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Abstract

Quark-gluon plasma (QGP) is an extreme state of matter, characterized by deconfined
quarks and gluons, which can move freely. Its properties have been probed by studying
the collective behavior of the particles produced in ultra-relativistic heavy-ion collisions.
Measuring anisotropic flow, the hydrodynamic response of the QGP to the initial state
anisotropies, has allowed to constrain some of its transport properties, like the specific
shear viscosity η/s. Its value is lower than that of every other known liquid, causing QGP
to be dubbed a "perfect" fluid.
Anisotropic flow is quantified with flow amplitudes and symmetry planes, which are
degrees of freedom in the Fourier series expansion of the azimuthal distribution of pro-
duced particles. The development of multiparticle correlations techniques, followed by
the introduction of the formalism of uni- and multivariate cumulants, have revolutionized
anisotropic flow analysis. These methods combined allow the precision measurement
of flow amplitudes. Measurements of different collisions systems with various center
of mass energies have shown that the studies of flow amplitudes are not sufficient to
constrain all the properties of the QGP. Measurements have shown that there exists a
genuine correlation between different flow harmonics which hold new and independent
information about the QGP. These correlations can, for instance, be used to constrain
the temperature dependence of the specific shear viscosity η/s(T ).
This work presents the mathematical formalism and the generic framework for computing
multiparticle correlators. With these correlators, arbitrary cumulants as well as Symmet-
ric Cumulants (SC) can be computed using the individual flow amplitudes as fundamental
observables in the cumulant expansion. Cumulants are used for estimating the value of
flow harmonics and SCs are used for estimating the correlation between two or more
flow harmonics. The presented methods are being tested and verified using Toy Monte
Carlo simulations. The robustness of the observables to systematic biases origination
from non-flow correlations will also later be verified by analyzing data from the HIJING
event generator.
This work further presents the first differential study of multi-harmonic correlations ob-
tained with Symmetric Cumulants, SC(2,3), SC(2,4) and SC(2,3,4). We present the first
results for symmetric cumulants as functions of pseudorapidity η and transverse momen-
tum pT utilizing Pb–Pb collision at LHC from 2010 collected by the ALICE detector
with a collision energy of √sNN = 2.76TeV and show how granular the correlations can
be extracted using the available statistics. These differential studies provide new and
independent constraints both on initial conditions and on the properties of the QGP.

vi



1. Introduction

In this chapter we present a brief introduction into all necessary physical concepts to un-
derstand the properties of Quark-Gluon Plasma (QGP) and how they can be determined
by measuring anisotropic flow. In section 1.1 we review the theory of Quantum Chro-
modynamics (QCD) and discuss how two of its main features emerge: confinement and
asymptotic freedom. These features have a profound impact on how the QGP behaves. In
section 1.2 we discuss the QCD phase diagram and what conditions are necessary for the
QGP to form. These conditions can be met in heavy-ion collisions. Therefore we examine
the physics at play in heavy-ion collisions in section 1.3. The physical effects in heavy-ion
collision are very sensitive to the initial conditions of the collision so it is important to
be able to classify them. This is commonly done with dividing collisions into centrality
classes. The phenomenon of anisotropic flow is introduced in section 1.4 and how it
depends on the hydrodynamic properties of the QGP. The physics of anisotropic flow are
generally accessed by measuring so-called flow harmonics. However, measuring the flow
harmonics alone is not enough to fully constrain the properties of the QGP or to decide
if one theoretical model describes the physics of the QGP better than another. Therefore,
we show in section 1.5 how the fluctuation between different flow harmonics has been
used to gain more information about the QGP and how to constrain its properties even
further.

1.1. Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-Abelian SU(3) gauge theory that describes
the strong interaction between quarks and gluons[33, 34]. The associated charge, the
color, gives rise to the name Chromodynamics. In analogy with the three primary colors,
the color charge can take the three values: red, blue and green. Quarks carry one type
of color, antiquarks carry one type of anticolor (antired, antiblue or antigreen). The
mediators of QCD are called gluons, which also carry color charge. This is in contrast
to quantum electrodynamics (QED), which only has one single and neutral vector boson,
the photon. There are a total of eight gluons, each of which can be related to the eight
3×3 Gell-Mann matrices of SU(3). Since the gluons themselves are charged, this implies
that they can interact with each other.
Hadrons are composite bound state of quarks and antiquarks. They are categorized
mainly into two families: mesons and baryons. Mesons are bound states consisting of a
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1. Introduction

quark and anti-quark, while baryons consist of three quarks. The quark-antiquark pair
inside a meson carry opposite color charge and the quarks inside a baryon carry different
color, making both of these type of particles colorless. In fact, a single free quark or a
bound state which, in total, is not colorless, have yet to be observed. The interactions
between quarks and gluons is described by the QCD Lagrangian density[30]

LQCD =
∑
q

q̄(x)
(
iγµD

µ −mq

)
q(x)− 1

4g2
TrGµν(x)Gµν(x), (1.1)

where q(x) are the quark fields, mq the masses of the quarks, γµ the Dirac matrices, g the
coupling constant, Gµν(x) the gluon field strength tensor and Dµ the covariant derivative.
It is defined as

Dµ = ∂µ − iAa
µt

a, (1.2)

where Aa
µ are the gauge fields and ta the generators of SU(3). Using eq. (1.2), the field

strength tensors can be written as

Gµν(x) ≡ i[Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x)i[Aµ(x), Aν(x)]. (1.3)

The first term in eq. (1.1) describes the propagation of the quarks and their interaction
with gluons. The second term describes the propagation of the gluons and how they
interact among themselves.
The coupling constant characterizes the strength of the interaction. In QED, for instance,
the coupling constant αQED describes how strongly two electric charges attract or repel
each other. The force is strong at small distances, αQED is large, and small at large
distances, αQED is small. The exact opposite is observed in QCD and its coupling constant
αS . At small distances, or equivalently at large energies, the coupling constant is small.
When the distance increases or the energy decreases, the coupling increases. In Quantum
Field Theories (QFT), such as QCD, the beta function expresses the dependence of the
coupling constant α as a function of an energy scale Q[33]. It can be written as

β(α) =
∂α

∂ lnQ2 . (1.4)

In the case of QCD, its beta function is written as the series

β(αS) = −
(
b0α

2
S + b1α

3
S + b2α

4
S + . . .

)
(1.5)

where bi are the (i+ 1)-loop coefficients[35]. The most important feature is the minus
sign in eq. (1.5). From the result that b0 > 0[33], the overall signature indicates that the
coupling constant decreases with energy. At very large energies the coupling becomes so
small that the quarks become free particles. This phenomenon is known as asymptotic
freedom and is a property of non-Abelian gauge theories[8, 27, 28]. The running of αS is
shown in fig. 1.1. On the other hand, since the coupling increases as the distance between
quarks increases, its is not possible to observe quarks outside of a, in total, colorless
bound state. This feature of QCD is known as confinement[7]. If energy is provided

2



1. Introduction

Figure 1.1.: Running of the coupling constant αS as a function of the energy scale Q
measured using different processes[35].

to separate two quarks, the energy content of the field between them also increases.
This continues until such point that it becomes energetically more favorable to create a
new pair of quark-antiquark than further separating the two original quarks. Therefore,
instead of detecting a single quark, new mesons are produced. In collision in particle
accelerators, the provided energy is enough to produce a plethora of new quarks, gluons
and other force carrying bosons which then will create any possible particle species which
are subsequently measured in the detectors.
The running of αS does not only influence the phenomena related to the strong force, it
also prevents solving the QCD Lagrangian at small energies using perturbation theory[34,
28]. For large energies, hence small αS , summing the contributions of a finite amount of
interaction terms gives a good approximation to the solution of the Lagrangian. Many
important measurements have been tested with perturbative QCD, like the ratio of the
production cross section of e−e+ → hadrons and e−e+ → µ−µ+. For small energies,
hence large αS , non-perturbative techniques have to be used to solve the Lagrangian.
One approach is lattice QCD[13]. In this numerical approach quark fields are placed on
the nodes of space-time lattice while the connection between them are the gluon fields.
The lattice spacing is denoted with a and all physical quantities are then expressed in
terms of the spacing. The spacing a can be changed by changing the coupling in the QCD
Lagrangian. Finally, continuum QCD is restored when the spacing a tends to zero.

3



1. Introduction

1.2. Quark-Gluon Plasma

The two main features of QCD, asymptotic freedom and confinement, have important
consequences on the behavior of quark matter. As such, it is of interest to study its
thermodynamic properties as a function of temperature T and the net baryon density.
The phase diagram of QCD is represented in fig. 1.2. At low T and densities equal to one,

Figure 1.2.: Schematic of the QCD phase diagram where the different phases are indi-
cated[3]. The interrogation marks indicate some remaining open questions.
The QGP phase is colored in orange.

the quarks are confined inside hadrons and form ordinary matter. For lower densities the
matter exists in a hadronic gas state. If the density is raised instead, it is assumed that
the matter takes on the same properties as the matter inside neutron stars and may even
form a color superconductor at even higher densities. However, at large temperatures,
the quark matter forms the QGP. Whether the transition is a proper phase transition or
a smooth-crossover is also still an open question.
After the introduction of the quark model by Gell-Mann [6] and Zweig[39, 40], hadrons
could be explained as the bound state of quarks and gluons. The existence of deconfined
quarks was considered later and this state has been dubbed as Quark-Gluon Plasma.
At first perturbation theory at high temperatures suggested the QGP behaved like a
weakly interacting gas[30], but as was later discovered by analyzing experimental data
from LHC[10] and RHIC[12, 32], that is not the case. With the measurements of various
effects like anisotropic flow and jet quenching, it has been found that the QGP behaves like
a strongly interacting fluid. Moreover, a comparison with the predictions of relativistic
hydrodynamics with the data has shown that the ratio between the shear viscosity over
entropy density η/s, also known as the specific shear viscosity, is close to the lowest

4



1. Introduction

theoretical bound of 1/4π[16]. That is why it is sometimes referred to as a "perfect"
liquid[26, 10, 12].
Figure 1.2 also shows the conditions of the early universe, small densities and high
temperatures. QCD predicts that a high temperature QGP filled the universe in the
first few microseconds after the Big Bang[29]. This lasted until the universe expanded
and cooled down sufficiently for the quarks and gluons to recombine and form hadrons.
Investigation of the QGP is therefore fundamental to get a clear picture of the phase
diagram of quark matter as well as getting a better understanding of the evolution of the
universe in its early stages.

1.3. Heavy-ion Collisions

QGP can be produced through ultra-relativistic collisions of heavy ions. Since its dis-
covery in 2000, it has been observed and studied for many different collision systems
and nucleon-nucleon center of mass energies √

sNN . Some motivation for the various
configurations are the study of the formation onset of the QGP or how the different
shapes of the ions influence the QGP properties. For instance, in this thesis we analyze
the data set of Pb–Pb collisions at √

sNN = 2.76TeV recorded in 2010 with the ALICE
detector at the LHC. The produced QGP undergoes a time evolution as illustrated by
fig. 1.3. Heavy-ions are stripped of all their electrons and accelerated to velocities close to

Figure 1.3.: Simulation of the time evolution of a relativistic heavy-ion collision[20].

the speed of light. At these speeds relativistic Lorentz contraction become non-negligible
and the collision of the two ions can be seen as the collision of two discs in the laboratory
frame. This is illustrated in the two left panels in fig. 1.3. The Lorentz contraction has
two important consequences. Firstly, the density of quarks and gluons is higher in the
disc than in the initial ion. Secondly, the collision time is a well defined value, identical
for all nucleons[31].
The geometry of the collision influences the evolution of the produced matter. The overlap
of the ions at the time of impact is with the impact parameter b, defined as the distance
between the centers of two nuclei. Collisions with b = 0, when the nuclei perfectly overlap,
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1. Introduction

are called head-on or central collisions. If b is close to the sum of the radii the ions barely
scratch each other, the collision is called peripheral. The reaction plane, or collision plane,
is the plane spanned by the impact parameter vector b, which points from the center of
one ion to the other, and the beam axis z. Its angle with respect to the x-axis is denoted
with ΨRP . An illustration of the collision geometry is shown in fig. 1.4.

z

b ΨRP

x

y

Figure 1.4.: Ideal collision geometry between two heavy ions, indicated with a shaded red
and blue circle. The interacting region is marked with an orange ellipse. The
arrow indicates the impact parameter vector b. The angle of the reaction
plane ΨRP is denoted with a dashed line. Based on [36].

The nucleons in the colliding ions can be divided into two groups. The ones which take
part in the collision, the participants, are all inside the overlapping region, here indicated
with an orange ellipse. The nucleons which do not contribute to the collision, the specta-
tors, are inside the shaded blue and red region. While both the impact parameter and the
reaction plane can be used to make theoretical prediction, they are not experimentally
accessible. However, it is possible to measure the number of newly produced particles,
the released energy in the collision and the number of spectators[30]. The number of
newly produced particles is also called multiplicity. Both the multiplicity and the released
energy are proportional to the number of participants and their respective distribution
can be used to categorize the events into centrality classes. The distribution of the 5%
highest multiplicity events can be related to the 5% most central collisions[5]. Figure 1.5
illustrates the centrality classification and its connection to the impact parameter and
the shape of the overlapping region of the collision. For an event with a given impact
parameter, the multiplicity or number of participants can be related to theoretical quan-
tities like the number of wounded nucleons, i.e. the nucleon which interacted at least
once, and the number of binary collisions between nucleons. This can be done with
the help of the Glauber model[30, 19, 2, 18]. There are two versions of the Glauber
model. The one described here and the one mostly used in practice is the Monte Carlo
Glauber (MC-Glauber) model. The nucleon density of the initial ions in the MC-Glauber
model is given by a Woods-Saxon distribution[30] and the number of binary collision is
approximated as the number of successive independent interactions of the nucleons under
the assumption that the nucleons do not change their path after an interaction. More-
over, the MC-Glauber model takes as one of its inputs the nucleon-nucleon cross-section
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1. Introduction

Figure 1.5.: Schematic view of the definition of centrality classes based on the multiplicity
of an event[30]. The corresponding impact parameter b and the number of
participants is shown.

7



1. Introduction

obtained from pp collision at various energies and assumes that they stay constant after
each individual nucleon-nucleon collision.
Once the ions collide, the evolution of the quark matter begins. The first processes to
happen are so-called hard process with large transferred momenta. These hard particles
are the origin of phenomena like jets, direct photons or pairs of dileptons and can be
traced back to this pre-equilibrium phase. The bulk of the quarks and gluons liberated
by the collision produces a volume of matter that evolves until thermal equilibrium is
reached. In the pre-equilibrium state hydrodynamics can not be applied yet. Here other
models are used, like the MC-Glauber model or TRENTO[21]. As the state continues
to develop and the partons interact with each other the volume quickly reaches a local
thermal equilibrium. The phase after the thermalization is known as QGP, where rel-
ativistic viscous hydrodynamics can be applied. It is visible after the fourth panel in
fig. 1.3. The QGP expands until the local thermal equilibrium disappears. The density
and temperatures decrease until they reach a point where the quarks and gluons can
recombine into hadrons. This corresponds to the crossing between the phases in the QCD
phase diagram in fig. 1.2. This phase is called hadronization and leads to the formation
of a hot hadronic gas. The energy density continues to decrease as the gas expands. The
hadrons within are constantly changing due to inelastic interaction until the so-called
chemical freeze-out. At this point the number of particles and species do not change any
more but the particle momenta can still change due to elastic interactions. The next
stage is the thermal (or kinetic) freeze-out, when all elastic scatterings stop and the final
state particles fly freely to the detectors. The only changes happening to particles are
now the decay of particles and the interactions with the detector material. Lastly, as the
collision between two heavy ion simulate the conditions which are predicted to be the
ones of the Big Bang and the time evolution of the produced matter is similar in the two
cases, relativistic heavy-ion collisions are sometimes called Little Bangs[32, 11].

1.4. Anisotropic flow

It was first proposed to describe the evolution of the system created by the collision of
two ions by Landau in 1953[17]. Hydrodynamic predictions were first confirmed with
measurements at RHIC where they were found to in good agreement with the data. Ideal
hydrodynamics can only be applied if the system is close to thermodynamic equilibrium.
Hydrodynamic laws are based on the thermodynamic properties of the system, like
temperature, pressure and energy density and these quantities are well defined only if
the system is close to equilibrium[15]. Hence, the hydrodynamic description is only valid
from the thermalization of the interacting matter up to the chemical freeze-out. This also
means that initial conditions have to be provided for an accurate description. We already
discussed how the MC-Glauber model can be used to obtain these initial conditions.
In non-central collisions the overlapping region of the two colliding nuclei is to leading
order elliptical in the transverse plane as illustrated by fig. 2.1[38]. But this geometrical
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1. Introduction

asymmetry fails to explain the results observed in central events as the overlap region is
mainly circular. There is another source of anisotropy in the system which is given by
the nature of the collision of two ions. They are not ideal, smooth spheres, but composite
objects consisting of protons and neutrons. The position of the nucleons fluctuate event-
by-event, which leads to deformations of the overlapping region. These fluctuations are
present in all centralities, but they dominate in events with small centrality.
The spatial asymmetry results in anisotropic pressure gradients inside the volume which
contains the thermalized nuclear matter[25]. The insertion of these pressure gradients
inside the equation of motions leads to a transfer of the anisotropy in the coordinate space
into an isotropy in momentum space. This transfer, called anisotropic flow phenomenon
or simply anisotropic flow, can therefore be interpreted as the medium response to the
initial geometry of the system[38, 25]. Figure 1.6 summarizes the full phenomenon.

Figure 1.6.: Illustration of the anisotropic flow phenomenon, taken from[24]. The creation
of the elliptic shape of the interacting volume in non-central collisions (a)
and the transfer of coordinate space anisotropies (b) to momentum space
anisotropies (c).

1.5. Correlation between flow amplitudes

The idea to measure the correlation between two different flow amplitudes vn and vm
has been first proposed in [23] and the idea has been further refined in the context of the
newly developed generic framework in [4]. Since then SCs have become one of the most
commonly known observables to measure the genuine correlations between vn and vm.
The generalization to compute the correlations between three and more flow amplitudes
was performed in [20].
The measurement of the correlation between flow harmonics is of great interest because
they contain information that cannot be gained by measuring the individual flow har-
monics. In particular, even though by measuring the values of the flow harmonics it
is possible to constrain the value of the specific shear viscosity of the QGP, it is not

9
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possible to make a statement about its functional dependence on the temperature. This
conundrum is illustrated in fig. 1.7. The results have been presented with the theoretical

Figure 1.7.: Figure taken from [20]. In the top plot the centrality dependence of the
correlation between v2 and v4 (SC(2,4)) in red and v3 and v4 (SC(3,4)) in blue
is shown from ALICE in Pb–Pbcollisions at √sNN = 2.76TeV[1]. The results
are compared to the theoretical predictions of different parameterizations of
η/s(T ) in the bottom left. The various parameterizations have the same
average value ⟨η/s(T )⟩ = 0.20[22]. The centrality dependence of the two
particle cumulants of various vn with the corresponding theoretical prediction
to the parameterizations is shown in the bottom right[22].

predictions for various parameterizations of the temperature dependence of η/s. These
parameterization are shown in the bottom left panel of fig. 1.7 and they all have the same
average ⟨η/s(T )⟩ = 0.20[22]. We can draw two conclusions from these results. Firstly, the
SCs are sensitive to η/s(T ), while the measurement of vn are sensitive only to ⟨η/s(T )⟩,
meaning there is no distinction between the details of the temperature dependence. Sec-
ondly, no single parameterization can describe both SC(4,2) and SC(3,2) in all centrality
classes at the same time. From these two points it is clear that the SCs give information
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that is not accessible from the measurements of single flow amplitudes and they allow the
application of new constraints on the theoretical model used to describe the QGP evolu-
tion and properties. In this work we go even further and extract even more information
about the QGP with the help of SCs by studying them more differentially. We extract
the transverse momentum and pseudorapidity dependence of the correlation between two
and three flow harmonics.
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2. Analysis Framework

In this chapter we present the theoretical framework and analysis techniques to study
anisotropic flow at the Large Hadron Collider. We start by introducing the underly-
ing probability density function of azimuthal angles of particles produced in heavy-ion
collisions in section 2.1. The parameters of this function are the symmetry planes and
anisotropic flow harmonics and are directly connected to the properties of the QGP. In
this thesis we only study the anisotropic flow harmonics. In section 2.2 we show the
generic principle by which we can estimate the value of a flow harmonic from data if the
symmetry planes are known. Since there is no reliable way to estimate symmetry planes
in a single heavy-ion collision, we will introduce in section 2.3 multiparticle correlation
techniques which are a precision tool for estimating flow harmonics in heavy-ion collision
with large multiplicities. The draw back with using multiparticle correlation techniques
is that their (naive) computation for higher-order observables requires multiple passages
over the data, making them computational very expensive. However, using the formalism
of Q-vectors, introduced in sections 2.4 to 2.6, we can compute any multiparticle corre-
lator with a single passage. Further taking into account that there are other sources of
correlations among the particles aside from anisotropic flow we introduce more robust
observables in form of cumulants of flow harmonics in section 2.7. These observables
manage to suppress the contribution of so-called non-flow while preserving the flow signa-
ture. To compute the statistical uncertainty of such high-level observables we will use the
Bootstrap method detailed in section 2.8. In sections 2.9 to 2.11 we take all techniques
we described and introduce and validate a generic framework for computing observables
such as cumulants from arbitrary multiparticle correlators with Q-vectors. Lastly, in
section 2.13 we introduce Symmetric Cumulants (SC), which are the main observable in
this thesis. Unlike cumulants, which can estimate the value of a flow harmonic, symmetric
cumulants estimate the correlations between different flow harmonics and provide further
and independent constraints for QGP. The proofs for mathematical statements made in
chapter 2 can be found in appendix A.
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2. Analysis Framework

2.1. Fourier expansion of probability density function of
azimuthal angles

The azimuthal angle φ of particles produced in a heavy-ion collision is a random variable
whose sample space is on the interval [0, 2π). A schematic view of an non-central collision
can be seen in fig. 2.1. As it is a periodic quantity we can expand its probability density

z

b
ΨRP

φ

ΨRP

x

y

Figure 2.1.: Schematic view of a non-central heavy ion collision in the transverse plane.
The azimuthal angle of a produced particle is indicated with a violet arrow
and labeled with φ.

function (PDF) in a Fourier series as

f(φ) =
1

2π

[
1 + 2

∞∑
n=1

(cn cos (nφ) + sn sin (nφ))

]
, (2.1)

where

cn =

∫ 2π

0
dφf(φ) cos(nφ) , (2.2)

sn =

∫ 2π

0
dφf(φ) sin(nφ) . (2.3)

This expansion can be illustrated with a simple example, like the normalized linear
function f (φ) = 1

2π
2φ on the interval [0, 2π). Using eqs. (2.2) and (2.3) the coefficients

are
cn = 0 (2.4)

and
sn = − 1

πn
(2.5)
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for n ∈ N. The Fourier series with the first 10 coefficients can be seen in fig. 2.2. This
example highlights some general features of the Fourier Series. Firstly, the expansion
actually tends towards the original function using enough coefficients and the coefficients
tend to decrease in magnitude with increasing n. In this case we can see from eq. (2.5)
that sn ∝ 1

n . This means in general we are mostly concerned with computing the
lowest order coefficients to capture the most important features of the PDF. While the

0 1 2 3 4 5 6
ϕ
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0.35)ϕf(

normalized linear pdf

Fourier Series

Figure 2.2.: Normalized linear PDF and its Fourier series with the first 10 coefficients.

parameterization of the Fourier series as shown in eq. (2.1) is quite common, it is not the
only possible parameterization and not the favored one in anisotropic flow analysis. We
will use the following parameterization instead [36]:

f(φ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos[n(φ−Ψn)]

]
, (2.6)

where vn are the anisotropic flow harmonics and Ψn are symmetry planes. The relation
between the parameters of the previous definition and the new parameters read

vn =

√
c2n + s2n (2.7)

and
Ψn =

1

n
arctan

sn
cn

. (2.8)

With this decomposition we have a more natural way of thinking about the parameters
in terms of amplitudes vn and phases Ψn. It is also possible to define cn and sn, as well
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as vn and Ψn, with a negative index. Due to the symmetry of the Fourier Series we can
establish the following relations

c−n = cn , (2.9)
s−n = −sn (2.10)

and

v−n = vn , (2.11)
Ψ−n = Ψn , (2.12)

which will be needed later. The flow harmonics have unique names depending on their
order, in particular

• v1 is directed flow,

• v2 is elliptic flow,

• v3 is triangular flow,

• v4 is quadrangular flow and so on.

The most interesting harmonic to study is elliptic flow v2. Due to its low order it carries
a lot of information about the PDF and since the initial collision geometry in non-central
collisions is to leading order elliptic it is by far the largest harmonic. The directed flow
v1 also contains much information, but it is sensitive to many other processes and it is
difficult to disentangle all those contributions.

2.2. Estimation of anisotropic flow harmonics

The PDF of an experimental variable is generally not known and cannot be directly
determined by the experiment. Instead, we are estimating flow harmonics by using
expectation values, which are essentially averages. To compute the average value of some
observable X which is distributed according to some PDF f(X) on some interval [a, b],
we need to compute the integral

⟨X⟩ =
∫ b

a
dXXf(X) . (2.13)

This can be generalized to functions of the observable, like g(X), which leads to

⟨g(X)⟩ =
∫ b

a
dXg(X)f(X) . (2.14)
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Our goal is now to use some function g (φ) such that we can estimate vn from computing
some average. To this end we make the ansatz

g(φ) = cos [n (φ−Ψn)] (2.15)

and compute its expectation value. The result reads

⟨cos [n (φ−Ψn)]⟩ = vn . (2.16)

This results gives us the ability to compute flow harmonics for arbitrary n. We can
illustrate the validity of this result using a simple Monte Carlo study. Let us assume
a PDF expanded as in eq. (2.6), where all harmonics are zero, except v2 = 5 × 10−2.
We generate 10 000 events and sample 1500 particles each, compute cos [2 (φ−Ψ2)] and
fill the resulting data into a TProfile object1. In each event Ψ2 was given a uniformly
random value between 0 and 2π. The result can be seen in fig. 2.3. The main issue with
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Figure 2.3.: TProfile holding the expectation value of v2 for 10 000 events with 1500
particles each, computed using eq. (2.16). The expected value of v2 =
5 × 10−2 is marked with a red line. The mean value over all events is
⟨v2⟩ = (4.9997± 0.0182)× 10−2.

this type of analysis is that there is generally no reliable way to estimate any Ψn for

1A TProfile is a class object of the ROOT framework developed for data analysis in high energy physics.
It is very similar to a histogram, but instead of counting the number of entries in each bin it carries
the mean value of the bin entries in each bin. They are very useful for computing single- and all-event
averages.
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any event. So we need to find a way to extract flow harmonics from the data without
knowing symmetry planes. This can be achieved by utilizing multiparticle correlation
techniques.

2.3. Multiparticle correlation techniques

When only collective flow is present, all produced particles are emitted independently to
each other, and are correlated only to some common symmetry plane. This implies that
the joint PDF for any number of particles will factorize as

f(φ1, . . . , φn) = fφ1
(φ1) . . . fφn

(φn) , (2.17)

where for each φi the functional form of the normalized marginalized PDF, fφi
(φi), is

the same and given by a Fourier series as in eq. (2.6). Based on this reasoning, one
can build up in principle infinitely many independent azimuthal observables sensitive to
various combinations of flow harmonics and corresponding symmetry planes by adding
more and more particles to the correlators. Using multiparticle correlation we can now
construct correlators that can estimate flow harmonics without having any knowledge
about symmetry planes. As an example, we can use a two-particle correlator to estimate
vn with

⟨2⟩ ≡ ⟨cos [n(φ1 − φ2)]⟩ , (2.18)

=

M∑
k,l=0
k ̸=l

cos [n(φk − φl)] , (2.19)

= v2n , (2.20)

where M is the number of particles in the event, φk is the azimuthal angle with of the kth
particle and the condition k ̸= l eliminates the trivial but dominate self-correlations. This
example shows that we can construct powers of flow harmonics by computing multiparticle
correlators. Once again we can illustrate this result using the same Monte Carlo study
as in the section 2.1. Let us again assume a PDF expanded as in eq. (2.6), where all
harmonics are zero, except v2 = 5 × 10−2. Now we generate 10 000 events and sample
1500 particles in each event, compute the two-particle correlator ⟨2⟩ and put the result
into a TProfile. In each event Ψ2 was given a uniformly random value between 0 and 2π.
The result can be seen in fig. 2.4.
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Figure 2.4.: TProfile holding the expectation value of v22 for 10 000 events with 1500
particles each, computed using ⟨2⟩ with nested loops. The expected value of
v22 = 2.5× 10−3 is marked with a red dashed line. The mean value over all
events is

〈
v22

〉
= (2.5037± 0.0047)× 10−3.
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2.4. Q-vector

Multiparticle correlators are a good tool for computing flow harmonics, but they are
computationally very expensive. If we were to compute a k particle correlator, we would
have to compute an expectation value with k nested loops over all M particles produced
in an event. That means the computation time would scale like Mk, which is not feasible.
That is why in practice we express multiparticle correlators in terms of Q-vectors. Using
Q-vectors to compute multiparticle correlators gives the exact same analytical result as
if computing it with a nested loop. A Q-vector evaluated in harmonic n is defined as

Qn =

M∑
k=1

einφk , (2.21)

where M is the multiplicity. Using this definition we can express the two-particle correlator
from before like

v2n = ⟨cos [n (φ1 − φ2)]⟩ =
1(

M
2

)
2!

(
|Qn|

2 −M
)
, (2.22)

where Qn can be computed in only one loop over all M particles. To validate this result,
we perform the same Monte Carlo study again as in section 2.3. The result can be seen
in fig. 2.5. Both techniques produce the exact same value of v22, namely(

vnested loop
2

)2
=
(
vQ-vector
2

)2
= 2.5037× 10−3 , (2.23)

but using Q-vectors is orders of magnitudes faster. The comparison of the runtime using
Q-vectors and a nested loop with only two levels can be seen in table 2.1.

Table 2.1.: Comparison of runtime between nested loops and Q-vectors for v22. The
runtime was measured for a computation of 10 000 events with 1500 particles
per event. It was tested on a machine equipped with an Intel(R) Core(TM)
i5-2520M CPU @ 2.50GHz. Using Q-vectors is roughly 90 times faster.

technique runtime [s]
nested loop 2167

Q-vector 24
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Figure 2.5.: Expectation value of v22 for 10 000 events with 1500 particles each, computed
using ⟨2⟩ with Q-vectors. The expected value of v22 = 2.5× 10−3 is marked
with a red dashed line. The mean value over all events is

〈
v22

〉
= (2.5037±

0.0195)× 10−3.
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2.5. Multiplicity fluctuations

In the Monte Carlo studies used so far we always assumed to have the same multiplicity
in each event. This is obviously not the case for real data. While this is not a problem
when computing correlators with nested loops, if we use Q-vectors we have to be very
careful when computing all-event averages. For the case of a two-particle correlator and
using nested loops, we fill M (M − 1) values into the TProfile for each event, where the
multiplicity M fluctuates from event to event. That means if we compute the mean
value over all entries, the multiplicity of each event is then taken into account and the
correct result is produced. In contrast to using Q-vectors, we compute the Q-vector
for each event and just fill this one value into the TProfile. If we were to compute the
mean value now, the value would be wrong because all Q-vectors would carry unit weight,
even though each Q-vector represents a different number of particles or more precisely, a
different number of combinations of particles. To account for this discrepancy, we weight
each Q-vector appropriately with its combinatorial weight, which in case of a two-particle
correlator is M (M − 1). This ensures that we get the exact same analytical results as
if we were computing the multiparticle correlator using nested loops. We can show the
validity of this statement once again with a Monte Carlo study. Let us again assume a
PDF expanded as in eq. (2.6), where all harmonics are zero, except v2 = 5× 10−2. Now
we generate 10 000 events and sample a random number of particles between 500 and
1500 in each event, compute the two-particle correlator and put the result into a TProfile.
Additionally, in the case of using Q-vectors, we assign to each event its combinatorial
weight depending on the multiplicity. The results can be seen in figs. 2.6 and 2.7. The
all-event averages are exactly the same value, namely(

vnested loop
2

)2
=
(
vQ-vector
2

)2
= 2.5520× 10−3 . (2.24)
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Figure 2.6.: Expectation value of v22 for 10 000 events with a number of particles between
500 and 1500 each, computed using ⟨2⟩ with nested loops. The expected
value of v22 = 2.5× 10−3 is marked with a red dashed line. The mean value
over all events is

〈
v22

〉
= (2.5520± 0.0131)× 10−3.
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Figure 2.7.: Expectation value of v22 for 10 000 events with a number of particles between
500 and 1500 each, computed using ⟨2⟩ with Q-vectors. The expected value
of v22 = 2.5 × 10−3 is marked with a red dashed line. The mean value over
all events is

〈
v22

〉
= (2.5520± 0.0357)× 10−3.
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2.6. Multiparticle correlator

We already introduced why and how we use multiparticle correlation techniques, but in
the Monte Carlo studies shown so far we only looked at correlation between two particles.
In general, we only refer to multiparticle correlations as such when we study correlations
of at least three particles. Therefore, we will now introduce a real multiparticle correlator
and verify that the results of the previous sections still hold. The four-particle correlator
is defined as

⟨4⟩ ≡ ⟨cos [n (φ1 + φ2 − φ3 − φ4)]⟩ = v4n . (2.25)

Using this correlator we can estimate the fourth power of a flow harmonic with arbitrary
n. To evaluate this correlator explicitly, we would, as mentioned in section 2.4, have to
compute a nested loop with four levels over all events. As this is computationally not
feasible, we rewrite this correlator analytically in terms of Q-vectors. The analytic result
reads

⟨4⟩ = 1(
M
4

)
4!

[
|Qn|

4 + |Q2n|
2 − 2Re(Q2nQ

∗
nQ

∗
n)

−4 (M − 2) |Qn|
2 + 2M (M − 3)

]
.

(2.26)

Let us again assume a PDF expanded as in eq. (2.6), where all harmonics are zero, except
v2 = 5× 10−2. Now we generate 10 000 events and sample a random number of particles
between 500 and 1500 in each event, compute ⟨4⟩ and put the result into a TProfile.
Additionally, since we are using Q-vectors, we assign to each bin its combinatorial weight
depending on the multiplicity, which in this case is M(M −1)(M −2)(M −3). The result
can be seen in fig. 2.8. As with the two-particle correlator, the all-event average is close
to the expected result.
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Figure 2.8.: Expectation value of v42 for 10 000 events with a number of particles between
500 and 1500 each, computed using ⟨4⟩ with Q-vectors. The expected value
of v42 = 6.25× 10−6 is marked with a red dashed line. The mean value over
all events is

〈
v42

〉
= (6.3640± 0.3074)× 10−6.
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2.7. Cumulants

All machinery developed thus far has relied on the assumption that eq. (2.17) holds, which
has been the case for the Monte Carlo studies performed until now. However, in a real
experiment we expect to have correlations between subsets of particles, for example due
to interactions, resonance decays, jets, detector artifacts and so on. All these sources of
correlations among only a subset of particles are typically called non-flow. Any non-flow
contribution spoils the equality in eq. (2.17), which in turn spoils all the methods we
developed so far for analyzing data of real experiments. This means we have to use new
observables which are sensitive to flow and less sensitive to non-flow. Before we introduce
these observables, lets us first have a look at how the contribution of non-flow would scale
to a k-particle correlator ⟨k⟩. Assume we have an event in which M ≫ k particles are
produced and non-flow is present in form of a single jet or resonance decay, correlating k
particles. If we were to compute the non-flow contribution δk to ⟨k⟩ it would scale like

δk ∼ k − 1

M − 1
· k − 2

M − 2
· . . . · 1

M − (k − 1)
≈ 1

Mk−1
, (2.27)

because the probability of picking particles which are part of the jet or decay is the
fraction between the number of particles left to pick for the k-particle correlator and all
other particles left in the whole event. On the other hand if more than k particles are
correlated due to non-flow it would scale like

δk ∼ k

M − 1
· k − 1

M − 2
· . . . · 2

M − (k − 1)
≈ 1

Mk−1
, (2.28)

using the same argument as for eq. (2.28). This means we expect the contribution δk of
non-flow to ⟨k⟩ to scale like

δk ∼ 1

Mk−1
, (2.29)

telling us, that the scaling of the non-flow contribution is only determined by the order
of the multiparticle correlator, which is equal to k. This argument also holds if less
than k particles are correlated. In fig. 2.9 this principle is demonstrated for a 4-particle
correlator. In contrast, the contribution of flow δflowk to ⟨k⟩ scales like

δflowk ∼ M − 1

M − 1
· M − 2

M − 2
· . . . · M − (k − 1)

M − (k − 1)
≈ 1 , (2.30)

because flow is a collective effect, we will always pick another particle which is correlated
to the first one due to flow. This means, in general multiparticle correlators have both
non-flow and flow contribution, which can be schematically written as

⟨k⟩ ≃ δk + δflowk + · · · , (2.31)

≃ 1

Mk−1
+ vk + · · · , (2.32)

26



2. Analysis Framework

Figure 2.9.: Example of how the non-flow contribution scales for a 4-particle correlator.
In the top part of the figure, particle p1, . . . , p4 are correlated by non-flow. In
the bottom part of the figure, particles p1, . . . , p5 are correlated by non-flow.
As we can see in both cases the non-flow contribution scales as 1

M
3 , only

depending on the order of the correlator.

where we used the scaling of δk and that we can rewrite δflowk as the kth power of some flow
harmonic vn. The key question is how can we isolate the genuine k-particle correlation
from the measured k-particle correlator. For this purpose we use cumulants. Cumulants
are objects which quantify the genuine correlation between stochastic variables as a
function of moments. To illustrate this, let us look at the most general decomposition of
a joint p.d.f of two random variables X1 and X2, namely

f (X1, X2) = fX1
(X1) fX2

(X2) + fc (X1, X2) , (2.33)

where the product of the marginal PDF of X1 and X2 parameterize their independence
of each other and fc the genuine correlation. This decomposition can not be done in
general, but if we compute the expectation values on both sides, we receive

⟨X1X2⟩ = ⟨X1⟩ ⟨X2⟩+ ⟨X1X2⟩c , (2.34)

where ⟨X1X2⟩c is by definition a 2-particle cumulant. Since we cannot measure cumulants
directly, but we can measure moments, we invert this relation to

⟨X1X2⟩c = ⟨X1X2⟩ − ⟨X1⟩ ⟨X2⟩ , (2.35)

which describes the 2-particle cumulant as a function of moments. This is also true for
any higher order cumulant. Now, we want to derive an expression which lets us compute
some flow harmonic vn as a function of a 2-particle cumulant. For this purpose we choose
our stochastic variables to be X1 = einφ1 and X2 = e−inφ2 respectively2. Plugging this
into eq. (2.35) and performing averages not only over one event, but many events, results

2In the appendix A.6 we showed that
〈〈

e
in(φ1−φ2)

〉〉
and ⟨⟨cos [n (φ1 − φ2)]⟩⟩ give the same result, so

they can be used interchangeably.
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in

cn {2} ≡
〈〈

ein(φ1−φ2)
〉
c

〉
=
〈〈

ein(φ1−φ2)
〉〉

−
〈〈

einφ1

〉〉
︸ ︷︷ ︸

=0

〈〈
e−inφ2

〉〉
︸ ︷︷ ︸

=0

, (2.36)

= ⟨⟨2⟩⟩ , (2.37)

=
〈
v2n

〉
≡ (vn {2})

2 , (2.38)

where we adopted the notation cn {2} for the 2-particle cumulant, vn {2} for the flow
harmonic vn estimated by a 2-particle cumulant and used eq. (2.20) to rewrite the 2-
particle correlator as the square of vn. The double angle bracket notation means that at
first we take the average with respect to data belonging to only one event and afterwards
averaging the results over all events in the data set. This is also the reason why the
expectation values computed over a single azimuthal angle evaluate to 0. Averaging
over a single event gives a term whose real part is proportional to the cosine and whose
imaginary part is proportional to the sine of the symmetry plane Ψ. Since the symmetry
planes are uniformly randomly distributed between 0 and 2π, the average over the cosine
and sine vanish. Using this formalism analogously for the 4-particle case, where we set
X1 = einφ1 , X2 = einφ2 , X3 = e−inφ3 and X4 = e−inφ4 , we arrive at

cn {4} ≡
〈〈

ein(φ1+φ2−φ3−φ4)
〉
c

〉
= ⟨⟨4⟩⟩ − 2 ⟨⟨2⟩⟩2 , (2.39)

=
〈
v4n

〉
− 2

〈
v2n

〉2
, (2.40)

≡ − (vn {4})
4 , (2.41)

where we introduced the same notation as before and used additionally eq. (2.25) to
evaluate the 4-particle correlator. Finally, using these relations, we introduce our main
observables, namely vn {2} and vn {4}, which are harmonics vn estimated via 2- and
4-particle cumulants, respectively. Inverting the previous results, they are defined as

vn {2} =
√

cn {2} , (2.42)

vn {4} = 4
√
−cn {4} . (2.43)

Using these equation and expanding the RHS in terms of Q-vectors gives so-called Q-
cumulants (QC). As we discussed before, evaluating multiparticle correlators explicitly is
in general not feasible, so going forward all cumulants will be computed using Q-vectors,
even though we may not refer to them explicitly as QCs. These results can also be
verified with a Monte Carlo study. Let us assume a PDF expanded as in eq. (2.6), where
all harmonics are zero, except v2 = 5 × 10−2. We generate 10 000 events and sample a
random number of particles between 500 and 1500 in each event, compute the 2- and
4-particle correlator using Q-vectors, average over all events and use eq. (2.42) to compute
v2 {2} and v2 {4}. The results read

v2{2} = (5.0517± 0.0373)× 10−2 , (2.44)

v2{4} = (5.0802± 0.2635)× 10−2 . (2.45)
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The result for v2{2} is very close to the theoretical value of v2 = 5 × 10−2 while vn{4}
differs a bit more. That is due to the fact that for vn{4} we need to compute correlators
of a higher order than for vn{2}. The higher the order of the correlators, the more
statistics are needed for a numerically stable result. Since both cumulants were computed
on the same data set, this explains why v2{2} gives a more accurate results than v2{4}.
Nevertheless, vn{4} suppresses non-flow correlations better than vn{2} and is therefore
the preferred observable for analyzing real data. The statistical uncertainties of both
quantities were computed using the Bootstrap method, which will be introduced in the
following.

2.8. Bootstrap

Normally, we use error propagation to compute the statistical uncertainties of compound
observables, like for example vn {4}. However, this becomes intractable for complicated
compound observables, like for example vn {4}. As a substitute we will use a simplified
Bootstrap method which is endorsed by the ALICE collaboration. The Bootstrap method
is performed using the following 3-step process. Firstly, we divide the initial data set into
10 subsamples such that they have roughly the same statistics. Secondly, for the whole
dataset we compute the mean µ and for each subsample we compute the mean µi of the
observable of interest. We can use these values to compute the unbiased variance

σ2 =
1

10− 1

10∑
k=1

(µ− µk)
2 . (2.46)

Thirdly, the uncertainty of µ can then be computed with

∆µ =

√
σ2

10
(2.47)

and we can report observable µ with statistical uncertainties as µ±∆µ.

2.9. Particle weights

While great efforts have been put into the development and production of the detectors
used in high energy physics, they are still imperfect. These imperfections cause systematic
biases in our computed observables. One example would be if the detector does not have
uniform acceptance over certain ranges of kinematic variables, like azimuthal angle φ,
transverse momentum pT or pseudorapidity η. But if we know about these beforehand3,

3Detectors inefficiencies can be obtained either by measuring the detector response to known sources
or through Monte Carlo simulations.
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we can correct for them during the analysis to remove the systematic bias from our result.
Therefore, we introduce particle weights

wk = wk (φ, pT, η, . . .) , (2.48)

for each particle k which are functions of any particle attribute which can influence
the detector response. Note that we associate one weight to one particle, meaning we
assume the weights to independent of each other. Moreover, we assume that each particle
attribute influences the detector independently of the others and we can factorize the
functional dependence of the weights like

wk(φ, pT, η, . . .) = wk,φ(φ) · wk,pT
(pT) · wk,η(η) · · · . (2.49)

These weights enter the calculation of correlators when we replace the simple averages we
used before, like for example in eq. (2.20), and use a weighted sum instead. The formula
for computing a 2-particle correlator of an event with multiplicity M with correction for
detector inefficiencies now reads

⟨2⟩ = ⟨cos [n (φ1 − φ2)]⟩ (2.50)

=

M∑
k,l=1
k ̸=l

wkwl cos [n (φk − φl)]

M∑
k,l=1
k ̸=l

wkwl

(2.51)

= v2n . (2.52)

Assuming we have a perfect detector, i.e. setting all weights wk = wl = 1, we get our
previous result, eq. (2.20), back. However, as it is written above, we perform a nested
loop over all particles which is, as we discussed before, computationally not feasible for
a large number of particles. This means we have to incorporate particle weights in the
computation of Q-vectors. It is just as straight forward as above. We simply need to
replace the normal sum, as shown in eq. (2.21), with a weighted sum and receive

Qn =
M∑
k=1

wke
inφk . (2.53)

This definition will be further generalized in eq. (2.71), but it is sufficient for the Monte
Carlo study in this section. Using it we can rewrite the expression for a 2-particle
correlator with Q-vectors as

⟨2⟩ = 1
M∑

k,l=1
k ̸=l

wkwl

(
|Qn|

2 −
M∑
k=1

w2
k

)
. (2.54)
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Take note of the prefactor. As we discussed in section 2.5, if we want to average correlators
of events whose multiplicity is fluctuating we need to assign it a combinatorial weight.
In the absence of systematic biases this combinatorial would simply be the number of
possible combinations of particles, here M(M − 1). Instead we now have to sum the
particle weights over all possible combinations of particles which is given by

M∑
k,l=1
k ̸=l

wkwl . (2.55)

2.9.1. Monte Carlo study with φ-weights

In this study we will verify the results in the case of a detector which does not uniformly
accept azimuthal angles φ. More specifically, we assume that angles φ ∈

[
2π
6 , 2π3

]
are

accepted with a probability of only 60%. A possible response of such a detector to
uniformly randomly emitted particles can be seen in the histogram in fig. 2.10. Using
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ϕ

0

1

2

3

4

5

310×
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non-uniform acceptance

Figure 2.10.: Response of a detector which has uniform azimuthal acceptance in blue
and reduced acceptance for azimuthal angles φ ∈

[
2π
6 , 2π3

]
of 60% in red to

uniformly randomly emitted particles.

this spectrum we can construct particle weights w as a function of φ by inverting the bin
content in each bin of the histogram shown in fig. 2.10. Note that due to the way we
defined the weighted sum in eq. (2.51) and eq. (2.54) we can trivially scale all our weights
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without changing the results. A good choice to make sure that the weights are of the
order O (1) is to scale them with the average number of particles per bin. The resulting
weights can be seen in fig. 2.11. Now, let us assume a PDF expanded as in eq. (2.6),

0 1 2 3 4 5 6
ϕ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

)ϕ
w

(

Figure 2.11.: Particle weights to remove systematic biases introduced by a detector with
reduced acceptance for azimuthal angles φ ∈

[
2π
6 , 2π3

]
of 60%.

where all harmonics are zero, except v2 = 5× 10−2. We generate 10 000 events, sample
a random number of particles between 500 and 1500 in each event and compute the
two-particle correlator using Q-vectors. We will do this twice, once including the weights
and once without them. Then we average over all events and obtain our result, which can
be seen in fig. 2.12. As we can see, with weights we are able to correct for the systematic
biases induced by an imperfect detectors with non-uniform azimuthal acceptance and we
obtain the correct result for the correlator.

2.9.2. Monte Carlo study with pT-weights

In this study we will verify the results in the case of a detector which does not uniformly
accept transverse momentum pT. This is more involved than the previous study since
the distribution of the transverse momentum of the particles is not flat but a Boltzmann
distribution. The pT-distribution can be parameterized with

fpT
(pT) = NpT exp

−
√
p2T +m2

T

 , (2.56)
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 not weighted〉 2
2 v〈  weighted〉 2

2 v〈
0
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3−10×

Figure 2.12.: Expectation value of v22 for 10 000 events with a number of particles between
500 and 1500 each, using a biased detector and computed using ⟨2⟩ with
Q-vectors. The expected value of v22 = 2.5 × 10−3 is marked with a red
dashed line. The mean value over all events, without weights, is

〈
v22

〉
=

(5.9059±0.0065)×10−3 and with weights is
〈
v22

〉
= (2.5085±0.0038)×10−3.
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where we set N such that the distribution is normalized, m = 0.139GeV the mass of the
charged pion and T = 0.44GeV. Choosing a higher value for T would shift the peak of the
distribution to higher values of pT. Assuming the detector accepts transverse momentum
pT ∈ [0.4, 1.2] with a probability of only 60% we will receive a detector response as shown
in fig. 2.13. The weights can be computed by taking the bin-by-bin ratio between the
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Figure 2.13.: Response of a detector which has uniform transverse momentum acceptance
in blue and reduced acceptance for transverse momentum pT ∈ [0.40, 1.2]
of 60% in red to randomly emitted particles following eq. (2.56).

two histograms shown in fig. 2.13. The result can be seen in fig. 2.14. Additionally, in
this study we will also let the flow harmonics be a function of transverse momentum. In
particular we will let v2 be a function of pT as given by

v2(pT) = v2,max ·

{
pT
pC

for pT < pC

1 for pT ≥ pC
, (2.57)

where we set v2,max = 0.30 and the cutoff momentum pC = 2.0GeV. Using these
parameters we can compute the expectation value

⟨v2⟩ = 1.6787× 10−2 , (2.58)

with respect to transverse momentum. Now, let us assume a PDF expanded as in eq. (2.6),
where all harmonics are zero, except v2 which is given by eq. (2.57). We generate 10 000
events, sample a random number of particles between 500 and 1500 in each event and
compute the two-particle correlator using Q-vectors. We will do this twice, once including
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Figure 2.14.: Particle weights to remove systematic biases introduced by a detector with
reduced acceptance for transverse momentum pT ∈ [0.40, 1.2] of 60%.

the weights and once without them. Then we average over all events and obtain our
result, which can be seen in fig. 2.12. We see again with weights we are able to correct for
the systematic biases induced by an imperfect detectors, in this case with non-uniform
acceptance of transverse momentum and obtain the correct result for the correlator.
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 not weighted〉 2
2 v〈  weighted〉 2
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Figure 2.15.: Expectation value of v22 for 10 000 events with a number of particles between
500 and 1500 each, using a biased detector and computed using ⟨2⟩ with
Q-vectors. The expected value of v22 = 1.6787× 10−2 is marked with a red
dashed line. The mean value over all events, without weights, is

〈
v22

〉
=

(1.7986±0.0093)×10−2 and with weights is
〈
v22

〉
= (1.6813±0.0082)×10−2.
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2.10. Binned multiparticle correlator

So far we have used all particles created within an event to compute multiparticle correla-
tors, which is equivalent to computing the integrated value of the correlator with respect
to all attributes of a particle, like pT. This is subsequently also true for the corresponding
flow harmonic. But, as we have assumed in the last section, the flow harmonics can in
principle be also function of particle attributes. In this section we want to outline how
to compute multiparticle correlators more differentially, as functions of these attributes.
The idea is very simple. Instead of grouping all particles together for the computation of
a correlator, we group the particles into bins of the particle attribute of interest. Then
we compute the correlators for each bin individually and perform the all-event average
individually for each bin. We will demonstrate the validity with a Toy Monte Carlo study.
Let us assume a PDF expanded as in eq. (2.6), where all harmonics are zero, except
for v2(pT). The functional dependence of v2 on pT will the same as the one given by
eq. (2.57). For the study the chosen pT bins are shown in table 2.2. The choice for these

Table 2.2.: pT-bins for Toy Monte Carlo study of a binned multiparticle correlator.
bins

pT [GeV/c] (0.20; 0.50), (0.34; 0.50), (0.50; 0.70), (0.70; 1.0), (1.0; 2.0), (2.0; 5.0)

bins is inspired by the choice for the real analysis. The transverse momentum of the
particles will be distributed according to eq. (2.56). We generate 10 000 events, sample a
random number of particles between 500 and 1500 in each event and group them with
respect to their transverse momentum in the above defined bins. Then we compute the
two-particle correlator using Q-vectors in each bin separately. Then we average over all
events in each pT-bin and obtain our result, which can be seen in fig. 2.16. As we can see
we are able to resolve v22 as a function of pT very precisely.
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Figure 2.16.: Expectation value of v22 as a function of pT for 10 000 events with a number
of particles between 500 and 1500 each. The theory values are marked with
a red line in each bin. The computed estimates in each bin are marked with
a blue line.
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2.11. Generic framework

Now that we have introduced all necessary components to conduct anisotropic flow analy-
sis on real data, we will introduce a generic framework to compute arbitrary multiparticle
correlators. We define an arbitrary multiparticle correlator of an event with multiplicity
M as

⟨m⟩n1,n2,...,nm
≡
〈
ei(n1φ1+n2φ2+···+nmφm)

〉
(2.59)

≡

M∑
k1,k2,...,km=1
k1 ̸=k2 ̸=···̸=km

wk1
wk2

· · ·wkm
e
i
(
n1φk1

+n2φk2
+···+nmφkm

)

M∑
k1,k2,...,km=1
k1 ̸=k2 ̸=···̸=km

wk1
wk2

· · ·wkm

, (2.60)

(2.61)

where ⟨m⟩ is a m-particle correlator, φki
is the azimuthal angle of the kith particle, wki

is
the weight of the kith particle and n1, n2 . . . , nm ∈ Z are the m flow amplitudes we want
to extract. Note that we already have shown that v−n = vn so it is perfectly reasonable
to choose negative harmonics. Using this definition we can see the correlators we used
so far would be expressed in this notation as ⟨2⟩ ≡ ⟨2⟩n,−n and ⟨4⟩ ≡ ⟨4⟩n,n,−n,−n. The
expectation value of a multiparticle correlator can also be computed analytically which
results in

⟨m⟩n1,n2,...,nm
≡
〈
ei(n1φ1+n2φ2+···+nmφm)

〉
, (2.62)

= vn1
vn2

· · · vnm
ei(n1Ψ1+n2Ψ2+···+nmΨm) , (2.63)

where vn1
, vn2

. . . , vnm
are the flow harmonics and Ψ1,Ψ2, . . . ,Ψm are the symmetry

planes. Since we do not have any means to estimate the symmetry plane Ψ for a single
event we need to make their contribution to the above equation disappear. We already
argued that the joint PDF of all produced particles factorizes as seen in eq. (2.17). This
means, if we enforce the condition

m∑
k=1

nk = 0 , (2.64)

then the contribution of the symmetry planes drop out. If we further average over multiple
events we arrive at the final expression〈

⟨m⟩n1,n2,...,nm

〉
=
〈
vn1

vn2
· · · vnm

〉
, (2.65)

where the inner bracket is with respect to an event average and the outer bracket is
with respect to an average over multiple events. We already explicitly demonstrated the
validity for the cases of 〈

⟨2⟩−2,2

〉
=
〈
v22

〉
(2.66)
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and 〈
⟨4⟩−2,−2,2,2

〉
=
〈
v42

〉
(2.67)

in previous Monte Carlo studies of sections 2.3 and 2.6. The final step is now to express an
arbitrary multiparticle correlator in terms of Q-vectors. Therefore, we rewrite eq. (2.60)
as

⟨m⟩n1,n2,...,nm
=

N ⟨m⟩n1,n2,...,nm

D ⟨m⟩n1,n2,...,nm

, (2.68)

where the numerator is given by

N ⟨m⟩n1,n2,...,nm
=

M∑
k1,k2,...,km=1
k1 ̸=k2 ̸=···̸=km

wk1
wk2

· · ·wkm
ei(n1φn+n2φ2+···+nmφm) (2.69)

and the denominator is given by

D ⟨m⟩n1,n2,...,nm
=

M∑
k1,k2,...,km=1
k1 ̸=k2 ̸=···̸=km

wk1
wk2

· · ·wkm
. (2.70)

We see that D ⟨m⟩n1,n2,...,nm
= N ⟨m⟩0,0,...,0, so we will only focus on the computation of

the numerator. But before we can express it in terms of Q-vectors, we have to slightly
modify our definition of a Q-vector as given by eq. (2.54). We will give the Q-vector
another index and define it as

Qn,p =
M∑
k=1

wp
ke

inφk , (2.71)

where the weights wk are raised to the power of the additional index p. Using this new
definition we can compute a two-particle correlator ⟨2⟩n1,n2

in a fully generic way while
using Q-vectors with

N ⟨2⟩n1,n2
= Qn1,1

Qn2,1
−Qn1+n2,2

(2.72)

and
D ⟨2⟩n1,n2

= N ⟨2⟩0,0 = Q2
0,1 −Q0,2 . (2.73)

A fully generic algorithm for computing arbitrary multiparticle correlators with Q-vectors
can be found in [4]. This concludes the introduction of the generic framework. Lastly,
we want to validate the outlined framework for arbitrary multiparticle correlators with
a Monte Carlo study similar to the one performed in the aforementioned reference. Let
us again assume a PDF expanded as in eq. (2.6), where all harmonics are zero, except v1
up to v6. We assign values to the flow harmonics with

vn = 0.04 + n · 0.01 (2.74)

40



2. Analysis Framework

for n = 1, 2, . . . 6. We will compute the values of the following correlators

⟨2⟩ ≡ ⟨2⟩−2,2 = v22 = 3.6× 10−3 , (2.75)

⟨3⟩ ≡ ⟨3⟩−5,−1,6 = v1v5v6 = 4.5× 10−4 , (2.76)

⟨4⟩ ≡ ⟨4⟩−3,−2,2,3 = v22v
3
3 = 1.764× 10−5 , (2.77)

⟨5⟩ ≡ ⟨5⟩−5,−4,3,3,3 = v33v4v5 = 2.4696× 10−6 , (2.78)

⟨6⟩ ≡ ⟨6⟩−2,−2,−1,−1,3,3 = v21v
2
2v

2
3 = 4.41× 10−8 , (2.79)

⟨7⟩ ≡ ⟨7⟩−6,−5,−1,1,2,3,6 = v21v2v3v5v
2
6 = 9.45× 10−9 , (2.80)

⟨8⟩ ≡ ⟨8⟩−6,−6,−5,2,3,3,4,5 = v2v
2
3v4v

2
5v

2
6 = 1.905 12× 10−9 , (2.81)

which have been randomly chosen with the condition that the harmonics fulfill eq. (2.64).
Now we generate 10 000 events and sample a random number of particles between 500 and
1500 in each event. Moreover, we assume our detector has the same reduced acceptance
for azimuthal angles as discussed in section 2.9. The results can be seen in fig. 2.17. As
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Figure 2.17.: Multiparticle correlators computed using the described generic framework.
The results for uniform acceptance and the corrected results using weights
agree with the theory values. The results with non-uniform acceptance and
without weights are off by up to a factor of two or can even have the wrong
sign.

we can see the framework is able to compute arbitrary multiparticle correlators while
correcting for systematic biases and multiplicity fluctuations.
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2.12. Monte Carlo closure

After verifying the generic framework with Monte Carlo data we will now perform a
Monte Carlo closure, i.e. we will verify that the framework also works using real data.
We will perform the closure in several steps. Firstly, we will compute multiparticle
correlators over a real data set, giving us base line values for our correlators. We will be
using the same correlators as the used in section 2.11, namely eqs. (2.75) to (2.81). After
computing the base line, we will artificially introduce detector inefficiencies and compute
the correlators again with and without using particle weights. The detector inefficiencies
will be same as the one discussed in section 2.9. Lastly, we compare our base line with
these values and see if we managed to correct for our known detector conditions. The
data used is taken from Run 000137161 of the LHC Run 1 data set from 2010. The
main reason we chose this data set is because the detector conditions where mostly stable
during the data taking and we can reasonably assume uniform acceptance of azimuthal
angles for the whole set. Perfect for introducing our own inefficiencies. The results can
be seen in fig. 2.18. As we can see the framework is able to reproduce the base line values
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Figure 2.18.: Multiparticle correlators computed using the generic framework using real
data from Run 000137161 of LHC Run 1 data set from 2010. The unmodified
data with uniform acceptance are taken as a base line. The results with
non-uniform acceptance and weights are able to reproduce the base line.

of arbitrary multiparticle correlators while correcting for systematic biases.
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2.13. Symmetric Cumulants

Now that we are able to compute generic multiparticle correlators we will generalize the
idea of estimating flow harmonics with cumulants to estimate the correlations between
flow harmonics with so-called Symmetric Cumulants (SC). We neglected so far that even
in events where the initial collision geometry is similar, i.e. within the same centrality
class, due to the quantum nature of the whole collision system we expect the values
of the flow amplitudes to fluctuate. Measuring these fluctuation gives independent and
non-trivial constrains on the properties of the QGP. We can motivate this with the
following observation. The correlation of even flow harmonics like v2, v4, ... can be
attributed to fluctuations in the ellipsoidal shape of the interaction region in mid-central
heavy ion collisions [14]. For example SC(2, 4) or SC(2, 4, 6) will be able to quantify such
fluctuations. However, if an observable like SC(2, 3, 4) is also non-vanishing, then this
would imply that there are additional fluctuations in the system which couple v2, v3 and
v4 which can not be captured by a cumulant of only even harmonics. We already showed
how to estimate one flow harmonic vn with a 4-particle correlator, by choosing X1 = einφ1 ,
X2 = einφ2 , X3 = e−inφ3 and X4 = e−inφ4 . To generalize this idea to two flow harmonics
vn and vm we now choose X1 = einφ1 , X2 = e−inφ2 , X3 = eimφ3 , X4 = e−imφ4 . Thus we
define the Symmetric Cumulant between vn and vm with

SC(n,m) ≡
〈
ein(φ1−φ2)+im(φ3−φ4)

〉
c
, (2.82)

=
〈
v2nv

2
m

〉
−
〈
v2n

〉〈
v2m

〉
. (2.83)

As we can see SCs are symmetric under the exchange of the two harmonics n and m. This
will in general be true also for higher order SCs. Similarly we can define a SC between
three flow amplitudes vk, vl and vm with

SC(k, l,m) =
〈
v2kv

2
l v

2
m

〉
−
〈
v2kv

2
l

〉〈
v2m

〉
−
〈
v2kv

2
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〉〈
v2l

〉
−
〈
v2l v

2
m

〉〈
v2k

〉
+ 2

〈
v2k

〉〈
v2l

〉〈
v2m

〉
.

(2.84)

We can illustrate the sensitivity of SCs to the correlation between flow harmonics with
a Toy Monte Carlo study. Let us assume a PDF expanded as in eq. (2.6), where all
harmonics are zero except for v2 and v3. Further, we assume that the values of both of
v2 and v3 fluctuate according to this PDF,

f(v2, v3) = N · (v2 + v3) , (2.85)

where N is the normalization constant and we restrict v2 ∈ [0.15, 0.25] and v3 ∈
[0.05, 0.15]. Note that this PDF cannot be factorized, i.e. f(v2, v3) ̸= fv2(v2)fv3(v3),
meaning that v2 and v3 are not independent and their fluctuations are correlated. This
means the computation of SC(2,3) will give a non-vanishing value. We generate 106

events where we sample the values v2 and v3 from eq. (2.85). Then we sample between
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500 and 1500 particles in each event and compute SC(2,3) according to eq. (2.83) and
fill the result into a TProfile. The uncertainty of SC(2,3) will be computed with the
bootstrap method. The result of the study can be seen in fig. 2.19. The result agrees

SC(2,3)

1.2−

1−

0.8−

0.6−

0.4−

0.2−

0
6−10×

Figure 2.19.: SC(2,3) for 106 events with a number of particles between 500 and 1500
each. The expected value of SC(2, 3) = −6.1728×10−7 is marked with a red
dashed line. The mean value of over all events is (−5.7621±1.4992)×10−7.

with the theoretical value within its uncertainty.
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3.1. A Large Ion Collider Experiment (ALICE)

ALICE is one of the four major detector experiments at the Large Hadron Collider (LHC)
at CERN. It contains 18 subdetectors, some of which can be seen in the schematic shown
in fig. 3.1. In particular the Time Projection Chamber (TPC), the Inner Tracking System

Figure 3.1.: ALICE detector.

(ITS) and the VZERO were used for the analysis presented in the thesis and will be
discussed in more detail in the following sections. The ALICE experiment is optimized
for heavy-ion collisions for a center of mass energy of up to 5.02TeV. There are several
possible beam configurations, but we will concentrate on Pb–Pb collisions. The resulting
energy density and temperature in such collisions allows the study of the properties of
quark-gluon plasma, a deconfined state of matter where even hadrons are melted down
into their composite particles. This is the state the universe was in shortly after the Big
Bang, before it cooled down enough to allow quarks and gluons to form hadrons. The
secondary goal of ALICE is to try to answer why the sum of the individual quark masses
are so much lighter than the mass of the composite objects they are building up.
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3.2. Time Projection Chamber (TPC)

The TPC detector is a type of detector that uses electrical and magnetic field in com-
bination with a sensitive volume of gas to perform a three-dimensional reconstruction
of particle trajectories. A schematic view can be see in fig. 3.2 It has cylindrical shape

Figure 3.2.: ALICE’s TPC.

separated in two volumes with a cathode in the middle, with a longitudinal length of
5m, an inner radius of 85 cm and outer radius of 250 cm. Its chambers are filled with
with 90m3 gas mixture of Ne/CO2/N2. Charged particles traversing through the TPC
ionize the gas after which the produced electrons travel to the end plates along a electric
field. The z coordinates of the track can be determined with the drift time, i.e. the
time the electrons need to travel to the end plates, while the r and ϕ coordinates are
obtained directly by the measuring the positions on which the electrons impact the end
plates. The slow drift time of ≈ 90 µs is limiting the maximum luminosity that ALICE
can handle. The TPC was designed to cope with the large number of particles which
can be produced in Pb–Pb events, which in the most central collisions can reach about
20 000 primary and secondary particles. The TPC is capable of detecting particles in
the transverse momentum range of 0.1GeV/c < pT < 100GeV/c with a resolution of
about 6% for pT < 20GeV/c in central Pb–Pb collisions. For higher transverse momenta
the resolution deteriorates. In contrast the track finding efficiency of the TPC saturates
at around 90% for pT > 1GeV/c. It covers nearly all azimuthal angels. Due to dead
zones between the neighboring sectors about 10% are lost. The azimuthal resolution is
about ∆φ = 0.7 × 10−3, not depending on the transverse momentum. The TPC can
track particles whose pseudorapidity is |η| < 0.9 if only the tracks with maximum radial
track length are being considered. While the primary use of the TPC is tracking particles,
it can also be used for particle identification (PID) via the standard dE/dx technique.
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Additionally, TPC can also be used as a centrality estimator with a resolution of about
0.5% centrality bin width in the most central collisions. For Run 3 operations at LHC
and beyond, the TPC has been equipped with new GEM-based technology, which enables
must faster readout.

3.3. Inner Tracking System (ITS)

The Inner Tracking System of ALICE consists of 6 silicon layers, grouped into three
distinct groups of two layers, forming three distinct detectors. The two innermost silicon
layers are Silicon Pixel Detector (SPD), the third and fourth layer are Silicon Drift
Detectors (SSD) and the two outermost layers are Silicon Strip Detectors (SSD). The
ITS and its subcomponents can be seen in fig. 3.3. The ITS is situated between the

Figure 3.3.: ALICE’s ITS. The innermost part is the Silicon Pixel Detector (SPD), the
middle part is the Silicon Drift Chamber (SDD) and the outer most part is
the Silicon Strip Detector (SSD).

inner side of the TPC and the beam pipe. It is being used both for the primary vertex
reconstruction as well as the reconstruction of secondary particles. It can detect particles
within a transverse momentum range of 0.1GeV/c < pT < 3GeV/c with a relative
resolution better than 2% for pions. For pT > 3GeV/c it can give additional information
to improve the transverse momentum resolution for the tracks which are also captured
by the TPC. By design it has the coverage as the TPC for pseudorapidity and azimuthal
angles, but due to cooling problems in the two innermost layers the azimuthal acceptance
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is not uniform. Even though ITS has these standalone tracking capabilities, especially
for tracking charged particles that traverse the dead zones of the TPC or do not even
reach the TPC due to their small momentum, its main role it to improve the transverse
momentum and azimuthal angle resolution of the particles reconstructed by the TPC. It
can also use standard dE/dx techniques to determine the PID and it can also be use as
a centrality estimator with a resolution for about 0.5% centrality bin width in the most
central collision.

3.4. VZERO

The VZERO detector consists of two different arrays of scintillator counters, V0A and V0C,
placed on opposite sides of the central barrel detectors perpendicular to the beam line.
The positions of V0A and V0C can be seen in fig. 3.4. They are placed asymmetrically

Figure 3.4.: VZERO detectors on both sides of the ITS.

with respect to the interaction point. V0A is located 340 cm and V0C is placed 90 cm from
the interaction point. Due to this asymmetry, they have different pseudorapidity coverage.
V0A covers pseudorapidity range 2.8 < η < 5.1, while V0C covers −3.7 < η < −1.7.
Each of them contain 32 elementary counters arranged in 4 rings and 8 sectors of 45◦. The
VZERO detectors serve several purposes within the ALICE experiment. Both of them
provide and online trigger and are use as centrality estimators, with a resolution of about
0.5% centrality bin width in the most central collisions better than 2% of centrality bin
width for peripheral collisions.
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In this chapter we outline the event and track selection criteria (cuts) applied in the
analysis. We illustrate the effects of the various cuts on the distributions of the physical
quantities of interest. In section 4.1 we outline the cuts applied on event observables
and in section 4.2 the cuts applied on track observables. After applying all cuts the
analysis still has to be corrected for detector inefficiencies. Therefore we will demonstrate
in section 4.3 how the track weights are computed and show their distribution. In the
last section of this chapter, section 4.4, we outline all systematic variations used for the
computation of systematic errors and how they change the data sample. The analysis is
performed on the Pb–Pb collision data taken by the LHC Run 1 in 2010 with the ALICE
detector with a collision energy of √sNN = 2.76TeV.

4.1. Event cuts

The default cuts on event observables are shown in table 4.1. We also cut on centrality,

Table 4.1.: List of all default event cuts and their respective ranges.
observable Range

multiplicity M 12 ≤ M ≤ 3000

Vertex coordinate in X-direction VX −1 cm ≤ VX ≤ 1 cm

Vertex coordinate in Y-direction VY −1 cm ≤ VY ≤ 1 cm

Vertex coordinate in Z-direction VZ −10 cm ≤ VZ ≤ 10 cm

Vertex distance from the origin |V| 1× 10−6 cm ≤ |V| ≤ 18 cm

depending on the centrality bin we want to analyze. The centrality bins are shown in ta-
ble 4.2. Additionally, we use correlation cuts between different centrality and multiplicity

Table 4.2.: Centrality bins for data analysis.
bins

centrality [%]
(0.0; 5.0), (5.0; 10), (10; 20), (20; 30), (30; 40),

(40; 50), (50; 60), (60; 70), (70; 80)

estimators which will be outlined in section 4.1.4.
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4.1.1. Cut on centrality

The histogram of the centrality distribution of the whole data set before and after applying
event cuts can be seen in fig. 4.1. To avoid bias in the data analysis it is important the
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Figure 4.1.: Centrality distribution of the whole data set before and after applying event
cuts. The edges of the centrality bins are indicated with white spacing.

centrality distribution is flat. As can be seen in fig. 4.1 there is small excess in events for
centralities smaller than 10% after applying all cuts. However, since the excess events
are in the regime of head-on collisions, where the initial anisotropy is small due to the
almost circular collision geometry we expect a weak flow signature anyway and therefore
this region is not of main interest in this analysis. The main interest is in the realm of
mid-central collisions, 20% to 50%, where anisotropies are large and the flow signature
in the data is strong. Here the centrality distribution is flat. It is possible to flatten the
centrality distribution with the use of centrality weights. A weight is assigned to each
centrality bin. The larger the count in the bin with respect to the average bin content
the smaller will be weight. These weights indicate the probability of including the event
in the analysis. Meaning if there is bin with a bin count higher than the average, events
within this centrality bin have a lesser probability of being included in the analysis. Using
weights like this we randomly remove excess events with as little bias as possible and the
centrality distribution is flattened. But as we argued above, the centrality distribution
is flat in the centrality region of interest and we therefore forego the use of centrality
weights.
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4.1.2. Cut on multiplicity

In this thesis we estimate the multiplicity M of an event with the number of tracks that
will be used for the computation of Q-vectors. This means that the multiplicity is be the
number of particles in an event that survive the track cuts that are outlined in section 4.2.
We also compare this multiplicity estimate to a so-called reference multiplicity Mref . If
these two estimates differ too much then we also cut these events away. The histograms
of the multiplicity estimate of the whole data set in centrality bin 0% to 5% and 40%
to 50% before and after applying event cuts are shown in fig. 4.2. The shape of the
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(a) Multiplicity distribution in centrality bin
0% to 5%.
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(b) Multiplicity distribution in centrality bin
40% to 50%.

Figure 4.2.: Distribution of multiplicity estimate before and after applying event cuts of
the whole data set in different centrality bins. The y-axis is scaled logarith-
mically.

multiplicity distribution after the event cuts is mainly determined by the choice of the
centrality bin. The centrality determines the collision geometry. The smaller it is, the
more the colliding heavy-ions overlap, the more particles collide and the more energy is
deposited into the collision volume. This means more particles are produced in collision
with small centrality compared to larger centrality. As is shown in fig. 4.2, in events
within 0% to 5% the number of particles is way larger than for 40% to 50%. The
multiplicity range detailed in table 4.1 is more of a sanity check than an actual cut since
nearly all healthy events lie within that range. We also point out that the distributions
are peaked and that there are no so-called high multiplicity outliers. These are events
which have a much higher multiplicity then any other event in the same centrality bin.
Since we need to weight the Q-vectors of an event by its multiplicity weight, which scales
like ∝ Mk for a k-particle correlator, this would mean that a single event could potentially
outweigh the whole sample if its multiplicity is much larger than the average multiplicity
within a given centrality bin. This also means events which have a very small multiplicity
compared to the other events have hardly any impact on the computation. In the shown
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distributions we see a few events which have a slightly larger multiplicity than most other
events, but these are well within expectations and under control.

4.1.3. Cuts on vertex position

The histograms of the different components of the primary vertex position as well as the
absolute distance from the origin before and after applying event cuts of the whole data
set in centrality bin 40% to 50% can be seen in fig. 4.3. The distributions of VX , VY ,
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(a) Distribution of VX , before and after
applying event cuts.
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(b) Distribution of VY , before and after
applying event cuts.
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(c) Distribution of VZ , before and after
applying event cuts.
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(d) Distribution of |V|, before and after
applying event cuts. Distribution is only shown
up to 1 cm.

Figure 4.3.: Distributions of vertex coordinates before and after applying event cuts of
the whole data set in centrality bin 40% to 50%. The y-axis is scaled
logarithmically.
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VZ and |V| before applying the event cuts are strongly peaked near 0. VZ is also more
evenly distributed than VX and VY . This is due to the fact that it is easier to focus
the beam in the transverse directions than in the longitudinal direction. After applying
the cuts we are left with the peaks in the VX and VY distribution, while we loose the
sharp peak in the VZ distribution. This is also mirrored in the |V| distribution where
we loose all events at 0 due to the cut applied on this observable. In fact, the events we
cut away are all suspicious in the sense that the primary vertex is directly situated at
the origin where |V| = 0 exactly. This is the reason why this cut was applied in the first
place. It is very unlikely that the primary vertex is exactly at the origin and there was
probably an issue with the detector or reconstruction software that set this value to 0.
Nevertheless, we decided to not use these event in the analysis. The loss in statistics is
not large since most of these event would have been cut away but other event cuts anyway.
The cut on VZ is by comparison way more substantial and we loose a significant amount
of statistics. But if the primary vertex is far away from the nominal interaction point,
then the produced particles cannot be measured optimally by the detectors. Therefore,
this cut is very important to guarantee the quality of the data.

4.1.4. Correlation cuts

For both centrality and multiplicity there are several choices of estimators possible. Since
we do not want to bias the analysis by the choice of a particular estimator and assume
that if two estimators for the same observable are not consistent then there is something
wrong with the event, we cut those events away. We can check if two estimators are
consistent by plotting the correlation between them in a 2D histogram and cut the event
if the estimates differ more than some set amount. If the two estimates are perfectly
consistent, then the correlation plot will simply be a linear function f (x) = x, since the
estimate of one equals the other. We can then define an upper limit with another linear
function g (x) = mx + t above which we cut events away. By reflecting g on f we get
lower bound h (x) = x−t

m , resulting in a cone around f in which we require the events to
be. We obviously assume here a linear correlation between our estimates. The parameters
defining the cut are hence the slope m and the offset t. This concept is illustrated in
fig. 4.4. The results in this section will be shown in the full centrality range from 0% to
80%.

Centrality correlation cut

In ALICE there are four centrality estimators available, i.e.

• V0M,
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Figure 4.4.: Principle correlation cut.

• CL0,

• CL1,

• SPD tracklets.

For the analysis we use V0M as the default centrality estimator. We require the estimates
for all 4 centrality estimators to be consistent. Hence we perform 4·3

2 = 6 correlation
cuts between any two centrality estimators. The parameters for these cuts are shown
in table 4.3. In fig. 4.5 the correlation distribution between V0M and SPD tracklets

Table 4.3.: Parameter values for centrality correlation cut.
g(x) = mx+ t value
h(x) = x−t

m

slope m 1.0
offset t 10

are shown. Generating 2D correlation histograms is computationally very expensive and
requires a lot of disk space hence the validation was performed only on subset of the data
set. Figure 4.5 illustrates the correlation cut perform on Run 000137161 of the 2010 data
set. There are quite a few events where centrality estimator SPD tracklets underestimates
the centrality percentile compared to V0M, for the bulk of the events the estimates are
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(a) Correlation between V0M and SPD tracklets
before applying event cuts.
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(b) Correlation between V0M and SPD tracklets
after applying event cuts.

Figure 4.5.: Centrality correlation histograms between V0M and SPD tracklets before
and after applying cuts in Run 000137161. The correlation cut is indicated
with two black lines.

consistent.

Multiplicity correlation cut

There are several possible choices for multiplicity estimator. In section 2.5 we have
shown why it is sensible to define the multiplicity as the number of tracks used for the
computation of Q-vectors. But this choice is not generally accepted so we want to make
our choice for the multiplicity M generally consistent with Mref . The values for the
multiplicity correlation cut can be seen in table 4.4. Incidentally, this cut also takes care

Table 4.4.: Parameter values for multiplicity correlation cut.
g(x) = mx+ t value
h(x) = x−t

m

slope m 1.4
offset t 300

of high-multiplicity outliers events we briefly mentioned before. The correlation between
M and Mref in Run 000137161 before and after applying event cuts can be seen in fig. 4.6.
The distribution shows that for small multiplicities both estimates are consistent with
each other and that for larger multiplicities Mref takes larger values than M . This can
be understood as follows. Since Mref is a estimate given by the detector, it will not be
changed by subsequent track cuts. M on the other hand is the number of tracks we use

55



4. Data Validation

0

5

10

15

20

25

30

35

40

310×

0 500 1000 1500 2000 2500 3000

M

0

0.5

1

1.5

2

2.5

3
310×

re
f

M This work

(a) Multiplicity correlation between M and
Mref before applying event cuts.
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(b) Multiplicity correlation between M and
Mref after applying event cuts.

Figure 4.6.: Multiplicity correlation histograms between M and Mref before and after
applying cuts of in Run 000137161. The correlation cut is indicated with two
black lines.

in the computation of Q-vectors and after applying event cuts we still apply further track
cuts, reducing the amount of tracks used for the analysis.

Correlation between multiplicity and centrality

In this section we briefly want to show the correlation between the multiplicity estimates
Mref and centrality. We do not cut on this correlation directly and we know the expected
shape of the correlation. Therefore looking at this correlation it gives a nice visual
confirmation that the applied event cuts do not introduce any obvious biases into the
analysis. We use Mref instead of M because it is constant and not affected by the
subsequent track cuts. The correlation plot between the centrality and Mref is shown
in fig. 4.7. The correlation between centrality and Mref is, as expected, monotonically
decreasing. The larger the centrality class, the further apart the two colliding heavy-ions
are and the smaller the overlapping region becomes. This means we have a smaller volume
containing interacting matter and less deposited energy in the collision, which means less
particles are produced and the multiplicity decreases.
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(a) Correlation between Mref and centrality
before applying event cuts.
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(b) Correlation between Mref and centrality
after applying event cuts.

Figure 4.7.: Centrality and reference multiplicity correlation histograms before and after
applying cuts of in Run 000137161.

4.2. Track cuts

Track cuts are applied to each reconstructed track in an event. If they are cut, they will
not be used in the computation of Q-vectors and are not used in the analysis. The values
or ranges for the different cuts can be seen in table 4.5. In the analysis we will only

Table 4.5.: List of all track cuts and their respective ranges or values.
observable Range/Value

transverse momentum pT 0.2GeV/c ≤ pT ≤ 5GeV/c

pseudorapidity η −0.8 ≤ η ≤ 0.8

azimuthal angle φ 0 ≤ φ ≤ 2π

charge q −1 ≤ q ≤ 1 and q ̸= 0

primary particles only true
DCA in Z-direction DCAZ −2.4 cm ≤ DCAZ ≤ 2.4 cm

DCA in XY-plane DCAXY −3.2 cm ≤ DCAXY ≤ 3.2 cm

Filterbit 128

Goodness of TPC track fits χ
2
TPC/NDF 0 ≤ χ

2
TPC/NDF ≤ 4

Number of TPC clusters nTPC 70 ≤ nTPC ≤ 160

use particles which are labeled as primary, i.e. particle which were generated from the
cooling QGP and not from a subsequent decay of a heavier particles, and particles which
are charged. Furthermore, the ALICE collaboration provides predefined cuts on various
observables known as Filterbits. In this analysis Filterbit 128 was used, which indicated
that tracks were reconstructed only by using the information from TPC detector.
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4. Data Validation

4.2.1. Kinematic cuts

The distributions of the kinematic track variables, i.e. transverse momentum pT, pseudo-
rapidity η, azimuthal angle φ and charge q, of all tracks in the whole data set in centrality
bin 40% to 50% before and after applying cuts are shown in in fig. 4.8. We see that
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(c) pT distribution.
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(d) q distribution.

Figure 4.8.: Distributions of kinematic track variables of the whole data set in centrality
bin 40% to 50% before and after applying track cuts.

the cuts manage to flatten the φ, η and q distribution while the pT takes the from of a
Boltzmann. We do not apply any cut on φ since the TPC has uniform acceptance over
the whole 2π range, as demonstrated by the flat distribution after applying the track cuts.
The η and q distribution flatten out after applying the track cuts. Several physical effects
favor the production of positive particles when the particles produced in the heavy-ion
collision interact with the detectors, which leads to an overabundance of positive particles.
The applied cuts are also able to reduce this discrepancy.
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4.2.2. Track quality cuts

In this section we present cuts which are performed to ensure the quality of the tracks
used for the analysis. These cuts are necessary since a track is not always close to the
center of the detector, the detector conditions are not always ideal, the reconstruction
software is not perfect and the list goes on. The results can be seen in fig. 4.9. The cut on
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Figure 4.9.: Distributions of track quality variables of the whole data set in centrality bin
40% to 50% before and after applying track cuts.

the distance-of-closest-approach (DCA) of the extrapolated track to the primary position
in Z-direction (DCAZ) and the XY-plane (DCAXY ) is performed to ensure that the
tracks are close to the primary vertex. This minimizes the contribution from secondary
particles originating either from decays or interaction with the detector material. The
distribution take a Gaussian-like form after applying the cuts. Cutting on nTPC ensures
that the track leaves enough cluster within the TPC to ensure good reconstruction. The
distribution takes the form of a Poisson distribution with its maximum at approximately
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140, which is close to 160, the maximum number of clusters a particle can leave in the
TPC. The cut on χ

2
TPC/NDF also takes the form of a Gaussian and removes a majority of

poorly reconstructed tracks and

4.3. Particle weights

Detector conditions are not always ideal and tracks can be missed, falsely identified,
poorly reconstructed, etc. In the analysis we assume that the detector conditions are
stable within a single run so weights are applied on a run-by-run basis. For this reason we
will perform the analysis with weights, which were introduced in section 2.9, to correct
for these inefficiencies. To compute particle weights we will use two approaches: data
driven and Monte Carlo driven. We us the data driven method for the computation of
φ-weights. Since we know that the φ-distribution over many events has to approach a
flat distribution we can simply invert the measured φ-distribution bin-by-bin and gain
the weights. This has the effect that bins with a count below the average, which indicates
that the detector missed particles in this bin, have a higher weight than bins with a count
above the average, where the detector did not miss any or less particles. The resulting
distribution of φ-weights for Run 000137161 can be seen in fig. 4.10. The absolute value
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Figure 4.10.: φ-weights for Run 000137161 compute using a data-driven approach. The
value 1 is indicated with a dash blue line.

of the weights does not matter but we have scaled them such that they are close to one.
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As we have already shown the φ-distribution for all Runs after applying track cuts in
fig. 4.8a, which was already flat, it is no surprise that the φ-weights are also very flat.
This indicates that all azimuthal sectors of the used detector were performing equally well,
without introducing any non-uniformities in the azimuthal distributions, which could be
interpreted as a spurious anisotropic flow. The Monte Carlo driven approach is a bit more
involved. Since we do not know which distribution to expect for pT and η we compute
their weights as the ratio between the distributions we measure and the distributions of
a Monte Carlo simulation which simulates a heavy-ion collision of the same centrality
and the same conditions of the real detector at the time of the collision. For this purpose
we have chosen the Monte Carlo production that was anchored to the same data set
we analyze in this thesis. The η-weights are close to one, as is expected given the η-
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(a) pT-weights for Run 000137161.
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(b) η-weights for Run 000137161.

Figure 4.11.: pT- and η-weights for Run 000137161 computed using Monte Carlo data.
The value 1 is indicated with a blue, dashed line.

distribtuion in fig. 4.8b. Though, we do see a slight rise at the edges of the distribution.
This is because at |η| = 0.8 we reach the edges of the TPC. The η-weights have similar
distribution to the φ-weights because the TPC has a uniform pseudorapidity acceptance
in the chosen range |η| > 0.8. The pT-weights have a more complex distribution. The rise
at momenta smaller than 0.5GeV/c indicates that the detector has difficulties detecting
particles with small momenta. Those are charged particles that spiral in the magnetic
field in which the tracking detector is embedded and do not fully transverse TPC or
may not even enter it. For momenta between 0.5GeV/c and 2.0GeV/c the acceptance is
constant which indicates that the detector is working at optimal efficiency. The η-weights
have similar distribution to the φ-weights because the TPC has a uniform pseudorapidity
acceptance in the chosen range |η| < 0.8.
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4.4. Systematic variations

In this section we summaries all systematic variations of the applied cuts for the compu-
tation of systematic uncertainties. All observables whose cuts have been varied are shown
in table 4.6. All variations are performed independently of each other. The systematic

Table 4.6.: Table of all cut variations for the computation of systematic uncertainties.
observable Variation original value
Centrality SPD tracklets V0M

Centrality correlation m = 1.1; t = 11 m = 1.0; t = 10

Multiplicity correlation m = 1.6; t = 350 m = 1.4; t = 300

VZ −14 cm ≤ VZ ≤ 14 cm −10 cm ≤ VZ ≤ 10 cm

DCAZ −2.2 cm ≤ DCAZ ≤ 2.2 cm −2.4 cm ≤ DCAZ ≤ 2.4 cm

DCAXY −2.4 cm ≤ DCAXY ≤ 2.4 cm −3.2 cm ≤ DCAXY ≤ 3.2 cm

nTPC 60 < nTPC < 160 70 < nTPC < 160

nTPC 80 < nTPC < 160 70 < nTPC < 160

Filterbit 1 128
Filterbit 96 128
Filterbit 768 128

uncertainty σsys is determined by computing

σsys =

√√√√Variations∑
k

(µ− µk)
2 , (4.1)

where the sum goes over all systematic variations, µk is the results for variation k and µ
is the result of the default configuration.

4.4.1. Variation of event cuts

The variations of all event cuts are listed in table 4.6. The first variation is changing
the centrality estimator from V0M to SPD tracklets. This variation has a very small
effect since consistency between centrality estimators is ensured due to the cut on the
centrality estimator correlation. The next two variations are the opening on the cuts on
the correlation between the centrality and multiplicity estimates. Opening these cuts
gives access to a few more events where the correlations are not as consistent as before,
but their influence is rather small. The variation on the cut on VZ gives access to a
substantial amount of more events. Though, since the primary vertex is quite out of the
center of the detector, the quality of the tracks is not as high.
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4.4.2. Variation of track cuts

The variations of all track cuts are listed in table 4.6. Shrinking the acceptance for
DCAZ and DCAXY increases the quality of the data sample while reducing the amount
of statistics. But since the distributions are mainly Gaussian, as shown in fig. 4.9, and we
vary the cut in the tails, the impact is not large. The same can be said for the variations
of nTPC . The distribution is also shown in fig. 4.9 and is takes the from of a Poisson
distribution and we vary the cut in the tail. The variation of the Filterbit has the largest
impact. Since a Filterbit is a collection of cuts changing the Filterbits means that we
change multiple cuts at the same time. Furthermore, the default cuts have been carefully
chosen in accordance to Filterbit 128 to give a flat centrality and φ-distribution and they
do not necessarily work for other Filterbits. The φ-distributions of the whole data set
in centrality bin 40% to 50% after applying all track cuts and for all variation of the
Filterbit according to table 4.6 are shown in fig. 4.12. The φ-distribution is only flat for
the default Filterbit 128. For this reason we only include the variation of the Filterbit in
the systematic checks in the case where we compute our observables with weights.
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Figure 4.12.: φ-distribution of the whole data set in centrality bin 40% to 50% after
applying all track cuts for different variations of the Filterbit compared to
the default Filterbit.
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In this chapter we present the results of the differential studies of SC(2,3), SC(2,4) and
SC(2,3,4), in sections 5.1 to 5.3 respectively, using Pb–Pb collision data taken by the LHC
Run 1 in 2010 with the ALICE detector at √

sNN = 2.76TeV. The SCs are first shown
as a function of centrality, which gives an indication of the strength of the fluctuations
between the respective flow amplitudes in the corresponding centrality bin. Then we
present, for the very first time, the transverse momentum and pseudorapidity dependence
of the SCs in each centrality bin separately. Unless otherwise indicated, error bars rep-
resent statistical uncertainties, colored boxes the systematical uncertainties and vertical
bars indicate the bin width. Statistical uncertainties are computed using the Bootstrap
method introduced in section 2.8 and systematic uncertainties are computed using the
systematic variations discussed in section 4.4.
We use the binning in centrality, transverse momentum and pseudorapidity described in
table 5.1. The bins have been chosen such that the number of particles within one bin is

Table 5.1.: Binning of centrality, transverse momentum and pseudorapidity for the differ-
ential study of SC(2,3), SC(2,4) and SC(2,3,4)

bins
centrality [%] (0.0; 5.0), (5.0; 10), (10; 20), (20; 30) (30; 40), (40; 50), (50; 60)
pT [GeV/c] (0.20; 0.34), (0.34; 0.50), (0.50; 0.70), (0.70; 1.0), (1.0; 2.0)

η (−0.80;−0.40), (−0.40; 0.0), (0.0; 0.40), (0.40; 0.80)

large enough that the use of multiparticle correlation techniques is feasible and the result
is not dominated by statistical uncertainties. The number of particles in the separate
bins are also comparable to each other. We omit results for a centrality larger than 60%,
i.e. for peripheral collisions, because the results are unstable and have huge associated
uncertainties, meaning there are not enough statistics to make useful statements in these
centrality bins.
We present the results of the analysis with and without the use of weights as described in
section 2.9 and section 4.3. The data taking conditions during Run 1 in 2010 were optimal
and so we are able to obtain a flat φ- and centrality distribution after applying all cuts,
as was demonstrated in chapter 4. This makes the use of weights almost unnecessary,
except for the detector inefficiencies at small and large pT. Since most of the results
for pT larger than 2.0GeV/c were unstable and had huge uncertainties, we will only
present results up to this value of transverse momentum. The usage of weights can also
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be interpreted as another systematic variation of the analysis. This means the effects of
weights on the result can be added to the systematic uncertainties and not interpreted
as the baseline, i.e. unweighted, results. In this spirit, we present both results along side
each other, demonstrating in which circumstances the use of weights only has a marginal
impact on the baseline results.
The results obtained by the analysis performed on the data is additionally compared to
the results obtained by performing the identical analysis on HIJING data generated in
2011 anchored to the original detector conditions of Run 1. HIJING[9, 37] is a widely
used Monte Carlo generator designed for the studies of jet and multiparticle production
in high energy nuclear collisions. It contains description of mechanism like jet quenching,
multiple minijet production, soft beamjets, a parton structure dependent on the impact
parameter of the collisions and more. While all these make HIJING a splendid prediction
and analysis tool for nuclear physics in general, its role in flow analysis is slightly different.
Firstly, as we have demonstrated in section 4.3, we can use the generated Monte Carlo
data to obtain weights to correct the analysis for detector inefficiencies. Secondly, all the
mechanism implemented in HIJING introduce correlations only between a few particles
in the system. Therefore flow, which is a collective effect between all produced particles,
is not present in HIJING and therefore it can be used to test the robustness of the
observables and analysis techniques against non-flow. In particular, if we compare the
results of the analysis performed on the data with the results of the analysis performed
on the Monte Carlo data and we can see a signal in the data but not in the Monte Carlo
data, this means that our analysis framework successfully isolated the flow signature and
that we can suppress the contributions of non-flow.
The analysis code developed and used in this thesis is based on the AliRoot framework
developed by the ALICE collaboration. The AliRoot framework itself is open source
and publicly available and the analysis code for this thesis, which is now part of this
framework, is encapsulated in the class AliAnalysisTaskAR(.h,.cxx) and can be found
in the Github repository https://github.com/alisw/AliPhysics/blob/master/PWG/
FLOW/Tasks/. For the analysis itself the computational resources provided by the AL-
ICE collaboration, also known as the Grid, have been used. Additionally, we created
another repository containing code to automate the submission, monitoring and other
tasks related to running jobs on the Grid. The repository is also open source and pub-
licly available on Github and can be found with https://github.com/ariedel-cern/
GridUtilityScripts.

5.1. Experimental results for SC(2,3)

5.1.1. Centrality dependence of SC(2,3)

Figure 5.1 illustrates the centrality dependence of SC(2,3) from 0.0% up to 60% cen-
trality. The results obtained using the HIJING data is consistent with zero within its
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5. Data Analysis

uncertainties in all centrality bins. The results using the ALICE data are non-zero and
show that SC(2,3) is negative and increases in magnitude with centrality. Using HIJING
for comparison we see that SC(2,3) is able to isolate the flow signal in the data and
extract the correlation between v22 and v23. The result is also consistent with a previous
measurement of SC(2,3) presented in [20]. We also observe that the correlations decrease
when we perform the analysis with particle weights. Back in fig. 4.11a we demonstrated
that the detectors have difficulties with detecting particles with small transverse mo-
menta. Meaning these particles will have a larger weight associated with them in the
computation of multiparticle correlators. Considering the results for the transverse mo-
mentum dependence, shown in figs. 5.2 to 5.3, we also see that, generally, the magnitude
of SC(2,3) is diminishing at small transverse momenta. In total, that means we give more
weight to particles which contribute less to the integrated value of SC(2,3), explaining
why including weights in the computation decreases the value for SC(2,3).
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Figure 5.1.: Centrality dependence of SC(2,3). The red and blue markers show the
unweighted and weighted result using the ALICE data respectively. The
magenta and the cyan markers show the unweighted and weighted result
using the HIJING data respectively.

5.1.2. pT-dependence of SC(2,3)

In figs. 5.2 to 5.3 SC(2,3) is displayed as a function of transverse momentum from
0.20GeV/c to 2.0GeV/c in each centrality bin individually. Overall, we see that the
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HIJING result is compatible with zero in all pT-bins in all centrality classes while we
observe non-zero values for SC(2,3) in the ALICE data. This means within the pT-bins
we are still able to extract the flow signal reliably. Generally, within each centrality class,
we see that SC(2,3) is negative and its magnitude increases strongly with the transverse
momentum. Furthermore, the larger the centrality class, the larger the values of SC(2,3)
get. For examples, the value of SC(2,3) in the pT-bin 1.0GeV/c to 2.0GeV/c in centrality
bin 0.0% to 5.0% is approximately −0.2 × 10−6 while in centrality bin 50% to 60%
its value is approximately −30× 10−6. This is an increase by two orders of magnitude.
Another observation is that the unweighted and weighted results are compatible with each
other and we do not see a similar difference as in the centrality dependence. Once again,
looking back at fig. 4.11a, the weights are flat for pT between 0.50GeV/c and 2.0GeV/c.
This means they only have a small impact on the result in this range. And since the
magnitude of SC(2,3) is small at small pT and we plot the values for the whole range
we do not see the deviation in the first two bins. This results in an overall agreement
between the unweighted and weighted results.
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Figure 5.2.: pT-dependence of SC(2,3) in centrality 0.0% to 10%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.

5.1.3. η-dependence of SC(2,3)

In figs. 5.4 to 5.5 SC(2,3) is displayed as a function of pseudorapidity from −0.80 to 0.80
in each centrality bin individually. Once again, we see that overall the HIJING result is
compatible with zero within the uncertainty and we observe non-zero values for SC(2,3)
for centrality larger than 10% and smaller than 50%. All in all, the η-dependence of
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(a) pT-dependence of SC(2,3) in centrality bin
10% to 20%.
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(b) pT-dependence of SC(2,3) in centrality bin
20% to 30%.
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(c) pT-dependence of SC(2,3) in centrality bin
30% to 40%.
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(d) pT-dependence of SC(2,3) in centrality bin
40% to 50%.
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Figure 5.3.: pT-dependence of SC(2,3) in centrality 10% to 60%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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SC(2,3) is flat and we do not see a non-trivial dependence as we have observed for pT.
Furthermore, compared to the pT-dependence, while the values of SC(2,3) inside the
η-bins increase for higher centrality, the order of the values does not change dramatically.
In centrality bin 10% to 20% the weighted result is approximately −0.2 × 10−6 in all
η-bins while in centrality bin 40% to 50% it is approximately −1× 10−6. These values
are in the same order compared to the observed difference of two orders in the case of pT
dependence. Lastly, as was the case with the integrated result of SC(2,3), the weighted
results are smaller than the unweighted results, independent of centrality and η-bin. This
indicates that there is no correlation between the pT- and η-dependence and all η-bins
are affected equally by the usage of the pT-weights.
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(b) η-dependence of SC(2,3) in centrality bin
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Figure 5.4.: η-dependence of SC(2,3) in centrality 10% to 60%. The red and blue markers
show the unweighted and weighted result using the ALICE data respectively.
The magenta and the cyan markers show the unweighted and weighted result
using the HIJING data respectively.
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(b) η-dependence of SC(2,3) in centrality bin
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(c) η-dependence of SC(2,3) in centrality bin
30% to 40%.
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(d) η-dependence of SC(2,3) in centrality bin
40% to 50%.
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(e) η-dependence of SC(2,3) in centrality bin
50% to 60%.

Figure 5.5.: η-dependence of SC(2,3) in centrality 10% to 60%. The red and blue markers
show the unweighted and weighted result using the ALICE data respectively.
The magenta and the cyan markers show the unweighted and weighted result
using the HIJING data respectively.
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5.2. Experimental results for SC(2,4)

5.2.1. Centrality dependence of SC(2,4)

In fig. 5.6 the centrality dependence of SC(2,4) from 0.0% to 60% is shown. We find
again that the HIJING result is compatible with zero while the result using ALICE data
is non-zero confirming that we manage to extract the flow signal and the correlation
between v22 and v24. The value of SC(2,4) is positive and it increases with centrality. This
is also consistent with a previous measurement presented in [20]. We also observe again
that the values of SC(2,4) decreases when we use weights during the analysis. We can use
the same argument as the one we used for SC(2,3) to explain this circumstance. This is
justified because if we look at the pT-dependence of SC(2,4) in figs. 5.7 to 5.8, we observe
overall the same behavior as for SC(2,3) with a opposite sign.
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Figure 5.6.: Centrality dependence of SC(2,4).

5.2.2. pT-dependence of SC(2,4)

In figs. 5.7 to 5.8 SC(2,4) is displayed as a function of transverse momentum from
0.20GeV/c to 2.0GeV/c in each centrality bin individually. We mainly see that the
weighted and unweighted HIJING results are compatible with zero, indicating that we
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manage to suppress the non-flow contribution within the pT-bins for all centrality classes
reliably. The flow signal is very weak in centrality bin 0.0% to 5.0%, where the values
of SC(2,4) computed using the data is compatible with zero in each pT-bin. Though the
values do increase strongly with centrality and with pT. The order of the values also
changes drastically. While the largest value of SC(2,4) in pT-bin 1.0GeV/c to 2.0GeV/c
is approximately 1× 10−6 in 10% to 20%, the largest value in 50% to 60% is roughly
35× 10−6. This is again almost an increase of two orders of magnitude.
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(a) pT-dependence of SC(2,4) in centrality bin
0.0% to 5.0%.
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(b) pT-dependence of SC(2,4) in centrality bin
5.0% to 10%.

Figure 5.7.: pT-dependence of SC(2,4) in centrality 0.0% to 10%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.

5.2.3. η-dependence of SC(2,4)

In figs. 5.9 to 5.10 SC(2,4) is displayed as a function of pseudorapidity from −0.80 to
0.80 in each centrality bin individually. Overall, the HIJING result is again compatible
with zero within the uncertainty and we observe non-zero values for SC(2,4) for centrality
bins larger than 20%. In total, the η-dependence of SC(2,4) is flat and we do not see a
non-trivial dependence similar to what we observed for pT. Also, the order of the values
does not change. In centrality bin 20% to 30% the weighted result is approximately
0.5× 10−6 in all η-bins while in centrality bin 50% to 60% it is approximately 4× 10−6.
And, as was the case with the integrated result of SC(2,4), the weighted results are smaller
than the unweighted results, independent of centrality and η-bin. This also indicates that
there is no correlation between the pT- and η-dependence of SC(2,4).
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(a) pT-dependence of SC(2,4) in centrality bin
10% to 20%.
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(b) pT-dependence of SC(2,4) in centrality bin
20% to 30%.
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(c) pT-dependence of SC(2,4) in centrality bin
30% to 40%.
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(d) pT-dependence of SC(2,4) in centrality bin
40% to 50%.
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(e) pT-dependence of SC(2,4) in centrality bin
50% to 60%.

Figure 5.8.: pT-dependence of SC(2,4) in centrality 10% to 60%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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(a) η-dependence of SC(2,4) in centrality bin
0.0% to 5.0%.
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(b) η-dependence of SC(2,4) in centrality bin
5.0% to 10%.

Figure 5.9.: η-dependence of SC(2,4) in centrality 0.0% to 10%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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(a) η-dependence of SC(2,4) in centrality bin
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(b) η-dependence of SC(2,4) in centrality bin
20% to 30%.
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(c) η-dependence of SC(2,4) in centrality bin
30% to 40%.
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(d) η-dependence of SC(2,4) in centrality bin
40% to 50%.
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(e) η-dependence of SC(2,4) in centrality bin
50% to 60%.

Figure 5.10.: η-dependence of SC(2,4) in centrality 10% to 60%. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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5.3. Experimental results for SC(2,3,4)

5.3.1. Centrality dependence of SC(2,3,4)

Figure 5.11 illustrates the centrality dependence of SC(2,3,4) from 0.0% to 50% centrality.
We exclude the result for centrality bin 50% to 60% because of its huge statistical
uncertainty. The result using HIJING data is consistent with zero in all centrality bins
and the one using ALICE is non-zero for centrality larger than 30%. Hence we are
able to suppress the non-flow contributions and isolate the correlation between the flow
amplitudes v22, v

2
3 and v24. In total, the value of SC(2,3,4) is negative and its magnitude

of SC(2,3,4) increases with centrality. The result is also consistent with a previous
measurement of SC(2,3,4) presented in [20].
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Figure 5.11.: Centrality dependence of SC(2,3,4).

5.3.2. pT-dependence of SC(2,3,4)

The results of the measurements of the transverse momentum dependence of SC(2,3,4)
are shown in fig. 5.12. While the HIJING results are again compatible with zero, so are
the results using ALICE data. Considering the results for the centrality dependence only,
a non-zero results would have been expected for centrality larger than 30%. But even in
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the centrality bins 30% to 40% and 40% to 50% we do not find a result in any pT-bin
where the value of SC(2,3,4) is significantly different from zero. Therefore, we have to
conclude that the statistics available in the Run 1 data set from 2010 is not sufficient to
extract the transverse momentum dependence of SC(2,3,4) with the chosen binning.

5.3.3. η-dependence of SC(2,3,4)

The results of the measurements of the pseudorapidity dependence of SC(2,3,4) are
shown in fig. 5.12. As has been the case for all results so far, the HIJING results are
again compatible with zero. Unfortunately, the results using the ALICE data are also
compatible with zero, as was the case for the pT dependence. Meaning, we have to
conclude that the statistics available in the Run 1 data set from 2010 is not sufficient to
extract the pseudorapidity dependence of SC(2,3,4) with the chosen binning.
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(a) pT-dependence of SC(2,3,4) in centrality bin
0.0% to 5.0%.
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(b) pT-dependence of SC(2,3,4) in centrality bin
5.0% to 10%.
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(c) pT-dependence of SC(2,3,4) in centrality bin
10% to 20%.
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(d) pT-dependence of SC(2,3,4) in centrality bin
20% to 30%.
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(e) pT-dependence of SC(2,3,4) in centrality bin
30% to 40%.
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(f) pT-dependence of SC(2,3,4) in centrality bin
40% to 50%.

Figure 5.12.: pT-dependence of SC(2,3,4) in different centrality bins. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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(a) η-dependence of SC(2,3,4) in centrality bin
0.0% to 5.0%.
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(b) η-dependence of SC(2,3,4) in centrality bin
5.0% to 10%.
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(c) η-dependence of SC(2,3,4) in centrality bin
10% to 20%.
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(d) η-dependence of SC(2,3,4) in centrality bin
20% to 30%.
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(e) η-dependence of SC(2,3,4) in centrality bin
30% to 40%.
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Figure 5.13.: η-dependence of SC(2,3,4) in different centrality bins. The red and blue
markers show the unweighted and weighted result using the ALICE data
respectively. The magenta and the cyan markers show the unweighted and
weighted result using the HIJING data respectively.
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6. Summary

This thesis presents for the first time the measurements of transverse momentum and
pseudorapidity dependence of Symmetric Cumulants SC(2,3), SC(2,4) and SC(2,3,4).
This thesis also confirmed the established results for the centrality dependence of SC(2,3),
SC(2,4) and SC(2,3,4) presented in [20]. These differential studies give new and indepen-
dent information about the correlations between v22, v

2
3 and v23 and can be used to further

constrain the properties of the Quark-Gluon Plasma.
For the computation of the SCs we use the generic framework introduced in [4]. We
start by factorizing the joined probability density function of the azimuthal angles of
the particles produced in a heavy-ion collision and expanding each marginal probability
density function as a Fourier Series. These Fourier Series are parameterized, in each order
n, by the flow amplitudes vn and symmetry plane Ψn. The properties of the Quark-Gluon
Plasma are encoded in the values of the different vn and their mutual correlations. Using
multiparticle correlation techniques we can estimate the value of flow harmonics by com-
puting multiparticle correlators. Computing multiparticle correlators straight forwardly,
i.e. with the use of nested loops over the data, is computationally not feasible. Therefore
we use Q-vectors, which allow to obtain an analytically equivalent result passing over the
data only once. Using this machinery, we can estimate the values of flow harmonics on
an event-by-event basis.
The factorization of the joined probability density function of azimuthal angels is only
valid if flow is the only physical effect which produces correlations among the generated
particles, which is in general not the case. These effects are called non-flow and they
introduce correlation between a subset of particles. For this reason we need an additional
tool to estimate the expectation value of the flow harmonics from the event-by-event
estimates that suppresses non-flow. This can be achieved with the use of cumulants.
Cumulants can quantify the genuine correlation between all particles and therefore sup-
press the contribution from effects that only effect a subset of particles. If we evaluate a
cumulant only in one harmonic n we can use it to estimate the expectation value of vn.
Symmetric cumulants are a special kind of cumulants where we evaluate the cumulant in
at least two different harmonics n and m to estimate the correlation between v2n and v2m.
The same is true for higher order Symmetric cumulants that can measure the correlations
between more flow harmonics.
This thesis uses Pb–Pb collision data taken by LHC Run 1 in 2010 with the ALICE detec-
tor at √

sNN = 2.76TeV. The experimental results in this thesis for SC(2,3) show that,
integrated over the different centrality bins, it is negative and its magnitude increases with
centrality. The same general behavior is observed for SC(2,3,4) while SC(2,4) is positive
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6. Summary

and its magnitude also increases with centrality. The measurement of the transverse
momentum dependence of SC(2,3) shows a non-trivial behavior. The value of SC(2,3)
increases steadily with the transverse momentum in each centrality bin. The overall
magnitude of the values of SC(2,3) within a centrality bin also increases sharply with the
centrality. The same can be said for SC(2,4), but with an opposite sign. For SC(2,3,4) we
do not observe any dependence due to the uncertainties. The available statistics are not
sufficient to extract the transverse momentum dependence of SC(2,3,4). The pseudora-
pidity dependence of SC(2,3) and SC(2,4) is flat, i.e. they are constant. The statistics are
also, regrettably, insufficient to extract the dependence of SC(2,3,4) on pseudorapidity.
The results have been validated by comparing them to results obtained by performing
the exact same analysis on a HIJING data set which was anchored to the real data set.
HIJING is a Monte Carlo event generator which implements all know physical effects
present in heavy-ion collision except for flow. Therefore, performing the analysis on this
data set should consistently yield a result compatible with zero in all bins because there
are no correlation due to flow. The HIJING results have been consistently zero for all
centrality, transverse momentum and pseudorapidity bins.
These measurements have been the first look at differential studies of Symmetric Cumu-
lants. While the measurements have been able to extract the dependence of transverse
momentum and pseudorapidity for SC(2,3) and SC(2,4), the binning was very coarse.
Despite that, the statistics were not enough to make any statement about the dependence
of SC(2,3,4). With the future increases of energy and luminosity in Run 3 of the LHC
we will be able to study the dependence of three and higher order Symmetric cumulants
and use a finer binning.
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A. Derivations

In this Chapter we will outline the detailed mathematical proofs for the statements made
in this thesis.

A.1. Fourier Coefficients of normalized linear function

The normalized linear function on the interval [0, 2π] reads

f (φ) =
1

2π2φ . (A.1)

Using eqs. (2.2) and (2.3) we can compute the coefficients of its Fourier series as described
in eq. (2.1). The derivation for cn reads

cn =

∫ 2π

0
dφf (φ) cos (nφ) , (A.2)

=
1

2π2

∫ 2π

0
dφφ cos (nφ) , (A.3)

=
1

2π2

[
φ

n
sin (nφ)

∣∣∣∣2π
0

− 1

n

∫ 2π

0
dφ sin (nφ)

]
, (A.4)

=
1

2π2

[
1

n2 cos (nφ)

∣∣∣∣2π
0

]
, (A.5)

= 0 . (A.6)
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The derivation for sn looks similar and reads

sn =

∫ 2π

0
dφf (φ) sin (nφ) , (A.7)

=
1

2π2

∫ 2π

0
dφφ sin (nφ) , (A.8)

=
1

2π2

[
− φ

n
cos (nφ)

∣∣∣∣2π
0

+
1

n

∫ 2π

0
dφ cos (nφ)

]
, (A.9)

=
1

2π2

[
−2π

n
+

1

n2 sin (nφ)

∣∣∣∣2π
0

]
, (A.10)

= − 1

nπ
. (A.11)

Hence, the Fourier series is

f(φ) =
1

2π

[
1− 2

π

∞∑
n=1

sin(nφ)

n

]
. (A.12)

A.2. Parameterization of Fourier Series

In the following we want to show the equality between eq. (2.1) and eq. (2.6). For the
equality to hold we will demonstrate that

cn cos (nφ) + sn sin (nφ) = vn cos [n (φ−Ψn)] (A.13)

for all n and for a certain choice of vn and Ψn. We start with the left hand side and
rewrite the sine and cosine function as exponential functions and rearrange the terms
resulting in

cn cos (nφ) + sn sin (nφ) =
cn
2

(
einφ + e−inφ

)
+

sn
2i

(
einφ − e−inφ

)
, (A.14)

=
(cn
2

+
sn
2i

)
einφ +

(cn
2

− sn
2i

)
e−inφ , (A.15)

=
1

2

[
(cn − isn) e

inφ + (cn + isn) e
−inφ

]
. (A.16)

(A.17)

We can see that the factor in front of the first exponential is the complex conjugate of
factor in front of the second exponential. If we define a complex number ξn ∈ C for each
n as

ξn = cn + isn (A.18)
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then we receive

cn cos (nφ) + sn sin (nφ) =
1

2

[
ξ∗ne

inφ + ξne
−inφ

]
. (A.19)

Now we change the parameterization of ξn to polar coordinates in the complex plane to

ξn = vne
inΨn , (A.20)

where
vn =

√
c2n + s2n (A.21)

and
Ψn =

1

n
arctan

sn
cn

, (A.22)

which gives us the parameterization of vn and Ψn in terms of cn and sn. Plugging now
eq. (A.20) into eq. (A.19) gives

cn cos (nφ) + sn sin (nφ) =
1

2

[
vne

−inΨneinφ + vne
inΨne−inφ

]
, (A.23)

=
vn
2

[
ein(φ−Ψn) + e−in(φ−Ψn)

]
, (A.24)

= vn cos [n (φ−Ψn)] , (A.25)

where we used the definition of the cosine function again as a sum of exponential functions
and conclude the proof.

A.3. Symmetry properties of Fourier coefficients

In the definition of the Fourier Series in eq. (2.1) we sum over positive indices. It is
also possible to define the sum over negative indices as well. We will not be using this
definition but we still need to establish a relationship between coefficients cn, sn and
c−n, s−n which also gives rise to a relationship between vn,Ψn and v−n,Ψ−n. We reuse
eqs. (2.2) to (2.3) and receive

c−n =

∫ 2π

0
dφf(φ) cos(−nφ) = cn (A.26)

and

s−n =

∫ 2π

0
dφf(φ) sin(−nφ) = −sn . (A.27)
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where we exploited the symmetry properties of the sine and cosine function. Using these
results and the parameterization given in eqs. (2.7) to (2.8) gives

v−n =

√
c2−n + s2−n , (A.28)

=

√
c2n + (−sn)

2 , (A.29)

=

√
c2n + s2n , (A.30)

= vn (A.31)

and

Ψ−n =
1

−n
arctan

s−n

c−n
, (A.32)

=
1

−n
arctan

−sn
cn

, (A.33)

=
1

n
arctan

sn
cn

, (A.34)

= Ψn . (A.35)

A.4. Derivation of flow harmonics

In the following we will use these orthogonality relations:∫ 2π

0
dx sin(mx+ α) sin(nx+ β) = π cos(α− β)δmn , (A.36)∫ 2π

0
dx cos(mx+ α) cos(nx+ β) = π cos(α− β)δmn , (A.37)∫ 2π

0
dx sin(mx+ α) cos(nx+ β) = π sin(α− β)δmn . (A.38)

We want to derive eq. (2.16). We start with eq. (2.6). By multiplying both sides with
cos [n (φ−Ψn)] we receive∫ 2π

0
dφ cos [n (φ−Ψn)] f(φ) =

1

2π

∫ 2π

0
dφ cos [n (φ−Ψn)]

[
1 + 2

∞∑
k=1

vk cos[k(φ−Ψk)]

]
.

(A.39)

The left hand side is by definition the expectation value ⟨cos [n (φ−Ψn)]⟩. It is left to
show that the right hand side equals vn. Multiplying out everything the right hand side
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(RHS) results in

RHS =
1

2π

[∫ 2π

0
dφ cos [n (φ−Ψn)]

+ 2

∫ 2π

0
dφ

∞∑
k=1

vk cos[k(φ−Ψk)] cos[n(φ−Ψn)]

]
.

(A.40)

The first integral inside the bracket computes to∫ 2π

0
dφ cos [n (φ−Ψn)] =

1

n
sin [n (φ−Ψn)]

∣∣∣∣2π
0

, (A.41)

=
1

n

sin [n (2π −Ψn)]︸ ︷︷ ︸
sin(−nΨn)

− sin (−nΨn)

 , (A.42)

= 0 . (A.43)

So this term drops. In the second integral we can change the order of integration and
summation, so we arrive at

2

∞∑
k=1

vk

∫ 2π

0
dφ cos[k(φ−Ψk)] cos[n(φ−Ψn)] = 2π

∞∑
k=1

vk cos (kΨk − nΨn) δkn , (A.44)

= 2πvn , (A.45)

where we used orthogonality relation from eq. (A.37) to solve the integral. The argument
of the resulting cosine function is zero, so it evaluates to one, as we evaluate the Kronecker
Delta and remove the sum. Plugging all results together we arrive at the result

⟨cos [n (φ−Ψn)]⟩ =
1

2π
[0 + 2πvn] , (A.46)

= vn . (A.47)

A.5. Derivation of multiparticle correlators

We want to verify eq. (2.20). Therefore, we start with eq. (2.17), multiply both sides
with cos [n (φ1 − φ2)] and integrate from 0 to 2π which results in∫ 2π

0
dφ1

∫ 2π

0
dφ1 cos [n (φ1 − φ2)] f(φ1, φ2) =∫ 2π

0
dφ1fφ1

(φ1)

∫ 2π

0
dφ2 cos [n (φ1 − φ2)]fφ2

(φ2) .

(A.48)
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The left hand side is by definition the expectation value ⟨cos [n (φ1 − φ2)]⟩. To compute
the left hand side, we start by evaluating the integral over φ2 first, which reads∫ 2π

0
dφ2fφ2

(φ2) cos [n (φ1 − φ2)] =

1

2π

∫ 2π

0
dφ2 cos [n (φ1 − φ2)]

[
1 + 2

∞∑
k=1

vk cos[k(φ2 −Ψk)]

]
.

(A.49)

We can drop the first term inside the bracket, since we know from eq. (A.43) that this
term vanishes. In the second part we can once again invert the order of integration and
summation and arrive at

2

∞∑
k=1

vk

∫ 2π

0
dφ2 cos[n(φ1 − φ2)] cos[k(φ2 −Ψk)] = 2π

∞∑
k=1

vk cos (nφ1 − kΨk) δkn ,

(A.50)

= 2πvn cos [n (φ1 −Ψn)] , (A.51)

where we used eq. (A.37) again to solve the integral. In total the integration over φ2

results in∫ 2π

0
dφ2fφ2

(φ2) cos [n (φ1 − φ2)] =
1

2π
[0 + 2πvn cos [n (φ1 −Ψn)]] , (A.52)

= vn cos [n (φ1 −Ψn)] . (A.53)

Plugging this result into eq. (A.48) gives

⟨cos [n (φ1 − φ2)]⟩ = vn

∫ 2π

0
dφ1fφ1

(φ1) cos [n (φ1 −Ψn)]︸ ︷︷ ︸
vn

, (A.54)

= v2n , (A.55)

where we realized that the remaining integral is the expectation value we computed
in appendix A.4.

A.6. Q-vector

We want to verify eq. (2.21). For this reason we first want to verify this relation:

⟨cos [n (φ1 − φ2)]⟩ =
〈
ein(φ1−φ2)

〉
. (A.56)
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Evaluating the right hand side of this expression results in〈
ein(φ1−φ2)

〉
= ⟨cos [n (φ1 − φ2)]⟩+ i ⟨sin [n (φ1 − φ2)]⟩ , (A.57)

where we used Euler’s identity to rewrite the exponential function and the linearity of the
integral to split the expectation value operator onto both summands. All that is left to
show is that the expectation value of the sine function vanishes. The expectation value
reads

⟨sin [n (φ1 − φ2)]⟩ =
∫ 2π

0
dφ1

∫ 2π

0
dφ2 sin [n (φ1 − φ2)] f(φ1, φ2) , (A.58)

=

∫ 2π

0
dφ1

∫ 2π

0
dφ2 sin [n (φ1 − φ2)] fφ1

(φ1)fφ2
(φ2) . (A.59)

We start by performing the integral over φ2. The integral reads∫ 2π

0
dφ2fφ2

(φ2) sin [n (φ1 − φ2)] =

1

2π

∫ 2π

0
dφ2 sin [n (φ1 − φ2)]

[
1 + 2

∞∑
k=1

vk cos[k(φ2 −Ψk)]

]
.

(A.60)

We can drop the 1 inside the bracket, because∫ 2π

0
dφ sin [n (φ−Ψn)] = − 1

n
cos [n (φ−Ψn)]

∣∣∣∣2π
0

, (A.61)

= − 1

n

cos [n (2π −Ψn)]︸ ︷︷ ︸
cos(−nΨn)

− cos (−nΨn)

 , (A.62)

= 0 . (A.63)

The other term inside the bracket, after changing the order of summation and integration,
computes to

2
∞∑
k=1

vk

∫ 2π

0
dφ2 sin[n(φ1 − φ2)] cos[i(φ2 −Ψk)] = 2π

∞∑
k=1

vk sin (nφ1 − kΨk) δkn ,

(A.64)

= 2πvn sin [n (φ1 −Ψn)] , (A.65)

where we used eq. (A.38) to evaluate the integral. In total the integration over φ2 results
in ∫ 2π

0
dφ2fφ2

(φ2) sin [n (φ1 − φ2)] =
1

2π
[0 + 2πvn sin [n (φ1 −Ψn)]] , (A.66)

= vn sin [n (φ1 −Ψn)] . (A.67)
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Plugging this result into eq. (A.48) gives

⟨sin [n (φ1 − φ2)]⟩ = vn

∫ 2π

0
dφ1fφ1

(φ1) sin [n (φ1 −Ψn)] . (A.68)

The remaining integral reads∫ 2π

0
dφ1fφ1

(φ1) sin [n (φ1 −Ψn)] =∫ 2π

0
dφ1 sin [n (φ1 −Ψn)]

[
1 + 2

∞∑
k=1

vk cos[k(φ1 −Ψk)]

]
.

(A.69)

The integral over 1 inside the break evaluates again to zero. The remaining integral, after
inverting the order of integration and summation, evaluates to

2
∞∑
k=1

vk

∫ 2π

0
dφ1 sin[n(φ1 −Ψn)] cos[k(φ2 −Ψk)] = 2π

∞∑
k=1

vk sin (nΨn − kΨk) δkn ,

(A.70)

= 2πvn sin (0) , (A.71)
= 0 , (A.72)

which gives the final result
⟨sin [n (φ1 − φ2)]⟩ = 0 . (A.73)

Now that we verified eq. (A.56), we change perspective. Instead of evaluation the expec-
tation value as an integral over a PDF, we evaluate it as a mean over a data set. Hence,
we write 〈

ein(φ1−φ2)
〉
=

1

M (M − 1)

M∑
k,l=1
k ̸=l

ein(φk−φl) , (A.74)

where we sum over all pairs φk and φl, except for the cases where k = l to avoid
autocorrelations. Because we do not compute these, in the prefactor we have to divide by
M(M − 1) instead of M2. Looking at eq. (2.22), we see that we can rewrite the prefactor
as

1(
M
2

)
2!

=
1

M !
2!(M−2)!2!

, (A.75)

=
(M − 2)!

M !
, (A.76)

=
1

M (M − 1)
, (A.77)
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which is the same prefactor as in eq. (A.74). In order to simplify further, we have a look
at this identity:

M∑
k,l=1

ein(φk−φl) =

M∑
k,l=1
k ̸=l

ein(φk−φl) +

M∑
l=1
l=k

ein(φk−φl)︸ ︷︷ ︸
=1∀l

, (A.78)

=

M∑
k,l=1
k ̸=l

ein(φk−φl) +M . (A.79)

The left hand side can also be written as
M∑

k,l=1

ein(φk−φl) =

M∑
k,l=1

einφke−inφl , (A.80)

=

(
M∑
k=1

einφk

)(
M∑
l=1

e−inφl

)
, (A.81)

= QnQ
∗
n , (A.82)

= |Qn|
2 . (A.83)

This means we can rewrite eq. (A.74) to

〈
ein(φ1−φ2)

〉
=

1(
M
2

)
2!

 M∑
k,l=1

ein(φk−φl) −M

 , (A.84)

=
1(

M
2

)
2!

(
|Qn|

2 −M
)

(A.85)

and conclude the proof.

A.7. Cumulants

The main goal is to verify eq. (2.41). But before that, we need to show several other
relations. Firstly, we want to explicitly show that〈〈

e±inφ
〉〉

= 0 . (A.86)

Expanding the exponential function and the inner expectation value, which corresponds
to computing the average with respect to φ, we receive〈

einφ
〉
=

∫ 2π

0
dφf (φ) cos (nφ)± i

∫ 2π

0
dφf (φ) sin (nφ) . (A.87)
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Reusing results from previous calculations we can immediately write the result as〈
einφ

〉
= 2πvn [cos(Ψn)± i sin(Ψn)] . (A.88)

Evaluating the outer expectation value, which corresponds to computing the average with
respect to Ψn, gives〈〈

einφ
〉〉

= 2πvn (⟨cos(Ψn)⟩ − i ⟨sin(Ψn)⟩) , (A.89)

= vn

(∫ 2π

0
dΨn cos(Ψn)− i

∫ 2π

0
dΨn sin(Ψn)

)
, (A.90)

= 0 , (A.91)

where we used the fact that the symmetry planes are uniformly randomly distributed
between 0 and 2π, hence

⟨g(Ψn)⟩ =
1

2π

∫ 2π

0
dΨng(Ψn) . (A.92)

Next, we want to derive a general expression for a 3-particle cumulant. Therefore, we start
with a 3-particle PDF and decompose it. For the sake of simplicity, we will immediately
write the decomposition in terms of cumulants and moments, namely as

⟨X1X2X3⟩ = ⟨X1⟩ ⟨X2⟩ ⟨X3⟩
+ ⟨X1⟩ ⟨X2X3⟩c + ⟨X2⟩ ⟨X1X3⟩c + ⟨X3⟩ ⟨X1X3⟩c
+ ⟨X1X2X3⟩c .

(A.93)

Inverting this to isolate the 3-particle cumulant, we receive

⟨X1X2X3⟩c = ⟨X1X2X3⟩
− ⟨X1⟩ ⟨X2X3⟩c − ⟨X2⟩ ⟨X1X3⟩c − ⟨X3⟩ ⟨X1X2⟩c
− ⟨X1⟩ ⟨X2⟩ ⟨X3⟩ .

(A.94)

Using the usual parameterization X1 = e±inφ1 , we see immediately that terms propor-
tional to a 1-particle average drop if we compute all event averages. But we can also
conclude that the 3-particle correlator will vanish, because the single event average will
again produce a term which will be proportional to the cosine of the symmetry plane and
the all event average over this term vanishes again. Which means in total〈〈

ein(±φ1±φ2±φ3)
〉
c

〉
= 0 . (A.95)

Now we decompose the joint PDF of 4 particles and arrive at

⟨X1X2X3X4⟩ = ⟨X1⟩ ⟨X2⟩ ⟨X3⟩ ⟨X4⟩
+ ⟨X1⟩ ⟨X2X3X4⟩c + ⟨X2⟩ ⟨X1X3X4⟩c
+ ⟨X3⟩ ⟨X1X2X4⟩c ⟨X4⟩ ⟨X1X2X3⟩c
+ ⟨X1X2⟩c ⟨X3X4⟩c + ⟨X1X3⟩ ⟨X2X4⟩c + ⟨X1X4⟩ ⟨X2X3⟩c
+ ⟨X1X2X3X4⟩c .

(A.96)
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Inverting and isolating the 4-particle cumulant reads

⟨X1X2X3X4⟩c = ⟨X1X2X3X4⟩
− ⟨X1⟩ ⟨X2X3X4⟩c − ⟨X2⟩ ⟨X1X3X4⟩c
− ⟨X3⟩ ⟨X1X2X4⟩c ⟨X4⟩ ⟨X1X2X3⟩c
− ⟨X1X2⟩c ⟨X3X4⟩c − ⟨X1X3⟩c ⟨X2X4⟩c − ⟨X1X4⟩c ⟨X2X3⟩c
− ⟨X1⟩ ⟨X2⟩ ⟨X3⟩ ⟨X4⟩ .

(A.97)

Setting X1 = einφ1 , X2 = einφ2 , X3 = e−inφ3 and X4 = e−inφ4 , adding the all event
average and dropping all 1- and 3-particle correlators gives

〈〈
ein(φ1+φ2−φ3−φ4)

〉
c

〉
=

〈〈
ein(φ1+φ2−φ3−φ4)

〉
︸ ︷︷ ︸

=v
4
n

〉
(A.98)

−
〈〈

ein(φ1+φ2)
〉〉

︸ ︷︷ ︸
=0

〈〈
ein(−φ3−φ4)

〉〉
︸ ︷︷ ︸

=0

−

〈〈
ein(φ1−φ3)

〉
︸ ︷︷ ︸

=v
2
n

〉〈〈
ein(φ2−φ4)

〉
︸ ︷︷ ︸

=v
2
n

〉

−

〈〈
ein(φ1−φ4)

〉
︸ ︷︷ ︸

=v
2
n

〉〈〈
ein(φ2−φ3)

〉
︸ ︷︷ ︸

=v
2
n

〉
,

=
〈
v4n

〉
− 2

〈
v2n

〉2
, (A.99)

where we recognize the 2- and 4-particle correlators and that〈〈
e±in(φk+φl)

〉〉
= 0 . (A.100)

Like with the 1-particle cumulant, if we evaluate the single even average we get a term
which will be proportional to the cosine or sine of the symmetry plane Ψ and these terms
evaluate to 0 if we take the all-event average afterwards.
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A.8. 2-particle correlators with weighted sum

We want to verify eq. (2.54). We will start with the following identity, where
M∑

k,l=1

wkwle
in(φk−φl) =

M∑
k,l=1
k ̸=l

wkwle
in(φk−φl) +

M∑
k,l=1
k=l

wkwl︸ ︷︷ ︸
w

2
k

ein(φk−φl)︸ ︷︷ ︸
=1

, (A.101)

=

M∑
k,l=1
k ̸=l

wkwle
in(φk−φl) +

M∑
k=1

w2
k . (A.102)

This we can be rewritten as
M∑

k,l=1
k ̸=l

wkwle
in(φk−φl) =

M∑
k,l=1

wkwle
in(φk−φl) −

M∑
k=1

w2
k , (A.103)

=

(
M∑
k=1

wke
inφk

)(
M∑
l=1

wle
−inφl

)
−

M∑
k=1

w2
k , (A.104)

= |Qn|
2 −

M∑
k=1

w2
k . (A.105)

The final step is now rewriting

⟨2⟩ =

M∑
k,l=1
k ̸=l

wkwle
in(φk−φl)

M∑
k,l=1
k ̸=l

wkwl

, (A.106)

=
1

M∑
k,l=1
k ̸=l

wkwl

(
|Qn|

2 −
M∑
k=1

w2
k

)
, (A.107)

which concludes the proof.

A.9. Expectation value of 2-particle correlator with pT
dependence

We want to compute the expectation value of a 2-particle correlator when the flow
harmonics are a function of transverse momentum. We start with the generic formula of
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2-particle correlator∫ 2π

0
dφ1

∫ ∞

0
dp1

∫ 2π

0
dφ2

∫ ∞

0
dp2 cos [n (φ1 − φ2)] f (φ1, p1;φ2, p2) =∫ ∞

0
dp1fp1(p1)

∫ ∞

0
dp2fp2(p2)

∫ 2π

0
dφ1fφ1

(φ1, p1)

∫ 2π

0
dφ2fφ2

(φ2, p2) cos [n (φ1 − φ2)] ,

(A.108)

where we split the joint PDF f (φ1, p1;φ2, p2) into marginal PDF for the azimuthal angels
φ1,2 and the momenta p1,2. The marginal PDF of φ1,2 follow a Fourier series as described
by eq. (2.1) with the exception that vn are now functions of p. The marginal PDF of
transverse momentum p1,2 follow a Boltzmann distribution as described by eq. (2.56).
We can solve the integral over the azimuthal angles immediately by reusing the results
from appendix A.5. The result reads

⟨cos [n (φ1 − φ2)]⟩ =
∫ ∞

0
dp1fp1(p1)vn(p1)

∫ ∞

0
dp2fp2(p2)vn(p2) , (A.109)

=

[∫ ∞

0
dpf(p)vn(p)

]2
, (A.110)

=

N ∫ ∞

0
dp vn(p)p exp

−

√
p2 +m2

T

2

. (A.111)

Using the parameters stated in section 2.9.2 and eq. (2.57) for the functional dependence
of v2 on pT we can compute the integral numerically which results in

⟨cos [n(φ1 − φ2)]⟩ = 1.6787× 10−2 . (A.112)

A.10. Fully generic 2-particle correlator with Q-vectors

We want to verify that

⟨2⟩n1,n2
=

N ⟨2⟩n1,n2

D ⟨2⟩n1,n2

(A.113)
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holds with the expression of N ⟨2⟩n1,n2
as given by eq. (2.72) and D ⟨2⟩n1,n2

as given by
eq. (2.73). Therefore, we plug the values into the definitions and compute

N ⟨2⟩n1,n2
= Qn1,1

Qn2,1
−Qn1+n2,2

, (A.114)

=

M∑
k=1

wke
in1φk

M∑
l=1

wle
in1φl −

M∑
r=1

w2
re

i(n1+n2)φr , (A.115)

=
M∑

k,l=1

wkwle
i(n1φk+n2φl) −

M∑
r=1

w2
re

i(n1+n2)φr , (A.116)

=

M∑
k,l=1
k ̸=l

wkwle
i(n1φk+n2φl) . (A.117)

And for the Denominator we receive

D ⟨2⟩n1,n2
= Q2

0,1 −Q0,2 , (A.118)

=

(
M∑
k=1

wk

)2

−
M∑
r=1

w2
r , (A.119)

=
M∑

k,l=1

wkwl −
M∑
r=1

w2
r , (A.120)

=
M∑

k,l=1
k ̸=l

wkwl . (A.121)

Putting everything together we get

⟨2⟩n1,n2
=

N ⟨2⟩n1,n2

D ⟨2⟩n1,n2

, (A.122)

=

M∑
k,l=1
k ̸=l

wkwle
i(n1φk+n2φl)

M∑
k,l=1
k ̸=l

wkwl

, (A.123)

concluding the proof.
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A.11. Derivation of SC(n,m)

We want to verify that eq. (2.83). Using the previous results from section appendix A.7
we can write

SC(n,m) =
〈〈

ein(φ1−φ2)+im(φ3−φ4)
〉
c

〉
, (A.124)

=

〈〈
ein(φ1−φ2)+im(φ3−φ4)

〉
︸ ︷︷ ︸

=v
2
nv

2
m

〉
(A.125)

−

〈〈
ein(φ1−φ2)

〉
︸ ︷︷ ︸

=v
2
n

〉〈〈
eim(φ3−φ4)

〉
︸ ︷︷ ︸

=v
2
m

〉
(A.126)

−

〈〈
einφ1+imφ3)

〉
︸ ︷︷ ︸

=0

〉〈〈
e−inφ2−imφ4)

〉
︸ ︷︷ ︸

=0

〉
(A.127)

−

〈〈
einφ1−imφ4)

〉
︸ ︷︷ ︸

=0

〉〈〈
e−inφ2+imφ3)

〉
︸ ︷︷ ︸

=0

〉
, (A.128)

=
〈
v2nv

2
m

〉
−
〈
v2n

〉〈
v2m

〉
, (A.129)

where we used that
〈
e±inφk±imφl

〉
= 0 since n−m ̸= 0 for n ̸= m.

A.12. Analytical result for Toy Monte Carlo study for
SC(2,3)

We want to verify the analytical result for SC(2,3) in section 2.13. Using the PDF as
given by eq. (2.85) as well as the limits for v2 ∈ [0.15, 0.25] and v3 ∈ [0.15, 0.15], we
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explicitly write

SC(2, 3) =
〈
v22v

2
3

〉
−
〈
v22

〉〈
v23

〉
, (A.130)

=

∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3f(v2, v3)v

2
2v

2
3 (A.131)

−
∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3f(v2, v3)v

2
2 (A.132)

−
∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3f(v2, v3)v

2
3 , (A.133)

= N
∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3(v2 + v3)v

2
2v

2
3 (A.134)

−N
∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3(v2 + v3)v

2
2 (A.135)

−N
∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3(v2 + v3)v

2
3 . (A.136)

The normalization constant can be computed with

N =

(∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3f(v2, v3)

)−1

, (A.137)

=

(∫ 0.25

0.15
dv2

∫ 0.15

0.05
dv3(v2 + v3)

)−1

. (A.138)

Plugging in all the values we receive the numerical result

SC(2, 3) = −2.7700× 10−7 . (A.139)
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