch only give the mean value, but the actual distribution is more
complicated. In our analysis, we assume a Landau distribution, which is the theo-
retical expectation for energy loss in a thin layer [25], smeared with a Gaussian to
account for measurement uncertainties [26]. This is achieved with the mathematical
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operation of convolution (∗):

f(dE/dx) ∝ Landau(µL, σL) ∗Gauss(0, σG) (4.2)

To be able to treat the signals of different particle species1 of the same charge sepa-
rately, a pre-selection on the literature mass ±100 MeV is performed using the mass
information of the META system (cf. Sec. 2.2.5). The corresponding spectra are
displayed in Fig. 4.2. By dividing the spectrum into vertical slices (small interval
for pq, full range for dE/dx), several energy loss distributions are obtained and each
one is fitted with Eq. 4.2 (see Fig. 4.3 for an example). Each fit yields a width of the
distribution, which we define as

σ̄ ≡ σL + σG

2
. (4.3)

It is used to define an acceptance µL ± σ̄ interval for that slice. The combination
of all successfully fitted intervals for one particle type produces a polygon in the
energy loss-momentum plane2. All particles inside this cut region are considered
as successfully identified representatives of the respective species. Those particles
are then assigned their literature mass in order to calculate their full 4-momentum,
which is needed for all further analysis steps,

p(m, ~p) =
(√

m2 + ~p2, ~p
)T

. (4.4)

4.4 Λ Reconstruction

The reconstruction of Λ hyperons is performed using the common invariant mass
method in combination with topological cuts.
As explained in Sec. 3.1, the only Λ decay channel that is experimentally accessible
for us is Λ→ p+ π−. Since we do neither know in which events Λs have occurred,
nor which protons and pions originate from their decay, we first form every possible
combination of a p and a π− for every event. All of these pairs, called “Λ candidates”,
are preliminarily treated as if they were physical Λs3. The process of Λ reconstruction

1We will only derive a particle identification for the most abundant hadrons, which are p, π+ and
π−. Kaons, deuterons etc. remain unidentified, but not unused, cf. Sec. 4.4.1.

2However, for protons only the slices for high momenta can be fitted well, because the distribution
becomes too broad for low momenta. Instead, the same slicing and fitting procedure is repeated
for the horizontal direction, though there is no theoretical justification for using the Landau-
Gauss approach on a momentum distribution. The final cut polygon for protons is given by the
union of both individual results.

3In the following, the index of some quantity Q will indicate its affiliation: Qpπ belongs to a Λ
candidate, whereas QΛ describes a physical Λ baryon.
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(a) protons
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(b) positive pions
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(c) negative pions

Figure 4.2: Energy-loss momentum spectra of the three identified particle species.
Each spectrum is filtered by polarity and the corresponding literature mass
±100 MeV using the information of the META system. For protons and π+ the
contamination with particles of same charge is recognizable.
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Figure 4.3: Illustration of the cut finding procedure using the example of π−. A
vertical slice is taken from the energy-loss momentum spectrum (left) and fitted
with Eq. 4.2 (right). The red interval yields the range used in the cut. [26]

will gradually eliminate more and more of these candidates, leaving a remainder with
an improved fraction of real Λ hyperons. Some contamination with fakes is usually
left, but the purity of the sample can be quantified (see Sec. 4.4.1).
With the help of the particle identification method (cf. Sec. 4.3), we can reconstruct
the 4-momentum for each Λ candidate from its daughter particles due to energy and
momentum conservation:

ppπ = pp + pπ (4.5)

Special relativity states that the length of a momentum 4-vector with respect to the
Minkowski metric will always be equal to the corresponding particle’s mass. Hence,
we can calculate an “invariant mass” for all our Λ candidates:

mpπ ≡
√
p2
pπ =

√
E2
pπ − ~p2

pπ (4.6)
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Figure 4.4: Invariant mass spectrum for all Λ candidates. It shows a peak around
the expected position, which is mΛ ≈ 1116 MeV.

The lowest possible value for this quantity is the sum of proton and charged pion
mass, mpπ,min ≈ 1078 MeV. It is understood that the expectation for actual Λs
is mpπ ≈ mΛ ≈ 1116 MeV (cf. Sec. 3.1). In fact, the experimental invariant mass
spectrum given in Fig. 4.4 exhibits a considerable peak at the expected position.
However, the majority of the entries appears to be part of a ridge-like shape starting
at mpπ,min and abating asymptotically to zero for high masses. This is the phe-
nomenon of “combinatorial background”, which consists of fake Λ candidates. Since
they are not individual particles, but rather mathematical constructs, they can have
almost arbitrary “masses”.
By fitting the peak and the background with separate functions, we can calculate
the number of actual Λ hyperons to about 126000 (see Fig. 4.5). We could already
reject a lot of combinatorial background by cutting the spectrum down to some mass
interval around mΛ (mass cut). Still though, with this method alone, we cannot get
rid of the background lying directly “underneath” the peak4. Therefore, we will first
apply more constraints to the Λ candidates, called topological cuts.

4.4.1 Topological Cuts

The method of topological cuts takes advantage of the fact that we do not only have
kinematic information about the particles, i.e. their 4-momenta, but also know their

4Although it may appear to the eye, that there is some ordering taking place putting the real Λs “on
top” of the background, the data inside the mass cut will remain completely indistinguishable.
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Figure 4.5: Fit of the uncut invariant mass spectrum of Λ candidates. The combina-
torial background is modeled as the sum of a Landau function and a polynomial. The
peak is fitted with a Gaussian. It is located at 1117.9 MeV and the area underneath
gives an estimated number of 126000 Λ hyperons.

spatial paths inside the detector. Tracing back those tracks enables us to tell where
some process took place, rather than just how. Since most particle reactions happen
on very small length scales which are far below our spatial detector resolution, we
can regard them as punctual. We refer to these points in space as “vertices”.
In theory, the tracks of all particles involved in a reaction should meet in the cor-
responding vertex. This requirement will not be fulfilled by data recorded with a
particle detector because of the finite resolution of its components. Therefore, we
need a convention on how to obtain an approximation to the vertex position from
the track information.
Although peculiar situations like parallel or intersecting tracks have in general to be
taken into account5, the vast majority of the tracks will be pairwise skew. For two
skew straights in three-dimensional space, we can look at the set of line segments
that lead from one straight to the other. There will be exactly one segment with
minimal length, which we call “distance of closest approach” (DCA). It is perpendic-
ular to both tracks and its midpoint is defined as their “point of closest approach”
(PCA). For more than two tracks, the situation is more complicated. In App. A, we

5It is understood, that for intersecting tracks, the intersection point is chosen as the vertex. For
parallel tracks, there is no unique two-particle vertex, so the event is discarded, if there are no
additional tracks.
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Figure 4.6: Histogram of dpπ for all Λ candidates. There is no rise towards higher
DCAs, because almost all pπ− pairs come from a common vertex, be it primary or
secondary.

give a suggestion on how to deal with that situation.
We will now describe, how we use the geometrical information to distinguish between
actual Λ events and combinatorial background.

Secondary vertex As already mentioned in Sec. 3.1, the Λ decay vertex (secondary
vertex) plays an important role in our analysis. For any Λ candidate, it is defined as
the PCA of the respective proton and pion track. It is understood that the DCA of
the two tracks, in the following denoted as dpπ, is expected to be small for real Λs.
Therefore, we will introduce an upper limit cut on it to reduce background.
However, there is no remarkable rise for high dpπ in the experimental spectrum given
in Fig. 4.6, rather the opposite is the case. This is due to the fact that even unrelated
pπ− pairs usually have a small DCA, because they also come from a common vertex,
the primary vertex though.

Primary vertex The primary vertex is the location of the initial pion-nucleus reac-
tion (cf. Sec. 3.2). Thus, we expect all particle tracks6 except those of Λ daughters
to emerge from it. This brings up a whole variety of new cutting possibilities, but
first, we have to determine its position.
Although there is some primary vertex estimate provided by the HYDRA frame-
work [23], we decide to recalculate it by ourselves to account for the fact that the

6This naturally includes the Λs, as well. For each Λ candidate, a track can be defined using its
decay vertex as the base and ~ppπ as the direction.
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reconstructed Λ track is supposed to go through it, instead of its proton and pion
daughter. To obtain the highest possible precision, we do not only use the tracks of
identified particles, but all those which have been accepted by the track sorter (cf.
Sec. 4.2). This is possible, because we do not need the energy, or mass, respectively,
determined in PID to know the track of a particle.
We distinguish three cases:

• For events which have a sole Λ candidate track, i.e. pure pπ− events with no
other particles present, the vertex should naturally be located on that track.
However, there is no other object in this setup to dictate the actual position
along the track, but the beam axis. Therefore, we choose the point on the
Λ candidate track which is closest to the beam line7. This is justified by the
fact that we expect collisions to happen, of course, in the beam region.

• If there is one additional track to the Λ candidate, the PCA of those two tracks
is chosen.

• For more than two tracks, the procedure described in App. A is applied.

Now that we have a primary and a secondary vertex position, we can impose more
topological cuts, which will be explained in the following. Together with the already
introduced dpπ cut, they are shown in Fig. 4.7.
As described in Sec. 3.1, a major characteristic of a certain Λ event is the clear
distinguishability of primary and secondary vertex. Hence, we introduce the flight
distance l as the length between primary and secondary vertex and set a lower cut
threshold to select Λs. The mean distance expected to be covered by a Λ hyperon is

〈s〉 = v · t = βc · γτΛ = βγ · (cτΛ) =
|~p|
mΛ
· (cτΛ)︸ ︷︷ ︸
≈7.89 cm

. (4.7)

Considering the available kinetic energy (cf. Sec. 3.2), the Λ momentum will be
around mΛ/2, resulting in a range of some centimeters outside of which only about a
third of the Λs will be still intact. Hence, the cut on l will indeed improve the chance
of a secondary vertex to be a Λ decay vertex, but it will also discard a significant
amount of Λs.
As already mentioned, we expect the Λ track to go through both the secondary and
the primary vertex. A weaker form of this condition is the requirement on ~ppπ to
be parallel to the vector pointing from one vertex to the other. This brings up the
angle α between the two vectors, which should be small (ideally 0◦).
It was noted in the context of dpπ that mistaking particles from the primary vertex

7This is not a point of closest approach in the sense of the above definition. It is not located in
between the straights, but on one of them.

33



Chapter 4 Experimental methods

Figure 4.7: Illustration of the topological cuts used in our analysis.
dpπ is the distance of closest approach between proton and pion track. The distance
of primary and secondary vertex is indicated by l. The angle α is measured between
the connection line of the vertices and the Λ candidate momentum ~ppπ = ~pp + ~pπ.
dp and dπ are the distances of closest approach of proton and pion to the primary
vertex.

for Λ daughters will cause problems. Another pair of cut parameters of which it is
understood that they sacrifice statistic to improve purity, are thus the distances of
closest approach of the proton (dp) and pion track (dπ) towards the primary vertex.
Imposing a lower threshold on them will in turn improve the functioning of dpπ.

Selecting a topological cut combination The listing above already introduced the
problem of contrariness between the cardinality and purity of a Λ sample achieved
with topological cuts. It is therefore a major task to find an optimal set of thresh-
olds to produce an acceptable amount of Λs for a further analysis while providing
the necessary low contamination with fakes.
Since it is in general not easy to predict the effect of some cut threshold and the
individual cuts may even influence each other, an empirical grid search is performed
over the 5-dimensional space of possible threshold values Ti. To be able to compare
points on the grid (i.e. cut combinations), we need to establish some measure on
them. This is achieved by fitting8 both the peak and the background in the mass
spectrum obtained from applying the respective cuts. Some examples for such cut
spectra are given in Fig. 4.8. The integral of the fit functions over µ± 2σ represents
the number of Λs (“signal”, s) and fake Λ candidates (“background”, b) inside this
interval. The optimal combination of cut thresholds should provide both a high s

8As fit function, we choose a 4-th order polynomial background and two added Gaussian distri-
butions for the peak. The mean µ and the width σ of the total peak are calculated as the
amplitude-weighted averages of both individual Gaussians.
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(a) (b)

(c) (d)

Figure 4.8: Invariant mass spectra obtained from applying random combinations of
topological cut threshold on the set of Λ candidates. The trade-off between signal
(number of Λ hyperons) and sample purity is manifest. Spectrum 4.8c demonstrates
the worsening of the fit for histograms with few entries.

and a high purity s/(s+ b), which is the fraction of the selected set of Λ candidates
that is considered to be real Λ hyperons.
We choose to test the range given in Tab. 4.2 with a (5× 5× 5× 5× 5) grid (five
thresholds with five increments, each), which thus has 3125 points. Each cut combi-
nation is labeled with a 5-digit quinary (base-5) number, where every place stands
for one cut parameter and the digit in that place (0 to 4) for the increment inside
the tested range. However, we will usually use the decimal equivalent of this number
to address the combinations.
In Fig. 4.9, signal and purity for all cut combinations are displayed. The most favor-
able one is chosen from Fig. 4.10, where the results of the grid analysis are shown in
the signal-purity plane. As we would like to have a purity around 90% or better, we
choose cut combination 1943, which gives the highest signal for this range. Retrans-
lating it into a combination of cut thresholds yields Tab. 4.3.
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threshold for loosest option strictest option
l 20 mm 50 mm
α 10◦ 0◦

dpπ 20 mm 0 mm
dp 0 mm 30 mm
dπ 0 mm 30 mm

Table 4.2: Region of the 5-dimensional space of possible cut thresholds over which
the grid search is performed. Each threshold is varied from the loosest option (0th
increment) in discrete steps until the strictest option.
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Figure 4.9: Analysis of different cut combinations. Each bin on the “cut combination”
axis refers to one set of cut thresholds in the domain given in Tab. 4.2. There is a
remarkable signal reduction for stricter cuts (left). The purity is quite high for most
cuts in the tested range, because even the loosest cut is already effective (right). The
sudden one-bin peaks originate from failed mass spectrum fits.

cut parameter direction threshold
l > 42.5 mm
α < 2.5◦

dpπ < 10 mm
dp > 0 mm
dπ > 22.5 mm

Table 4.3: The combination of topological cut thresholds which is chosen for our
analysis (cut combination 1943).
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Figure 4.10: Purity s/(s+ b) is plotted against signal strength s for 3125 different
combinations of topological cut thresholds. For a required purity level of ∼ 90%, the
cut with the highest signal (≈ number of Λs) is chosen, which is 1943 (red arrow).

The mass spectrum obtained from applying these cuts is given in Fig. 4.11. The fit
points out a Λ purity of 89.4% for this sample. With an estimated number of 21069
real Λs, we have a cut efficiency of about 16.7%. Additionally, we obtain as mass
cut interval 1112.4 MeV ≤ mpπ ≤ 1125.0 MeV.

4.5 The Kinematic Refit

The kinematic refit is a mathematical tool which is commonly used in the context
of exclusive analyses of particle reactions. It modifies the measured data in a math-
ematically and physically justified way, aiming for an improvement of the resolution
of certain quantities, e.g. masses of reconstructed particles.
Theory imposes several general constraints upon particle tracks emerging from an el-
ementary process. For instance, tracks of daughter particles from a common mother
should intersect at some decay vertex (vertex constraint) and the mass of a recon-
structed particle (e.g. via the invariant or missing mass technique) ought to be equal
to a given literature value (mass constraint). Furthermore, there should be a global
conservation of energy and momentum (conservation constraint).
However, these requirements will hardly be met by experimentally collected data
due to issues like the finite resolution of detector components and random technical
failures. The mathematical procedure of the refit takes advantage of these statisti-
cal uncertainties by shifting the corresponding quantities within that range, trying
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Figure 4.11: Final Λ candidate mass spectrum after applying the optimized cuts (cut
combination 1943). A double Gaussian fit of the peak provides a mass cut interval
of 1112.4 MeV ≤ mpπ ≤ 1125.0 MeV.

to make the data match the theoretical constraints. Accordingly, some knowledge
about the technical specifications of the used detector is obligatory (cf. Sec. ??).
The application of the kinematic refit to an inclusive analysis is rather exotic due to
its sensibility to combinatorial background, since such events are not subject to the
physical constraints the whole procedure is based on. However, in our analysis we
use this particular “problem” to distinguish between physical events and background
(see Sec. 4.5.4 and Ch. 5).

4.5.1 Track Representations

The track of a free point particle is fully defined by its 4-momentum p = (E, ~p)T and
the so-called “emission point”, some point ~r in space that is crossed by the particle
(e.g. a detector hit). If an adequate time resolution was available, the emission
point could be extended to be a 4-vector as well, but since that is not the case for
our analysis, this option will not be further discussed in the following. For identified
particles the mass m is known (see. Sec. 4.3), so the energy E is not needed, but can
be calculated from the 3-momentum ~p via the relativistic energy momentum relation

E(~p) =
√
m2 + ~p2. (4.8)

Hence, we have reduced the amount of data needed to describe one track to two
3-vectors ~p and ~r, yielding 6 parameters. We combine these parameters to one six-
dimensional vector ~α.

38



4.5 The Kinematic Refit

The way to express ~α is not mathematically unique, but we can chose different
representations, i.e. coordinate systems. One possibility is the use of pure Cartesian
coordinates ~α = (px, py, pz, x, y, z)

T , but in this analysis, we will use a combination
of modified spherical and Cartesian coordinates ~α = (1/|~p|, θ~p, ϕ~p, x, y, z)T . This
accounts for the fact that HADES measures the initial direction of a particle as
polar and azimuthal angle, but the magnitude of the momentum is determined by
the curvature of the track in the magnetic field, which is proportional to 1/|~p| (cf.
Sec. 2.2.4).
In general, as soon as we are dealing with one specific experiment, we need to use the
appropriate representation for the detector in use. It is imposed by the functionality
of the refit: As already mentioned, the crux is to shift the quantities that are actually
measured within their measurement uncertainties. Thus, it is those quantities which
should constitute ~α.

4.5.2 Mathematical Considerations

The goal of the kinematic refit is to make the particle tracks of an event fulfill
the constraints “as good as possible” while keeping the deviation from the original
data within given errors. This problem is known in mathematics as constrained
optimization and its solution can usually be achieved by the well-known method of
Lagrange multipliers.
However, we first need mathematical concepts to describe our constraints and the
shift of the data. The m conditions for the tracks are defined in a holonomic way

~H(~α) = 0, (4.9)

where ~H is a m-dimensional vector of equations and ~α now and in the following
denotes not only the 6 parameters of one track, but the 6n parameters of all n tracks
that take part in the reaction. The deviation of ~α from the original measurements
~α0 is expressed by the well-known χ2 value:

χ2(~α) = (~α− ~α0)TV −1
~α0

(~α− ~α0) =

6n∑
i=1

(αi − α0,i)
2

σ2
αi

(4.10)

V ~α0
is the 6n× 6n covariance matrix containing the variances σ2

αi of the originally
measured track parameters. It is important to mention that the random errors of the
measurements have implicitly assumed to be Gaussian distributed by introducing
χ2, but this is usually a good approximation (cf. [27]). If the measurements are
uncorrelated (as they are supposed to be), the covariance matrix is diagonal and its
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inverse is

V −1
~α0

=


1
σ2
α1

0 · · · 0

0 1
σ2
α2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
α6n

 , (4.11)

leading to the last expression in Eq. 4.10.

The method of Lagrange multipliers To minimize χ2(~α) while keeping ~H(~α) = 0
valid, the method of Lagrange multipliers defines the Lagrangian

L(~α,~λ) = χ2(~α) + 2~λT ~H(~α) = (~α− ~α0)TV −1
~α0

(~α− ~α0) + 2~λT ~H(~α). (4.12)

It introduces the m-dimensional vector 2~λ containing the eponymous Lagrange mul-
tipliers. The reason why the factor 2 is separate and not included into the symbol ~λ
will become clearer in the following, where it will simplify calculations.
We know replace the minimization of χ2 with respect to ~α by the minimization of L
with respect to both ~α and ~λ. This features the necessary conditions

0
!

= ~∇~αL = ~∇~αχ2(~α) + 2

m∑
i=1

λi~∇~αHi(~α), (4.13)

0
!

=
1

2
~∇~λL = ~H(~α). (4.14)

The second condition obviously ensures compliance with the constraints. The first
condition demands a linear dependence of the gradient of χ2(~α) on the gradients of
the m constraint equations.
The effect of this request can be explained best in a model scenario with only two
parameters α1 and α2 and one constraint equation H(α1, α2) = 0. Here, χ2 and H
are scalar functions in a two-dimensional α1-α2-plane and can thus be visualized by
a contour plot (see Fig. ??). An important role is held by the contour H(α1, α2) = 0,
because this is where the desired physical solutions live. Eq. 4.13 now reads

~∇α1,α2χ
2(α1, α2) = −2λ~∇α1,α2H(α1, α2), (4.15)

telling us that the gradients of χ2 and H should be collinear. Since the gradient
of a smooth function is always perpendicular to its contour lines, this means we
are looking for a contour of χ2 that is tangential to H = 0. It belongs to some
value χ2(α1, α2) = χ2

min at which χ2(~α)
∣∣
~H(~α)=0

is stationary9. The location ~αopt. =

(α1, α2)T of the osculation point is the desired result of the refit procedure.
9The discussion, whether this stationary point is actually a minimum or a maximum goes beyond
our scope and can be looked up in mathematical literature. In our analysis, we assume it to be
a local minimum, which is be justified by the success of the procedure.
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Figure 4.12: Illustration of the method of Lagrange multipliers in a 2-dimensional
scenario. The contour χ2 = χ2

min, which is tangent to H = 0, belongs to the minimal
χ2 value that can be reached under these constraints.

In the context of an experimental analysis, it is though important to mention that the
solution ~α of the Lagrangian method does not necessarily yield the actual tracks ~αreal
in the physical event. It is merely the candidate for a physical track configuration
which is (in the sense of χ2) “closest” to the measurements ~α0. This situation is
depicted in Fig. 4.13. However, it is assumed that the refitted ~α is closer to ~αreal
than ~α0 used to be and that this leads to a better final result.

Implementation of the kinematic refit procedure In the following, we will de-
scribe how we actually implement the mathematical considerations given above in
our analysis. This realization is mainly based on the work of Paul Avery [28] and
has proven to be successful in exclusive analyses (cf. [29], [27]).
The conditions

0
!

=
∂L

∂~α
= 2(~α− ~α0)TV −1

~α0
+ 2~λT

∂ ~H(~α)

∂~α
,

0
!

=
∂L

∂~λ
= 2 ~HT (~α).

(4.16)

(now written in matrix notation with the Jacobian ∂ ~H(~α)
∂~α ) can be highly non linear

in ~α, making it impossible to solve this system of equations analytically.
Instead, we replace the direct solution by an iterative procedure with linearized
constraint equations. We will now look for the solution ~αk+1 of the next step k + 1,
assuming ~αk for the current step k is given. To get rid of the nonlinearity, we
expand our constraint equations to first order around a point which is close to ~αk+1.
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Figure 4.13: The refit result ~α does not necessarily equal the real track configura-
tion ~αreal. However, it is usually closer to it than the original measurement ~α0. The
blue ellipse indicates the uncertainty range of ~α0.

Assuming that one iteration step changes the data only little, the best candidate for
that is obviously the solution of the current step, ~αk. Thus, we choose the expansion
of ~H(~αk+1) around ~αk:

~H(~αk+1) = ~H(~αk) +
∂ ~H(~α)

∂~α

∣∣∣∣∣
~α=~αk

(~αk+1 − ~αk) +O
(
|~αk+1 − ~αk|2

)
(4.17)

With the notations Dk ≡ ∂ ~H(~α)
∂~α

∣∣∣
~α=~αk

and ~dk ≡ ~H(~αk), our linearized Lagrangian

now reads

L(~αk+1, ~λk+1)

= (~αk+1 − ~α0)TV −1
~α0

(~αk+1 − ~α0) + 2~λTk+1(Dk(~αk+1 − ~αk) + ~dk),
(4.18)

with the minimization conditions

0
!

=
∂L

∂~αk+1
= 2(~αk+1 − ~α0)TV −1

~α0
+ 2~λTk+1Dk,

0
!

=
∂L

∂~λk+1

= 2(Dk(~αk+1 − ~αk) + ~dk)
T .

(4.19)

This leads to an equation system which is now solvable:

V −1
~α0

(~αk+1 − ~α0) + DT
k
~λk+1 = 0,

Dk(~αk+1 − ~αk) + ~dk = 0.
(4.20)
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It is easy to see the dependence of ~αk+1 on ~λk+1

~αk+1 = ~α0 − V ~α0
DT
k
~λk+1, (4.21)

but the solution for ~λk+1 is a little more complicated to obtain. It emerges that
the matrix product DkV ~α0

DT
k has to be inverted. Since V ~α0

has only non-zero
diagonal entries, the desired invertibility depends only on the question, whether Dk

has full row rank. This is satisfied, if there are as many or more track parameters
than constraints, i.e. n ≥ m, and there are no redundant constraints. The inverse is
then called

V D ≡ (DkV ~α0
DT
k )−1. (4.22)

It is reasonable to mention that V D is symmetric.
We can now write the solution for ~λk+1 as

~λk+1 = V D(Dk(~α0 − ~αk) + ~dk). (4.23)

By inserting this into Eq. 4.21, we can also obtain the solution for ~αk+1:

~αk+1 = ~α0 − V ~α0
DT
kV D(Dk(~α0 − ~αk) + ~dk) (4.24)

However, we are not only interested in the refitted data ~αk+1, but also in its co-
variance matrix V ~αk+1

to investigate the change of the uncertainties caused by the
refit. The vector ∆~αk+1 of uncertainties is obtained by standard Gaussian error
propagation from the original uncertainties ∆~α0:

∆~αk+1 =
∂~αk+1

∂~α0
∆~α0 = (1− V ~α0

DT
kV DDk)∆~α0 (4.25)

This yields a covariance matrix

V ~αk+1
= ∆~αk+1(∆~αk+1)T = V ~α0

− V ~α0
DT
kV DDkV ~α0

. (4.26)

It can be shown that the expression following the minus sign is always a diagonal
matrix with positive entries. Thus, the refit always causes the variances to decrease,
which is consistent with the assumption that the refitted track configuration is closer
to the actual physical one. This fact will also play an important role in the next
section.
Another quantity of interest is the χ2 value of the refitted data. Using Eq. 4.24, it
calculates to

χ2
k+1 = (~αk+1 − ~α0)TV −1

~α0
(~αk+1 − ~α0)

=
(
Dk(~α0 − ~αk) + ~dk

)T
V D

(
Dk(~α0 − ~αk) + ~dk

)
.

(4.27)
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Since V D is an m×m matrix, the number of degrees of freedom (NDF) of the refit
equals the number of constraint equations10. This information will be needed when
discussing the quality of the refit.

Conclusion We have know developed an iterative approach to the concept of the
kinematic refit. With Eq.’s 4.24, 4.26 and 4.27, one can calculate an arbitrary number
of iteration steps, starting from the original data k = 0. The result of one step is
used as the input for the next step (k → k + 1). This procedure will converge on
some track configuration, which is then regarded as the result. Since the constraints
~H(~α) usually vary slowly as functions of ~α, only few iterations are needed ([29],[27]).
In our analysis, we use 10 iteration steps, if nothing else is mentioned.

4.5.3 Applicability to the π−W analysis

In order to apply the kinematic refit to a specific analysis, we first need to take a
look at the possible holonomic constraints for the corresponding experimental setup.
This reveals a general problem in the context of inclusive analyses.
Because we can neither access the exact properties of the initial particles, nor be sure
to have detected all final particles, nor even know in detail what happened during
the reaction, many of the constraints we have mentioned in the introduction about
the refit (cf. Sec. 4.5) cannot be checked for validity. This means, we are not able
to calculate the corresponding Hi(~α), because ~α contains quantities which are not
available to our analysis. In particular, we cannot use conservation constraints and
have limited possibilities concerning vertex constraints.
In fact, the only quantities we have mentioned so far which are supposed to equal
one specific value11 are mpπ

!
= mΛ, dpπ

!
= 0 mm and α

!
= 0◦. In the following, we

will discuss a kinematic refit on these values, which arise in the context of Λ recon-
struction.

Finding holonomic constraint equations The first step in implementing the refit
for a concrete set of constraints is formulating the holonomic constraint equations
~H(~α) = 0.
As it was already explained in Sec. 4.5.1, we use the ~α = (1/|~p|, θ~p, ϕ~p, x, y, z)T track
representation, when working with HADES data. Thus, it is comparably easy to
work with geometrical tracks, since they only depend on the vertex position and the
angles θ~p and ϕ~p, but not on the momentum magnitude. However, for kinematic
10Avery also discusses the introduction of unknown parameters, e.g. for vertex constraints of

more than two tracks. These parameters reduce the NDF. However, this extension to the refit
procedure is not be used in our analysis.

11In contrast to quantities which have continuous behavior, like l, dp or dπ.
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track parameter uncertainty track parameter uncertainty
1/|~pp| 3.5% 1/|~pπ| 4.1%
θ~pp 0.55% θ~pπ 1.2%
ϕ~pp 1.4% ϕ~pπ 7.6%
xp 20 mm xπ 20 mm
yp 20 mm yπ 20 mm
zp 20 mm zπ 20 mm

Table 4.4: Table of the uncertainties used for kinematic refits on HADES data. Per-
centages indicate relative uncertainties. [27]

constraints, we still need 1/|~p|. The uncertainties of the track parameters were
already analyzed for HADES and are taken from [27]. They are listed in Tab. 4.4.
Apparently, the constraints mentioned above can equivalently be formulated as

H1(~α) = m2
Λ −m2

pπ = 0, (4.28)

H2(~α) = dpπ = 0, (4.29)
H3(~α) = cos(α)− 1 = 0. (4.30)

We will now work out the dependence of these holonomic constraints on the track
parameters ~α, which comprise the proton and pion daughter tracks of the refitted
Λ candidate. Though, we will not derive the partial derivatives needed for the refit
in explicit, as they are quite lengthy. They can be easily obtained using a computer
algebra system.
The first constraint H1 can be expressed through the 3-momenta using special rela-
tivity and the definition of the invariant mass:

H1(~pp, ~pπ) = m2
Λ − (m2

p +m2
π + 2pp · pπ)

= m2
Λ −m2

p −m2
π + 2~pp · ~pπ − 2

√
~p2
p +m2

p

√
~p2
π +m2

π

(4.31)

The second constraint H2 is purely geometric, so we use the unit momenta

p̂ ≡ ~p

|~p|
= (sin θ cosϕ, sin θ sinϕ, cos θ)T (4.32)

and the vertex positions ~r = (x, y, z)T . The DCA of the tracks is then given by
the magnitude of the component of ~rp − ~rπ which is perpendicular to both tracks.
Considering the mathematical properties of the dot and the cross product, this can
be written as

H2(p̂p, ~rp, p̂π, ~rπ) = (~rp − ~rπ) · p̂p × p̂π
|p̂p × p̂π|

. (4.33)

45



Chapter 4 Experimental methods

]2 [MeV/cπpm
1000 1100 1200 1300 1400 1500

co
un

ts

310

410

510 refit
original

(a) mpπ

 [mm]πpd
0 2 4 6 8 10 12 14

co
un

ts

0

50

100

150

200

250

300

350

400

450

310×

refit
original

(b) dpπ

Figure 4.14: Effect of the refit to the constraints H1 and H2 on the corresponding
quantities mpπ (left) and dpπ (right). The mass converges mostly (log scale!) on the
expected mΛ, but some Λ candidates get stuck on mp +mπ.

The third constraint H3 does not only depend on the proton and pion tracks, but
also on the primary vertex position ~rI. We regard this point as immovable, i.e. it
will not be changed through the refit. It is thus not part of ~α, but has to be treated
separately.
The secondary vertex ~rII, which is the PCA of proton and pion, can be expressed as
an extensive function of ~α. With this function, we can write

H3(~α,~rI) =
(~rII(~α)− ~rI) · (~pp + ~pπ)

|~rII(~α)− ~rI||~pp + ~pπ|
− 1 (4.34)

Apparently, the partial derivatives of this expression are extremely extensive, which
makes them unfeasible for any analytic handling of this constraint. A numerical
approach may succeed, but this goes beyond the scope of this work. In Ch. 6, we
will point out another option to be worked on in the future.
As a consequence, there are now only two appropriate constraints left for the kine-
matic refit of the Λ candidates. The effect of this refit on the corresponding quantities
mpπ and dpπ is displayed in Fig. 4.14.

4.5.4 Analysis of Refit Results

In Sec. 4.5, we already suggested that the kinematic refit is very sensitive to com-
binatorial background. If we try to refit a fake Λ candidate, its track parameters ~α
usually have to be shifted quite far (compared to the uncertainty ranges). This re-
sults in a large χ2 value of the refit according to Eq. 4.10. Thus, we can use a large
χ2 as an indicator for combinatorial background.
If all uncertainties are Gaussian distributed and estimated correctly, the χ2 value
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Figure 4.15: Plots of the χ2 distribution for different numbers of degrees of freedom
(ndf). For higher ndf, the distribution shifts to the right to maintain a mean value
equal to ndf. This corresponds to the expectation that more shifting of ~α has to be
done, if there are more constraint equations. [29]

follows the χ2 distribution with the density function

fν(χ2) =
1

2ν/2Γ(ν/2)
(χ2)ν/2−1e−

1
2
χ2
, (4.35)

where Γ is the gamma function. The integer parameter ν is both the number of
degrees of freedom (ndf) and the mean value of the distribution 〈χ2〉 = ν. The
appropriate ndf for our analysis is given by the number of constraint equations of
the refit (which is either 1 or 2, see below).
As the shape of the χ2 distribution strongly depends on ν (see Fig. 4.15 for example
plots), it is convenient to define another quantity, the so-called “p-value”:

p-value(χ2) ≡
∞∫
χ2

fν(χ̃2)dχ̃2 (4.36)

It indicates the probability for a fit with a certain χ2 that there will be another fit
which is “worse” (i.e. has a higher χ2). Its advantage over χ2 is the fact that it is
always between 0 and 1 because of the normalization of fν(χ2). Furthermore, it is
supposed to be evenly distributed inside this range, if the input to the fit is valid
(i.e. there is no background) and all uncertainties are estimated correctly. [27]
However, since we inevitably do have combinatorial background in our data, the
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Figure 4.16: P-value distribution for the refit on both mpπ and dpπ (ndf = 2). The
refitted sample was preselected with optimized topological cuts and the correspond-
ing mass cut. The tall peak in the lowest bin indicates the presence of combinatorial
background. The rise towards high p-values accounts for the limitation of constraint
violation due to cutting.

p-value distribution will deviate from this theoretical picture. For a fake Λ candi-
date, we expect a large deviation from the constraints. This results in a comparably
high shifting effort signalized by large χ2, i.e. a low p-value. Indeed, we find a very
tall peak in the lowest bin of a sample p-value histogram (Fig. 4.16). The input
for this refit was preselected with optimized topological cuts (combination 1943, cf.
Sec. 4.4.1) and the corresponding mass cut12 in order to keep the amount of back-
ground decent. Actually, this does not only discriminate fake Λ candidates, but also
limits the violation of the constraints (i.e. the value of H1 and H2) to the respective
cut thresholds. Hence, the probability density for χ2 is shifted towards lower values,
which accounts for the rise that we can observe in Fig. 4.16 for high p-values.
This peculiarity of p-value distributions obtained from the kinematic refit leads to
the idea of a p-value cut, which is meant to separate the plausible Λ candidates
with large p-values from the suspected background. It is implemented as a lower
threshold, which we choose to be 40%. Of course, we do not use this cut exclusively,
but always apply optimized topological cuts and the mass cut prior to the refit.
As it was mentioned in Sec. 4.5, the kinematic refit can be used in order to im-
prove the resolution of mass spectra of reconstructed particles. If we try this on our
Λ spectrum, we have to notice that it does not make sense to apply a mass refit
to an experimental mass spectrum, since it will put almost every Λ candidate to

12I.e. we only take Λ candidates into account which have an invariant mass mpπ in a range of ±2σ
around the mean of the peak of the topologically cut spectrum.
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Figure 4.17: dpπ-refitted Λ candidate mass spectrum with optimized topological cuts
applied prior to the refit. There is no fundamental difference to the original spectrum
(Fig. 4.11). However, the signal is slightly higher, but the purity has decreased.

the literature mass (cf. Fig. 4.14a). Therefore, we can only use the refit on dpπ.
The result, which is shown in Fig. 4.17, does not show a fundamental difference in
comparison to the original spectrum in Fig. 4.11. However, the signal has increased
somewhat at the expense of a reduced purity. This is considered to be a consequence
of a general shift of Λ candidates inside the mass cut, but with a larger contribution
from fakes.

4.6 pΛ Correlation Analysis

The correlation analysis for protons and Λ hyperons confines the set of Λ hyperons
established in Sec. 4.4 further, because it can only make use of events which contain
both a Λ and a proton. We are thus left with an amount of only 2976 viable events.
This section only makes use of the topological cuts (cf. Sec. 4.4.1), whereas the
influence of the refit will be discussed in Ch. 5.
The analysis is conducted using a mixed event approach. This method basically uses
the definition of a correlation function given in Eq. 3.7, but since we naturally may
have some correlation in all of our pΛ events (“same events”), we have to emulate
entirely uncorrelated pΛ pairs. As particles from different events are supposed to
have no correlation at all, we combine protons and Λs to so-called “mixed events”.
In order to assure a certain plausibility for those events, we do not randomly mix
particles, but categorize them into “mixing bins”, on which the procedures are exe-
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property domains

multiplicity ≤ 3
≥ 4

primary vertex z

below −62 mm
−62 to −44 mm
−44 to −26 mm
−26 to −8 mm
above −8 mm

Table 4.5: Mixing domains for event multiplicity and primary vertex position along
the beam axis. There is a total of 2× 5 = 10 mixing bins.

cuted separately. The mixing bins consist of disjoint domains for event multiplicity
and primary vertex position along the beam axis (see Tab. 4.5). Each bin is filled
with same events until it reaches a size13 of 10. Then every proton i is combined with
every Λ hyperon j, yielding the original 10 same events (i = j) and 10× 10− 10 = 90
mixed events (i 6= j).
Since it is the abscissa of the desired correlation function C(k), we need to calcu-
late the center-of-momentum-frame one particle momentum k of every pΛ pair (cf.
Sec. 3.5). It can be obtained as the magnitude of the 3-momentum k = |~p∗| of either
particle after a Lorentz boost p∗ = B~β

p into the center of momentum system with

~β =
~ppΛ
EpΛ

=
~pp + ~pΛ

Ep + EΛ
. (4.37)

These k values are collected from all mixing bins and filled into two separate his-
tograms, one for same events and one for mixed events (see Fig. 4.18). Following
Eq. 3.7, we divide the same event histogram by the one for mixed events to obtain the
actual correlation histogram. As the theory function Eq. 3.11 suggests (cf. Fig. 3.6),
we expect no correlation for high relative momenta, i.e. C(k)

k→∞−→ 1. However, we
anticipate to have about nine times as many mixed as same events, so some normal-
ization has to be done. Assuming no more relevant effects above k = 120 MeV14,
we scale the correlation histogram so that the mean value between 120 MeV and
300 MeV equals 1.
The procedure described above leads to the histogram given in Fig. 4.19. It is fit-
ted in the range 0 MeV ≤ k ≤ 250 MeV with the theory function given in Eq. 3.11,
yielding a source size of

r0 = (0.94± 0.06) fm. (4.38)
13After the last event of the data set is reached, partially filled bins are processed as well in order

not to lose any data.
14Empirical value.
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Figure 4.18: Relative momentum k histograms of same (left) and mixed (right)
pΛ events. There is a multiple of entries for mixed events, which makes this his-
togram appear smoother. We can observe a lack of statistics at very low and high k.
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Figure 4.19: Correlation histogram of protons and Λ hyperons. It is fitted with
Eq. 3.11 and the fixed parameters from Tab. 3.3, which yields an effective size
r0 = (0.94± 0.06) fm for the pΛ source. However, errors get very large for low rela-
tive momenta k due to low statistics (cf. Fig. 4.18).
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Chapter 5

Results and Discussion

This chapter reviews the results of the experimental analysis and discusses peculiar-
ities and possible adjustments.

5.1 Lambda Reconstruction

The method of topological cuts is a well-proven tool for particle reconstruction, so
it is not surprising that it works out quite well in our analysis, too. However, there
is one conspicuous feature appearing throughout the analysis, which is the deter-
mination of the Λ mass to a value above the literature value of 1115.683 MeV (see
Fig. 4.5, 4.11 and 4.17).
This may be an effect of incorrect energy loss correction. The HYDRA frame-
work [23], which is used for the detector-related parts of the analysis, includes utilities
to estimate the amount of energy a particle has lost on its way to the detector due
to interaction with the target, detector components etc. Depending on the track
parameters and the species of the particle, there is a certain amount of momentum
added to the measurement. As everyday materials, like metal and plastic, are gov-
erned by the electromagnetic interaction, the energy loss will be considerably higher
for charged particles like protons and pions. However, the proton and π− from a
Λ decay will usually form behind the target, which is transited by the Λ hyperon
almost non-dissipative. Hence, the correction applied to them will be too high. This
overestimation propagates to the invariant mass mpπ, which eventually explains our
findings.

It is explained in Sec. 3.2 that a Λ hyperon is always produced in company with
a kaon. It is therefore a legitimate objection, why we do not search for kaons as
indicators for strangeness events.
However, the kaon analysis turns out to be even more demanding than the Λ analysis.
There are two types of kaons which can appear in Λ reactions, K+ and K0. Neutral
kaons do not appear as physical particles, but can be described as a superposition of
K0

L (‘K long’) and K0
S (‘K short’). These CP eigenstates have very similar masses,

but highly differing mean lifetimes (by three orders of magnitude!). With a cτ of over
15 m, the neutral K0

L will pass the detector undetected, while K0
S decays very close
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Figure 5.1: Histogram of Λ candidate lifetimes after l > 42.5 mm cut. The cutoff
for low lifetimes is due to this limitation. From the slope parameter of the expo-
nential fit, a mean lifetime of 2.58× 10−10 s is calculated. The literature value is
τΛ = 2.631(20)× 10−10 s.

to the primary vertex (cτ = 2.7 cm) into two pions. The detection of a pKΛ event
would thus require a multiplicity of 5, which is problematic in the context of detector
acceptance. The K+ on the other hand could be detected as usual charged particles,
but it is very difficult to differentiate between them and the neighboring protons and
π+ (cf. Fig. 4.1). On the whole, the requirement of a kaon in Λ events would severely
reduce the anyway scarce number of Λ hyperons and the kaon analysis goes beyond
the scope of this thesis.

Although we have pointed out certain weaknesses of our Λ sample, it is still qual-
ified to conduct further analyses on the Λ hyperon. As a demonstration, we will
determine the Λ mean lifetime.
The lifetime tpπ of a Λ candidate can be expressed through the primary-secondary-
vertex distance l, the momentum |~ppπ| and the invariant mass mpπ (cf. Eq. 4.7):

tpπ =
l

c

mpπ

|~ppπ|
(5.1)

This quantity is supposed to follow an exponential function f(tpπ) ∝ exp (−tpπ/τpπ)
with the Λ candidates’ mean lifetime τpπ. Fitting the experimental histogram
in Fig. 5.1 yields τpπ = 2.58× 10−10 s. It has been created using only the cut
on l > 42.5 mm, since the full set of cuts would deform the distribution too much.
Our result resembles the literature value for the Λ hyperon τΛ = 2.631(20)× 10−10 s.
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5.2 Kinematic Refit
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Figure 5.2: Fitted pΛ correlation histogram after kinematic refit on dpπ. Compared
to the original in Fig. 4.19, there are higher uncertainties and more fluctuations for
the rather uncorrelated range above k = 120 MeV. The pΛ source size retrieved from
the fit is r0 = (1.27± 0.15) fm.

5.2 Kinematic Refit

As already mentioned in the introductory Section 4.5, the kinematic refit works very
well, when applied to an exclusive analysis (e.g. [27], [29]). However, for our in-
clusive analysis, it has revealed serious disadvantages. The low number of usable
constraints and the sensibility to the omnipresent combinatorial background in this
kind of analyses will hardly lead to reliably improved results.
Though the introduction of the p-value cut discriminates some background, there
is no general statement possible about the impact of refitting on the outcome of
the analysis. This is illustrated by the invariant mass spectrum in Fig. 4.17, which
does not experience any improvements from the refit on dpπ, whereas the pΛ cor-
relation function clearly changes under the same operation. The comparison of the
dpπ-refitted Fig. 5.2 to the original correlation function in Fig. 4.19 exposes an en-
largement of uncertainties and a higher fluctuation for the rather uncorrelated re-
gion above k = 120 MeV. This is seen as a consequence of the further reduction
of statistics by the p-value cut (from former 2976 to 1523 pΛ events) and the non-
uniform behavior of refitted tracks with only one constraint. However, we also have
lower values in the leading bins, which raises the result for the pΛ source size to
r0 = (1.27± 0.15) fm, compared to former r0 = (0.94± 0.06) fm.
We conclude that the kinematic refit has an observable influence on the analysis re-
sults, but for a low number of constraints this will not lead to a reliable improvement.
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Figure 5.3: In contrast to other bullet particles, pions (on the right) are supposed to
interact only on the surface of an atomic nucleus. [30]

Additionally, the p-value cut leads to a reduction of statistics, which is detrimental
for analyses that demand a high number of viable events. Nevertheless, if more con-
straints can be constructed, the kinematic refit might be a useful tool for the analysis
of inclusive reactions in the same way as it is for exclusive ones.

5.3 Correlation Analysis

Although the fits of the correlation histograms in Fig. 4.19 and 5.2 appear rather
imprecise to the naked eye, they yield pΛ source sizes of rather low uncertainty. How-
ever, already the disparity of the original and the refitted result shows that these
values have to be treated with caution. The correlation analysis is a highly sensi-
tive experimental technique, which incorporates uncertainties from various sources,
e.g. the impurities of the particle sets from both PID and of the reconstructed
Λ hyperons, the general measurement uncertainties of the particle detector and the
approximations made for the theoretical models. In general, all of these influences
have to be included into the error of the final result, but this goes beyond the scope
of this thesis.
As already mentioned in various places, a correlation analysis is also very dependent
on a high number of usable events, because the correlation of interest usually shows
in the region of low relative momenta, where we naturally find only a minority of
the events (cf. 4.18). Hence, it is very challenging to measure baryon correlations in
a pion-induced reaction as we do, because the necessary release of two baryons from
the nucleus, of which only one is involved in the actual inelastic reaction, is a rather
improbable event.
However, exactly this peculiarity of pion-induced reactions is a very interesting fea-
ture of our analysis and can be related to our findings. As indicated in Fig. 5.3,
pions are supposed to interact only directly on the surface of a nucleus, whereas
other particles may penetrate further. The consequence is a very localized source for
pion-induced particle emissions from a nucleus. In fact, this is consistent with our re-
sult of r0 ≈ 1 fm, since that is rather comparable to a single surface nucleon being hit
by the pion, than to the dimension of a whole tungsten nucleus (∼ 6 fm ≈ 3

√
A(W)).
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Chapter 6

Outlook

For a continued occupation with the kinematic refit in the context of inclusive anal-
yses, it is mandatory to extend it to the concept of “unknown parameters”, which
already has been mentioned in Sec. 4.5.2. It can be used to treat the Λ decay vertex
as an individual point in space rather than just a function of the daughter tracks.
Thus, the third constraint from 4.28, which is the constraint on the angle α between
Λ candidate momentum and the vector pointing from primary to secondary vertex,
becomes feasible. The increased number of degrees of freedom for the refit will im-
prove its reliability and functioning.
Concerning the pΛ correlation analysis, an important next step is the implementa-
tion of various corrections that mainly account for technical issues of the detection
process. For instance, an examination of track merging effects can be performed.
This refers to the case when two particles hit the detector very close to each other,
so that the electronic signals inside the MDCs can interfere, which may lead to fake
correlation effects. Another point is the purity of primary PID cuts. So far, we
mainly relied on the MDC energy loss measurements. However, we can include other
components of the HADES detector, e.g. the META system, in order to improve
particle identification. This is in particular important for the differentiation of light
particles, like pions, muons and electrons.
In general, an extensive study on statistical and systematical measurement uncer-
tainties has to be performed, since this is a basic requirement for valid scientific
results.
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Appendix A

Analytical vertex calculation for
multiple tracks

This appendix describes a method to calculate an analytical vertex approximation
for an arbitrary number of particle tracks. The situation is depicted in Fig. A.1.
In the following, we enumerate tracks by an index i = 1, 2, ... and specify them by
a base ~bi and a unit direction d̂i with |d̂i| = 1. The vertex position, which will be
optimized, is ~r.
The perpendicular of the vertex towards any track i (i.e. its distance to that track)
forms a right triangle consisting of the catheti di and si and the hypotenuse vi. The
Pythagorean theorem states

s2
i = v2

i − d2
i . (A.1)

vi = |~vi| can be expressed as the modulus of the vector ~vi ≡ ~r −~bi. di is the projection
of ~vi onto the track, which can be written as the scalar product di = d̂i · ~vi.

Figure A.1: Illustration of the geometry of the vertex reconstruction problem. For
simplicity, only two particle tracks (black lines) are shown, specified by their base ~bi
and direction d̂i. The vertex position, which will be optimized, is ~r.
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Appendix A Analytical vertex calculation for multiple tracks

Using the possibility to write any scalar product ~a ·~b = ~b · ~a as a matrix product
~aT~b = ~bT~a and the associativity of matrix multiplication, we obtain

s2
i = v2

i − d2
i = ~v2

i − (d̂i · ~vi)2 = ~vTi ~vi − (~vTi d̂i)(d̂
T
i ~vi)

= ~vTi ~vi − ~vTi (d̂id̂
T
i )~vi = ~vTi (1− d̂id̂Ti )~vi.

(A.2)

We now define the matrices M i ≡ 1− d̂id̂Ti . They are symmetrical and positive
semidefinite. With this definition it is obvious, that s2

i is a quadratic form of ~vi:

s2
i = ~vTi M i~vi (A.3)

Summing over all tracks, we now define the quantity

S2 ≡
∑
i

s2
i , (A.4)

which is a quadratic form as well.
Because of the positive semi-definiteness of each s2

i , S
2 has a lower bound and can

thus be minimized (even though the minimum is in general not unique, see below).
We regard a vertex position minimizing S2 (i. e. the square sum of the distances to
all tracks) as optimal.
The minimum of a positive semi-definite quadratic form is found by reducing its
gradient to zero (we use ~vi = ~r −~bi ⇒ ∂~vi/∂~r = 1 for all i and the chain rule):

0
!

=
∂S2

∂~r
=
∑
i

∂s2
i

∂~r
=
∑
i

∂~vi
∂~r︸︷︷︸
=1

∂s2
i

∂~vi
=
∑
i

∂(~vTi M i~vi)

∂~vi
=
∑
i

2M i~vi (A.5)

This is a linear equation system for ~r:

0 =
∑
i

M i~vi =
∑
i

M i(~r −~bi) ⇒

(∑
i

M i

)
~r =

∑
i

M i
~bi (A.6)

If
∑

iM i is invertible, which is the case for two non-parallel tracks and shall be the
subject of further investigations for higher track numbers (in practice it has proven
to be virtually always invertible), we obtain the unique, analytical vertex ~r as

~r =

(∑
i

M i

)−1(∑
i

M i
~bi

)
. (A.7)

This procedure does not take possible uncertainties of the track parameters ~bi and
d̂i into account. However, if those can be neglected or are not of interest, the given
formula provides a very fast (linear order in the number of tracks!) way to calculate
vertices.
The distribution of primary vertices calculated with this method is shown in Fig. A.2.
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Figure A.2: Illustration of the 3-dimensional primary vertex distribution, calculated
with the method described in App. A.
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