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Chapter 1

Introduction

In 1935, Yukawa predicted a particle, which should be the carrier of the strong force
inside atomic nuclei. The idea of the pion was born. After twelve years, Perkins
and Powell and Occhialini found experimental evidence of the pion almost at the
same time [1] [2]. Now, 68 years later, the pion is still of scienti�c interest. A lot of
resonances decay into a baryon and a pion or a baryon and a pair of pions. Studying
the �nal state particles, one often cannot distinguish between primary pions and
the ones originating from a short lived resonance. To investigate particles stemming
from a baryonic resonance the inverse process can be used. This means to induce a
reaction between a pion and a nucleon. The resonance is formed and its decay prod-
ucts can be measured, e.g. π− + p→ N∗ → n + π− + π+. Due to the short lifetime
of the pion (τ = 2, 6 · 10−8 s [3]) it is not possible to build a pion target. To study
reactions between pions and other matter, e.g. nuclei, a pion beam is produced.
Pion beams have di�erent properties than for example proton or photon beams.
Photons produce new particles in the whole volume of a nucleus, because their inter-
action probability with nucleons is rather small (σ ∼ A). The cross section for proton
beams is smaller (σ ∼ A0.8), because many protons are absorbed at the surface of
the nucleus producing secondary particles like pions, which penetrate the inner part
of the nucleus. Pions on the other hand are assumed to be absorbed right at the
surface of the nucleus (σ ∼ A2/3). All the reactions are illustrated in Figure 1.1
[4]. Although all these cross sections are model dependent, experimental results of
the FOPI collaboration support that pions are absorbed right at the surface of a
nucleus. In 2009, researchers of the FOPI collaboration analyzed experimental data
of collisions of pions with di�erent elements (C, Al, Cu, Sn and Pb) [5]. This data
revealed the production of strange matter (kaons) in such reactions like π− + p or
π− + n with the nucleons of the nucleus. The inclusive production cross section of K0

appeared to depend on the mass number A of the corresponding target element, as
it can be seen in Figure 1.2. They �tted this dependence with a power law function

σ(π− +A→ K0 +X) = σeff ·Ab. (1.1)

The �t shows that the dependence of the production cross section of the mass number
is approximately A2/3 [5].
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Chapter 1 Introduction

(a) A photon beam,
which hits a nucleus
has a low interaction
probability with the
nucleons. Production
of new particles takes
place in nearly the whole
volume.

(b) A proton beam in-
teracts strongly with the
nucleus and the pro-
duction of new particles
takes place near the sur-
face. It might also in-
duce secondary pions.

(c) A pion beam, which
hits a nucleus it interacts
on the surface of the nu-
cleus.

Figure 1.1: Di�erences in the reactions of induced by a photon, proton or pion beam
with a nucleus are illustrated. [4]

In general, one can estimate the radius of a nucleus by R ∼ R0 ·A1/3, where
R0 = 1.3 fm is approximately the size of one nucleon. This means that the surface
of a nucleus, if it is assumed to be spherical, is proportional to A2/3, since it scales
with R2. With the measurement of the FOPI collaboration it seems to be a valid
assumption that pions are mostly absorbed at the surface of a nucleus.
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Figure 1.2: The mass number dependence of the inclusive production cross section
of K0. The data points, given by the blue squares, were measured by FOPI. The
�t (σ = σeff ·Ab) is represented by the solid line. The two dashed lines give two
di�erent model predictions, whereas the hatched area corresponds to the sum of the
cross sections of the elementary processes scaled by the transverse size of the target
nuclei [5].

Motivation of this work

Although the FOPI experiment suggests that the pions are absorbed right at the
surface of the nucleus, we want to take a closer look at this assumption. If the
pions are really absorbed at the surface, secondary pions would originate out of a
source, which has the shape of a half, spherical shell like the side of the surface of
the nucleus which faces the beam. With the help of a correlation analysis of these
secondary pions it is possible to gain spatio-temporal information about the volume
where their last interaction takes place before they �y into the detector. We can link
the result of the correlation analysis to the volume of the absorption region of the
primary pion, because we assume that the produced pions freeze out very close to
their emission point. If this volume equals a half, spherical shell, one can conclude
that the primary pions are absorbed at the surface of the nucleus.
The aim of this thesis is to gain further information about the absorption of pions at a
tungsten nucleus by investigating the correlation of identical pion pairs in in a speci�c
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Chapter 1 Introduction

reference frame, which allows to perform a three-dimensional correlation analysis.
The used data was recorded with the High Acceptance Di-Electron Spectrometer
(HADES) in July 2014. In the next section the experimental setup of the HADES
experiment is described.
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Chapter 2

HADES Experiment

The High Acceptance Di-Electron Spectrometer (HADES) is located at the GSI
Helmholtzzentrum für Schwerionenforschung in Darmstadt. With this �xed target
experiment mostly dielectron production in pion, proton or heavy-ion induced col-
lisions are studied. It was designed to investigate decays of the light vector mesons
ρ, ω and φ. The lifetimes of these particles are in the same order of magnitude
as the time of the compression phase in relativistic heavy-ion collisions. HADES is
located at the SIS18 synchrotron which provides beam energies between 1-2AGeV
for heavy-ions and up to 3.5 GeV for protons. Although HADES was constructed to
investigate dilepton decays, it also allows the investigation of hadrons [6].
In the next section the important parts of the detector used for this analysis are
brie�y explained.

Figure 2.1: Expanded illustration of the whole HADES experiment. The beam axis
is depicted as green line. The hexagonal structure is clearly visible [7].
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2.1 Experimental Setup

Figure 2.1 shows an exploded view of HADES. The beam hits the target right in
front of the RICH at the left end of the whole aperture. As it can be seen in the
picture the whole experiment has a hexagonal structure, which means there are
six identical sectors, arranged behind the target and around the beam axis. The
azimuthal acceptance of HADES covers about 85% and its polar angle is covered by
an interval from 15◦ to 85◦ [6]. A cross section of the aperture is given in Figure 2.2.
Details about the analysed run, the target and the beam momentum are given in
Table 4.1.

Figure 2.2: cross section of the HADES detector. [8].

2.1.1 Magnet

The magnet of the HADES experiment consists of six superconducting coils, which
generate a toroidal magnetic �eld. The �eld strength is below B = 0.9 T to keep the
experiment compact. Due to the Lorentz force the magnet forces charged particles
to follow a circular path, which depends on their momentum and polarity. The
curvature of the particle track can be used to calculate the momentum and the
direction of it to determine the polarity of the particle. Therefore the magnet is an
important part of the tracking system [6].
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2.1 Experimental Setup

Figure 2.3: The six wire planes of the Multi-wire drift chambers of the HADES
experiment are positioned in di�erent angles to guarantee the best reconstruction.
Every wire is rotated 20◦ [6].

2.1.2 Multi-wire Drift Chambers

The Multi-wire Drift Chambers (MDC) are the most important part of the track-
ing system of the HADES experiment. They are arranged in the same hexagonal
structure as the segments of the magnet. To gain information about the change of
the momentum direction, charged particles receive from the magnet, there are two
MDC planes (I, II) in front of and two (III, IV) behind the magnet. Each of these
planes consists of four Mini-Drift Chambers. Each of these Mini-Drift Chambers
consists of six wire layers, to guarantee a good track reconstruction also for high
multiplicities. The six layers are arranged in di�erent angles (±0◦,±20◦,±40◦), as
it can be seen in Figure 2.3. With this structure the best spatial resolution in polar
direction, the direction of the momentum direction change, can be achieved. Besides
the momentum determination, the MDCs provide information over the energy loss
of the traversing particle. Each charged particle looses energy by inelastic scattering
with electrons bound in atoms of the detector gas. This energy loss is related to
the time over threshold (ToT), which means the time an electronic signal exceeds a
certain threshold. [6].

2.1.3 Time of Flight Detectors of the META System

The Time of Flight detector (TOF), the Resistive Plate Chambers (RPC) and the
Pre-Shower represent the time of �ight unity of HADES. They are an important tool
to determine the hadron multiplicity and distinguish between hadrons and electrons
[7].
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Chapter 2 HADES Experiment

• Pre-Shower: Electrons or positrons produce an electromagnetic shower in
this part of the detector. Like it was already mentioned before, we are only
interested in pions, so the Pre-Shower will be irrelevant for the following anal-
ysis.

• TOF: The TOF detector covers a polar acceptance of 44◦ < Θ < 88◦. Its
azimuthal geometry follows the same hexagonal structure like the magnet and
the MDC. Since TOF is a scintillator, a traversing particle induces the emission
of photons. The arrival time of these photons and the signal height, which they
induce in the photomultipliers are measured. The signal height can be used to
get an energy loss value, which can be used for particle identi�cation (PID).

• RPC: The RPC detector replaced the TOFINO detector in 2009 and has
very good time resolution with σRPC = 100 ps. It covers an azimuthal angle
range of almost 2π with oles due to the hexagonal structure and has a polar
acceptance of 18◦ < Θ < 45◦ [7].
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2.2 Pion Beam

2.2 Pion Beam

The usage of a pion beam allows the investigation of pion induced reaction. Because
the pion beam is a secondary beam, additional components have to be introduced
to the experimental setup. In the case of HADES it is produced with the help of a
10 cm thick beryllium-target and a primary beam of 12C or 14N from the Schwer-
Ionen-Synchroton (SIS). Within this collision many particles are produced, but with
a certain magnetic con�guration of the beam optics it is possible to select the neg-
ative charged pions (π−). These negative pion beam can then be used for further
experiments [9]. The path of the beam is shown in Figure 2.4. It is generated at the

Figure 2.4: beam line of the pion beam [10].

production target on the left and traverses certain magnets. Dipole magnets provide
the right de�ection for negative charged pions and the combination of quadrupole
magnets focus the beam. Because of the broad momentum resolution(∆p/p ≈ 10%)
of the secondary pion beam, the pion tracker CERBEROS was built. The two sili-
con detectors are positioned 15 m before the HADES target and the hits in the two
detectors allow a precise determination of the pion momentum within a resolution
better than the demanded resolution of 0.5% [10].

Beam momentum 1.7 GeV/c
Target 183.8

74 W
Target diameter 12 mm

Number of segments 3
Distance between segment centers 18 mm

Length of segment 2.4 mm

Table 2.1: Information about the π− + W run in July 2014.
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Chapter 3

Basics about two Particle Correlations

3.1 Hanburry-Brown-Twiss-E�ect

Robert Hanburry-Brown and Richard Q. Twiss were the �rst who measured the size
of stellar sources by performing the so called intensity interferometry. They were
able to determine the (angular) size of the star Sirius [11]. The method is based on
the use of two detectors, which record signals from the same source (cp. Figure 3.1).
The two particle coincidence yield 〈n12〉 and the two single particle yields 〈n1〉,〈n2〉
are measured and with these values a correlation function can be calculated with

C =
〈n12〉
〈n1〉 〈n2〉

. (3.1)

In contrast to the single particle yields, the coincidence yield includes the correla-
tions [12].
Due to the indistinguishability of the photons, one cannot say which photon took
which path (cp. Figure 3.1). To calculate the intensity at one detector the am-
plitudes for both paths have to be summed up. Assuming two spherical waves
α exp(ik |~r − ~ra + iΦa)/|~r − ~ra| and β exp(ik |~r − ~rb + iΦb)/|~r − ~rb|, where α and
β are the amplitudes, ~ri are the emitting positions of the photons and the Φi are two
random phases. The amplitude of both waves at detector 1 is given by

A1 =
1

L
(α exp(ikr1a + iΦa) + β exp(ikr1b + iΦb)) . (3.2)

rij represents the distance between detector i and the source of photon j. The random
phases Φi disappear by averaging over them. The correlation is then given by

C(d) =
〈I1I2〉
〈I1〉 〈I2〉

=

〈
A2

1A
2
2

〉〈
A2

1

〉 〈
A2

2

〉 = 1+2

〈
|α|2

〉〈
|β|2

〉
(〈
|α|2

〉
+
〈
|β|2

〉) cos(~R·( ~k2− ~k1)). (3.3)

~ki = kr̂i represents the wave vector of the light seen by detector i. The interference
term introduces the correlation signal, which dependents on the distance d of the
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Chapter 3 Basics about two Particle Correlations

Figure 3.1: Schematic illustration of an intensity interferometry experiment. Two
detectors record the signal from the same source. The coincidence yield and the two
single particle yields can be used to calculate the correlation of the photons. The
Function is given in Equation 3.1.

detectors. By varying d = λ·L
R one can gain information about the angular size R/L

of the emitting system [13].
In 1960, Goldhaber et al.. showed that this method can not only be used for

photons but also for identical pion pairs stemming from pp̄-annihilation. They found
that pions are preferably emitted at small relative angles. This could be explained
with the symmetrization of the two pion wave function [14].

Bose-Einstein-Correlation

In quantum mechanics it is only possible to calculate probability distributions, which
are given by the squares of the absolute value of the wave function and describe
the system. The spin-statistics theorem states that a wave function of a system of
identical bosons, particles with an integer spin, is always symmetric under exchange
of two of them. Equation 3.4 gives an example for a symmetric wave function of a
system with particle one in state a and particle two in state b. In contrast to the
bosonic case the wave function of a system of identical fermions, particles with an
half integer spin, is always antisymmetric (Equation 3.5).

Ψs
1,2(a, b) =

1√
2

(Ψ1(a)Ψ2(b) + Ψ1(b)Ψ2(a)) (3.4)

Ψa
1,2(a, b) =

1√
2

(Ψ1(a)Ψ2(b)−Ψ1(b)Ψ2(a)) (3.5)

As it can be seen in Equation 3.6, the probability for bosons to be found in the same
state is two times higher than it would be expected for classical particles. This e�ect
is named Bose-Einstein correlation. For fermions the probability for two particles
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3.2 Correlation Function for Identical Pions

in the same state is zero, due to the Pauli principle. This implies that bosons with
a small position and momentum di�erence, ∆x ·∆p ≥ h̄

2 (Heisenberg's uncertainty
principle), are more likely emitted pairwise. Furthermore it is possible to extract the
spatial dimension of the particle source by investigating the momentum correlation.

∣∣Ψs
1,2(a, a)

∣∣2 =

∣∣∣∣ 2√
2

Ψ1(a)Ψ2(a)

∣∣∣∣2 = 2 |Ψ1(a)|2 |Ψ2(a)|2 (3.6)

∣∣Ψa
1,2(a, a)

∣∣2 =

∣∣∣∣ 1√
2

(Ψ1(a)Ψ2(a)−Ψ1(a)Ψ2(a))

∣∣∣∣2 = 0 (3.7)

3.2 Correlation Function for Identical Pions

Pions are pseudo scalar particles with a spin of zero, and a system of two pions has a
symmetrical wave function. The general wave function for such a system is given by
Equation 3.4, where a and b are the two states of pion 1 and 2. The probability that
both pions are found in the same state is given by Equation 3.6. On the grounds of
Bose-Einstein-correlation, there is an enhancement of pions to be found in the same
state. This correlation can be quanti�ed by constructing a correlation function in
momentum space to gain information about the particle emitting volume.
This means to take the ratio between the probability distribution of coincident

momentum measurement and the two uncorrelated probabilities to measure these
single momenta

C(p1, p2) =
P (p1, p2)

P (p1) · P (p2)
. (3.8)

The coincident measurement P (p1, p2) is given by the account of how often a par-
ticle with momentum p1 is measured under the condition that a particle with mo-
mentum p2 is measured, too. The uncorrelated values P (pi) are simply given by
the probability to �nd a particle with momentum pi. p1 and p2 are four vectors
(pµ = (E, px, py, pz)), which means that C depends on six di�erent variables.
In order to reduce the degrees of freedom one constructs the correlation function

as a function of the invariant relative momentum of the particles. This Lorentz
invariant is given by Equation 4.7, where ~p1 and ~p2 are the three vectors of the
momenta [13]

k =
1

2

√
(~p1 − ~p2)2 − (E1 − E2)2. (3.9)

3.3 Three-dimensional Correlation Function

The analysis of the correlation strength di�erentially in beam and transverse direc-
tions reveals more detailed spatio-temporal information about the particle emitting
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Chapter 3 Basics about two Particle Correlations

source. Usually the Pratt-Bertsch parametrization is used for this purpose in the so
called "out-side-long" coordinates.

Pratt-Bertsch parametrization

Figure 3.2: This �gure illustrates the longitudinally co-moving coordinate system. In
the left panel the beam axis is orientated horizontally. The same source distribution,
but looking down the beam, is shown in the right pannel [15].

To analyze the correlation of two particles in three di�erent directions, a longitudi-
nally co-moving system is used. It is illustrated in Figure 3.2. With this coordinate
system it is possible to compensate the beam momentum with a boost along the
beam-axis such that ~Pz = 0 when ~P is the momentum of the pair. The three axes
are selected as follows. The long-axis is parallel to the beam-axis. The out-axis
points along the total transverse momentum of the two pions and the side-axis is
orthogonal on both. The relative momentum vector ~k in the LCMS is then decom-
posed in the three components parallel to the axes. The following equations show
the results of the projections of the relative momentum vector in the LCMS. They
are give in terms of the relative momentum ~K = ~p1 − ~p2 and total momentum
~P = ~p1 + ~p2 in the LCMS of the pair.

kout =
1

2
·

∣∣∣∣∣∣
~Pt · ~Kt∣∣∣~Pt∣∣∣

∣∣∣∣∣∣ (3.10)

kside =
1

2
·

∣∣∣∣∣∣
~Kt × ~Pt∣∣∣~Pt∣∣∣

∣∣∣∣∣∣
z

(3.11)

klong =
1

2
·
∣∣∣ ~Kz

∣∣∣ (3.12)
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3.4 Bowler-Sinyukov parametrization

Bowler and Sinyukov et al. developed a parametrization for the correlation function
of particles, which stem from a Gaussian source. They suggested to separate the
coherent emission from the incoherent part, which contains the Bose-Einstein corre-
lated particles. For this purpose the λ parameter is introduced. Since only the pion
pairs, which are Bose-Einstein correlated, are considered to interact via Coulomb, the
Coulomb term is multiplied to the incoherent part, too [16]. The resulting Equations
are given in 3.13 for one dimension and in 3.14 for three dimensions. Afterwards,
the important parameters are explained.

One-dimensional parametrization

For this analysis the one-dimensional correlation function will be parametrized with
Equation 3.13. This representation is in accordance with the Bowler-Sinyukov
parametrization. (1 − λ) gives the coherent part which is not expected to act
via Bose-Einstein correlation. The constants h̄ and c are set to one.

C(k) = (1− λ) + λ ·KCoul(k) ·
(

1 + e−(2Rk)2
)
. (3.13)

Three - dimensional parametrization

A three-dimensional correlation function can be parametrized with the Bowler-
Sinyukov procedure, too. One receives

C(ko, ks, kl) = (1−λ) +λ ·KCoul(k,R) ·
(

1 + e−(2Roko)2−(2Rsks)2−(2Rlkl)
2
)
. (3.14)

Ro, Rs and Rl give the three source radii respective to the LCM system.

3.4.1 The Lambda Parameter

The parameter λ indicates the percentage of pion pairs that show an Bose-Einstein
enhancement and because of this reason are also considered to undergo Coulomb
interaction. If there was no interaction at all (λ = 0) the correlation function would
be equal to unity as expected, whereas λ = 1 means that all pairs are interacting
and the maximal correlation would be C(0) = 2 [16]. A second possibility to describe
the meaning of the λ parameter is that λ = 1 corresponds to a fully chaotic particle
emitting source. If the λ parameter is smaller than unity, it corresponds to a partially
coherent emitting source. By adding this parameter to the correlation function
one takes into account the fact that the source is neither fully chaotic nor fully
coherent [17]. Experimentally, a deviation of λ from unity can be caused by long lived
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resonances, which decay a few thousand fm away from the source and are therefore
not correlated with the other pions [15]. Another reason might be misidenti�ed
particles, which can not be Bose-Einstein correlated with the pions.

3.4.2 The Coulomb Contingent

The in�uence of the Coulomb interaction on the correlation strength of the pion pairs
is taken into account by the factor KCoul(k,R). For identical pions, this interaction
is repulsive. Assuming a point-like source the Coulomb in�uence is given by the
Gamow factor

|Ψ(r → 0)|2 = KCoul(η, 0) =
2πη

e2πη − 1
. (3.15)

With η given by the following Equation where µ is the reduced mass of the pion pair.

η =
µe2

k
. (3.16)

However, the point-like source is only an approximation and the pions are in real-
ity emitted from a �nite source. For this reason we use a factor for the Coulomb
correction which is averaged over a Gaussian distribution with a source size R, the
same as for the correlation signal. Figure 3.3 illustrates how the Coulomb factor
changes for a �nite source. The black curve represents the Gamow factor and the
colored curves the Coulomb factor for a source with a �nite radius. There is only a
little change in the Coulomb correlation for small sources since deviations from the
point-like approximation are small. However, for larger systems one would introduce
a large error by neglecting the �nite size of the emission zone. Since we expect no
source radii bigger than 2 or 3 fm, the in�uence of the �nite source size will stay
small [15].
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3.4 Bowler-Sinyukov parametrization

k [GeV/c]
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Gamow factor
R = 2 fm
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R = 10 fm

Figure 3.3: Coulomb factor for a point-like source (black) and sources with �nite
radii. The di�erence can be explained by the fact that pions stemming from a bigger
source can have a bigger distance, which leads to a smaller in�uence of the Coulomb
interaction.
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Chapter 4

Analysis Methods

This chapter deals with the analysis of the experimental data. At �rst some selection
criteria to receive pion samples are introduced. In Section 4.3 the construction of
a one-dimensional correlation function and the necessary corrections are explained
and calculated. Afterwards, the correlation in three dimensions is investigated.

4.1 Track Sorting

Every charged particle, which traverses the detector, leaves certain hit points. The
Runge-Kutta method is used to �nd tracks, which �t to a combination of hit points.
Sometimes it happens that two or more track candidates are �tted through the same
hit. The best of these tracks has to be selected and the other ones are sorted out by
the so called track sorter.

number of tracks
0 5 10 15 20 25 30 35 40 45

co
un

ts

10

210

310

410

510

610

710

810

after sorter

before sorter

Figure 4.1: The blue bars show the multiplicities of the events before the track sorting.
The red ones show the multiplicities after the track sorting. It is clearly visible that
there are a lot of fake tracks, which can be rejected by the track sorter.
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Chapter 4 Analysis Methods

This is a tool of the Hydra analysis framework [18]. It tries to �nd the best track
for a hit combination by using a selection criterion. In this case, the track has to
consist of at least one hit in the inner and one in the outer MDC. It has to include a
hit in the META system (cp. Section 2.1.3) and the χ2 of the Runge-Kutta procedure
has to be smaller than 1000. For the inner MDC χ2 has to be bigger than 0 to reduce
the amount of ghost tracks, which would induce an arti�cial positive correlation in
the interesting region, and keep only unique tracks in the sample. A sorting of the
tracks according to the product of the Runge-Kutta-χ2 and the MetaMatch Quality
is performed. Figure 4.2 illustrates that this tool is very e�ective. For all following
graphics and analysis steps only the data after the application of the track sorter is
used.

4.2 Particle identi�cation

In the �rst step of the analysis we have to identify the pions. For this purpose we
use several detector information. The �rst information is the energy loss provided
by the Multi-wire drift chambers. Every charged particle, which traverses a medium,
looses a certain amount of energy per distance via inelastic scattering with bound
electrons of this medium. The amount of the energy loss depends on the charge, the
momentum and especially on the mass of the traversing particle. This dependence
is given by the famous Bethe-Bloch-formula [19]:

−
〈
dE

dx

〉
=

4πNAr
2
emec

2z2Z

Aβ2
·
(

ln

(
2mec

2β2γ2Tmax
I2

)
− β2 − δ

2

)
. (4.1)

• A, Z : Mass and atomic number of the traversed medium

• me : rest mass of the electron

• re : Bohr radius

• z : charge number of the traversing particle

• NA : Avogadro number

• I: mean excitation potential of the medium

• δ : density correction

• Tmax : maximum of the transferred, kinetic energy

The dependence of the charge (z · e) is obvious and the dependence on the momen-
tum and mass is given by βγ = p/m. This means that particles with a certain mass
and charge are expected to form di�erent curves in a energy loss versus momentum
spectrum, which allows to identify them.
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Figure 4.2: The energy loss measured by the MDC versus Polarity · Momentum is
plotted. No preselection cuts are performed. On the left side one can see the band
of negative pions. The lowest band at small momenta on the right side belongs to
the positive pions. Above them the protons can be seen. The slightly visible band
about the protons belongs to deuterons.

4.2.1 Particle Identi�cation with the MDC

The MDCs provide an information about how much energy a measured particle
looses by traversing a certain distance. One can plot this value for every track versus
the product of momentum and polarity. The resulting histogram is shown in Figure
4.2. The bands for negative pions on the left and for positive pions, as well as for
protons and also deuterons on the right are clearly visible. The pions, the lightest of
these particles loose the fewest energy at low momenta. Above the π+ band a broad
proton area can be seen. The upmost band belongs to deuterons. Because the energy
loss depends only on the mass and momentum of the traversing pions, particles with
similar mass and momentum like muons deposit the same energy in the detector. For
this reason we use additional information from other detector components to avoid
this misidenti�cation, which will be shown in the next Section 4.2.2.
Within this thesis, a method to construct particle identi�cation cuts with the energy
loss and momentum information by using experimental data, is developed. To per-
form this cut construction, we have to preselect the pions in which we are interested.
For this reason we introduce a loose cut on the pion mass (measured by the time
of �ight detectors) in a window of mπ ± 100 MeV/c2 to reduce the contamination
coming from protons and deuterons. Otherwise the �tting does not work. The re-
sulting distribution can be seen in Figure 4.3. This mass interval is only used to
build the graphical cuts. In the next Section 4.2.2 we discuss how to include the
mass information for particle identi�cation.
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Figure 4.3: The energy loss measured by the MDC versus Polarity · Momentum is
plotted. All tracks within the window mπ ± 100 MeV/c2 are used to generate this
histogram. The amount of protons and deuterons is decreased.

The histogram shown in Figure 4.3 is divided into momentum slices of 30 MeV/c,
which are then projected on the dE/dx-axis and �tted with the numerical form of
Equation 4.2 with meanLandau, σLandau and σGaus as �t parameters.

f(x) =

∫
LandauσL,meanL(x) GaussσG(x− x′) dx′. (4.2)

The Landau is chosen, because the distribution is asymmetric as it can be seen in
Figure 4.4(b). The convolution with the Gaussian stands for the �nite resolution
of the experimental data. Figure 4.4(b) shows an example for a �tted momentum
slice. The dashed red lines show the range 3.5 · (0.5 · (σG + σL) around the mean
meanL. Everything within this region is treated as pion. However, at some slices
at higher momenta, the �t fails due to too few pions. At the �rst slice where this
happen, we stop the procedure. That is the reason why the cuts don't include the
whole momentum range. The resulting cuts with the data they are �tted with is
shown in Figure 4.5(a) and the cuts without a mass preselection on the pions is
shown in Figure 4.5(b). As one can see the �t of the positive charged pions already
stops at a momentum of 600 MeV/c. This is due to the fact that at higher momenta
the cut would overlap with the proton band, which would lead to misidenti�cation,
that we want to exclude. In the Appendix A.1, A.2, A.3 and A.4 the stability of
this procedure is shown. Some example slices are �tted for the data of the di�erent
beam days and the resulting means and sigma are compared. The procedure seems
to produce stable results.
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Figure 4.4: One example for the projected momentum slices, which are �tted with a
convolution of a Gaussian and a Landau function. As a representative to illustrate
the developed method, a projected energy loss within a momentum interval of 420 -
450 MeV/c is shown for negative pions. The preselection on pions by cutting on
the mass information provided by the TOF/RPC is made (m ∈ mπ ± 100 MeV/c2).
This distribution is �tted with Equation 4.2, which is displayed as blue solid line.
The dashed red lines give the 3.5 sigma environment. Everything inside these lines
is treated as pion.
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Figure 4.5: The energy loss measured by the MDCs, is plotted versus Po-
larity · Momentum. In the Figure 4.5(a) the pions are preselected within
mπ ± 100 MeV/c2,which is necessary to �t the distribution. On the right no prese-
lection on the mass was made. In both plots the graphical cuts for pion identi�cation
are displayed as black solid lines.
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4.2.2 Particle Identi�cation with TOF and RPC

Additionally to the identi�cation via the MDC energy loss information we examine
the use of the time of �ight signal provided by the TOF and RPC components.
As we will see in this section it is useful to reject electron contamination. Due to
their di�erent time resolution the following method is developed for TOF and RPC
separately. Both detectors provide an information about β = v

c for every track.
This value can be plotted against the momentum.

β(p) =
p

E
=

p√
p2 +m2

(4.3)

Because of Equation 4.3 di�erent particle species form bands, which can be distin-
guished due to the particle mass. Figure 4.7(a) and 4.7(b) show the distribution of β
versus the product of momentum and polarity under the condition that the particle
lays within the energy loss cut (MDC) described in section 4.2.1. They also show
the cuts, which are explained within this section. It is clearly visible in Figure 4.7
that beside the two pion bands, there are still two peaks with a rather small momen-
tum, but nearly the speed of light. Based on their position in this plot, they can be
identi�ed as electrons and positrons. It is obvious that the energy loss cut alone is
not able to reject electrons and that we have to introduce a second PID cut to reach
the aim of a clean pion sample.
To obtain a second graphical cut from experimental data, the β versus momentum
plot is also divided into momentum slices analogously as for the energy loss. Due
to the electron contamination, we have to use a preselection cut again, to keep our
�tting procedure possible. This time we don't have to dispose protons, since they are
rejected by the MDC. We choose an upper limit of mπ + 200 MeV/c2, but a lower
limit of mπ − 75 MeV/c2 to dispose the electrons and make this �tting possible.
Since the second preselection excludes very low masses, it introduces a hole around
β = 1. Due to this hole in the pion band, we cannot �t the the whole pion distri-
bution, but take the more physical side with β < 1. In this case we use 35 slices
in a region of 0 - 800 MeV/c (22.9 MeV/c per slice), which are �tted only with a
Gaussian, because the projected distribution has to be stopped at β = 1 as it was
explained before, which makes the asyymetric part disappear. A example slice is
given in Figure 4.6(d). For low momenta, the distribution cannot be �tted anymore
because it becomes parallel to the momentum slices (cp. Figure 4.7). For this region
we use β slices and project them on the momentum axis. The range of 0.2 < β < 1
is divided into 20 beta slices of ∆β = 0.04. These slices are �tted with Equation 4.2,
a convolution of a Landau distribution and a Gaussian. Similar to the MDC cut,
the Landau is used to describe the asymmetric form and the Gaussian describes the
�nite resolution of the data. As it can be seen in Figure 4.6(b) the �t does not
converge as good as for the MDC data, but the resulting cut describes the form of
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4.2 Particle identi�cation

the pion band (cp. Figure 4.7).
For the momentum slices we choose an area of 1.5 σ around the mean and for the
beta slices we choose 2.5 · (0.5 · (σg +σl)). The areas are marked with the dashed red
lines in Figure 4.6(b) and 4.6(d). The two cuts for both slicing directions are sepa-
rately combined and subsequently the incorporation of both is taken for the particle
identi�cation and can be seen in Figure 4.7(a) and 4.7(b).

Polarity * Momentum [MeV/c]
800− 700− 600− 500− 400− 300− 200− 100− 0

β

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

10

210

(a)

⇒

Momentum [MeV/c]
50 100 150 200 250 300 350 400 450 500

C
ou

nt
s

0

1000

2000

3000

4000

5000

6000

 < 0.84β0.80 < 

 

(b)

Polarity * Momentum [MeV/c]
800− 700− 600− 500− 400− 300− 200− 100− 0

β

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

10

210

(c)

⇒

β
0.5 0.6 0.7 0.8 0.9 1

C
ou

nt
s

0

20

40

60

80

100

120

140

160
310×

755.7 MeV/c < Momentum < 778.6

 

(d)

Figure 4.6: One example for the projected β slices (RPC) in (a) and (b), which are
�tted with a convolution of a Gaussian and a Landau function and one example for
the projected momentum slices in (c) and (d), which are �tted with a Gaussian are
shown. Both representatives shall illustrate the developed method. The preselection
on pions by cutting on the mass of mπ − 75 MeV/c2 < m < mπ + 200 MeV/c2 in-
formation is made again to make a �t possible. The �tted functions are shown as
blue solid lines and everything within the dashed red lines is taken as pion.
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(a) This plot contains the PID cut, calcu-
lated for the TOF measurements.
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(b) This plot contains the PID cut, calcu-
lated for the RPC measurements.

Figure 4.7: β = v
c , measured by the TOF on the left and by RPC on the right, is

plotted against Polarity · Momentum. Both plots contain only tracks which ful�ll
the MDC-PID-cut. The black curves describe the graphical cuts, which are used for
PID.

To have an overview all particle identi�cation cuts are summarized in Table 4.1.

MDC TOF + RPC TOF + RPC

vertical vertical horizontal

Range 0 - 1500 MeV/c 0 - 800 MeV/c 0.2 - 1

Fragmentation 50 momentum slices 35 momentum slices 20 β slices

of 30 MeV/c of 22.9 MeV/c of 0.04

Fit function Landau x Gaussian Gaussian Landau x Gaussian

Mean meanl meang meanl

width σ 3.5 ·0.5(σl + σg) 1.5 ·σg 2.5·0.5(σl + σg)

Table 4.1: These are all important information for the pion identi�cation cuts. The
range is divided into a certain amount of slices. These slices are �tted with the �t
function and the �tted means ± σ are than combined the two dimensional cuts.
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4.2 Particle identi�cation

4.2.3 Purity Estimation

Two di�erent detector information are used to identify the pions. It's possible to
quantify the quality of these graphical cuts. For this purpose we use the mass infor-
mation provided by the TOF and RPC detectors. Plotting the mass of the identi�ed
pions versus the product of polarity and momentum one can still distinguish between
the pion band (139.57 MeV/c2) and the muon band (105.66 MeV/c2) below. An ex-
ample for the positive pions and the RPC data is shown in Figure 4.8. Figure 4.8(a)
contains all pion candidates after the appliance of the MDC cut, but without the
graphical β cut. In the Figure 4.8(c) the identi�ed pions after MDC and RPC cut
are shown. All graphics are also given for the TOF data in the Appendix. The black
lines in the mass spectra indicate that the histogram is divided into momentum slices
of 5 MeV/c. These slices are projected to the mass axis and then �tted with a combi-
nation of three Gaussians, one for the pions, one for the electrons/positrons and one
for the muons. This procedure can be seen in Figure 4.8(b) and 4.8(d). The signal
is given by the integral over the Gaussian which describes the pions and signal plus
background is given by an integral over the whole distribution, since this is what we
identify as pions. The Purity can now be calculated by

Purity =
Signal

Signal +Background
. (4.4)

Unfortunately we can only give evidence about the purity in a region of 50 -
200 MeV/c, because for higher momenta the pion band gets so brought that it is
not possible to distinguish between the pion and the muon peak. The purity after
the MDC cut is plotted as red dots, whereas the pions after the MDC and β cuts
are plotted as blue dots in Figure 4.9 Applying the second PID cut (blue) improves
the pion samples in all four cases (Figure 4.9). However, one has to consider that
these plots give only a rough estimate of the purity, since the muons merge with the
pions for higher momenta although the purity goes to one. Moreover the �t could be
repeated with an additional function for the background to improve it for the slices
where it obviously did not work. One can recognize these slices as outlier points in
Figure 4.9. Additionally this would improve the �t for the TOF data. It can be seen
in Figure A.7(a) that the pion peak for TOF data is underestimated which leads to
an underestimated purity. However, the trend, that we have a much better purity
after applying the second PID cut is clearly visible. An observation looking at the
purity plots is that the purity of the positive pions (right �gures) is slightly better
than the one for the negative pions.
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Figure 4.8: The mass versus momentum distribution after the two steps (MDC cut,
MDC + RPC cut) of the particle identi�cation are plotted for positive polarity and
the RPC data. The histograms are divided into momentum slices of 5 MeV/c by the
black lines. In the right plots one slice (165 MeV/c - 170 MeV/c) is shown. The blue
data points are �tted with three Gaussian. The right Gaussian �ts the pion peak.
In the lower, right plot the red line indicates the additional β-cut. The improvement
is clearly visible.
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(a) Purity of the negative pions measured with
the RPC for di�erent momentum slices.
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(b) Purity of the positive pions measured with
the RPC for di�erent momentum slices.

Momentum [MeV/c]
60 80 100 120 140 160 180 200 220

)-  π
S

/(
S

+
B

) 
(T

O
F

 

0.2

0.4

0.6

0.8

1

MDC only

MDC + TOF/RPC

(c) Purity of the negative pions measured with
the TOF for di�erent momentum slices.
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(d) Purity of the positive pions measured with
the TOF for di�erent momentum slices.

Figure 4.9: Purity estimation for the pions after the MDC cut (red) and after both,
MDC + TOF/RPC cut, (blue), for di�erent momentum slices are shown. The left
�gures show the purity estimation for π− and the right ones for π+. The upper
Figures show the RPC data and the lower ones the TOF data. All slices were �tted
with three Gaussians and signal and background yield was determined by these �ts.
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4.3 One-dimensional Correlation function and

Corrections for π+ and π−

In order to calculate the correlation function a certain set of particles is prepared.
To select the pions we used the PID information from the MDCs and the TOF/RPC
system. The graphical cuts were shown in the previous section. To select only
primary pions we employ also a cut on the z component of the primary vertex
(−79 cm < z < 11 cm). With these cuts the pions for the correlation analysis are
selected.

4.3.1 Construction of the Correlation Function

To obtain the experimental correlation function the distribution of the relative mo-
mentum of two pions from the same event is divided by the distribution of the
relative momentum of two pions from di�erent events, which are by construction
not correlated. This method makes sure that only the correlation between the two
investigated particles remains

C(k) = N · Asame(k)

Bmixed(k)
(4.5)

N =

∫ 300 MeV/c
150 MeV/c Bmixed(k) dk∫ 300 MeV/c
150 MeV/c Asame(k) dk

. (4.6)

This connection is given by Equation 4.5, where k is the half of the absolute value of
the momentum di�erence of both pions in their center of mass frame. The calculation
of this quantity is given by

k =
1

2

√
(~p1 − ~p2)2 − (E1 − E2)2 =

1

2

√
(~p1CMS − ~p2CMS)2 = |~p1CMS | = |~p2CMS | .

(4.7)
N is a normalization factor, which is given by Equation 4.6. The momentum interval
(150 MeV/c - 300 MeV/c) is chosen outside of the correlation region, where the cor-
relation function is expected to be one. Events which are mixed are binned in their
multiplicity to mix events which have similar kinematic structure and additionally
the acceptance of the detector should be similar, which is taken into account by
mixing only events stemming from a similar z-vertex position. In this case the events
are classi�ed in three multiplicity and �ve z-vertex position classes, which are shown
in Table 4.2 and 4.3.
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Multiplicity Multiplicity
class (charged particles)

1 0 - 2
2 3 - 5
3 6 - 8

Table 4.2: Multiplicity (charged parti-
cles) classes for the event mixing

Vertex z position of the
class event vertex [cm]

1 -79 - -61
2 -61 - -43
3 -43 - -25
4 -25 - -7
5 -7 - 11

Table 4.3: z - position classes for the
event mixing

We don't have to take into account higher multiplicities than 8, because after
the track sorting there are no events with a higher multiplicity than that. Also the
vertex class order is reasonable, as it can be seen in Figure 4.10. The mixing bins,
displayed by the black lines, make sure that the mixed events stem from similar
target regions. Every event is stored according to the z-vertex and multiplicity
information. When enough events are stored for a certain con�guration the events
are mixed.

z [mm]
80− 60− 40− 20− 0 20

co
un

ts

0
20
40
60
80

100
120
140
160
180
200

310×

Figure 4.10: Primary z-vertex distribution of a subsample of all the events is shown.
The target geometry of three tungsten targets is clearly visible and the purple lines
mark the di�erent vertex classes which are used for the particle mixing.

After performing this for all particles which are identi�ed as pions, we get 1.148.386
real π− pairs and 8.920.792 mixed pairs. The statistics for π+ is much smaller
with 92.273 real pairs and 613.059 mixed pair. The main reason for this is that we
deal with an π− beam, which means there is an excess of negative charge as initial
condition for reactions with neutrons. In the case of a reaction with a proton there
is no charge excess, but due to the conservation of the baryon number we have to
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remain with either a positive baryon (proton) and at least one negative particle (e.g.
π−) or a neutral baryon (neutron) an something charge neutral (e.g. a π+π− pair).
Another point to consider is that positive charged pions with an momentum higher
than 600 MeV/c are always rejected due to the MDC PID-cut.
In Figure 4.11(a) and 4.11(b) the �rst results for the correlation functions are
shown. Unfortunately the long range behavior looks not like expected. In general
one would expect a �at distribution without correlations. Especially for the negative
pions it shows a peak at 500 MeV/c relative momentum. Apparently the mixed
event distribution fails for higher momenta. This could be caused by additional
correlations through the energy and momentum conservation and has to be studied
in the future. However we are interested in the region of small relative momenta
to gain information about the particle emitting source and this region looks like
expected for both pion types.
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Figure 4.11: Correlation functions for the identical pion pairs. There are still some
problems with the long range correlations, especially for the negative pions. However,
both curves show the expected correlation at low relative momenta.

4.3.2 Corrections

In order to extract information about the real correlation between the pions from
the correlation functions, a few corrections have to be done.

Close track e�ciency

Imagine two pions, which �y very close to each other into the detector, the detector
can't resolve them anymore and their hit points are combined to one track. This so
called track merging leads to a suppression of measured pion pairs at small relative
momenta. Since we use di�erent tracks by construction for the mixed event method,
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they are never merged. The fact that this lack of pairs only exists for Asame(k)
introduces a fake anti-correlation to the measured correlation function. In order to
correct this, one can reject pairs with too small relative angles for the same and
mixed event distribution. The easiest way to perform this correction is to look at at
a two-dimensional relative, angular distribution of the pion pairs. To every particle
track a polar angle Θ and a azimuthal angle Φ is assigned, when it is detected.
Both angles are calculated in respect to the beam axis. The di�erence of the polar
angles of both tracks (∆Θ) is plotted against the azimuthal angle di�erence (∆Φ ·
0.5(sin(Θpion1) + sin(Θpion2)). If one imagines two pions with a certain ∆Φ �ying
at Θa into the detector, their relative distance is di�erent compared to another pair
hitting the detector at a di�erent angle Θb but identical ∆Φ. This implies that we
have to scale ∆Φ with sin Θ. To compensate the di�erence both pions might have
in polar direction we scale with the mean of sin Θ of both pion. In Figure 4.12 these
distributions are shown for negative pion pairs from the same event (Figure 4.12(a))
and from mixed events (Figure 4.12(b)).
One can clearly see that the track merging only a�ects the histogram for same

events. Figure 4.12(c) represents the logarithmic plotted ratio of both distributions.
With rejecting an amount of track pairs within this region, the fake anti-correlation
can be reduced. The more merged tracks are rejected, the higher becomes the value of
the correlation function at small relative momenta. As soon as the whole suppression
region is rejected, the form of the correlation stays constant. A bigger cut would only
reduce the statistic. Di�erent radii and eccentricities were tested to cut the merged
tracks out of the sample and the best combination of reducing the fake correlation
and keeping as much statistics as possible is chosen. The best combinations are given
in Equation 4.8 and 4.9. In the case of negative pions the angular cut is shown as
black ellipse in Figure 4.12(c). For the positive pions the suppression is not visible in
the angular distribution, due to the worse statistic, and the size of the cut is adapted
by exploring the behavior of the correlation function by increasing the angular cut
range. When the correlation signal height keeps constant the optimal cut range is
found. The angular distributions are shown in the Appendix in Figure A.5.
In Figure 4.13 the correlations for small relative momenta are shown before (black)

and after (red) the cut in the angular distribution.
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(a) angular distribution for negative pion
pairs from the same event.
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(b) angular distribution for negative pion
pairs from mixed events.
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(c) The logarithmic ratio of distribution (a) and distribution
(b) makes the lack clearly visible.

Figure 4.12: The relative, angular distributions is shown for negative pion pairs from
the same event (a) and mixed events (b). The lower plot shows the ratio of both.
The suppressing of too close pairs through track merging is visible. The trackswithin
the black ellipse are rejected to correct the correlation function.
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(a) Correlation function for π− with (red)
and without (black) angular cut.
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(b) Correlation function for π+ with (red)
and without (black) angular cut.

Figure 4.13: Correlation functions with(red) and without(black) cut on the angular
distribution to reject merged tracks. The rise, caused by rejecting the merged tracks,
is maximized for the shown curves.

The used cuts for negative and positive pions are given by

π− :

√(
∆Φ · 0.5(sin(Θ1) + sin(Θ2))

10.08◦

)2

+

(
∆Θ

5.04◦

)2

> 1 (4.8)

π+ :

√(
∆Φ · 0.5(sin(Θ1) + sin(Θ2))

11.45◦

)2

+

(
∆Θ

5.73◦

)2

> 1 (4.9)

Comparison to Simulation

Furthermore the result can be compared to simulated data. As an event generator
we used the UrQMD simulation model [20]. Because the correlation e�ects are
not simulated, the correlation function is expected to stay �at. But due to the
simulated detector resolution the tracks are merged and we see an anti-correlation
also for the simulated data. Assuming our angular cut removes all the merged tracks,
the simulation should stay one after disposing this cut. The result of simulated
correlation function before and after the angular cut is shown for negative pions in
Figure 4.14.
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(a) Correlation functions before the angular
cut for negative pions.
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(b) Correlation functions after the angular
cut for negative pions.

Figure 4.14: The experimental (black) and the simulated (red) correlation functions
for negative pions are shown before (left) and after (right) the angular cut. One
can see that the anti-correlation for the simulated data disappears nearly completely
after the angular cut.

It is clearly visible that the angular cut reduces the anti-correlation for the simu-
lated data. Unless it becomes not exactly one in the �rst bin, we reduce the most
merged tracks. It should be mentioned that this result for the simulated data is not
very stable under changes in the particle identi�cation. The same approach was dis-
posed to the positive pions, but unfortunately in this range the simulated data does
not describe the expected behavior, as it is visible in Figure 4.15. The simulated
correlation function does not show the expected behavior but a positive correlation
before and after the angular cut.
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(a) Correlation functions before the angular
cut for positive pions.
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(b) Correlation functions after the angular
cut for positive pions.

Figure 4.15: The experimental (black) and the simulated (red) correlation functions
for positive pions are shown are shown before (left) and after (right) the angular
cut. Unfortunately the simulated correlation function does not show the expected
behavior at all.

In conclusion the simulated data shows that the angular cut has the right e�ect
for negative pions. However the simulation has to be improved because it doesn't
give physical results for the positive pions and is still very unstable for the negative
ones.

Coulomb interaction

Since pions are charged particles, their Coulomb interaction has to be taken into
account. We analyze correlations between identical pion pairs, whose Coulomb in-
teraction is repulsive due to their identical charge. This has the e�ect that the
correlation function is coulomb-suppressed for small relative momenta. This has to
be considered by analyzing the correlation. As it was mentioned in section 3.2 the
one-dimensional correlation function can be described with the following equation

C(k) = 1 − λ+ λ ·KCoulomb(k,R) ·
(

1 + e−(2kR)2
)
. (4.10)

The in�uence of such a KCoulomb(k,R) factor is illustrated in Figure 3.3. The
problem is that the Coulomb correction itself depends on the source radius which we
want to extract. At the beginning we use the point-like approximation which results
in the Gamow factor (R=0) for the Coulomb interaction. This approach is �tted
to the experimental correlation function and the �t result for R is used to calculate
the Coulomb factor for a source with this radius. Now this new Coulomb factor
is inserted into Equation 4.10 and the �tting procedure is repeated. This iterative
approach is repeated until the result for the radius stays constant. In the end the

37



Chapter 4 Analysis Methods

result is given by Rπ− = 1.40 fm and Rπ+ = 1.22 fm and the Lambda parameters
λπ− = 0.31 and λπ+ = 0.71. The �tted correlation functions for these parameters
are shown in Figure 4.16.
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(a) Correlation function for π− with full
Coulomb correction.
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(b) Correlation function for π+ with full
Coulomb correction.

Figure 4.16: The correlation functions are �tted with Equation 4.10. The �t results
are given by Rπ− = 1.40 fm and λπ− = 0.31 for the left plot and by Rπ+ = 1.22 fm
and λπ+ = 0.71 for the right one.

The strong interaction between two pions is so small that it can be neglected for
this analysis [16].
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4.4 Experimental Three-dimensional Correlation Function

4.4 Experimental Three-dimensional Correlation Function

Although the one-dimensional correlation function contains a lot of information, we
are interested in the di�erences of the correlation strength in beam and transverse
direction. For this purpose one can create a three-dimensional correlation function.
For the following analysis only pion pairs within all PID-cuts and with su�cient
angular distance (cp. Equation 4.8 and 4.9) are used.

4.4.1 Projection in the Three Dimensions

The one-dimensional correlation function depends on the invariant relative momen-
tum of two pions in their center of mass system. For the three-dimensional analysis
the longitudinally co-moving system, described in Section 3.3 is used. The next
steps are performed for the negative and also for the positive charged pion sample
analogously but only described once. A three-dimensional histograms is �lled with
kout, kside and klong. Afterwards the histogram is projected onto every axis once.
The projection is always performed in the interval 0 - 20 MeV/c at the other two
axes, since we are interested in the correlations at small relative momenta. To cal-
culate for example the distribution for kout all entries within kside, klong ≤ 20 MeV/c
are projected on the out-axis to get an one-dimensional histogram. This procedure
is performed for same and mixed events separately, which gives three same event -
mixed event histogram pairs. These historams can be treated like the ones for the
one-dimensional correlation function. Equation 4.5 is used and the normalization is
performed between 150 MeV/c and 300 MeV/c because in this area no correlations
are assumed. The resulting correlations are shown in Figure 4.17.

4.4.2 Three-dimensional Fit

In order to quantify the di�erences in the correlation signals, the three resulting
histograms are �tted with Equation 3.14 for every direction simultaneously in a
range of 0 - 150 MeV/c where the correlation is expected. For the Coulomb factor,
the di�erent results for π− and π+ from the one dimensional, iterative �tting are
used (cp. Section 4.3.2). A Summary of the �t results is given in Table 4.4.

π− π+

λ parameter 0.662(7) 0.96(5)
Rout 2.0801(19) fm 1.91(24) fm
Rside 1.4584(40) fm 1.30(6) fm
Rlong 1.484(8) fm 1.79(15) fm

Table 4.4: The result of the three dimensional �t with Equation 3.14 for π− and π+

are summarized in this Table.
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(a) Correlation strength between the identical pion pairs in out-
direction.
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(b) Correlation strength between the identical pion pairs in side-
direction.
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(c) Correlation strength between the identical pion pairs in long-
direction.

Figure 4.17: The three correlation functions for π− (black) and π+ (red) are �tted
with Equation 3.14 in a range of 0 - 150 MeV/c.
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Chapter 5

Results and Discussion

In this chapter the results of the three dimensional analysis are summarized, since
they are the main issue of this thesis.
Due to a three-dimensional correlation analysis in a longitudinally co-moving system,
we are able to extract the parameter Rout,Rside,Rlong and λ for correlations between
two negative and between two positive charged pions. The results are summarized
in Table 4.4.

The λ Parameter

The λ parameter for the positive pions is clearly bigger than the one for the negative
pions. This is in line with the result for the λs in the one dimensional �t (λπ− = 0.31,
λπ+ = 0.71). Referring to the theoretical meaning of the λ parameter (Section 3.4.1),
λ accounts the percentage of pions, which are Bose-Einstein correlated. A variation
from unity can be caused by misidenti�ed particles [17]. This means that the smaller
λ for the negative charged pions can arise from misidenti�ed electrons and especially
muons (cp. Section 4.2.3). Due to the conservation of the lepton number, we can only
produce single muons through a weak decay of a pion. Although cτ (7.8045m [3])
of the pions lays outside of the detector, a certain amount of the pions will decay
within the aperture. Since there are more π− than π+, this e�ect will lead to an
enhancement of negative charged muons. However the percentage of muons per
corresponding pions should be similar. The fact that all other processes only produce
µ+µ− - pairs leads to the same number of additional muons for both charges. Since
we have less π+ this leads to a higher ratio of muons per pion for the positive
charged particles. Thus, the higher purity of the positive pions must originate from
the di�erences in PID cuts.
Furthermore we use the Bowler-Sinyukov parametrization, which assumes a Gaussian
source. Especially for small sources this has not to be the case and since that it is
also possible that the λ parameter is smaller than unity because the source isn't
Gaussian.
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Chapter 5 Results and Discussion

The Radii

Since the source of the pions isn't static, the �tted radii cannot simply be equalized
to the space dimensions. They describe the space and time depended region where
the emitted pions interact until they freeze out and �y into the detector. This region
can be parametrized by the four vector xµ = (x, y, z, t), which gives the space time
coordinates of the last interaction of the pion pair relative to the e�ective source
center. The transverse velocity of the pion pair is given by βt and the longitudinal
velocity by βl. With this quantities one can calculate the radii like the following [21].

R2
side =

〈
y2
〉
, (5.1a)

R2
out =

〈
(x− βtt)2

〉
, (5.1b)

R2
long = 〈( z − βzt)2〉, (5.1c)

Rside correlates most directly with the source geometry, because we have no motion
of the pion pair into this direction. Therefore one can conclude that the source of
pions has a geometrical radius of Rside into the direction orthogonal to the beam
and orthogonal to the transverse velocity of the pion pair. This means a size of
1.46 fm for π−π− and 1.30 fm for π+π+. These values are in accordance to the order
of magnitude of the radii determined by the one dimensional analysis, which are
1.40 fm for π−π− and 1.22 fm for π+π+. Furthermore, values of a few fm represent
a realistic source volume compared to the size of the system consisting of a tungsten
nucleus (183.8

74 W) with a radius of about 1.3 ·A1/3 = 5.46 fm and a pion with a charge
radius of about 0.67 fm [3]. In heavy ion collision radii of 2 - 6 fm are measured [15],
since the system is much bigger. Altogether the measured values for Rside are in the
right order of magnitude.
The other both radii Rlong and Rout are dependent of the velocity of the particle
pair and the duration t of the emission. Because of that we are not able to make
any conclusions for the geometrical volume yet. One could use simulated data with
known reaction locations to solve this problem. If one �nds a connection between
radii and the absorption location for simulated data, it might be possible to draw
conclusions from these results to the geometric source of the measured pions.
The di�erences of the radii of the π− and π+ sources can either be caused by a

really di�erent size of the correlation regions or systematic errors. It is likely that
the values will lay within each others errors after adding systematic uncertainties,
because we expect the same behavior for both particle types.

42



Chapter 6

Conclusion and Outlook

Altogether one can say that it's possible to extract information about the source
of produced pions from the π− + W data of the HADES experiment. We were
able to extract spatio-temporal radii of the pion emitting source by performing a
three dimensional correlation analysis. However we cannot make clear statements
about the form of absorption location of the produced pions, since we are not able
to determine the geometric dimensions of the pion emitting source due to its time
dependence. In the future it might be possible to solve this problem with the help
of simulations.
To improve the results in general the �nite momentum resolution of the detector
has to be taken into account. Furthermore systematic errors have to be added. At
the end of the analysis the result has to be stable. In Figure 4.11 the correlation
functions for higher relative momenta are shown. The strange behavior especially for
negative pions should be resolved in the future, too. Afterwards the same analysis
can be applied to π− + C data, which was taken in the same run of HADES. Since
the Carbon nucleus is smaller, one expects a smaller absorption region which could
lead to smaller radii.
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Appendix A

Appendix

An illustration that the �tting procedure for the graphical energy loss versus mo-
mentum cut stays constant, is given in the following Figures.
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Figure A.1: The means of some �tted example slices for the π− cut are plotted for
data from the di�erent days. Day 189 and 190 are left out because they include
to few statistics for this �tting procedure, but for the other days the value stays
constant.
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Figure A.2: The means of some �tted example slices for the π+ cut are plotted for
data from the di�erent days. Day 189 and 190 are left out because they include
to few statistics for this �tting procedure, but for the other days the value stays
constant.
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Figure A.3: The σs of some �tted example slices for the π− cut are plotted for data
from the di�erent days. Day 189 and 190 are left out because they include to few
statistics for this �tting procedure, but for the other days the value stays constant.
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Figure A.4: The σs of some �tted example slices for the π+ cut are plotted for data
from the di�erent days. Day 189 and 190 are left out because they include to few
statistics for this �tting procedure, but for the other days the value stays constant.
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(a) angular distribution for positive pion pairs
from the same event.
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(b) angular distribution for positive pion pairs
from mixed events.
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(c) The logarithmic ratio of distribution (a) and distribution (b)
makes the lack clearly visible.

Figure A.5: The relative, angular distributions are shown for positive pion pairs from
the same event (a) and mixed events (b). The lower plot shows the ratio of both.
The suppressing of too close pairs through track merging is not visible due to the
worse statistic.

48



(a) (b)

Figure A.6: The mass versus momentum distribution after the two steps (MDC cut,
MDC + TOF cut) of the particle identi�cation are plotted for positive pions. They
are divided into momentum slices of 5 MeV/c by the black lines.
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Figure A.7: One example slice for the TOF data is shown for positive pions. The �t
does not describe the pion peak perfectly. Since it is smaller, the purity is underes-
timated For the TOF data.
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(a) (b)

(c) (d)

Figure A.8: The mass versus momentum distribution after the two steps (MDC cut,
MDC + TOF/RPC cut) of the particle identi�cation are plotted for negative pions.
They are divided into momentum slices of 5 MeV/c by the black lines and �tted in
the same way as the positive pions.
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