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Abstract

In this work the first measurement of the p–φ correlation function, aiming to extract information
on the strong p–φ interaction, is presented. This study has implications in various sectors of
physics, ranging from the domain of astrophysics to the more fundamental nuclear- and particle
physics.

In order to constrain the equation of state of dense objects like neutron stars and subsequently
solve the puzzle about their content, it is crucial to understand the interaction between their
hypothetical constituents. Hyperons (Y) might be contained in the core of neutron stars, which
also renders the hyperon-hyperon (Y–Y) interaction relevant at large densities. In this context, the
φ meson could serve as an effective exchange particle, mediating a repulsive interaction among
the hyperons. This would lead to a stiffening of the equation of state of dense hyperonic matter,
which might even support heavy ∼ 2M� neutron stars, discovered in the last decades.

Additionally, the φ meson is an interesting probe to investigate the partial restoration of chiral
symmetry within the hot and/or dense nuclear medium, predicted by theory. This would lead to
modifications of hadronic properties like mass and width, which can be accessed through the
spectral function of the meson. In order to properly interpret such measurements, the vacuum
properties of the interaction between the φ meson and nucleons have to be constrained.

This can be studied experimentally by measuring the p–φ correlation function in small collid-
ing systems employing the femtoscopy technique. The small source size in pp collisions at√

s = 13 TeV at the Large Hadron Collider makes it possible to study the short-ranged strong
interaction with unprecedented precision. The data used to derive the correlation function are
measured by the ALICE experiment. The φ candidates are reconstructed from their hadronic
decay to charged kaons φ → K+K−, while the protons are detected directly. The resulting cor-
relation function is corrected for non-genuine contributions. This includes the combinatorial
p–(K+K−) background arising from the finite purity of the reconstructed φ candidates as well as
minijet contributions, which consist of auto-correlated protons and φ mesons, emitted in jet-like
structures.

Both scattering length and effective range of the p–φ interaction are extracted from the fully
corrected correlation function by means of the Lednický–Lyuboshits model. This results in a scat-
tering length with a real and imaginary part of <( f0) = 0.85± 0.34 (stat.)± 0.14 (syst.) fm and
=( f0) = 0.16± 0.10 (stat.)± 0.09 (syst.) fm, and an effective range of d0 = 7.85± 1.54 (stat.)±
0.26 (syst.) fm. The experimental data are found to reflect the pattern of a shallow attractive force
between proton and φ meson, characterized by the real part of the scattering length. The imagi-
nary part of the scattering length vanishes within uncertainties and is significantly smaller than
the real part, indicating that the p–φ interaction in vacuum is dominated by elastic contributions.
Additionally, the effective range is large. These results contradict the possibility of the formation
of a N–φ bound state.

Furthermore, the correlation functions obtained from phenomenological Gaussian- and Yukawa-
type potentials are compared to the data, which yield similar results to the one from the Lednický–
Lyuboshits approach. From the Yukawa-type potential, it is possible to derive the N–φ coupling
constant gN–φ = 0.14± 0.03 (stat.)± 0.02 (syst.), which can be linked to the Y–Y interaction in
neutron stars.
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Zusammenfassung

In dieser Arbeit wird die erste Messung der p–φ Korrelationsfunktion vorgestellt, die darauf
abzielt, Informationen über die starke p–φ Wechselwirkung zu gewinnen. Diese Studie hat
Auswirkungen auf verschiedene Bereiche der Physik, angefangen bei Astrophysik bis hin zur
grundlegenderen Kern- und Teilchenphysik.

Um die Zustandsgleichung von dichten Objekten wie Neutronensternen einzugrenzen und
anschließend das Rätsel um ihren Inhalt zu lösen, ist es entscheidend, die Wechselwirkung
zwischen ihren hypothetischen Bestandteilen zu verstehen. Im Kern von Neutronensternen
könnten Hyperonen (Y) enthalten sein, wodurch die Hyperon-Hyperon-Wechselwirkung (Y–Y)
bei großen Dichten relevant wird. In diesem Zusammenhang könnte das φ-Meson als effektives
Austauschteilchen dienen, welches eine abstoßende Wechselwirkung zwischen Hyperonen
vermittelt. Dies würde zu einer Versteifung der Zustandsgleichung dichter hyperonischer
Materie führen, welche sogar die Existenz von ∼ 2M� Neutronensternen unterstützen kann, die
in den letzten Jahrzehnten entdeckt wurden.

Darüber hinaus ist das φ-Meson ein interessante experimentelle Sonde, um die partielle Wieder-
herstellung von chiraler Symmetrie im heißen und/oder dichten nuklearen Medium zu un-
tersuchen, welche von Theoretikern vorhergesagt wird. Dies würde zu einer Veränderung
hadronischer Eigenschaften wie Masse und Breite führen, welche über die Spektralfunktion
des Mesons zugänglich sind. Um solche Messungen richtig interpretieren zu können, müssen
die Vakuumeigenschaften der Wechselwirkung zwischen φ-Mesonen und Nukleonen bestimmt
werden.

Dies kann experimentell durch die Messung der p–φ-Korrelationsfunktion in kleinen Kolli-
sionssystemen mittels der Femtoskopie-Methode untersucht werden. Die geringe Größe der
Emissionsquelle in pp Kollisionen bei

√
s = 13 TeV am Large Hadron Collider ermöglicht es, die

kurzreichweitige starke Wechselwirkung mit bisher unerreichter Präzision zu untersuchen. Die
Daten, die zur Ableitung der Korrelationsfunktion verwendet werden, wurden mit dem ALICE-
Experiment gemessen. Die φ-Kandidaten werden aus ihrem hadronischen Zerfall zu geladenen
Kaonen φ → K+K− rekonstruiert, während die Protonen direkt nachgewiesen werden. Die
resultierende Korrelationsfunktion wird um Beiträge korrigiert, welche nicht dem tatsächlichen
p–φ Anteil entsprechen. Dazu gehören der kombinatorische p–(K+K−)-Hintergrund, der sich
aus der begrenzten Reinheit der rekonstruierten φ-Kandidaten ergibt, sowie Minijet-Beiträge, die
aus autokorrelierten Protonen und φ-Mesonen bestehen, welche in jetartigen Strukturen emittiert
werden.

Sowohl die Streulänge als auch die effektive Reichweite der p–φ-Wechselwirkung werden mit
Hilfe des Lednický–Lyuboshits-Modells aus der vollständig korrigierten Korrelationsfunktion
extrahiert. Daraus ergibt sich eine Streulänge mit einem Real- und Imaginärteil von <( f0) =
0.85 ± 0.34 (stat.) ± 0.14 (syst.) fm und =( f0) = 0.16 ± 0.10 (stat.) ± 0.09 (syst.) fm und eine
effektive Reichweite von d0 = 7.85± 1.54 (stat.)± 0.26 (syst.) fm. Die experimentellen Daten
spiegeln das Muster einer schwachen Anziehungskraft zwischen Proton und φ-Meson wider,
die durch den Realteil der Streulänge gekennzeichnet ist. Der Imaginärteil der Streulänge
verschwindet innerhalb der Unsicherheiten und ist deutlich kleiner als der Realteil, was darauf
hinweist, dass die p–φ-Wechselwirkung im Vakuum von elastischen Beiträgen dominiert wird.
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Außerdem ist die effektive Reichweite groß. Diese Ergebnisse widersprechen der Möglichkeit
eines N–φ gebundenen Zustands.

Zusätzlich werden die Korrelationsfunktionen, welche aus phänomenologischen Gauß- und
Yukawa-Potentialen gewonnen werden, mit den Daten verglichen. Dies liefert ähnliche Ergeb-
nisse wie der Lednický–Lyuboshits Ansatz. Aus dem Yukawa-Potential lässt sich die N–φ-
Kopplungskonstante gN–φ = 0.14± 0.03 (stat.)± 0.02 (syst.)ableiten, die mit der Y–Y-Wechselwirkung
in Neutronensternen verknüpft werden kann.
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1 Introduction

The strong interaction is one of the four fundamental interactions known by today. Together with
the electroweak force, which unifies the electromagnetic and weak interaction, it is described by
the Standard Model of particle physics. The color interaction confines quarks into hadrons and is
also responsible for the nuclear force. However, despite many extensive studies over the last few
decades, it is not yet fully understood how the latter emerges in detail. Therefore, it is of major
interest for particle physics and an important topic of ongoing research to study the interaction
among hadrons in order to increase the empirical knowledge on the underlying strong force.

1.1 QCD and Chiral Symmetry

The strong interaction between quarks is mediated by gluons and the underlying gauge theory is
Quantum Chromodynamics (QCD). Its structure and interactions are governed by the principles
of relativistic Quantum Field Theory (QFT) with a non-abelian gauge symmetry SU(3)color,
related to the color charges, which are internal degrees of freedom. Each quark comes in one
of three possible colors, to which the gluons couple, themselves arising in eight states of color
anti-color combinations.

At small distances and high energies, quarks behave as quasi-free particles. This is related to
the self-coupling of the gluons, which leads to an anti-screening of the color charge causing the
interaction to weaken at shorter distances. This phenomenon is also referred to as asymptotic
freedom, which allows for a perturbative treatment of QCD. At large distances, on the other hand,
corresponding to low energies and momenta, quarks and gluons are confined within color-neutral
hadrons. They can therefore never be observed in isolation. When separating a quark-antiquark
pair, the energy stored in the gluon fields increases until it is energetically favorable to produce
another quark-antiquark pair. This initiates the process of hadronization, which ultimately results
in the formation of hadrons. In the low-energy region of color confinement, QCD cannot be treated
perturbatively anymore and effective field theories [1, 2] or numerical methods [3, 4] must be
employed. Therefore, many features of low-energy QCD are not precisely known and rely on
experimental input from studies of basic hadron properties or hadron-hadron interactions. The
mentioned behaviour of the strong color interaction translates into a running of the coupling
constant, which is depicted in Fig. 1.1. In the low-energy region of color confinement it is very
large and decreases with increasing energy to the regime of asymptotic freedom at high energies.

The QCD Lagrangian is given by [6]

LQCD = ∑
f

q f
(
i /Dµ −m f

)
q f −

1
4

Ga
µνGµν

a , (1.1)

where the first term is summed over the six flavours f of quarks with current masses m f , which
are described by the quark fields q f (x). This first term gives the coupling between quarks and
gluons via the gauge covariant derivative Dµ = ∂µ + igAa

µ
λa
2 , where Aa

µ(x) are the gluon fields
and λa the Gell-Mann matrices. The last term incorporates the gluon self-couplings involving the
squared gluonic field-strength tensor Ga

µν(x) = ∂µ Aa
ν − ∂ν Aa

µ − g f abd Ab
µ Ac

ν.
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Figure 1.1: The strong coupling constant as a function of the energy scale Q, which is inversely
proportional to distance Q ∝ 1/R. Figure taken from [5].

The six quark flavors can be separated into two categories, the light quarks u, d and s with
masses < 100 MeV/c2 and the heavy ones c, b and t, which can be treated effectively as static in
low-energy processes. This leaves the light quarks as the only active degrees of freedom. In the
chiral limit, they are treated as massless particles which travel at the speed of light. Therefore,
their helicity is independent of the Lorentz frame from which they are observed and the quark
fields can be decomposed into left- and right-handed chiral components q f L and q f R, which are
projected out by (1± γ5)/2.

The corresponding Lagrangian L0
QCD is obtained by setting mu,d,s = 0 in Eq. 1.1 and is invariant

under independent rotations of q f L and q f R in the left and right flavour spaces, given by the
unitary global transformations qI → VIqI, where I = L, R and VI ∈U(3). The massless Lagrangian
respects chiral symmetry U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A. The vector
part U(1)V , where both left- and right-handed quarks pick up a common phase, is connected to
baryon number conservation [7] and the axial U(1)A is explicitly broken through an anomaly [8, 9]
(symmetry breaking by quantization).

The remaining SU(3)L × SU(3)R is a symmetry of the massless Lagrangian but not of the ground
state of the system, the QCD vacuum. Chiral symmetry is in fact spontaneously broken. This
is characterized by a non-zero vacuum expectation value 〈0|qq|0〉 6= 0, also referred to as chiral
condensate. The QCD vacuum is populated by scalar quark-antiquark pairs that mix left- and
right-handed quarks in the form qq = qLqR + qRqL [10].

Any spontaneously broken global symmetry requires the existence of spinless Nambu-Goldstone
bosons [11–13], which are identified as the eight pseudo-scalar mesons π±, π0, K0, K0 and η.
Notably, they are significantly smaller in mass compared to the rest of the hadrons. The lightest
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Nambu-Goldstone boson is the pion. Its mass mπ and decay constant fπ are related via the
Gell-Mann-Oakes-Renner (GOR) relation [14]

m2
π f 2

π = −mq〈0|qq|0〉, (1.2)

with an average current quark mass of mq =
1
2 (mu + md) =

(
3.45+0.55

−0.15

)
MeV [5]. A manifestation

of spontaneous chiral symmetry breaking is for example the large mass-gap of ∆M ≈ 500 MeV/c2

between chiral multiplets sharing all quantum numbers besides parity, e.g. ρ(770) and a1(1260).
In case of a chirally symmetric ground state, their masses would be degenerate [15]. The effects
of the spontaneous breaking are most apparent in the generation of hadron masses, which are
much larger than the sum of the masses of their constituents. For example, it accounts for more
than ∼ 90% of the mass of nucleons, which consist only of light u and d quarks. By introducing
non-vanishing quark masses, chiral symmetry is explicitly broken, as left- and right-handed
quark fields get mixed by the mass term in Eq. 1.1. Therefore, it is only an approximate symmetry
of the QCD Lagrangian.

Chiral symmetry is expected to be partially restored in the medium and a drop of the chiral
condensate 〈0|qq|0〉 → 0 is found for increasing temperature and/or density [10].
When considering only the two lightest quark flavours, the low-temperature dependence in the
chiral limit is governed by massless pions and can be calculated model-independently from chiral
perturbation theory as [16, 17]

〈qq〉T
〈qq〉0

= 1− T2

8 f 2
π

− T4

384 f 4
π

+ ... , (1.3)

where the T4 term is connected to the interaction among pions and the quadratic term is related
to the ideal bose gas by differentiating the pressure with respect to the quark mass. A density
dependence can be obtained from substituting the GOR relation, Eq. 1.2, into the expression of
the chiral condensate at finite density, which reads as [10]

〈qq〉ρ = 〈qq〉0 + 〈N|qq|N〉+ ... ⇒
〈qq〉ρ
〈qq〉0

= 1− σN

m2
π f 2

π

ρ + ... , (1.4)

where σN is the nucleon sigma term, defined by the nucleon matrix element as σN = mq〈N|qq|N〉.
The behaviour of the chiral condensate for changing temperature and baryon density is shown in
Fig. 1.2, which is based on calculations within the Nambu-Jona-Lasinio model [18].

Hadrons can be interpreted as excitations of the QCD vacuum. Therefore, changes of the chiral
condensate within the medium translate into modifications of hadron properties. By studying
them experimentally, it is possible to obtain (indirect) information on 〈qq〉 and learn about non-
perturbative low energy QCD in the medium. However, it is essential, that the experimental
probe decays inside the medium while the decay products leave the system without further
strongly interacting with it since this would distort the information they carry on the in-medium
hadron properties.

Vector mesons (JP = 1−), specifically ρ, ω and φ, are good candidates for studies of in-medium
modifications (related to the partial restoration of chiral symmetry), accessible via their spectral
functions. The dilepton decay channel fulfills the requirements perfectly, as the decay particles
do not interact via the strong force, and hence are not disturbed by the environment. Accordingly,
the ρ in-medium behavior was studied by the NA60 experiment at the CERN SPS by measuring

3



Figure 1.2: The chiral condensate |〈qq〉| as function of the temperature and baryon density, given in
units of nuclear matter density ρ0 = 0.17 fm−3. Figure taken from [10].

low-mass muon pairs [19]. The decay to e+e− was exploited to measure both the ρ and ω spectral
function with the KEK Proton Synchrotron [20]. However, the small branching ratio of decays of
vector mesons into dielptons hampers precise measurements in this channel. Therefore, hadronic
channels with much larger branching ratios might be investigated instead. However, they require
sufficient knowledge and understanding of the corresponding final-state interactions [21].

The spectral shape can be obtained from theory by employing hadronic models, which rely on
the current knowledge of meson-baryon interactions to correctly calculate the self-energy of the
hadron within the strongly interacting medium. For vector mesons, both modifications of mass
and width are predicted [21, 22]. The latter is related to absorption processes inside the medium,
hence a modification of the lifetime of the particle. Constrains on the hadron properties are also
provided by QCD sum rules [22–24] as they connect current-current correlation functions, which
treat the particles on the quark-gluon level, to the QCD condensates [21–25] by means of the
operator product expansion and dispersion relations.

1.2 Properties of the φ meson

The φ vector meson is identified as a mixture of the SU(3) octet and singlet states ψ8 = 1/
√

6 ·
(uu + dd− 2ss) and ψ1 = 1/

√
3 · (uu + dd + 2ss) [5]

φ(1020) = ψ8 cos θV − ψ1 sin θV . (1.5)

This results in nearly a pure ss state with small contributions from u and d quarks as the mixing
angle between ω and φ meson is not the ideal θV,ideal = 35.3° but slightly larger θV = 36.4° [5].

As mentioned in Sec. 1.1, the φ meson is a promising experimental probe to test the partial
restoration of chiral symmetry within the nuclear medium, hence providing access to the non-
perturbative low-energy sector of QCD. Its narrow width of Γ ≈ 4.25 MeV/c2 [5] in vacuum
makes it clearly distinguishable from other resonances. The lifetime of cτφ ≈ 46 fm, on the other
hand, is much larger than the typical radii of atomic nuclei or the size of the fireball created in
heavy-ion collisions. This means that most of the φ mesons produced in fixed target or collider
experiments will decay outside the strongly interacting medium. Hence, their spectral shape is
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governed by the φ vacuum properties. However, as the decay length of a particle is defined as
βγcτ, a reduction of the lifetime τ = h̄c/Γ results in an increased probability of decays within the
nuclear environment. Indeed, some theoretical calculations predict an in-medium broadening of
up to 10 times the natural width of the φ meson, resulting in cτ ∼ 5 fm, see for example [26–28].
Alternatively, as the decay length also depends on the particle velocity, a sizable fraction of slow
φ mesons might decay within the nuclear medium.

This was exploited by the KEK-PS E325 collaboration. Both mass-shift and width modification
inside the nuclear medium were investigated by measuring the φ spectral function in p–C and
p–Cu reactions at 12 GeV for different velocity selections of the φ candidates [29]. The mesons are
reconstructed via their dilepton decay channel φ→ e+e− (BR ≈ 3× 10−4 % [5]). The resulting
invariant mass distributions for both targets are shown in Fig. 1.3. They are fitted with a quadratic
baseline, which accounts for the background, and a resonance shape consisting of a Breit-Wigner
convoluted with the detector response. Notably, data from slow φ candidates satisfying βγ < 1.25
within the heavier copper target are not described well by the fit. An excess on the low-mass side
of the φ resonance is visible, which is interpreted as evidence for an in-medium modification of
the φ properties. The discrepancy is explained by a 3.4% decrease of the φ mass and a broadening
of the partial width of φ → e+e− by a factor of 3.6. The resulting lowering in the mass by
∼ 35 MeV/c2 is in the range of some theoretical predictions [22, 30], while others obtain smaller
modifications [28, 31, 32].

An increase of the width was also obtained at the ANKE-COSY facility [35] when detecting the
φ in proton-induced reaction through the hadronic decay to K+K− (BR ≈ 50 % [5]). From the
measured inclusive φ production cross sections for different target nuclei (C, Cu, Au and Ag) of
atomic mass number A, the transparency ratio TA = σA/(A · σN), defined in terms of the nuclear
(σA) and nucleon cross section (σN), is derived as

R =
TA

TC
=

12σA

AσC
. (1.6)

Carbon (C) is chosen as reference, as it is a well-studied nucleus. In general, such normalization
to a light nucleus reduces the sensitivity to secondary production processes as well as differences
in the initial state interactions of hadron-induced reactions [36]. A decrease of R is observed
with increasing A, see Fig. 1.4, indicating that more φ mesons are absorbed in heavier nuclei.
By comparing the results to theoretical predictions, a substantial increase in the total φ width
within the nuclear environment is found. From a parameterization using a local Fermi sea
approach [33], an in-medium width of 45+17

−9 MeV/c2 is found. This is displayed in Fig. 1.4(a).
A fit with the Paryev model [34] yields a width of 50+10

−6 MeV/c21. Similar model-dependent
conclusions were reached by other experiments, e.g. [29, 37], all observing an in-medium width
of 40− 60 MeV/c2 [38], which is compatible with theoretical calculations [28, 31, 32, 39, 40].

However, in order to interpret the modification of the φ meson properties within the nuclear
medium, it is essential to have sufficient knowledge on the interaction among the involved
particles. The meson-nucleus interaction can be described by the Klein-Gordon equation [38, 41]

E2 − ~p2 −m2 −Π(E,~p, ρN(r)) = 0, (1.7)

1 The value quoted in the original paper [35] of 73+14
−10 MeV/c2 corresponds to the φ meson Eigensystem.
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Figure 1.3: Invariant mass spectra of e+e−, measured in p–C and p–Cu reactions and categorized
by βγ of the reconstructed φ meson. The data are fitted with a resonance shape consisting of a
Breit-Wigner function convoluted with the detector response simulated for the different βγ regions
and a quadratic baseline. Figure taken from [29].

where Π(E,~p, ρN(r)) is the self-energy of the meson with rest mass m, 3-momentum ~p and energy
E in the nuclear medium of local density ρN(r).

The self-energy arises from to all the interactions of the meson within the nuclear medium and
can be related to the complex-valued meson-nucleus optical potential U(E,~p, ρN(r)) as [38]

Π(E,~p, ρN(r)) = 2
√
~p2 + m2 U(E,~p, ρN(r)). (1.8)

While the real part of the optical potential gives information on the attractiveness or repulsiveness
of the interaction and is connected to the mass modification, the imaginary part is related to the
inelastic (absorption) processes and can therefore be used to model the results of transparency
ratio measurements.

The φ meson couples strongly to the KK system (K+K−, K0K0), which is its dominant decay
channel in vacuum with a branching ratio of about 83% [5]. Therefore, the KK cloud contributes
significantly to its self-energy [28, 42, 43]. The different interactions are depicted in Fig. 1.6.
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Figure 1.4: Transparency ratios for different nuclei of mass number A, normalized to C. The data are
compared to Valencia calculations [33] in panel (a) and to the Paryev model [34] in panel (b). Figure
taken from[35].

The relation between the vector meson and kaons was investigated by HADES in pion induced
fixed-target collisions at beam energies of 1.65 GeV. Within uncertainties, a constant ratio φ/K−

was observed for the different targets C and W, as shown in Fig. 1.5, in addition to a sizable
absorption of the K− particle in the heavy tungsten nuclei (W) with respect to the lighter ones
(C) [44]. Therefore, also a strong φ absorption is assumed. Besides to the KK cloud, vector-meson
baryon interactions contribute to the φ self-energy, especially the N–φ channel [43].

The left plot of Fig. 1.7 shows both the real and imaginary part of the optical potential when
including only the contribution from the KK cloud in the calculations as well as both KK and N–φ

effects. The interaction mechanism between φ meson and nucleons is incorporated by employing
two different theoretical approaches, where one is based on SU(6) spin-flavor symmetry and the
other on hidden local symmetry (HSL) [30]. In the right plot of Fig. 1.7 the corresponding spectral
functions at nuclear saturation density ρ0 ≈ 0.17 fm−3 are depicted. The vacuum result is plotted
as a reference. It can be seen that a visible broadening is obtained for both approaches, while
only the SU(6) treatment of the N–φ contribution leads to a significant mass shift. This highlights
the relevance of correctly implementing the N–φ interaction in the model and the contributions
from coupled vector-meson baryon pairs.

However, the N–φ interaction is not well understood due to the lack of data. In general, the
coupling of the φ meson to nucleons is expected to be suppressed due to the OZI rule [45–47],
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Figure 1.5: φ/K− ratio as function of the mass number A, measured by HADES in π− induced
reactions with two different target nuclei. Figure taken from [36].

Figure 1.6: Diagrams which contribute to the leading s- and p-wave interactions of kaons within the
nuclear medium [28]. The hyperon intermediate states Y include the ones of the baryon octet and
baryon decuplet. Figure taken from [28].
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Figure 1.7: The left panel shows the real and imaginary part of the optical potential of the φ, obtained
from theoretical calculations of the self-energy [30], including contributions from the KK cloud and
the N–φ interaction within both SU(6) and HSL approaches. The right plot shows the corresponding
spectral function. The plots are taken from [30].

which hinders processes with disconnected quark lines. A possible violation of the OZI rule was
reported by the HADES collaboration [48]. As the φ meson mainly consists of strange quarks,
with only a small amount on the lighter u and d quarks, it might couple directly to the strange
sea-quark content of the nucleon [49]. Alternatively, an attractive QCD van der Waals force might
dominate the N–φ interaction, which is mediated by multi-gluon instead of quark exchange [50].
Even the formation of a N–φ bound state is suggested [51]. Following the approach described
in [52], where a phenomenological model of high-energy Pomeron interactions was employed as
well as a variational wave function, the QCD van der Waals force is found to be attractive enough
to support a N–φ bound state with binding energy of EB = 1.8 MeV. This is also proposed within
the framework of chiral quark models [53], where it is assumed that the constituent quarks
interact with each other not only via the one-gluon exchange but also through the exchange
of Nambu-Goldstone bosons and the octet scalar-mesons. The results, however, vary strongly
between the different models. Direct N–φ processes can also proceed via the coupling to meson-
baryon pairs, such as K∗–Λ and K∗–Σ, where the hidden strangeness of the φ meson is exchanged
with the nucleons without violating the OZI rule [28, 30, 43].

In summary, the present theoretical and experimental situation regarding the in-medium modifi-
cation of the φ meson properties is far from being resolved [54] and a consistent description of the
available photon- and proton-induced data [35, 37, 55] is still out of reach [30]. Therefore, a direct
measurement of the two-body N–φ interaction in vacuum is needed, in order to better constrain
the different theoretical models, which are employed to interpret existing experimental data.
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1.3 Meson Exchange

At low energies, quarks and gluons are confined within hadrons, as already mentioned in Sec. 1.1.
In this non-perturbative regime of QCD, where the relevant degrees of freedom are hadrons [56],
the baryon-baryon interaction can be modeled by one-boson exchange.

This phenomenological approach has its origin in the pioneering work of Yukawa [57], who
suggested a massive boson to be the carrier of the interaction between nucleons. In 1947, after
initially mistaking it for the muon, the meson was finally found and identified as pion [58]. The
natural scale of the nuclear force is therefore given by the Compton wavelength of the pion as

λπ =
1

mπ

≈ 1.5 fm (1.9)

In detail, the interaction Lagrangians, which couple the meson fields Φ(i) to the baryonic fields
ψB, are given as as [56, 59]

Ls = gsψBψBΦ(s)

Lps = gpsψBiγ5ψBΦ(ps)

Lv = gvψBγµψBΦ(v)

Lpv = gpvψBγ5γµψB∂µΦ(ps),

(1.10)

where gi is the corresponding coupling constant and i runs over the different types of interactions:
scalar (s), pseudo-scalar (ps), vector (v) and pseudo-vector (pv). The interaction potentials are
derived from one-meson exchange diagrams. A strong attractive central force arises in the case of
scalar mesons. This force is repulsive for vector mesons [59], due to the additional γµ term in Lv.

Figure 1.8: Nucleon-nucleon potential as function of the distance r given in units of the pion Compton
wavelength m−1

π ≈ 1.5 fm (deoted by µ−1 in the plot) with the different regions depending on the
interaction range. Figure taken from [60].
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The classical one-pion exchange introduced by Yukawa, which describes the longest-range part
of the N–N interaction, can be extended to shorter distances by including an intermediate-range
attractive interaction governed by 2π exchange. The short-range repulsive behavior from Pauli-
blocking at the quark level however remains unresolved at the low-energy scales of nuclear
physics. It might be governed by multi-pion or heavy vector-meson exchange. The hierarchy
of scales is shown schematically for a typical central nucleon-nucleon potential in Fig. 1.8. The
concept was first introduced by Taketani et al. in 1951 [61].

Later on, more precise potentials for the nucleon-nucleon interaction have been developed.
The most known are the CD-Bonn potential [62], the Nijmengen I and II [63, 64] as well as the
Argonne ν18 (AV18) [65]. Especially, the latter was successfully used to access the p–p interaction
from correlation measurements, as shown in Fig. 1.9. Such meson-exchange potentials are
also available for the complete baryon octet, e.g. [66–68], including more exotic baryon-baryon
interactions like Y–N [69–72].

Figure 1.10 shows exemplarily the exchange of a pion between a neutron and a proton and the
underlying quark-gluon structure. Such a picture underlines the limitation of meson-exchange
models to regions, where modifications due to the structure of the hadrons are not yet of concern.
However, the high-energy, short-range part of the interaction, where quark degrees of freedom
become relevant, is typically accounted for by introducing form factors, which effectively consider
the spatial extension of hadrons [56, 60].

ALI-PUB-337439

Figure 1.9: Proton-proton correlation function, measured in pp collisions. Figure taken from [73].
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Figure 1.10: Diagram for the scattering between proton and neutron, mediated by a pion. The
individual quarks are shown as well. Figure taken from [74].

1.4 Implications for Neutron Stars

Neutron stars (NS) are very dense and compact astrophysical objects, characterized by radii
around 10 km and masses between 1.17 and 2.0 times the one of our sun M� [75]. They are
formed in the aftermath of the gravitational collapse of the core of a giant star with a mass
larger than eight M� [76]. The NS crust contains mainly electrons, ions and neutrons, but
the composition of the core region, where densities more than 4 times the nuclear saturation
density ρ0 are reached [77], is not yet known. Such dense hadronic matter is characterized by the
equations of state (EoS), which relates pressure p to energy density ε. It depends on the specific
constituents that are considered as well as the interaction among them. A given EoS provides a
unique solution of the Tolman-Oppenheimer–Volkoff (TOV) equations [78, 79], which in general
relativity describe the hydrostatic equilibrium of a spherically symmetric star

dp
dr

= −GN

c2
(p + ε)(m + 4π r3 p/c2)

r2[1− 2GNm/(rc2)]
, (1.11)

dm
dr

= 4π r2 ε

c2 , (1.12)

where GN Newton’s gravitational constant, r the radial distance to the center of the star and
m(r) the enclosed mass. Constraints are given by the boundary conditions m(r = 0) = 0 and
p(r = R) = 0, where R is the radius of the neutron star. From these equations, a mass-radius
relation can be deduced, which gives an upper limit to the mass supported by a specific EoS and
hence, puts constraints on the potential constituents of the core.

As the density increases towards the center of the NS, the Fermi energy εF ∼ ρ2/3 of the NS
constituents gets larger. Hyperons 1 (Y) become energetically favorable once the chemical
potential of neutrons, µn = εF,n + mn, exceeds their rest mass mY. Neutrons on the Fermi surface

1 A hyperon is a baryon containing one or more strange quarks in addtion to the light u and d quarks.
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start to decay weakly into the most favored hyperons, e.g. the light Λs (uds), at sufficiently high
densities, thereby forming strange hadronic matter at chemical equilibrium µn = µΛ.

Neutron star cores might therefore be populated by hyperons like Λ (uds) and to smaller amounts
by Σ (uus, dds and uds) and Ξ (uss and dss) in addition to electrons and nucleons. However,
the appearance of hyperons softens the EoS as the neutron degeneracy pressure decreases. This
results in a reduction of the maximum reachable NS mass, which is not obviously compatible
with the experimental observation of the 1.97± 0.04 M� NS PSR J1614-2230 [80] or the more
recent measurement of PSR J0740+6620, where a mass of 2.140.10

−0.09 M� was found [81]. This issue
is known as the hyperon puzzle [82–84].

However, a stiffening of the EoS can be obtained by introducing a repulsive interaction, which
shifts the onset of hyperons to higher densities, thereby decreasing the neutron stars strangeness
fraction and increasing its maximally supported mass. It is therefore essential to understand not
only the hyperon-nucleon (Y–N) interaction [85, 86] but also the interaction between hyperons
themselves (Y–Y), especially at large densities, where hyperons become abundant. Several
attempts have been made to solve the puzzle by employing meson-exchange models, e.g. [87–89],
already introduced in Sec. 1.3. In particular, within the framework of relativistic mean field (RMF)
models a repulsive Y–Y interaction might be introduced by φ meson-exchange [82].

In the following, results from [88, 90, 91] are discussed in detail. Regarding the baryon-baryon
interaction (B–B) the scalar σ, ρ and ω mesons are considered, while the interaction among
hyperons themselves (Y–Y) is included via strange meson exchange with an attractive part
mediated by a scalar meson σ∗ as well as a repulsive contribution from φ vector meson-exchange.
This leads to the following Lagrangian density [88]

LYY = ∑
B

ψB(gσ∗Bσ∗ − gφBγµφ
µ)ψB +

1
2
(∂µσ∗∂µσ∗ −m2

σ∗σ
∗2)− (

1
4

φµνφ
µν − 1

2
m2

φφµφ
µ). (1.13)

The first term describes the meson-baryon interaction between the particles of the full baryon
octet (JP = 1

2
+

) and the respective exchange mesons (σ∗ or φ). A general formulation was
already introduced in Eq. 1.10. The second term of Eq. 1.13 describes the scalar meson with the
corresponding kinetic and mass term, and the last term the same for the vector meson.

The meson-nucleon coupling constants of this RMF model are fitted to the saturation properties
of nuclear matter. While non-strange scalar meson-hyperon couplings are determined by the
depth of the single-particle potential felt by a specific hyperon in nuclear matter at saturation
desnity, the vector coupling constants follow from SU(6) relations.

Figure 1.11 shows the resulting mass-radius relation of neutron stars for different Ξ single-particle
potentials UΞ. The lower set of lines is obtained by only considering the B–B interaction mediated
by σ, ω and ρ (model σωρ), while in the upper set of mass-radius relations also the repulsive Y–Y
interaction is considered by including the φ-meson exchange in the calculations (model σωρφ).
Recent studies by HAL QCD collaboration predict a slightly repulsive Ξ single-particle potential
with UΞ− ≈ 6 MeV c−1 in pure neutron matter [95]. These calculations are validated by ALICE
correlation measurements in vacuum [96]. By comparing the results from lattice QCD to Fig. 1.11,
it can be seen that by including a repulsive Y–Y mediated by the φ meson, even 2 M� neutron
stars are supported.

However, these model calculations rely on couplings between the φ meson and baryons, which
needs to be constrained by experimental data. By relating the coupling constants to the cor-
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Figure 1.11: The mass-radius relation of neutron stars for different Ξ single-particle potentials UΞ in
MeV, when fixing UΛ = −30 MeV [92–94] and UΣ = 30 MeV . Upper set of lines: model σωρφ, lower
set of lines: model σωρ. Figure taken from [88].

responding nucleon couplings and employing SU(3) symmetry, one finds the following rela-
tions [91]

gNφ

gNω
= −
√

3−
√

2(4αV − 1)z√
6 + (4αV − 1)z

,

gΛφ

gNω
= −
√

3 + 2
√

2(1− αV)z√
6 + (4αV − 1)z

,

gΣφ

gNω
= −
√

3− 2
√

2(1− αV)z√
6 + (4αV − 1)z

,

gΞφ

gNω
= −
√

3 +
√

2(1 + 2αV)z√
6 + (4αV − 1)z

,

(1.14)
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where the parameter αV = F/(F + D) weighs the symmetric (D) and the anti-symmetric (F) part
of the octet-octet interaction and z = g8/g1 is the ratio of the meson singlet and octet coupling
constants g1 and g8.

Figure 1.12 shows the resulting parameter space for constant NS masses and strangeness fractions
fs = |S|/B, when both parameters are varied. Equations 1.14 can easily be extended to the SU(6)
quark model, which is employed in the calculation of the mass-radius relations in Fig. 1.11, as it is
a special case of the flavor SU(3) combined with spin SU(2). This is done by fixing the parameters
to z = 1/

√
6 and αV = 1. Notably, it results in a vanishing gNφ. The SU(6) case is favored by

experimental measurements, where the strangeness content of the nucleon was found to be small
and a small spin-orbit splitting was observed for Λ hypernuclei [91]. Therefore, deviations from
the SU(6) quark model are expected to be small. However, a direct correlation measurement
of the N–φ interaction could bring more clearance to the situation and put constraints on the
parameter space.

(a) Lines of constant maximum NS mass. (b) Lines of constant fs.

Figure 1.12: Planes spanned by the parameters αV and z in model σωρφ. The gray shaded area on the
right corresponds to the constrains from the NS PSR J1614-2230 [80] while the one on the left contains
configurations yielding purely nucleonic stars. The spin-flavour SU(6) symmetry with z = 1/

√
6 and

αV = 1 is also marked. Figures taken from [91]
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2 Femtoscopy

The method of femtoscopy originates from intensity interferometry. It is based on the construction
of a correlation function, which is proportional to the intensity of particles, emitted by two point
sources a and b, with relative distance ~R, see Fig. 2.1 (a). After traveling a certain path of length
~L, they are measured by two detectors 1 and 2, which are separated by a baseline ~d. For identical
particles with momenta p, the correlation function is then given by [97]

C(~R, ~d) =
〈I1 I2〉
〈I1〉〈I2〉

= 1 +
2|α|2|β|2

(|α|2 + |β|2)2 cos (p (r1a − r2a − r1b + r2b)) , (2.1)

where 〈Ii〉 are the averaged intensities measured at detector i, 〈I1 I2〉 the time averaged coincidence
rate, rij the distance between detector i and emission point j and α and β are the emission
amplitudes at a and b.

Developed in the 1950s by Hanbury-Brown and Twiss, therefore also referred to as HBT inter-
ferometry [99–101], it was first used in astrophysics to study radio-wave sources in the galaxies
Cygnus and Cassiopea [102]. The method was later employed to determine the angular size of
Sirius [103] by measuring the number of photons emitted from different points on the surface of
the star. A schematic illustration can be seen in Fig. 2.1 (b). As ~R� ~d, the cosine in Eq. 2.1 reduces
to cos(~d(~pa −~pb)), where ~pi = p~ei depends on the unit vector~ei, which gives the direction from
the detectors to emission point i. Therefore, varying the distance ~d induces an oscillation to the
signal from which it is ultimately possible to extract the angular separation of the emission points,

Figure 2.1: (a) General scheme of the derivation of the distance ~R between two sources a and b by
measuring and correlating the intensities in detectors 1 and 2. (b) Illustration of the HBT interferometry
in astronomy, where the angular diameter θ is measured. (c) Situation in particle physics. Figure
taken from [98].
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as |~pa − ~pb| ∼ θ/λ [97].

In particle physics, a similar method was developed in the late 1950s to extract the angular
distribution of pions in p–p annihilation [104]. This was done by investigating momentum
correlations, which are the result of the interference of the production amplitudes due to the
symmetrization requirement of quantum statistics (QS) for identical mesons [105]. Unlike the
situation in astrophysics, discussed previously, ~R � ~d, hence the cosine in Eq. 2.1 becomes
cos(~R(~p1 − ~p2)). By controlling the momentum difference ~p1 − ~p2, the source size ~R can be
extracted from the oscillation period [97]. This is illustrated in Fig. 2.1 (c).

In the early 1970s the basics of modern femtoscopy were developed by Kopylov and Podgoret-
sky [106, 107], providing a practical approach to study correlations as a function of the separation
of particles in momentum space. They also suggested deriving such a correlation function
from the ratio of correlated and uncorrelated particle yields, where the latter are constructed by
employing mixing techniques. More details can be found in Sec. 2.1.

Femtoscopy is used in particle physics to study momentum correlations induced by both final-
state interactions (FSI) and QS in connection with the spatio-temporal aspect of the emission
function, when two or more particles are produced at small relative momenta. Such correlations
can therefore be employed to study the characteristics of their production process at the fem-
toscopic level of 10−15 fm [105] for known FSI. Vice versa it is possible to obtain information
on the underlying interaction between specific particles, given that the emission process is well
understood. Hence, the framework of femtoscopy provides a valuable tool to extract information
on the strong FSI of exotic particle pairs for which classical approaches like scattering experiments
are unfeasible, due to the lack of stable particle beams and/or targets. Especially in the case of
p–φ, a beam of φ mesons can neither be produced easily, due to the short lifetime of the particles,
nor handled well as its constituents are charge neutral. Also using a proton beam instead is no
reasonable approach as it is impossible to create a φ target for the same reasons.

2.1 Femtoscopic Framework

The final-state interaction between two particles emitted at small relative momenta~q = ~p1−~p2 =

2~k, the QS effects in case of identical particles, and the characteristics of their emission region
lead to modifications of the momentum space configuration. Such effects can be studied via
the two-particle correlation function defined as the ratio between the conditional probability
P(~p1,~p2) of observing simultaneously particles with momenta ~p1 and ~p2 to the probability of
finding each particle independently [108]. The probabilities can also be expressed in the form of
Lorentz-invariant spectra [97] and the correlation function can be written as

C(~p1,~p2) =
P(~p1,~p2)

P(~p1)P(~p2)
=

E1E2dN/(d3 p1d3 p2)

(E1dN/d3 p1)(E2dN/d3 p2)
. (2.2)

In absence of any correlation, it is equal to unity, as the particles are independent and P(~p1,~p2) =
P(~p1) · P(~p2).

Following [97] and [98] the correlation function in momentum space can be related to the particle-
emitting source in coordinate space via a convolution with the wave-function. This results in
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C(p1, x1, p2, x2) =

∫
d4x1d4x2S1(p1, x1)S2(p2, x2)|ψ(p1, x1, p2, x2)|2∫

d4x1S1(p1, x1)
∫

d4x2S2(p2, x2)
, (2.3)

where Si(pi, xi) describes the emission of a single particle with four-momentum pi = (Ei, ~pi) at a
space-time point xi = (ti,~xi). The squared Bethe-Salpeter amplitude |ψ(p1, x1, p2, x2)|2 serves as
a weight and accounts for the interaction between two particles emitted at xi and detected with
pi. Equation 2.3 can be simplified by several assumptions [105]:

1. The two-particle approximation assumes that the mean freeze-out phase space density is
sufficiently small that the correlation of particles with a small relative momentum is only
influenced by their mutual FSI and QS effects.

2. The smoothness assumption renders the momentum dependence of the single-particle emis-
sion probabilities Si(pi, xi) inessential, when varying the particle four-momenta by charac-
teristic amount regarding correlations due to QS and FSI.

3. An independent and incoherent particle emission is assumed.

4. Equal time approximation is used to simplify the Bethe-Salpeter amplitude ψ(p1, x1, p2, x2)
of two particles, where it is assumed that both particles are emitted at equal times in the
pair rest frame. This leads to ψ(p1, x1, p2, x2)→ ψ(~k∗,~r∗), where~r∗ =~r∗1 − ~r∗2 the relative
distance between the production points of the two particles and k∗ = 1

2 (~p
∗
1 − ~p∗2) their

relative momentum evaluated in the pair rest frame, ~p∗1 − ~p∗2 = 0, denoted by the ∗.

From this, the the Koonin–Pratt equation is obtained [109, 110]

C(k∗) =
∫

d3r∗S(r∗)|ψ(~k∗, ~r∗)|2, (2.4)

where S(r∗) is the relative source distribution, which, together with the relative two-particle
wave-function ψ(~k∗, ~r∗), is the main ingredient that leads to a measurable correlation signal.
In general, the correlation function is sensitive to the short-ranged strong FSI at small relative
momenta k∗ = 1

2 |~p∗1 − ~p∗2 |. At larger k∗ the particles separate too fast for an interaction to take
place, leading to limk∗→∞ C(k∗) = 1.

In femtoscopy, it is often assumed that the spatial probability density S(~r∗) has the shape of a
Gaussian of width r0 and neither explicit time nor momentum dependencies. Therefore, the
source function can be written as

SG(r∗) = (4πr2
0)
−3/2 · exp(− r∗2

4r2
0
). (2.5)

Typical values of the Gaussian source size r0 in pp and p–Pb collisions at the LHC are between
1− 1.5 fm [85, 96], while for Pb–Pb larger values of 3− 6 fm are found [111]. A small source
gives rise to pronounced correlation signals, as more particles are emitted within the reach of
the short-ranged strong interaction potential. The influence of the source size on the correlation
function is depicted on the right plot of Fig. 2.2.

Experimentally, the correlation function is obtained by replacing the probabilities in Eq. 2.2 by the
corresponding correlated and uncorrelated particle pair yields. The former is extracted by pairing
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particles from the same event1, whereas the latter has to be extracted by combining particles from
different events, called event-mixing, which renders them uncorrelated [112]

Cexp(k∗) = N
Nsame(k∗)
Nmixed(k∗)

, (2.6)

where Nsame and Nmixed are the distributions of the relative momentum k∗ between both particles.
The normalization factor N ensures Cexp = 1 in the region of k∗ > 200 MeV/c, where the femto-
scopic signal is expected to be absent. The femtoscopic principle of relating the experimentally
measured correlation function to the theoretical Eq. 2.4 is illustrated qualitatively in Fig. 2.3.

In general, for non-identical particles, a genuine correlation function above unity is interpreted
as attractive interaction as it leads to an increased amount of pairs with low k∗, while a signal
smaller than 1 corresponds to repulsion.

There are different contributions to the FSI, depending on the specific particle pair, which is
studied. In the case of two charged particles the Coulomb interaction ∝ r−1 has to be considered.
If the pair has the same charge, repulsion arises and leads to C(k∗) < 1, while opposite charge
leads to attraction. This effect is well understood. More interesting, however, is the contribution
from the short-ranged strong interaction as its fundamental laws are still not well described. If
the particles are identical, QS effects have to be considered as well. Although this picture is very

Figure 2.2: Illustration of the influence of the individual contributions of the correlation function on
its shape. The upper left panel shows different types of potentials, also including a bound state (pink).
The corresponding wave-functions are shown on the lower panel. On the same plot also a source of
Gaussian profile is shown for a r0 of 1 fm (dashed line) and 4 fm (dotted). On the right panel, the
resulting correlation functions for the two sources are depicted, illustrating the influence of the source
size on the signal. Figures taken from [77].

1 In this context events correspond to single-particle collisions.
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intuitive, the presence of bound states or coupled channel dynamics can influence the signal as
well and can complicate the physical interpretation of the measured correlation function.

The right panel of Fig. 2.2 shows exemplary correlation functions, which arise from different
potentials and source sizes r0. Blue lines correspond to a repulsive, orange ones to an attractive
potential and pink lines are obtained from a potential including a shallow bound state. The
potentials themselves are plotted on the upper left panel and the corresponding wave-function
on the lower-left panel.

Figure 2.3: Illustration of the different parts of the correlation function. The two grey circles represent
the colliding particles, the blue ones the particles produced in the the collision and the red circle the
emission source S(~r). If two particles 1 and 2 are emitted close to each other at distance~r and relative
momentum~k = ~p1 − ~p2, they experience a correlation depicted by the green arrows that represent
the interaction, encoded in the two-particle wave-function ψ(~r,~k).

21



2.2 The Scattering Problem

The interaction among two particles can be seen as a scattering problem, where the information
is encoded within a short-ranged central potential V(r) which depends only on the distance r
between particles and not on the direction. The two-body problem becomes an effective one-body
problem of a fictitious particle with mass µ = (m1m2)/(m1 + m2), corresponding to the reduced
mass of the pair, and the coordinates ~k∗ and ~r∗ in the center of mass system.

It should be noted, that the problem can be treated non-relativistic, as only small relative momenta
are studied. As the interaction time between the particles and the scattering potential is short, a
steady-state is assumed. Consequently, the wave-function, which characterizes the system, is
determined by the time-independent Schrödinger equation (SE)

Eψ(~r∗) = Hψ(~r∗) :=

(
− h̄2∇2

2µ
+ V(r∗)

)
ψ(~r∗), (2.7)

where the energy is given by E = h̄2~k∗
2

2µ . Details on the mathematical and physical framework of
scattering-problems can be found in [113–115], on which the following discussion is based.

As the interaction potential is short-ranged and falls fast with increasing r, the wave-function
takes an asymptotic form (V(r∗)→ 0 for r → ∞) at large distances, given by an incoming plane
wave and an outgoing spherical wave, which radiates away from the center of the interaction
region

ψ(~r∗) −−−→
r∗→∞

(2π)−3/2
(

ei~k∗·~r∗ + f (θ, φ)
eik∗r∗

r∗

)
, (2.8)

where f (θ, φ) is the scattering amplitude that contains information on the interaction potential.
This is depicted schematically in Fig. 2.4 where ~k∗ = k∗ ẑ. It has to be noted that both f (θ, φ)

and ψ(~r∗) also depend on the relative momentum ~k∗, but to simplify the notation. This will
not be indicated unless required in the discussion. Further, if spin observables are neglected
because either all involved particles have spin J = 0 or their spins are unpolarized and the
spin of the final-state particles are not detected [114], the system is independent of φ and the
scattering amplitude is a function of the polar angle θ only. This assumption will be adopted in
the following.

For a central potential which is invariant under any rotation around the origin, angular mo-
mentum is conserved. In this case, it is convenient to employ the partial wave expansion, where
the wave-function is decomposed into components of the angular momentum specified by the
quantum number l. Further, each partial wave is separated into a radial term Rl(r∗), which
depends on the potential V(r∗), and an angular term Yl(θ), expressed by the universal spherical
harmonics. This leads to the following expression

ψ(~r∗) =
∞

∑
l=0

ψl(r∗) =
∞

∑
l=0

Rl(r∗)Yl(θ) =
∞

∑
l=0

ul(r∗)
r∗

√
2l + 1

4π
Pl cos(θ), (2.9)

where Pl cos(θ) is the Legendre polynomial and ul(r∗) = r∗Rl(r∗) is the reduced wave-function
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Figure 2.4: Schematic picture of the scattering problem of an incident plane wave in ẑ direction on a
spherical target.

which satisfies the SE in spherical coordinates, called radial equation,

Eul(r∗) =

(
− h̄

2µ

d2

dr2 +
l(l + 1)h̄2

2µr∗2
+ Vl(r∗)

)
ul(r∗). (2.10)

For identical particles, QS effects have to be considered, which require an (anti-)symmetrization
of the partial wave-functions for bosons(fermions), leading to

ψl(r∗) =
1√
2

[
ψl(r∗) + (−1)s+lψl(r∗)

]
, (2.11)

where s is the spin quantum number. Similarly to the wave-function also the scattering amplitude
can be decoupled into partial waves

f (θ) =
∞

∑
l=0

(2l + 1) fl(k∗)Pl(cosθ), (2.12)

where fl(k∗) denotes the partial-wave scattering amplitude that contains all the relevant physics
of the interaction. Making use of the asymptotic behaviour, fl(k∗) can be written as

fl(k∗) =
eiδl(k∗) sin δl(k∗)

k
=

1
k∗ cot δl(k∗)− ik∗

, (2.13)

where δl(k∗) denotes the phase-shift observed in the scattered partial waves of angular momen-
tum l with respect to the incoming waves. The effect of the potential on the phase-shift is depicted
in Fig. 2.5. An attractive potential manifests itself in a positive phase-shift, while for a repulsive
potential the phase-shift is negative.

Also the incoming wave can be described by means of the partial-wave expansion

ei~k∗·~r∗ = eik∗r∗ cos θ =
∞

∑
l=0

(2l + 1)il jl(k∗r∗)Pl(cosθ) −−−→
r∗→∞

∞

∑
l=0

(2l + 1)Pl(cos θ)
(−1)l+1e−ik∗r∗ + eik∗r∗

2ik∗r∗
,

(2.14)
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where in the last step the asymptotic form of the spherical Bessel function jl is used. When
expressing Eq. 2.8 in terms of Eq. 2.12 and 2.14 the scattering problem reduces to an effective
one-dimensional interference problem of spherical waves

ψ(~r∗) −−−→
r∗→∞

(2π)−3/2
∞

∑
l=0

(2l + 1)Pl(cos θ)ileiδl
sin(k∗r∗ − l π

2 + δl)

k∗r∗
. (2.15)

By solving the radial equation, Eq. 2.10, it is possible to determine ul(r∗), and consequently ψ(~r∗)
by using Eq. 2.9. The asymptotic solution can be expressed in terms of Eq. 2.15, permitting an
evaluation of the phase-shifts.

Figure 2.5: The reduced wave-function for s-wave scattering u0 as function of the relative distance r for
different potentials [113]. (a) V=0 wave-function (dashed line). (b) attractive potential V<0, which
results in δ0 > 0 with the wave-function (solid line) pushed in. (c) repulsive potential V>0 resulting in
the wave-function to be pulled out (solid line) δ0 < 0. Figure taken from [113]

.

At low energies that correspond to small relative momenta (k∗R � 1, where R is the typical
range of potential), the s-wave channel, which is characterized by l = 0, dominates the scattering
process as the particles do not have enough energy to overcome the centrifugal barrier. If the
potential is short-ranged, the s-wave phase-shift converges for k∗ approaching zero and the
following parameterization based on the effective range theory, therefore also known as effective
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range expansion, holds [116]

k∗ cot δ0(k∗) −−−→
k∗→0

1
f0

+
1
2

d0k∗2 +O(k∗4), (2.16)

where f0 is the scattering length and d0 the effective range.

The scattering length can also be seen as the effective size of the target. However, it has to be
noted that there exist different sign conventions regarding the scattering length. In Eq. 2.16 a
positive f0 denotes attraction. If f0 < 0 fm either a bound state is present or the interaction
is repulsive. Even though, this might seem controversial at first, as a bound state requires an
attractive interaction, Figure 2.6 might bring more clarity. It shows the reduced wave-function
as a function of the distance r for different types of potentials of range R at extremely low
energies (k∗ ≈ 0), as well as the scattering length a, which corresponds to the intercept of the
wave-function outside of the potential with the r axis. Here the opposite sign convention for
a is used, hence a < 0 fm indicates an attractive potential. Equation 2.16 therefore becomes
limk∗→0 k∗ cot δ0(k∗) −−−→

k∗→0
− 1

a . As expected, a > 0 fm for a repulsive (sub-figure 2.6(a)) and

a < 0 fm for an attractive potential (sub-figure 2.6(b)). However, if the attraction is increased as
in sub-figure (c), the outside wave-function again crosses the r-axis of the positive half axis.
If bound states are present, their binding energy EB can be expressed in terms of the scattering
parameters [117]

EB =
1

µd2
0

(
1−

√
1 + 2

d0

f0

)2

. (2.17)

The scattering length can also be a complex number, where the real part <( f0) gives information
about the attractiveness or repulsiveness of the interaction and possible bound states, while
the imaginary part is connected to inelastic scattering processes. =( f0) = 0 fm corresponds to
totally elastic scattering between the particles and =( f0) > 0 fm hints at the existence of inelastic
channels, which can wash out any bound state if they are the dominant contribution to the
interaction. The coupled channel dynamics are treated in more detail in Sec. 2.3.

The other scattering parameter d0, again of the dimension of a length, gives the energy depen-
dence of scattering at low energies [114].

In general, scattering parameters provide valuable information on the underlying interaction.
Therefore, it is reasonable to link them to the correlation function. This can be either achieved by
means of potentials or via model predictions. Both approaches will be discussed in the following.

2.2.1 Lednický–Lyuboshits Approach

An established method to derive the scattering parameters is to employ the Lednický–Lyuboshits
approach [118], which provides an analytical treatment of the asymptotic wave-function (Eq. 2.8)
in Eq. 2.4. The FSI is modeled for isotropic sources of finite lifetime and Gaussian profile within
the effective range expansion (Eq. 2.16) and s-wave approximation (l = 0), as the relative momentum
between the particles is small and therefore, the contribution of s-wave interaction is dominant.
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Figure 2.6: Reduced wave-function u(r) for zero-energy (k∗ ≈ 0) as function of r for a repulsive
potential (a), an attractive potential (b) and increased attractive potential (c). The intercept of the
outside u(r) with the r-axis gives the scattering length a. Figures taken from [113].

From Eq. 2.16 and 2.13 the s-wave scattering amplitude can be written as [118]

f (k∗) =
e2iδ0(k∗) − 1

2ik∗
≈
(

1
f0

+
1
2

d0k∗2 − ik∗
)−1

. (2.18)

By substituting this expression in the asymptotic wave-function (Eq. 2.8), the Koonin-Pratt Eq. 2.4
can be solved analytically for a Gaussian source (Eq. 2.5). For uncharged non-identical particles
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this results in

CLL(k∗) = 1 +
1
2

∣∣∣∣ f (k∗)
r0

∣∣∣∣2 (1− d0

2
√

πr0

)
+

2R( f (k∗))√
πr0

F1(2k∗r0)−
I( f (k∗))

r0
F2(2k∗r0), (2.19)

where F1(2k∗r0) and F2(2k∗r0) denote analytical functions from the approximation of the source
with a Gaussian profile defined as

F1(z) =
1
z

e−z2
z∫

0

ex2
dx (2.20)

and

F2(z) =
1
z
(1− e−z2

). (2.21)

The term
(

1− d0
2
√

πr0

)
is a correction factor, that was introduced by Lednický in order to account

for small sources, where a sizable amount of particles pairs is emitted within the range of the
potential of the strong interaction. This factor is called small source correction term and serves the
purpose of approximately model the deviation between the asymptotic form of the wave-function
and the true solution.

Identical particles For identical particles a symmetrization of the wave-function for each spin
state is required due to the Pauli principle. This is given by Eq. 2.11, where the partial waves
Ψl(r) cancel depending on s + l. In absence of any FSI, hence Ψl(r) corresponds to a free wave,
the correlation function is given as [119]

Cs(k∗) = 1 + (−1)se−4k∗2r2
0 . (2.22)

This is purely attributed to QS. Within the Lednický–Lyuboshits model,the following expression
is derived [119]

CLL,s(k∗) = 2 · CLL(k∗)− 1− (1)(s+1)e−4k∗2r2
0 , (2.23)

where the last term is given by Eq. 2.19. In the specific case of identical particles with total spin
s = 1, Eq. 2.23 can be written as

CLL,1(k∗) =
1
2

[
CLL(k∗) + 1− e−4k∗2r2

0

]
. (2.24)

Coulomb force In case of charged particles, the correlation signal is modified by the Coulomb
interaction, which can be treated analytically via the Gamow approximation [119]. The corre-
sponding Coulomb penetration factor is given as [119]

AC(η) =
2πη

e2πη − 1
, (2.25)

where η = αµq1q2/k∗ and α is the fine structure constant. The Coulomb penetration factor, also
referred to as Gamow factor, is then simply multiplied to the correlation function C(k∗). Another
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possibility is an exact treatment of the coulomb interaction by employing scattering theory and
the asymptotic solution of a Coulomb wave-function [119].

Zero-effective range approximation This is an approach used for low-energy scattering prob-
lems where higher terms in the effective range approximation Eq. 2.16 are neglected. It builds on the
fact, that the de Broglie wavelength λ = h/p of the incidence particle is much larger than the
range of the potential, leading to the approximation d0 = 0 fm [120]. Historically it was derived
prior to the effective range expansion. The latter was then introduced as finite-range correction to
the zero-range theory [116].

For a particularly small source size r0 combined with a relatively large effective range d0, the small
source correction term within the Lednický–Lyuboshits approach, given by (1− d0/(2

√
πr0)),

might become dominant and even take negative values that result in an unphysical shape of the
correlation function. This represents a limitation of the Lednický–Lyuboshits approach. Therefore,
it is suggested to first validate the use of this model for small systems and/or large effective
ranges. This can be done by utilizing the zero effective range approximation, where d0 = 0 fm, to
evaluate the influence of the correction term on the scattering parameters.

2.2.2 Potentials

The correlation function can be computed by the convolution of the two-particle wave-function
with a given emission source distribution S(~r∗) as in Eq. 2.4. Instead of employing the asymptotic
solution of the wave-function as discussed in the previous Sec. 2.2.1, which only holds at distances
far away from the scattering region, the exact wave-function might be used instead. It is computed
numerically for a given local potential V(r) by employing the Correlation Analysis Tool using the
Schrödinger Equation (CATS) [121], where Eq. 2.10 is solved for the relevant partial waves with the
corresponding boundary conditions until convergence is reached, and allows the investigation
of small emission regions. From the total wave-function it is then possible to determine the
scattering parameters (Eq. 2.9).

The interaction potential V(r) is either provided by theory or phenomenological potentials have
to be used, as for example the Yukawa-type potential [122]

VYukawa(r) = −A · e−α·r

r
, (2.26)

where A is dimensionless and proportional to the coupling strength g =
√

A. Also the Gaussian-
type potential can be employed

VGaussian(r) = Veff · e−µ·r2
, (2.27)

where Veff characterizes the potential strength and 1√
µ

its range.

Testing the accuracy of the Lednický–Lyuboshits model The accuracy of the analytical
Lednický–Lyuboshits model, especially for small sources and large effective ranges, can be tested
by comparing it to the numerical approach employing a Gaussian type of potential, which is
expected to hold well at small emission regions.
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This is done by scanning the parameter space of the potential within Veff ∈ [0.1, 56] MeV and
µ ∈ [0.1, 100] fm−2 and calculating the corresponding correlation function. By employing
Eq. 2.16, the effective range expansion, the scattering parameters can be deduced. The corre-
lation function of the Gaussian-potential approach is then parameterized with the one from
the Lednický–Lyuboshits approach. Figure 2.7 shows the resulting scattering parameter space.
The color bar represents the relative deviation between the parameter values obtained from
both approaches with respect to the Gaussian-type potential results. Notably, the deviation
increases for both scattering parameters for increasing d0. However, for small f0 < 0.2 fm the
Lednický–Lyuboshits approach leads to accurate results also for large d0.

This comparison can be used as an estimate only because it relies on the assumption of a simple
Gaussian-type potential. The results might change when employing a different kind of potential.
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(a) Effective-range d0.
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(b) Gaussian-type potential

Figure 2.7: Scattering parameter phase-space of the Gaussian-type potential approach. The color bar
shows the relative deviation between the parameters obtained from the potential and the Lednický–
Lyuboshits approach, normalized to the potential approach values. While blue denotes good agree-
ment between the two, yellow corresponds to a relative deviation of 50%. The left figure depicts the
results for the effective range d0, while the right figure shows the same for the scattering length f0.
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2.3 Coupled-channel dynamics

Whenever pairs of particles share the same quantum numbers, coupled-channel processes emerge.
Phenomena such as bound states or resonances depend on the coupling between these inelastic
channels, which when dominant can wash them out. Therefore, they have to be considered
when studying hadron-hadron interactions. As the final-state particles are fixed in femtoscopic
measurements, the correlation function is sensitive to all the available inelastic channels produced
in the initial collision. Hence, if a specific two-particle final-state is fed by coupled-channels [109,
123, 124] the correlation function in Eq. 2.4 has to be modified to [125]

C(k∗) =
∫

d3r∗∑
j

ωjSj(~r∗)|Ψj(~k∗, ~r∗)|2, (2.28)

where the sum runs over all contributions which couple to the final-state. Ψj is the wave-function
in the jth channel, Sj(~r∗) is the corresponding normalized source function and ωj the weight of
the coupled-channel which is determined by the population of the initial state.

The wave-functions can be derived by solving the coupled-channel Schödinger equation
H1→1 H1→2 . . . H1→M
H2→1 H2→2 . . . H2→M

...
...

. . .
...

HM→1 HM→2 . . . HM→M

 ·


Ψ1(~k∗1, ~r∗)
Ψ2(~k∗2, ~r∗)

...
ΨM( ~k∗M, ~r∗)

 = E ·


Ψ1(~k∗1, ~r∗)
Ψ2(~k∗2, ~r∗)

...
ΨM( ~k∗M, ~r∗)

 , (2.29)

where the diagonal elements of the Hamiltonian matrix correspond to the potentials of elastic
processes i → i, while the off-diagonal elements describe the potentials of inelastic transitions
i → j given by the strong interaction only. From energy and momentum conservation it is
possible to estimate the k∗ at which the individual channels open in the particle rest frame as

k∗ =

√
∆2

i − (m1 ·m2)2

(m̃1 + m̃2)2 , (2.30)

where ∆ i =
1
2 · ((m̃1 + m̃2)2 − (m2

1 + m2
2)), mj are the masses of the individual particles of a pair

in MeV/c2 and tilde denotes the heavier pair. This momentum corresponds to the minimum
energy at which the individual coupled-channel particle pair can be produced.

Inelastic interactions influence the correlation function depending on their coupling strength.
Above threshold channels alter the shape of the correlation function in form of a cusp, which
appears close to their opening momentum k∗i . This can be visible in the experimental results pro-
vided that the momentum-binning is granular enough. Channels, which open below threshold,
on the other hand, induce an effective attraction, which leads to an increase of the correlation
signal without modifying its shape. This qualitative discussion is supported by Fig. 2.8, which
depicts the K−p correlation function for a varying number of coupled-channels. While the πΣ
and πΛ channels are already open at threshold, K0n opens at k∗ ≈ 58 MeV/c (denoted as q in the
figure) in the K−p c.m., where a cusp structure appears in the correlation function. Compared
to the result from including only the K−p component, the cusp gets more pronounced when
coupled-channels are considered. Additionally, the whole correlation function gets shifted to
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Figure 2.8: The K−p correlation function evaluated in the KN-πΣ-πΛ coupled-channel frame-
work [125]. The long-dashed line corresponds to the result when only considering the K−p component,
while the others additionally include the K0n, both the K0n and πΣ and all coupled-channel compo-
nents. All calculations are performed with realistic potentials based on chiral SU(3) dynamics, which
fit the available scattering data. Figure taken from [125].

larger values, the more coupled-channels components are included. The enhancement due to the
K0n channel is found to be the largest, followed by πΣ. More details can be found in [125, 126].

In case of p–φ, the system couples to channels with isospin I = 1/2 and no net-strangeness S = 0.
This includes ρN, ωN, K∗Λ and K∗Σ, where the latter two are believed to be most prominent [43].
Also KΛ and KΣ have to be considered for an angular momentum L 6= 0. The pair masses are
shown in Fig. 2.9, in order to visualize their relative position to one another. Channels, which lie
closer in mass to the p–φ pair, might induce a stronger effect on the correlation function.

Figure 2.9: Pair mass of the different coupled-channels and p–φ respectively.
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3 Experimental Setup

3.1 The LHC

The Large Hadron Collider (LHC) [127] is a two-ring accelerator and collider which aims to
probe the high-energy frontier of physics and reveal physics beyond the standard model. In
the Run 2 data-taking period from 2015 to 2018 it reached a maximum centre-of-mass energy of√

s = 13 TeV at a peak luminosity of L = 1034 cm−2s−1 for pp collisions and in Run 3, starting
in 2021, the LHC is planned to reach its designated energy of

√
s = 14 TeV and double its

luminosity to L = 2× 1034 cm−2s−1 [128].

Figure 3.1: The CERN accelerator complex. The LHC is the last building block after a complex hadron
injection chain, where the particles are accelerated to energies up to

√
s = 13 TeV for pp collisions.

Figure taken from [129].

It was build between 1998 and 2000 in the already existing tunnel of the Large Electron-Positron
collider (LEP) at CERN, the European Organization for Nuclear Research, and consists of two
rings with a circumference of 26.7 km in which beams of particles with the same charge rotate
in opposite directions by means of superconducting twin-bore magnets, which are cooled to a
temperature of 2 K [127]. The LHC operates with different colliding systems, i.e. pp, p–Pb and
Pb–Pb. In 2017 there was a short run with Xe–Xe collisions [130] to demonstrate the colliders
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flexibility with new species. The proton beams themselves consist of 2808 particle packages, so-
called bunches, with a nominal spacing of 25 ns and a maximum proton-density of ∼ 1.15× 1011,
which is limited by nonlinear beam-beam interaction between the particles in the collision [127].

Figure 3.1 shows the CERN accelerator complex, consisting of multiple building blocks which aim
to accelerate the hadrons to the injection energies of the LHC. The proton injection chain starts
with the linear accelerator Linac2, which contains the proton source. From there the particles
move through the Proton Synchrotron Booster (PSB), where they are further accelerated, into
the Proton Synchrotron (PS). Lead ions on the other hand are produced in long pulses by the
Linac3 and are then transformed into short, dense bunches by the Low Energy Ion Ring (LEIR)
before they move into the PS as well. From there the bunches are injected into the Super Proton
Synchrotron (SPS), which accelerates them further to provide beams for the LHC, where a total
of four experiments, ALICE, ATLAS, CMS and LHCb are located at different beam interaction
points.

3.2 ALICE

ALICE (A Large Ion Collider Experiment) [131–135] is one of the LHC’s four major experi-
ments with the main task to investigate the properties of QCD matter generated in heavy-ion
collisions. The detector design is optimised for an instantaneous luminosity of the collider of
L = 1027 cm−2s−1 for Pb–Pb and to track and identify particles at high multiplicity densities up
to dNch/dη ≈ 8000 at mid-rapidity [134]. It is required to provide an excellent performance of
these tasks even for low pT.

Figure 3.2: The schematic layout of the ALICE spectrometer. Figure taken from [136].
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The schematic setup is shown in Fig. 3.2. ALICE consists of a forward arm of muon detectors,
which cover a pseudorapidity region of −4.0 < η < −2.5, and the so-called central barrel, which
is embedded in a large solenoid with a magnetic field of B = 0.5 T and covers pseudorapidities
of |η| < 0.9 and the full azimuthal angle.

The central barrel has an onion-like structure. The Inner Tracking System (ITS), which is a
silicon tracker, is located around the beam pipe. Progressing outwards there is the cylindrical,
gas-filled Time Projection Chamber (TPC) followed by the Transition Radiation (TRD), the Time
of Flight (TOF) and the Ring Imaging Cherenkov (HMPID) detector. Last, there are the photon
spectrometer (PHOS) and the electromagnetic calorimeter (EMCaL), which are used to measure
jets, photons and electrons. On top of the big magnet, the ACORDE scintillators are installed
in order to trigger cosmic radiation. The main detectors i.e. ITS, TPC and TOF are explained in
more detail in the following sections.

3.2.1 Inner Tracking System (ITS)

The ITS is the innermost part of the detector and surrounds the beam pipe at radii ranging
from 3.9 cm to 43 cm with respect to the interaction point [132]. It consists of six layers of
cylindrical silicon detectors and is designed for primary and secondary vertex reconstruction
with a resolution of 10 µm and 100 µm respectively [137]. Additionally, the ITS is used for particle
tracking and identification in the non-relativistic region.

The two innermost layers are made of Silicon Pixel Detectors (SPD). Their main purpose is to
determine the primary vertex position and to measure the tracks of secondary particles from
decays of heavy-flavored hadrons. The four outer layers are made of two Silicon Drift Detectors
(SDD) followed by two Silicon Strip Detectors (SSD), which measure the ionization energy loss
dE/dx of the particles [132]. In the case of low-pT particles the ITS represents the only PID
information source [135].

Figure 3.3: The ALICE ITS [131]
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3.2.2 Time Projection Chamber (TPC)

The key objective of the TPC [132, 138] is to measure charged-particle momenta as well as particle
identification. It is the main tracking device of ALICE and is positioned within 0.84 m and
2.47 m from the interaction point in radial direction. The TPC covers a large pT range from 0.1 to
100 GeV c−1 at mid-rapidity |η| < 0.9 [131].

The TPC consists of a cylindrical field cage enclosing a 90 m2 drift volume, which is filled with a
mixture of Ne, N2 and CO2 [138]. The end-plates of the TPC cylinder are divided into 18 sectors,
each of which is radially separated into an inner and outer readout chamber, giving a total of
36 chambers, see Fig. 3.4. Their design is based on multi-wire proportional chambers (MWPCs)
with pad readout. The chambers consist of a grid of anode wires running in azimuthal direction
above the pad plane, followed by a cathode-wire grid and a gating grid [138]. Each inner readout
chamber consists of 63 pad rows and the outer one of 96. The corresponding ∼560,000 readout
channels keep a low occupancy and have a high resolution [138]. The TPC covers the full azimuth
beside dead zones between neighboring readout chambers.

Figure 3.4: The ALICE TPC [138]

The field cage assures a uniform electrostatic field in the gas volume, which transports electrons,
stemming from ionization processes caused by charged particles passing through the detector
gas, to the readout chambers without significant perturbations. In the vicinity of the anode wire,
after passing the open gating grid, the field strength increases and the electrons become energetic
enough to ionize the gas, thereby creating an avalanche of electrons and positive ions. While
the electrons are absorbed immediately by the anode wire, the ions, which have lower mobility
and therefore, a slower drift-velocity, move towards the cathode grid where they are absorbed.
The instantaneous current induced by charge carriers on an electrode depends on their velocity,
both related via the Shockley-Ramo-theorem [139, 140]. Therefore, the signal is dominated by
ions, which induce mirror charges on the pad plane, and is read out and further processed by the
front-end electronics. The remaining ions, which were not absorbed, are stopped by the closed
gating grid, as they can cause severe perturbations of the drift field.

The induced charge, together with the arrival time of the avalanche electrons, makes it possible
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to reconstruct the particle tracks from which the momenta and the energy loss from collisions
with the drift gas molecules can be deduced.

The specific energy loss dE/dx of a particle is related to its velocity β = v
c via the Bethe Bloch

formula [141]

−dE
dx

=
4πnz2

mec2β

(
e2

4πε0

)2 [
ln
(

2mec2β2

I · (1− β2)

)
− β2

]
, (3.1)

with, ze the charge, n the electron number density and I the mean excitation level. Figure 3.5
shows the specific energy loss of different particle species within the TPC together with a
parameterization of the Bethe-Bloch formula [142]. The deviation between the experimental
measurement and the signal hypothesis for particle species i is given by nσ,i, and is expressed in
terms of the detector resolution σ [132]

nσ,i =
dE/dxmeasured − 〈dE/dx〉expected,i

σ
. (3.2)

From the bending radius of the track within the magnetic field, the momentum of a particle can
be determined and together with the measured dE/dx it can be identified through its mass via

M =
p

βγ
. (3.3)
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Figure 3.5: The TPC energy loss as a function of the momentum p [143].

For the LHC Run 3, an interaction rate of 50 kHz [144] is foreseen for lead ions, which requires
an increased read-out rate. However, due to the gating grid of the MWPCs, which only opens
for the duration of one drift-time interval of about 100 µs upon a trigger signal [138] and is kept
close for twice as long, the readout rate is limited to 3 kHz [144]. Therefore, the MWPCs will be
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replaced with Gas Electron Multipliers (GEMs) which make a continuous read-out possible as
they operate without the need of a gating grid [144, 145].

3.2.3 Time Of Flight Detector (TOF)

The TOF [132, 146] detector consist of 1593 glass Multigap Resistive Plate Chambers (MRPC)
located between 3.70 m and 3.99 m from the beam axis and has a total active area of 141 m2. Like
the TPC it covers the full azimuth and a pseudorapidity range of |η| < 0.9. It extends the track
reconstruction and PID of ITS and TPC in the intermediate momentum range [132].

The MRPCs consist of two stacks of resistive glass plates, separated by equally thin gas-filled
gaps. A total of three pickup electrodes positioned at both ends of the two-stack system as well
as in-between the stacks are used for readout. The inner plates are not connected electrically and
kept floating while on the outer surfaces of each stack a high voltage is applied. The latter results
in a high and uniform electric field, which leads to an immediate electron avalanche from any
ionization caused by a charged particle traversing the chamber. The avalanche is confined within
the gaps but the resistive plates are transparent to the fast signal, which is induced on the pickup
electrodes by the movement of the electrons. The total signal is then given by the sum from the
signals from all gaps, which results in a high efficiency.

The narrow width of the gaps ensures a good time resolution of 80 ps [132]. Therefore, the exact
arrival time tTOF of the particles is measured with the TOF. Together with the time of the initial
collision tevent it is possible to determine the time-of-flight t = tTOF − tevent. The tevent is provided
by the T0 detector, which consists of two rings of Cherenkov counters located close to the beam in
the region of forward rapidity [147]. If no signal is provided by the T0, the start time is estimated
from the arrival times at the TOF by an algorithm that minimizes the χ2 between all the different
mass hypotheses. Another possibility is to use an average start time for the run, which is only
employed if none of the previous two methods are available. From the measured time-of-flight,
a correlation between the mass M of the particle and its track momentum p can be calculated
as [135]

M =
p

βγ
= p

√
(ct)2

L2 − 1, (3.4)

where L is the reconstructed length of the trajectory. Figure 3.6 shows the PID capabilities of the
TOF. The estimator of the TOF PID for a specific particle hypothesis i is given by [146]

nσ,i =
tTOF − tevent − texpected,i

σ
, (3.5)

where σ is the detector resolution, assuming a Gaussian description of the detector response
function.

38



)c (GeV/p

0.5 1 1.5 2 2.5 3 3.5 4

β
T

O
F

 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

e

π
K

p

d

ALICE performance

 = 13 TeVspp 

ALI−PERF−112141

Figure 3.6: The velocity β measured with the TOF detector as a function of the momentum of the
incident particle (measured by the TPC) [148].

3.3 Data Reconstruction

Event reconstruction The analysis process starts with the so-called event reconstruction,
shown schematically in Fig. 3.7, which gives an overview of the steps explained in the following
paragraphs. More details can be found in [131, 132, 135].

Figure 3.7: Event reconstruction in the central barrel [132].

The initial phase of finding tracks in the central barrel is the so-called clusterization, where raw
signals are combined in each detector, depending on their position, amplitude and time. Next,
the preliminary vertex of the primary interaction is determined as the point where the largest
amount of tracklets converge by means of the two innermost ITS layers, the SPDs.

The actual track reconstruction (track finding and fitting) is performed with the Kalman filter
technique [149], which relies on a realistic set of initial seed values for the track parameters
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(position, inverse curvature, direction) and covariance matrix respectively. It starts at the outer
radius of TPC with two clusters constrained by the point of the preliminary primary vertex and
is then repeated with three clusters alone. From this, the initial seeds are obtained. The state
vector of the track parameters and the covariance matrix are then propagated inwards and each
time the filter finds a compatible space point in the new pad row the seeds are updated. At the
inner radius of the TPC the track seeds are matched to clusters in the outermost layer of the ITS.
If there is more than one possible matching space point, each is followed separately towards the
innermost layer, producing a tree of possible tracks. Like in the TPC this procedure is done in
two phases, first with vertex constraint and then without. After the ITS seeding is completed, the
branch, which corresponds to the track with the highest quality from each hypothesis tree is used
as prolongation of the TPC track and added to the reconstructed event. For low momenta, the
reconstruction efficiency of the TPC drops due to energy loss and scattering with the detector
material. Therefore, also a ITS-only track finding is performed with all the clusters that have not
been used previously.

The tracks are then propagated outwards and refitted with the Kalman filter. Outliers are removed
as the seeds are more precise than in the first step of the track reconstruction. This time also the
TRD, TOF, HMPID and CPV, which is located in front of the PHOS, are included [131].

In the last step of the track reconstruction, the tracks are propagated inwards again. The previ-
ously found clusters are refitted on last time, determining the final values of the track parameters
and the covariance matrix. The global tracks found with TPC and ITS are then used to find the
primary vertex with more precision by extrapolating the tracks towards the nominal beamline.
Outliers are removed and a vertex fit is performed.

The last step of the event reconstruction is the determination of vertices of secondary particles,
which are produced either in direct decays of strange particles (neutral strange particles, eg.
Λ→ pπ−) or via cascades (charged strange particles, e.g. Ξ− → Λπ− → (pπ−)π−). The former
are referred to as V0 candidates due to the characteristic decay pattern in form of a V, see Fig. 3.8.
This is done by only using tracks with a relatively large impact parameter. Then the distance of
closest approach (DCA) of such a pair of opposite-sign secondary tracks is calculated. In order to
become a candidate for a secondary decay, the point of closes approach (PCA) has to be closer to
the primary vertex than the first reconstructed points of both tracks. Furthermore, the DCA at the
PCA of both tracks is required to be smaller than 1.5 cm [132]. The third requirement is cos θ < 0.9,
where θ is the angle between the connection line of primary and secondary vertex and the total
momentum vector of the pair ~ppair [132]. This last requirement is relaxed if ~ppair < 1.5 GeV/c,
in order not to bias the candidate sample against cascades. In the analysis phase that follows,
additional cuts are applied and more complex secondary vertices can be reconstructed.

Data reconstruction and analysis All information from the reconstruction process is stored
in Event Summary Data (ESD) files and saved on the CERN computing grid. The ESDs are
filtered into Analysis Object Data (AOD) files, by discarding information which is irrelevant for
the majority of analyses. Finally, the data size is decreased again by adjusting it to the needs of
the specific ALICE sub-groups and stored in NanoAODs. The analysis itself is then performed
by means of the AliRoot framework [150].

For several parts of the analysis, full-scale Monte Carlo (MC) simulated collisions between
elementary particles at high energies are needed. There are multiple sets of such general-purpose
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Figure 3.8: Reconstruction of the secondary vertex exemplary shown for K0
S and Σ0 [132].

MC simulations provided by the ALICE collaboration, where each is anchored to specific data-
taking periods as it is crucial that the exact experimental conditions are reproduced in the
simulation.
In this analysis, the event generator PYTHIA 8 [151] is used and the subsequent transport of the
particle through the detector material is obtained from GEANT 3 [152]. Finally, the resulting data
is reconstructed by following the same algorithm as for raw data. MC data is for example needed
to derive the purity of charged particles or the fraction of secondary particles from feed-down,
which are both essential for the femtoscopic analysis.

41





4 Data Analysis

This chapter reviews the details concerning the analysis procedure from which the experimental
correlation function is constructed. First, the data and event selection is discussed followed by
the particle selection.

4.1 Data Set and Event Selection

Data from pp collisions at
√

s = 13 TeV are analyzed, which have been recorded by the ALICE
experiment during the LHC Run 2 from 2016 to 2018. The reconstruction follows Sec. 3.3 and
the fully filtered NanoAODs are used as input. Events are selected by employing the common
criteria of Run 2 analyses [85], summarized in Tab. 4.1.

In events with high multiplicities (HM) more particle pairs are produced. Additionally, an
increased yield of particles with hidden and open strangeness is observed, see Fig. 4.1. While
the proton yield remains rather constant, an enhanced φ production can be noticed at higher
multiplicities. Therefore, the kHighMultV0 trigger is applied in order to select HM events, which
consist of collisions with on average 30 produced charged particles in the pseudorapidity interval
|η| < 0.5 [154]. Figure 4.2 shows the relative amplitude measured by the V0 detector, which
is used for triggering as it is proportional to the event multiplicity. The resulting data sample
represents the upper 0.17% of the charged-particle distribution of all inelastic collisions with at
least one charged particle in the range |η| < 1 (referred to as INEL > 0) [73]. For the 2015 data
sample of Run 2 no HM trigger is available. Additionally, the interaction rate is low. Therefore,
as mentioned before, only the samples from 2016 to 2018 are employed in the analysis. To test
various quantities relevant for this work, MC events are employed using the PYTHIA 8 [156]
event generator with an additional selection on large charged-particle multiplicities, which mimic
the effect of the HM trigger. Details on how the reconstructed MC is anchored to HM pp data can
be found in the associated JIRA ticket1.

Provided, that there are enough tracks pointing to it, the distance between tracks and SPD vertex,
whose resolution in z direction has to be below 0.25 cm, is restricted to values smaller than 0.5 cm.
The primary vertex reconstructed from at least one global track, which requires both ITS and
TPC clusters, has to be located within ±10 cm to the nominal interaction point along the beam
direction, to assure a uniform detector coverage.

Additionally, events with multiple reactions in one bunch crossing are rejected (in-bunch pile-up),
if more than one interaction vertex is identified [132]. This leads to an estimated remainder of
maximally 1.4% of all selected events from HM pp collisions at

√
s = 13 TeV [73]. Inelastic

reactions with other bunches, gases in the beam pipe or the LHC structures themselves (out-of-
bunch pile-up) are rejected as well.

Meson-meson and meson-baryon correlation measurements in pp collisions are contaminated by
a so-called minijet background. First observed in neutral and charged kaon pairs [157, 158] as well

1 https://alice.its.cern.ch/jira/browse/ALIROOT-8318
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φ mesons increases with multiplicity. For protons it slightly decreases but the overall yield remains
significantly larger than the φ yield. Figure taken from [153].
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Figure 4.2: Distribution of the V0M amplitude scaled by its mean value, which is proportional to the
event multiplicity [155].
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as in charged pion pairs [159, 160], it was later shown to also affect meson-baryon femtoscopy in
the case of proton-kaon [161]. Indeed it is also found to be present in the p–φ correlation function.

Minijets are believed to arise from the incoherent fragmentation of hard parton-parton scatter-
ings [162]. Such processes produce jet-like structures containing auto-correlated particle pairs that
induce long-range structures to the correlation function. They can be suppressed by employing
a strict selection of the event shape, which itself is connected to the properties of the hadronic
final-state after the particle collision.

The shape of an event can be classified mathematically by its transverse sphericity ST, which is
derived by diagonalizing the transverse momentum matrix [163]

Sxy =
1

∑j pTj
∑

i

1
pTi

[
p2

xi
pxi pyi

pyi pxi p2
yi

]
(4.1)

in order to obtain the corresponding eigenvalues λ1 and λ2, with λ1 > λ2. The transverse
sphericity is then calculated as

ST =
2λ2

λ1 + λ2
. (4.2)

where ST = 1.0 corresponds to a spherical event and ST = 0 to a jet-like event. A schematic
illustration is shown in Fig. 4.3.

Following [161], only events with a transverse sphericity of 0.7 < ST < 1.0 are used in the analysis,
to minimize the background associated to minijets, see Fig. 4.4. This selection is conjoined with
using global tracks with |η| < 0.8 and pT > 0.5 GeV/c and reduces the initial number of∼ 1× 109

events to approximately its half. However, as it only reduces the contribution from minijets to
the correlation function and not completely removes it, the topic is discussed again in Sec. 5.3.2.

Figure 4.3: Visualization of the relation between minijets and transverse sphericity.
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Figure 4.4: Sphericity distribution. The shaded area marks the remaining events after a cut of
0.7 < ST < 1.0 is applied.

Selection criterion Value
Trigger kHighMultV0
Physics selection default
Incomplete DAQ check
z vertex |vtxz| < 10 cm
Contributors to track vertex Ncontrib,track > 1
Contributors to SPD vertex Ncontrib,SPD > 0
Distance between track and SPD vertex dvtx,track−SPD < 0.5 cm
SPD vertex z resolution σSPD, z < 0.25 cm
Pile-up rejection AliVEvent::IsPileUpFromSPD()

AliEventUtils::IsSPDClusterVsTrackletBG()
Sphericity 0.7 < ST < 1.0

Table 4.1: Event selection criteria.

4.2 Particle Selection

The identification of proton and φ candidates, which are subsequently paired in order to obtain a
correlation signal is conducted by applying several selection criteria on the reconstructed particle
or particle-daughter tracks within a given event. The procedure for each species is explained in
detail in the following.

4.2.1 Proton Candidates

The selection of protons and anti-protons follows [85, 164] and the criteria are summarized in
Tab. 4.2. As the non-uniform acceptance in the ITS can cause biases, only particle tracks recon-
structed within the TPC and constrained to the primary vertex are studied, without matching
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them to ITS hits. The so obtained momentum resolution is comparable to the one of global tracks
up to pT ≈ 10 GeV/c [132].

Further, a limitation of the transverse momentum range of the proton candidates of 0.5 < pT <
4.05 GeV/c is applied that results in the distribution shown in Fig. 4.5a. The low pT cutoff is
meant to reduce the number of protons originating from interactions of primary particles with
the detector material, while the cutoff at high pT is applied to increase the average purity of
the reconstructed particle sample by eliminating the kinematic domain of moderate purity. In
order to minimize unwanted effects related to the detector acceptance, the candidates are selected
within |η| < 0.8.

Also, a selection regarding the TPC clusters is applied to ensure a good track quality and pT
resolution at large momenta, and to remove fake tracks from the sample. Therefore, tracks are
required to be reconstructed from more than 80 clusters in the TPC and have crossed at least 70
out of the total 159 pad rows. The number of measured clusters depends on track reconstruction,
threshold effects and noise in the electronics. Additionally, the ratio between the number of
crossed rows and the number of clusters that can potentially be found has to be larger than 0.83.
Candidates are rejected if the associated tracks share clusters with another one.

A strict selection of the distance of closest approach from the particle trajectory to the primary
vertex in both the beam (DCAz) and transverse plane (DCAxy) is employed in order to increase
the fraction of particles originating from the primary vertex of the collision.

The proton candidates are identified using the ALICE TPC and TOF detector. For momenta
pTPC < 0.75 GeV/c only the PID selection provided by the TPC is used. As the separation
power of the TPC decreases for larger momenta, see Fig. 3.5, the information of both detectors
is combined for PID. This is characterized by nσ,combined ≡

√
(nσ,TPC)2 + (nσ,TOF)2, where nσ is

the number of standard deviations of the measured signal from the expected value at a given
momentum, which depends on the detector resolution σ. In case of the TPC the expected signal
is the specific energy loss of a particle derived from a parameterized Bethe-Bloch curve, whereas
for the TOF it is the expected β of a particle with mass hypothesis M given by Eq. 3.4. The
resulting distribution for the TPC nσ is shown in Fig. 4.5b, which demonstrates the purity of the
proton sample. Both pT regions of the PID, where different detectors are involved, are clearly
distinguishable from the plot.
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Figure 4.5: Transverse momentum and nσTOF distribution of the proton candidates.
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From this selection, a proton purity of 99.4% with a primary fraction of 82% is obtained [164] by
analyzing events generated by PYTHIA 8 [156]. The purity is calculated by applying the same
selection criteria as for data and checking if the identified particle really is a proton. The primary
fraction of 82% is obtained by fitting MC templates to the experimental DCA distribution between
the particle track and the primary interaction vertex. The remaining 18% of proton candidates
are associated to interactions with the detector material and weakly decaying resonances that
feed into protons. Using cross sections from PYTHIA 8 the feed-down fraction is found to consist
of a 70% contribution from Λ and a 30% contribution from Σ+ hyperons.

Table 4.2: Proton selection criteria.

Selection criterion Value
Filterbit 128 (TPC only tracks)
Pseudorapidity |η| < 0.8
Transverse momentum 0.5 < pT < 4.05 GeV/c
TPC cluster nTPC > 80
Crossed TPC pad rows ncrossed > 70 (out of 159)
Findable TPC clusters ncrossed/nfindable > 0.83
Tracks with shared TPC clusters rejected
Distance of closest approach xy |DCAxy| < 0.1 cm
Distance of closest approach z |DCAz| < 0.2 cm

Particle identification
|nσ,TPC| < 3 for p < 0.75 GeV/c
nσ,combined < 3 for p > 0.75 GeV/c

48



4.2.2 φ Candidates

The charge-neutral φ vector meson cannot be detected directly by ALICE. It is rather reconstructed
from its decay products by employing the method of invariant mass [141]

M2
φc4 = p2

φc2 =

(
∑

i
pic

)2

=

(
∑

i
Ei

)2

−
(

∑
i
~pic

)2

, (4.3)

where the sum runs over the products of one specific decay mode assuming a certain mass
hypothesis.
The dominant channel, which is favoured by the OZI rule, is the strong decay to charged kaons
φ → K+K− with a branching ratio of BRφ→K+K− = (49.2± 0.5)% [5]. In this specific case of a
two-body decay Eq. 4.3 can be written as

M2
φc4 = m2

K+c4 + m2
K−c4 + 2(EK+EK− − | ~pK+ || ~pK− |c2 cos θ), (4.4)

where θ denotes the angle between ~pK+ and ~pK− and mK±,PDG = 493.68± 0.02 MeV [5] corre-
sponds to the nominal kaon mass.

4.2.2.1 Kaon Selection

In the first step of the φ meson reconstruction, kaon candidates are identified by employing the
criteria summarized in Tab. 4.3. The pT, TPC-cluster and η selection follows [165, 166].

As the lifetime of the φ meson is very short and the detector resolution not good enough to
resolve such small cτφ ∼ 46 fm, the kaon candidates are treated as primary particles in order
to maximize the fraction originating from a φ decay. Therefore, the selection is also oriented
towards the proton selection 4.2.1. However, the DCA in both xy and z direction is increased
with respect to the proton selection, as the values are optimized to enhance the φ yield while
retaining a reasonable purity of the sample.

For particle identification below pTPC = 0.4 GeV c−1 only the TPC is used, while at larger
momenta its separation power to distinguish between kaons and other particles is not sufficient
anymore. Here the PID information from TPC and TOF is combined. A relatively large PID
interval of |nσ| < 5 is chosen, see Fig. 4.6b, in order reconstruct as many φ mesons as possible
while their purity changes only slightly. This was studied by employing MB data, resulting in
an increase of the φ yield of ∼ 13% with respect to a more strict selection of |nσ| < 3, also used
for proton reconstruction, and a decrease of the purity of less than 1%. The separation between
the two PID regions at pTPC ≈ 0.4 GeV c−1 is visible in both the pT (Fig. 4.6a) and the nσ,TPC
distributions (Fig. 4.6b). When further investigating the lower part of Fig. 4.6b at nσ,TPC ∼ −5, a
contamination from electrons is visible around pTPC ≈ 0.4 GeV c−1 in the left interval, where the
kaon PID relies on the TPC only.

Following Sec. 4.2.1, the purity of the kaon sample is extracted from MC simulations, which
are filtered through the ALICE detector and the reconstruction algorithm. Figure 4.7 shows the
resulting K+ and K− purities as a function of the transverse momentum pT. Both are consistent
with each other. For small transverse momenta, there is almost no contamination due to particle
misidentification, while for large pT the kaon purity decreases to∼ 75%. The dip at pT ≈ 0.4 GeVc
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is related to a contamination of the particle sample with electrons, as already mentioned in the
previous paragraph.

4.2.2.2 φ Resonance

The φ candidates are reconstructed using the method of invariant mass (Eq. 4.4), by combining
all selected K+ and K− candidates in one single event. The resonance peak in the invariant mass
distribution of the kaon pairs is then fitted with a Voigt function [166], which is a convolution
of a Gaussian that accounts for the detector resolution and a relativistic Breit-Wigner peak that
describes the natural line width

dN
dmK+K−

=
AΓ

(2π)3/2σ

+∞∫
−∞

exp
[
− (mK+K− −m′)2

2σ2

]
1

(m′ −Mφ)2 + Γ2/4
dm′, (4.5)

where A is a scaling factor, σ the detector resolution, Γ the decay width of the resonance, fixed
from the PDG value Γ = 4.25 MeV [5], and Mφ the mass of the φ resonance. The background is
described by a quadratic polynomial. The pT-integrated spectrum is shown in Fig. 4.8 and the
mass extracted from the fit Mφ = 1019.550± 0.002 MeV/c2 is consistent with the PDG mass of
Mφ,PDG = (1019.461± 0.016) MeV [5] within the detector resolution σ = 1.44 MeV/c2.

A cut on the invariant mass spectra of Mφ,PDG ± 8 MeV/c2 is applied, which determines the
intervals where the particle candidates are identified. There are a total of 5.84× 106 φ mesons
reconstructed for HM data with an integrated purity of 66 %, which hints at the presence of a
non-negligible contribution to the measured correlation signal arising from the combinatorial
K+K− background.

Figure 4.9 displays the invariant mass spectra for eight different pT intervals of width ∆pT =
0.5 GeV c−1. From the fit results it is possible to derive the purity as function of the transverse
momentum, shown in Fig. 4.10a. A strong pT dependence is observed and the purity decreases
to almost its half at the minimum pT with respect to the maximum.

Table 4.3: Kaon selection criteria.

Selection criterion Value
Filterbit 128 (TPC only tracks)
Pseudorapidity |η| < 0.8
Transverse momentum pT > 0.15 GeV/c
TPC cluster nTPC > 80
Crossed TPC pad rows ncrossed > 70 (out of 159)
Findable TPC clusters ncrossed/nfindable > 0.80
Tracks with shared TPC clusters rejected
Distance of closest approach xy |DCAxy| < 0.8 cm
Distance of closest approach z |DCAz| < 0.4 cm

Particle identification
|nσ,TPC| < 5 for p < 0.4 GeV/c
nσ,combined < 5 for p > 0.4 GeV/c
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Figure 4.6: Transverse momentum and nσ,TPC distribution of K+ candidates.

Figure 4.7: Purity of both K+ and K− as function of the transverse momentum.

In order to check for varying pile-up conditions of the pp Run 2 data-taking period, the purity of
the reconstructed φ mesons is investigated for each period separately, see Fig. 4.10b. The ones
with a low number of events and entries in the invariant mass spectra are left empty, as it is not
possible to properly fit the corresponding distribution and extract a confidable value. As can be
seen, the purity does not vary significantly, which shows that the background is not modified
by out-of-bunch pile-up. This implication can be explained in the following. The out-of-bunch
pile-up contribution is sensitive to the interaction rate. Therefore, LHC periods with a larger
interaction rate, hence more particles and more possible contaminations, would suffer from a
larger background, resulting in a lower purity.
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Figure 4.8: K+K− invariant mass distribution for high multiplicity events with sphericity cuts 0.7 <
ST < 1.0. The dashed lines represent the Mφ ± 8 MeV/c2 selection for the femtoscopic analysis.
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Figure 4.9: K+K− invariant mass spectra in pT slices of width 0.5 GeV/c.
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(a) φ purity as function of pT. (b) Purity of the φ candidates per LHC period.

Figure 4.10: Purity of the φ candidates as function of pT, which is integrated over all LHC periods on
the left and on the right the pT integrated purity as function of the different LHC periods.
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4.3 Particle pairing

As particles within the same event are paired in order to obtain Nsame, a φ candidate is rejected,
if one of its daughters uses the same track as a reconstructed primary proton in order to avoid
auto-correlations, which arise from pairing particles that are related kinematically.

Table 4.4 summarizes the number of particle pairs, reconstructed in the analysis as well as the
φ yield. In comparison, the total number of available events is listed. Of special interest is the
number of pairs within k∗ < 200 MeV/c, as it corresponds to the relative momentum region
where the correlation function is sensitive to the strong FSI.

Table 4.4: Particle and pair count

total events without sphericity cuts 971× 106

total events 0.7 < ST < 1.0 541× 106

reconstructed φ yield 5.84× 106

Total φ–p pairs 5.31× 106

Total φ–p̄ pairs 4.63× 106

φ–p with k∗ < 200 MeV/c 4.17× 104

φ–p̄ with k∗ < 200 MeV/c 3.61× 104
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5 The Correlation Function

The experimental p–φ correlation function is obtained from Eq. 2.6, where the normalization
constant N assures Cexp(k∗) = 1 in the relative momentum interval 0.8 < k∗ < 1.0 GeV/c.
The selected window is rather wide to account for a large bin width of 40 MeV/c. As the p–φ

correlation function is subject to various background contributions, which lead to the formation
of structures in the intermediate k∗ range, the normalization interval is positioned at large k∗,
where all contributions are expected to be flat. To avoid acceptance effects of the detector system,
the mixed event sample Nmixed is constructed only from particle pairs stemming from events
with similar multiplicity and z position of the primary vertex [98].

Figure 5.1 shows the experimental correlation function of p –φ and p–φ respectively. As the ratio
between them is consistent with unity, both are combined as p–φ ⊕ p –φ to yield a higher pair
yield. Therefore, p–φ will refer to p–φ ⊕ p –φ in the following. The resulting correlation function
is shown in Fig. 5.2. For small relative momenta k∗, where the strong FSI influences the shape
of the correlation function, it takes values larger than one, indicating an attractive interaction
between the two particles. However, in the intermediate k∗ region an enhancement is visible,
suggesting the presence of background contributions to the measured signal. Therefore, any
conclusion on the genuine p–φ interaction demands a treatment of all additional contributions.
The rise at large k∗ is attributed to energy-momentum conservation effects and is known from
previous femtoscopic analyses [164].

0 0.5 1 1.5 2 2.5 3

)ck* (MeV/

0.95

1

1.05

1.1

1.15

1.2

C
(k

*)

φp-

φ-p

 

(a) p–φ and p –φ correlation function
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(b) Ratio between both correlation functions

Figure 5.1: Comparison of the p–φ and p –φ correlation functions.
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Figure 5.2: The combined p–φ ⊕ p –φ correlation function, normalized within 0.8 < k∗ < 1.0 GeV/c.

5.1 Detector Effects

The reconstructed particle tracks have a finite momentum resolution, which affects the measure-
ment of the relative momentum k∗, hence, ultimately the correlation function. This can be studied
by means of a MC-generated momentum resolution matrix, shown in Fig. 5.3b and discussed
in more detail in Sec. 5.1.1. The matrix relates the generated relative momentum of the p–φ pair
(k∗Generated), which corresponds to the one obtained from the true single-particle momenta at the
collision vertex, to the reconstructed relative momentum (k∗Reconstructed). Due to the scarce amount
of entries in the matrix obtained from particles in the same event (SE), the one from mixed events
is used instead. This is valid as the ratio between the two is ∼ 1 when normalizing the ME matrix
to the number of entries in the one from SE to ensure an adequate comparison, shown in Fig. 5.3c.

Other effects that can influence the correlation function are track merging (two tracks are re-
constructed as one) and track splitting (one track is reconstructed as two), which can generate
artificial correlations by modifying the particle pair yield at a given k∗. To examine whether or
not they play a role in the p–φ correlation, the two-dimensional ∆η∆ϕ∗ distributions of SE and
ME are investigated at different radii of the TPC, where the azimuthal angle ϕ∗ is corrected for
the trivial modification of ϕ in the magnetic field. Especially at low relative angles, either track
merging or splitting should induce a visible signal. The distributions are obtained from MC
simulated data, where no strong FSI between particles is expected. Figure 5.4 shows the ratios
between the SE and ME distributions at different TPC-radii, in order to account for phase-space
effects. It can be seen that the experimental data is indeed not affected by track splitting and
merging, as the plots are flat and no bias is visible. Therefore, no further rejection on close particle
tracks is applied. However, even if such effects are present, they would be smeared over the
whole k∗ and ϕ∗ range.
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(a) Momentum resolution matrix obtained from SE particles
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(b) Momentum resolution matrix obtained from ME particles.
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(c) Ratio between the SE and normalized ME smearing matrices

Figure 5.3: Momentum resolution matrices, relating the MC generated relative momentum to the
reconstructed one for both SE and ME particle pairs as well as the ratio between them.
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Figure 5.4: ∆η∆ϕ∗ distribution for p–K+ pairs from the same event, normalized to mixed event pairs,
for different TPC-radii. At low angles, where track splitting and merging would be visible, no signs
for an angular dependence can be seen.
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5.1.1 Unfolding of the correlation function

As already mentioned before, the limited momentum resolution of the reconstructed tracks
induces modifications to the measured relative momentum, hence, to the SE and ME distributions
from which the correlation function is obtained.

The measured distribution D(k∗Reconstructed,i) of either SE or ME, is given as

D(k∗Reconstructed,i) = ∑
j

M(k∗Reconstructed,i, k∗Generated,j) · D(k∗Generated,j), (5.1)

where M(k∗Reconstructed,i, k∗Generated,j) is the discrete momentum resolution matrix, in this context
also called response matrix, shown in Fig. 5.3b. To correct for momentum resolution effects the
SE and ME distributions have to be transformed to the generated distributions by inverting
Eq. 5.1. However, this is not straight forward, as the matrix inversion process is ill-posed and
typically lacks an analytic solution. Therefore, the so-called Bayesian unfolding method [167] is
used within the RooUnfold framework [168, 169]. It starts with a guess of the true distribution
and is regulated by choosing a specific number of iterations until a stable result is obtained. In
this analysis 5 iterations are chosen as default. For a smaller number, the relative uncertainties of
the bins fluctuate a lot, while for a much larger amount of iterations the uncertainties themselves
increase drastically and become unphysical. Furthermore, the developers of RooUnfold suggest a
small integer of iterations and claim that reasonable results are obtained even without fine-tuning
the parameters [169].
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(a) First k∗Generated bin.
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(b) Fifth k∗Generated bin.

Figure 5.5: Projections of the momentum resolution matrix to the k∗Reconstructed axis for different low
momentum intervals in k∗Generated. The fit with a folded normal distribution is plotted as well.
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In order to account for systematic variations, which are relevant for the calculation of the
uncertainties in Sec. 5.7, the response matrix is not used directly. It is rather projected to the
k∗Reconstructed axis in 0.004 GeV/c-wide intervals of k∗Generated. Each of those slices is then normalized
by the number of entries and fitted with a folded normal distribution, which is the sum of two
Gaussian functions of equal width σ and equal but opposite signed mean µ. The choice of the
fit function is motivated by the fact that the relative momentum k∗ is defined as the absolute
value of the difference between both particle momentum vectors. Hence, negative differences
are projected to the positive axis, as can be seen in Fig. 5.5a, where the first k∗Generated interval
of k∗Generated < 0.004 GeV/c is depicted. The resulting distribution, especially at low k∗, cannot
be described by a simple Gaussian. Figure 5.5b shows the interval 0.020 GeV/c < k∗Generated <
0.024 GeV/c as comparison. The uncertainties decrease for increasing k∗Generated as the number of
entries in the momentum resolution matrix increases. This procedure results in a new matrix from
which it is possible to obtain systematic variations, by altering the folded normal distribution
in each k∗Generated interval within the maximum uncertainties of the parameters. Regarding the
mean of the folded normal distribution, the relative error with respect to the parameter value is
∼ 3% at max. For the width, a maximum of 6% is found.

From the unfolded SE and ME distributions, which are both obtained from the Bayesian method
with 5 iterations and the default matrix, a corrected version of the correlation function can be
deduced, which accounts for the finite momentum resolution of the ALICE detector. For p–φ it is
shown in Fig. 5.6, together with the uncorrected version. Notably, the effect is most pronounced
at low k∗ and results in a maximum variation of 0.7% with respect to the measured signal. In the
following, only unfolded correlation functions will be used.
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(a) p–φ correlation function after unfolding with the
Bayesian method (light blue) and before (dark blue).
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(b) The ratio between both is consistent with unity, hinting
a small modification due to the detector response.

Figure 5.6: Influence of the detector response on the measured correlation function.
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5.2 Lambda Parameters

There are two mechanisms, which can modify the experimentally measured correlation function.
The misidentification of one or both particles of interest leads to a completely different particle
pair that contributes to the correlation signal, whereas feed-down particles conserve the particle
species of the reconstructed pair itself but induce correlations from the strong interaction among
the primary particles before they decay into the particles of interest. Both are considered when
decomposing the total measured correlation function as

C(k∗) = λp–φ · Cp–φ(k∗) + ∑
ij

λij · Cij(k∗), (5.2)

where the indices i and j denote all possible particle combinations contributing to the p–φ

correlation function, including impurities and feed-down. Each contribution is scaled by a
so-called λ-parameter, calculated from the purity Pi of the specific particles and the fraction fi of
primaries or secondaries from feed-down of a specific long-lived decay channel as

λij = λi · λj = Pi fi · Pj f j. (5.3)

Details on the mathematical formalism can be found in [170]. In the case of p–φ the following
contributions have to be taken into account:

{p–φ} = p–φ + pΛ–φ + pΣ+–φ + p̃–φ + p–φ̃ + pΛ–φ̃ + pΣ+–φ̃ + p̃–φ̃, (5.4)

where X̃ refers to misidentified particles of species X. In particular, φ̃ refers to combinatorial
combinations of uncorrelated K+K− pairs.

The φ candidates are assumed to be only primary particles, as no relevant resonances contributing
to the feed-down fraction are found [5]. As the φ purity exhibits a pronounced pT dependency, it
is not sufficient to use the pT integrated value of 66%. The purity is rather evaluated for those
candidates contributing to the signal from strong FSI, hence entering the correlation function
at small k∗ in form of p–φ pairs with similar single-particle momenta. Considering that the
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(a) p–φ distribution
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(b) p –φ distribution

Figure 5.7: Transverse momentum distribution of the particle pairs of interest at small relative
momenta k∗ < 200 MeV/c.
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transverse momentum distributions of the reconstructed proton and φ meson candidates tend to
peak at very low values, particles forming pairs with small relative momentum, tend to have
a small pT as well. Indeed, as can be seen in Fig. 5.7, the average transverse momentum of
the φ candidates from p–φ pairs within the femtoscopic range of k∗ < 200 MeV/c is 〈pT,p–φ〉 =
1.3 GeV/c. When comparing it to the parameterization of the pT-dependent purity shown in
Fig. 5.8, a purity of only ∼ 57% can be derived, which is used in the following for the calculation
of the λ-parameters.
As cross-check, whether or not it is adequate to take the value obtained from the average
transverse momentum approach, the purity is also evaluated in terms of k∗, see Fig. 5.9. Indeed,
the resulting weighted mean for small relative momenta of k∗ < 200 MeV/c, where the relative
uncertainty of the data is considered, is found to be (56.6± 2.7)%. This is consistent with the
previous result within the uncertainties.

For protons, on the other hand, the purity obtained from MC-generated data does not depend
much on the transverse momentum and remains rather constant for pT < 2 GeV [85, 164].
Therefore, the pT integrated value of 99.4% is used in the following. The primary fraction is
82% and the feed-down fraction arising from the decay of Λ hyperons is 12.6% [85, 164]. The
remaining 5.4% is attributed to Σ+ decays.

The resulting λ-parameters obtained from Eq. 5.3, which are used to scale of the individual
contributions, are summarized in Tab. 5.1.

Table 5.1: Weight parameters of the individual components of the p–φ correlation function.
Pair λ (%)
p–φ 46.33
pΛ–φ 7.10
pΣ+–φ 2.93
p̃–φ 0.32
p–φ̃ 35.40
pΛ–φ̃ 5.43
pΣ+–φ̃ 2.24
p̃–φ̃ 0.25

}
λp–φλflatλpKK
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Figure 5.8: φ meson purity as a function of the transverse momentum, obtained from the reconstruc-
tion procedure explained in Sec. 4.2.2.2. The data is fitted with a polynomial of 5th order, from which
a purity of 56.69% is obtained for pT = 1.3 GeV/c. The pT value corresponds to the average transverse
momentum of the φ mesons in p–φ particle pairs in the femtoscopic region with low relative momenta
k∗ < 200 MeV/c.
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Figure 5.9: Purity of the φ mesons as a function of the relative momentum. The weighted mean for
k∗ < 200 MeV/c is (56.6± 2.7)%, which is consistent with the results from the pT calculations.
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5.3 Modeling of the measured Correlation Function

This section discusses the various contributions to the measured p–φ correlation function, which
have been introduced in Sec. 5.2 and combined to three major ones in the following.

The measured correlation signal consists of 43.3% combinatorial K+K− background, which
contains misidentified φ mesons interacting with proton candidates.
Secondary and misidentified protons interacting with actual φ mesons are combined to a 10.4%
contribution to the correlation function. As the underlying interaction is not precisely known,
the corresponding signal is assumed to be flat. This is supported by the fact, that the effect of
the contribution related to secondary protons on the correlation function is small, as it is subject
to a transformation k∗Parent → k∗Measured, which smears it and results in a correlation signal close
to unity. Additionally, as misidentified protons interacting with the φ meson are scaled by a
λ-parameter of only ∼ 0.5%. The resulting signal is also negligible.
Finally, the remaining 46.3%, which contribute to the correlation function, are attributed to the
actual genuine p–φ interaction.

Accordingly, the measured correlation function is composed as

Cexp(k∗) =M· Cbkg(k∗) · [λp–φ · Cp–φ(k∗) + λflat · Cflat(k∗)] + λpKK · CpKK(k∗), (5.5)

whereM is a normalization constant and Cbkg(k∗) is the non-femtoscopic background. Cp–φ(k∗)
describes the genuine p–φ correlation function, Cflat(k∗) the flat contribution from feed-down
as well as fake proton candidates and CpKK(k∗) arises from combinatorial K+K− background,
related to the finite purity of reconstructed φ candidates. As the latter is directly obtained from
experimental data, in contrast to the flat contribution Cflat(k∗) or Cp–φ(k∗), is already includes the
non-femtoscopic background, which is assumed to consists of two contributions

Cbkg(k∗) = a + b · (k∗)2 + CMJ,p–φ(k∗), (5.6)

where CMJ,p–φ(k∗) describes the minijet background of p–φ fixed from parameterizing results
from PYTHIA 8 (MC truth) with a polynomial of fifth-order. More details can be found in Sec. 5.3.2.
A quadratic polynomial is included as baseline to account for energy-momentum conservation
effects, which result in a rise of the correlation function at large k∗. Such long-ranged structures are
not properly reproduced by PYTHIA 8 [171]. The baseline is restricted to a vanishing derivative
at k∗ = 0 MeV/c, which results in the coefficient of the linear term being zero.

5.3.1 Residual Correlations

The purity of the reconstructed φ mesons is around 57% at low k∗ where the correlation measure-
ment is sensitive to the strong FSI interaction. The kaon purity on the other hand is very high in
this region. Therefore, a significant amount of combinatorial background of K+K− is present,
consisting of mainly two- but possibly to a certain amount also three-body interactions between
proton, K+ and K−. Figure 5.10 illustrates the genuine p–φ interaction in comparison to the one
arising from the residual background of a proton interacting with a fake φ.
The two-body interaction among p–K+ and p–K− is measured by the ALICE Collaboration [161]
with high precision. The corresponding measured correlation functions, depicted in Fig. 5.11,
show a clear deviation from unity at small k∗, which arises from both Coulomb and strong FSI.
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Therefore, a non-vanishing interaction among the triplet is expected, leading to a correlation
signal scaled by λpKK = 43.3% and referred to in the following as the combinatorial p–(K+K−)
background.

This contribution can be studied by investigating sidebands, which correspond to intervals to the
left and right of the φ resonance in the K+K− invariant mass distribution. An interval-width of
16 MeV/c2 is selected, which is the same as the one used for φ meson identification, in order to
minimize kinematic deformations of the correlation function related to the width of the interval.
The small mass difference between the φ meson and its decay products, the two oppositely
charged kaons, limits the possibilities to position the left sideband interval. Especially trying to
avoid threshold effects from moving it too far away from the resonance, while also aiming to a
similar pair count in both left and right sideband, results in even more restrictions. Therefore, the
left sideband is defined within 0.995− 1.011 GeV/c2 and the right within 1.028− 1.044 GeV/c2,
see Fig. 5.12a. Both lie very close to the φ resonance peak.

The correlation functions, which are used to obtain a description of the combinatorial p–(K+K−)
background, are then obtained from pairing the candidates in the sideband intervals with protons
and antiprotons. For both sidebands, the ratio between the p–(K+K−) and p̄–(K+K−) correlation
function is consistent with unity within the uncertainties, as shown in Fig. 5.13. Therefore,
they are combined to increase the statistics. The resulting correlation functions are depicted in
Fig. 5.12b. Notably, the left (green) and right (blue) sideband correlation functions deviate slightly
from each other at relative momenta k∗ . 500 GeV/c due to different kinematics of the selected
invariant mass window. To obtain a description of the combinatorial p–(K+K−) background, they
are summed with a specific weight that corresponds to the relative amount of misidentified φ̃

particles on each half of the φ resonance in the invariant mass spectra. This is done by integrating
the background function used to describe the invariant mass distribution in Fig. 4.8, within an
interval of [Mφ − 8, Mφ] MeV/c2 for the left and [Mφ, Mφ + 8] MeV/c2 for the right sideband,
which results in wle f t = 0.47.

Figure 5.10: The left illustration shows the combinatorial background consisting of a mixture of two-
and three-body interactions between proton, K+ and K−, the right shows the genuine interaction
between proton and φ.
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(a) p–K+ correlation function.
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(b) p–K+ correlation function.

Figure 5.11: The experimental p–K+ and p–K− correlation functions measured by ALICE in pp
collisions at

√
s = 13 TeV fitted with different model predictions (colored bands) [161]. A clear

deviation between the data and the correlation function obtained from pure Coulomb interaction can
be seen. The residual contribution to the experimental results is attributed to the strong interaction.
Figures taken from [161].

By means of an alternative approach, where multiple sideband correlation functions distributed
all over the k∗ range, are combined, it is possible to derive a model for the combinatorial
background, which matches the weighted sum of the experimental left and right sideband. Details
can be found in Appendix A. Another approach, where the combinatorial background is built
from the experimental two-body correlation functions among the p–(K+K−) triplet, projected into
the relative momentum k∗ of the p–φ pair, is described in Appendix B. Again a consistency with
the data-driven sideband result is observed and it is found that p–(K+K−) is mainly driven by the
two-body interaction among p–K+ and p–K−. This affirms the use of wle f t · SBleft + (1− wle f t) ·
SBright to describe the combinatorial background CpKK,exp(k∗) from experimental data, which is
displayed in Fig. 5.14 together with the individual sideband correlation functions. Compared
to the p–K+ and p–K− correlation functions, depicted in Fig. 5.11, CpKK,exp(k∗) extends also to
larger k∗, which comes from kinematic reshuffling of the two-body correlation functions.
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Figure 5.12: Invariant mass intervals and corresponding correlation function of p–φ, left and right SB.
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(a) Left sideband correlation functions.
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(b) Ratio between the left SB correlation functions
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(c) Right sideband correlation functions.
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Figure 5.13: Comparison between p–(K+K−) and p̄–(K+K−) for both the left and right sideband
interval.
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There is a sizable amount of φ mesons present in the sidebands, which arises from the tail of the
φ resonance extending into the sideband intervals, which lie very close to the φ reconstruction
interval, see Fig. 5.12a. Therefore, a correction is applied as it is not possible to shift the sideband
intervals much further from the φ meson peak as discussed before. The left sideband is already
near threshold and when only slightly shifting the intervals, the contamination remains large
while introducing additional kinematic effects that lead to even bigger deviations with respect
to the properties underneath the φ peak. The precise correction procedure is explained in the
following paragraph.
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Figure 5.14: Left and right sideband and the weighted sum of them, which is used as CpKK,exp(k∗).
The weights are obtained from the relative amount of particles in the background to the left and right
of the φ meson peak in the invariant mass spectra.
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Correction for φ meson contamination in sidebands Following the determination of the φ

purity in the femtoscopic region, where the average transverse momentum of the φ candidates
forming the p–φ pair is found to be 〈pT,p–φ〉 = 1.3 GeV/c, a φ meson contamination of 10.73 %
and 6.66% is obtained in the left and right sideband respectively, as shown in Fig. 5.15. The sum
of the two values, weighted with the same wle f t = 0.47 as used for the derivation of CpKK,exp(k∗),
is found to be 8.6 %. When additionally considering the proton purity and primary fraction, the
genuine p–φ interaction contributes with 7% to the combinatorial background obtained from the
sideband analysis (a = 0.07). Due to the low amount of entries in the sidebands, the measured
CpKK,exp(k∗) is parameterized by a double Gaussian to account for fluctuations of the data points.
Both data (black dots) and parameterization (red band) are shown in Fig. 5.16.

The correction is then performed by assuming

CpKK,exp = (1− a) · CpKK +M· Cbkg(k∗) · a · Cp–φ(k∗), . (5.7)

The corrected CpKK(k∗) (orange band), which describes the pure background signal without φ

contamination, is also included in Fig. 5.16. When substituting Eq. 5.7 into 5.5 the following
expression is obtained

Cexp(k∗) =M· Cbkg(k∗) ·
(
λ̃p–φ · Cp–φ(k∗) + λflat · Cflat(k∗)

)
+ λ̃pKK · CpKK,exp(k∗), (5.8)

where λ̃p–φ =
(

λp–φ −
λpKK·a

1−a

)
and λ̃pKK =

λpKK
1−a are the renormalized λ-parameters, which

absorb the φ contamination. Equation 5.8 will be used in the following to model the experimental
correlation function.
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Figure 5.15: φ purity within the sideband intervals in the invariant mass spectra.
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Figure 5.16: The combinatorial background obtained from the weighted sum of the left and right
sideband correlation function, parameterized with a double Gaussian (red band), which is used in the
correlation function modeling. The orange band corresponds to the actual combinatorial background,
when corrected for φ meson contamination of the sideband.

5.3.2 Non-femtoscopic Background

As already discussed in Sec. 4.1 the p–φ correlation function is affected by the emergence of mini-
jets, which contain auto-correlated protons and φ mesons emitted in jet-like structure. Minijets
cause the appearance of long-range structures in the correlation function, which overshadow
the genuine p–φ signal. By applying cuts on the event sphericity (0.7 < ST < 1.0 [161]), thereby
selecting only spherical events, the non-femtoscopic minijet background is reduced significantly,
even though not removed completely. Figure 5.17 shows the impact of such strict ST selection on
the correlation function.

The residual background is described by PYTHIA 8 [156] generated events following [159, 160],
where it is shown that correlation structures related to minijet are well reproduced by MC
simulated data. However, the φ purity obtained from reconstructed MC data is reduced by∼ 10%
compared to the one from actual measurements. Additionally, the φ yield is only half as large. In
order to increase the number of pairs going into the correlation function, the particles of interest
are selected from the generated MC stack via their PDG code, without including the ALICE
detector response. This is referred to as MC truth in the following. After identifying kaons and
protons, cuts on the transverse momentum and the pseudorapidity are applied, which are in
agreement with the particle selection in Sec. 4.2.1 and 4.2.2. In a next step, the invariant mass
of the kaons is calculated and a mass window of Mφ ± 8 MeV/c2 is chosen, following the φ

meson selection. Next, the identity of the mother of the kaons is determined in order to establish
whether or not the kaon pair originates from a φ. Accordingly, the minijet contribution to the
residual background of p–(K+K−) as well as the actual p–φ interaction can be studied. In both
cases, a clear non-flat correlation is obtained from the MC truth sample, as depicted in Fig. 5.19a.
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Figure 5.17: Due to strict cuts on the event sphericity, selecting only spherical events, the long-range
enhancement caused by minijets is reduced.

When choosing the default normalization range, both functions deviate from each other, in
particular at larger k∗. In order to highlight the similar slope of the minijet contribution at
low k∗, correlation functions normalized within [600 − 800] MeV/c are shown in Fig. 5.19b.
Indeed, they are in agreement. Additionally, a cross-check is performed, to probe whether or not
detector response and tracking influence the shape of the correlation function. This is done by a
comparison of the MC truth correlation function to the one obtained by employing reconstructed
MC data, shown in Fig. 5.18. Both are found to be compatible within uncertainties with mild
deviations arising at large k∗. When compared to the correlation functions from data, see Fig. 5.20,
one can see that the MC truth data describes the enhancement at moderate k∗ very well, especially
in case of p–φ.

In the final modeling of the correlation function by employing Eq. 5.8, the p–φ minijet background
is parameterized with a polynomial of fifth-order to obtain a smooth correlation signal. As the
contribution is obtained from PYTHIA 8 generated data, which is not reconstructed through the
ALICE detector, it is not subject to the unfolding process discussed in Sec. 5.1.1.

5.3.3 Genuine Correlation Function

In case of the genuine p–φ correlation function, only the strong interaction is considered. The
experimental data is used to constrain the scattering parameters of the interaction by comparing
it to model predictions. As the φ has no isospin and it is a vector meson of spin 1, the p–φ pair
can only have one isospin configuration with two possible spin states. However, the latter cannot
be disentangled experimentally. Therefore, the model for singlets is used when modeling the
correlation function with both the Lednický-Lyuboshits [118] and a potential approach, which
results in spin-averaged scattering parameters.
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Figure 5.18: The p–φ correlation function from reconstructed MC and MC truth data, both normalized
within k∗ ∈ [600, 800] MeV/c. They are in agreement within the uncertainties up to k∗ ∼ 1000 MeV/c.
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Figure 5.19: Comparison between the MC truth results for p–φ and p–(K+K−) for different normaliza-
tion ranges. The discrepancy between the two correlation functions at low k∗ visible in Fig. (a), where
the default normalization window is used, is not present in Fig. (b). This implies that the difference
seen on the left plot can be attributed to the normalization.
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Figure 5.20: Comparison between the correlation functions obtained from actual data and MC truth.
All correlation functions are normalized within k∗ ∈ [800, 1000] MeV/c.
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5.4 Extracting the Genuine Correlation Function

All non-genuine contributions to the correlation function are removed from the measured signal
in order to finally extract Cp–φ(k∗), which is then compared to the modeled correlation functions
to obtain the scattering parameters of the interaction.

In order to account for the uncertainties of the input data, the bootstrap method is employed,
where iteratively a random correlation function is generated for CMJ,p–φ(k∗), left and right
sideband correlation function, from which eventually CpKK,exp(k∗) is deduced, and of course
Cexp(k∗). This is achieved by sampling each data point from a Gaussian distribution with
the default value of the unfolded experimental data as mean and the statistical uncertainty as
standard deviation. The whole procedure to derive a description of the total background, which
is then removed from the total correlation function to extract the genuine p–φ correlation function
Cp–φ, is repeated ∼ 1000 times in total to obtain reasonable results from bootstrap.
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Figure 5.21: The experimental p–φ correlation function and various contributions as described in
Eq. 5.8, however, not yet scaled by the respective parameters. The blue band depicts the background
model used to derive the genuine p–φ correlation function.

In a first step, the randomized total correlation function is fitted with a polynomial of second-
order within k∗ ∈ [600, 1500] MeV/c to get constraints for the baseline in Eq. 5.6. Aiming to get
a description of the total background, also referred to as background model, it is assumed that
Cp–φ(k∗) = 1 and the data is fitted with Eq. 5.8 within a range of k∗ ∈ [200, 800] MeV/c. The λ-
parameters as well as the functions describing minijet and combinatorial p–(K+K−) background
are fixed from data, which leaves only the normalization constantM and the baseline parameters
a and b free. The latter are restricted to lie within 3σ of the prefit results, as bprefit− 3 · eprefit < b <
bprefit + 3 · eprefit and 1− aprefit − 3 · eprefit < a < 1− aprefit + 3 · eprefit respectively. In particular
1− aprefit is chosen to prevent the background model without normalization constantM from
reaching values much larger or smaller than ∼ 1. The resulting background model is shown in
Fig. 5.21 together with the different contributions. The overall trend of the experimental data

76



is well described and it accurately reproduces the enhancement in the intermediate k∗ range of
[300, 500] MeV/c and the behavior for large relative momenta. The mild discrepancies between
data and fit within [200, 300] MeV/c are compatible within the uncertainties.
In a last step, the total background model is removed from Cexp(k∗) by rearranging Eq. 5.8, now
with the normalization constant and baseline parameters fixed from the fitting procedure, in
terms of the genuine correlation function.

Finally, the fully corrected genuine p–φ correlation function is shown in Fig. 5.22a. The value of
each data point corresponds to the mean of the results from all bootstrap iterations combined
and the statistical uncertainty to the respective standard deviation. As an example the bootstrap
distribution of the first data point of Cp–φ(k∗) is shown in Fig. 5.22b. Notably, the mean coincides
with the value of the first data point in Fig. 5.22a and the standard deviation of the distribution
with the statistical uncertainty of that point.

At low k∗ there is a noticeable increase of the correlation signal, which suggests an attractive
nature of the genuine interaction between proton and φ meson. This enhancement is large
compared to the experimental Cexp(k∗) in the same relative momentum range where the genuine
p–φ correlation function is dampened by λp–φ and overshadowed by the various background
contributions, including minijets and combinatorial background. Furthermore, the correlation
function is flat at large k∗ as expected. A detailed discussion of the final results will follow in
chapter 6.
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(a) The genuine p–φ correlation function obtained after
removing all contributions from the measured signal.
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(b) Distribution of the first data point of the genuine
p–φ correlation function, obtained from bootstrap. The
mean corresponds to the value of the data point, whereas
the standard deviation is the corresponding statistical un-
certainty.

Figure 5.22: The genuine p–φ correlation function derived by employing the bootstrap method. Each
data point is obtained by randomly sampling the input correlation functions, resulting in a distribution
of possible correlation function values.

5.5 The Source

In order to interpret the data, the genuine Cp–φ(k∗) is compared to a theoretical correlation
function, defined by Eq. 2.16. It depends on both the particle-emission, characterized by the
source function S(r∗), and the two-particle wave-function. Therefore, following Chapter 2, the
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source has to be constrained in order to obtain information on the interaction between proton
and φ meson.

As discussed in [85] and [164], the emission source, which is typically parameterized by a
Gaussian source function (Eq. 2.5), is deformed by short-lived resonances with cτ . 10 fm,
feeding into the particles of interest. This leads to an effective enhancement of the source radius
as illustrated in Fig.5.23, which can be determined by considering the different origins of the
final-state particles. The source function is given accordingly as [164]

S(r∗) = P1P2 × SP1P2(r
∗) + P̃1P2 × SP̃1P2

(r∗) + P1P̃2 × SP1 P̃2
(r∗) + P̃1P̃2 × SP̃1 P̃2

(r∗), (5.9)

where P̃1(2) = 1− P1(2) denotes the fraction of secondary particles originating from short-lived
resonances, P1(2) the primordial1 fraction and Sij(r∗) the corresponding source. In order to
evaluate S(r∗), the resonance yields are taken from the statistical hadronization model [172] and
the propagation of the resonances as well as their relative orientation is modeled with EPOS
[173].

Using the procedure described in [164], the source is parameterized in terms of a core Gaussian
emission source of width rcore, which is assumed common for all hadrons. The additional effect
of resonances is evaluated using the same model. Even though the final source function deviates
slightly from a Gaussian function due to the exponential tail induced by the resonances, an
effective Gaussian profile can still be employed to a good approximation. The corresponding
effective source size reff can be obtained by fitting the true source distribution and will be slightly
larger compared to rcore.

The core radius is extracted from correlation measurements of particle pairs, which undergo
well-understood final-state interactions. By fitting the experimental correlation function with a
given potential, it is possible to extract the source, which is then corrected for the effects from
resonances. Figure 5.24 shows the resulting rcore for p–p and p–Λ, both measured in pp collisions

Figure 5.23: Illustration of the modification source size due to resonances feeding one of the particles
of interest as for p–φ.

1 Primordial particles are those created directly during the hadronization process, and do not stem from an interme-
diate decay.
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ALI-PUB-483616

Figure 5.24: Gaussian core radius as a function of 〈mT〉 for different particle pairs. The blue data
points are obtained by fitting the p–p correlation function with the strong Argonne ν18 [65] potential.
The green (red) data results from a fit of the p–Λ correlation function with the strong χEFT LO [174]
(NLO [175]) potential. Statistical uncertainties are shown as lines while the systematic uncertainties
correspond to the boxes. Figure taken from [164].

at
√

s = 13 TeV, as a function of the transverse mass, defined by

mT =
√

kT + m, (5.10)

where kT the transverse momentum in the laboratory frame and m is the mean pair mass.
The core radius scales with 〈mT〉, which is mostly related to the collective expansion of the
collision system. More remarkable is the fact that the data is in agreement within the uncertainties
for both pairs, indicating the existence of a universal emission source altered only by short-lived
resonances feeding into the specific particles. Hence, by interpolating these data, it is possible to
calculate the core radius for any given particle pair by measuring its transverse mass.

Figure 5.26 depicts the p–p results, where the core radius is obtained from modeling the cor-
relation function between the two particles with the strong Argonne ν18 potential [65]. With
an average of 〈mT〉 = 1.656 GeV/c2 for p–φ and p –φ pairs with small relative momentum
k∗ < 200 MeV/c, see Fig. 5.25, a Gaussian core radius of rcore = 0.98± 0.04 fm is extracted from
the interpolation.

An effective description of the p–φ source is then obtained by including effects from short-lived
resonances. While the primordial fraction of protons is only ∼ 35.8% [176], with the main feed-
down contribution arising from ∆ resonances, there is no relevant contribution from strongly
decaying resonances feeding to the φ meson.

Figure 5.27 shows the resulting effective distribution of the p–φ source. With the known core
radius of rcore = 0.98± 0.04 fm, an effective Gaussian size of reff = 1.08± 0.05 fm is derived by
fitting the distribution with the Gaussian source function. In the interval of 4.5 < r∗ < 6.5 fm a
slight deviation between the fit function and the data points is visible, which is associated with
modifications induced by resonances. Nevertheless, the Gaussian parameterization holds well in
the relevant region where most of the pairs are found.
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(a) Distribution for p–φ.
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(b) Distribution for p –φ.

Figure 5.25: Distribution of the transverse mass at low relative momenta of p–φ and p –φ respectively.
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Figure 5.26: Gaussian core radius of a p–p source as function of 〈mT〉 and fit to the data (green). Solid
bars depict the statistical uncertainties and shaded areas the systematic errors due to variations of the
fit [164].
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5.6 Femtoscopic Fit

Information on the interaction between two particles is typically obtained by comparing the data
to model predictions, which in the case of p–φ include an analytical correlation function from
the Lednický-Lyuboshits model [118] as well as an approach with phenomenological potentials,
where the correlation function is evaluated numerically by employing the The Correlation Analysis
Tool using the Schrödinger Equation (CATS) [121].

Therefore, each individual genuine correlation function, directly obtain from data by employing
the total background model and bootstrap method discussed in Sec. 5.4, is fitted with the one
derived from the various approaches within k∗ < 200 MeV/c. In order to ensure physical results,
variations yielding χ2/ndf > 100 within the fit range of k∗ ∈ [0, 200] MeV/c are excluded. An
even stricter selection is used for the Lednický-Lyuboshits approach by additionally refusing
results with d0 < 0 fm and d0 > 1000 fm as well as =( f0) < 0 fm.

This results in a distribution of the fit parameters, which in the case of the Lednický-Lyuboshits ap-
proach are the scattering length f0 and effective range d0, or else, the potential parameters from
which the scattering parameters can be derived via Eq. 2.16. From these distributions, the values
and statistical uncertainties of the individual parameters can be obtained as their mean and
standard deviation, respectively. However, to account for the asymmetric shape of the param-
eter distributions, they are evaluated within the central interval enclosing 90% of the entries
in case of the Lednický-Lyuboshits model with complex scattering length. Regarding all other
approaches, the parameters and uncertainties are obtained by taking the truncated mean and the
corresponding standard deviation when discharging the upper 10% of the entries. All parameter
distributions are included in Appendix D.

5.7 Systematic uncertainties

5.7.1 Data

The systematic uncertainties of the measured data are extracted by randomly varying the selection
criteria for protons and kaons as well as altering the lower value of the sphericity cut. A
summary can be found in Tab. 5.2. Thus, the analysis is performed on a total of 25 sets of random
combinations of these selection criteria, each leading to a slightly different shape of the correlation
function.

As there are only a moderate number of pairs, which contribute to the correlation function at low
k∗, even a moderate modification of the pair yield results in large statistical fluctuations of the
results, ultimately biasing the derivation of systematic uncertainties. Therefore, in order to retain
the statistical significance, the combinations are chosen not to exceed an upper limit of ±20% of
the pair yield Nsame within k∗ < 200 MeV/c. The resulting relative pair variation of each of the 25
sets is shown in Fig. 5.28 and the corresponding maximum variation of the φ purity is ∼ 1.5 %.

For the sideband correlation function the same cut-variations and combinations are employed,
whereas for the minijet contribution from MC truth only a variation of the transverse momentum
and pseudorapidity of the proton and kaon candidates as well as the transverse sphericity is
possible. The systematics of each default correlation function CMJ,p–φ(k∗), SBleft/right(k∗) and
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Cexp(k∗) are derived by means of the bootstrap method including the 25 variations of the correla-
tion functions. From this, a distribution for each data point in k∗ is obtained, where the standard
deviation corresponds to the total uncertainty of the points. Assuming that statistical errors and
systematic uncertainties are uncorrelated, the following equation holds

σ2
tot = σ2

stat + σ2
syst, (5.11)

which can can be rearranged as σsyst =
√

σ2
tot − σ2

stat in order to extract the systematic uncertain-
ties, as the statistical uncertainty of the experimental correlation functions is known and obtained
from the yield recorded by the ALICE detector.

The total experimental correlation function Cexp(k∗) is depicted in Fig. 5.29 together with the
systematic and statistical uncertainties of the data. The relative systematic uncertainty is 2.8% at
low k∗.

Table 5.2: Variations of the selection criteria.

Variable Default Variation
pT proton (GeV/c) 0.5 0.425, 0.575
|η| proton 0.8 0.75, 0.85
nσ proton 3 2.5, 3.5
nCluster proton 80 70, 90
pT kaon (GeV/c) 0.15 0.075, 0.225
|η| kaon 0.8 0.75, 0.85
nσ kaon 5 4.25, 5.75
nCluster kaon 80 70, 90
ST sphericity 0.7 0.665, 0.735
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Figure 5.28: Effect of the systematic variations on the number of p–φ pairs for k∗ < 200 MeV/c.
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5.7.2 Genuine Correlation Function

The systematic uncertainties of the data, discussed in Sec. 5.7.1, are only relevant for the visualiza-
tion of the plotted functions. However, in order to derive the final genuine correlation function
by employing the total background model to the data, CMJ,p–φ(k∗), SBleft/righ(k∗) and Cexp(k∗)
are used simultaneously. Therefore, the associated systematic uncertainties are evaluated by
combining the bootstrap sampling of all the input correlation functions with systematic variations
of the fitting procedure explained in Sec. 5.4.

In particular, the 25 systematic combinations of the input correlation functions CMJ,p–φ(k∗),
SBleft/righ(k∗) and Cexp(k∗) are combined randomly in each iteration. Each of them is corrected
for the momentum resolution by randomly choosing the unfolding method, number of iterations
and response matrix variation. Also, the fit ranges are varied in order to account for the possibility
of systematic uncertainties related to the fitting procedure itself. Additionally, a linear baseline
is included, as its shape affects the genuine correlation function, especially at low relative
momentum k∗. A summary of all systematic variations can be found in Tab. 5.3.

After a total of ∼ 1000 repetitions of the fitting procedure a new distribution for each data point
of Cp–φ(k∗) is obtained, which has a standard deviation of σtot(k∗). Together with the statistical
uncertainties derived in Sec. 5.3.3 the systematic error of the genuine p–φ correlation function is
calculated from Eq. 5.11.

Figure 5.29 shows the total background model and various components with statistical and total
uncertainties, from which the systematics of genuine p–φ correlation function are obtained. The
final results are shown in Fig. 5.30.

Table 5.3: Variations of the fitting procedure to derive the genuine p–φ correlation function from the
experimental data.

Variable Default Variation
Baseline linear quadratic
lower fit range of BG model 200 MeV/c 170 MeV/c, 230 MeV/c
upper fit range of BG model 800 MeV/c 770 MeV/c, 830 MeV/c

Variations of the prefit ranges of the pol1 baseline
lower limit 600 MeV/c 550 MeV/c, 650 MeV/c
upper limit 1000 MeV/c 950 MeV/c, 1050 MeV/c

Variations of the prefit ranges of the pol2 baseline (flat at k∗ =0 MeV/c)
lower limit 600 MeV/c 550 MeV/c, 650 MeV/c
upper limit 1500 MeV/c 1450 MeV/c, 1550 MeV/c

Variations of the unfolding process
unfolding method Bayesian bin-by-bin
iterations 5 4, 6

response matrix
folded normal distribution
(FND)

FND upper limit, FND lower
limit
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Figure 5.30: The genuine p–φ correlation function with statistical (bars) and systematic (grey boxes)
uncertainties [177]
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5.7.3 Femtoscopic Fit

To incorporate possible systematic uncertainties related to the femtoscopic fit, the uncertainties
of the effective Gaussian size from Sec. 5.5 are accounted for by including the respective extreme
values in the random sampling. Additionally, the upper limit of the fit range is varied by changing
the number of points that are included in the procedure by ±1. A summary can be found in
Tab. 5.4. Following the procedure explained in Sec.5.6 and additionally including all of these
systematic variations, the total uncertainties of the fit parameters can be derived, from which
finally the systematic uncertainties are obtained by employing Eq. 5.11.

Table 5.4: Systematic variations of the femtoscopic fits.

Variable Default Variation
upper fit range (MeV/c) 200 170, 230
reff (fm) 1.078 1.031, 1.126
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6 Results and Discussion

In this section, the final results on the interaction between proton and φ meson for HM data
in pp collisions at

√
s = 13 TeV are presented. Various models are employed to extract

the interaction parameters from the genuine p–φ correlation function. The statistical signifi-
cance of the measured deviation with respect to the null-hypothesis C(k∗) = 1 is found to be
5.7± 0.8 (stat.)± 0.5 (syst.) σ in the region k∗ < 200 MeV/c (see Fig. D.1 in Appendix D). This
evidences the strong FSI between the two particles.

6.1 Accessing the strong FSI

The genuine p–φ correlation function shows the characteristics of an attractive interaction, as
it takes values above unity at low k∗, where the strong FSI becomes relevant. However, contri-
butions from coupled-channels might be present, which influence the shape of the correlation
function. They have to be considered when accessing the parameters of the p–φ interaction.

As discussed in Sec. 2.3, inelastic channels, which open below threshold lead to an effective
increase of the correlation function, while the ones that appear above threshold lead to a cusp
structure close to their threshold k∗. Due to the large uncertainties and bin width of the genuine
p–φ correlation function, no structures related to the opening of above-threshold channels can be
observed at the opening momenta of the Λ–K∗ (k∗ = 221.6 MeV/c) and Σ–K∗ (k∗ = 357.4 MeV/c)
channels. However, sub-threshold channels might be present as well. In order to account for the
possibility of such inelastic contributions, characterized by =( f0) > 0, a fit with the Lednický-
Lyuboshits approach with complex scattering length is performed. The resulting correlation
function is shown in Fig. 6.1 and the corresponding scattering parameters are summarized in
Tab. 6.1.

Notably, <( f0) > 0 indicates an attractive nature of the p–φ interaction in vacuum. This
conclusion is supported by an imaginary part of the scattering length, =( f0), that vanishes
within the uncertainties, suggesting that the elastic p–φ interaction, characterized by the real
part of the scattering length, is dominant in vacuum. The effective range is found to be
d0 = 7.85± 1.54 (stat.)± 0.26 (syst.) fm. Therefore, the existence of a N–φ bound state, which is
characterized by <( f0) < 0 and a small d0, is not supported by data.

The large effective range combined with the small p–φ source might be troublesome in case of the
Lednický-Lyuboshits approach (Eq. 2.19), which includes a correction term ∝ d0

reff
[118]. In order

Table 6.1: Scattering parameters with statistical and systematic uncertainties extracted from the
bootstrap fit with the Lednický-Lyuboshits approach with complex scattering length.

Variable Result σstat σsyst

d0 (fm) 7.85 1.54 0.26
<( f0) (fm) 0.85 0.34 0.14
=( f0) (fm) 0.16 0.10 0.09
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Figure 6.1: The genuine p–φ correlation function with statistical (bars) and systematic uncertainties
(boxes). The red band depicts the results from the fit employing the Lednický–Lyuboshits [118]. The
width corresponds to one standard deviation of the uncertainty of the fit. Figure published in [177].

to test the stability of the previously obtained f0 values and the influence of the correction term,
the p–φ correlation function is also evaluated within the zero effective range approximation by fixing
d0 = 0 fm in the fit. The results are shown in Fig. 6.2. Even though the description of the data is
slightly worse than with inclusion of the effective range parameter in the fitting procedure, the
scattering length is in agreement within the uncertainties in both approaches.

Similar to the OZI suppressed N–φ case, also the N–J/ψ interaction is expected to be driven
by gluon exchange, as the J/ψ (cc) does not share common valence quarks with the nucleons.
Therefore, in line with studies of charmonium states [52], phenomenological potentials are
employed to evaluate the p–φ interaction [51].

Such approaches include Yukawa- (Eq. 2.26) and Gaussian-type potentials (Eq. 2.27). The corre-
sponding correlation functions are obtained by solving the Schrödinger Equation numerically
with the The Correlation Analysis Tool using the Schrödinger Equation (CATS) [121]. However, the
potentials can only be evaluated with real parameters ∈ R. Nonetheless, reasonable results are
obtained as inelastic contributions, characterized by the imaginary part of the scattering length,
do not dominate the N–φ interaction in vacuum, as demonstrated. It is also possible to extract
the scattering parameters of the potential approaches from the phase-shift of the corresponding
wave-function via the relation Eq. 2.16. A detailed discussion can be found in Appendix C.

Figure 6.3 shows the correlation functions obtained for the different interaction potentials. As a
comparison also the result from a fit with the Lednický–Lyuboshits approach with real scattering
parameters f0, d0 ∈ R is shown. The corresponding values can be found in Tab. 6.2. Both effective
range and scattering length are slightly increased in comparison to the values from the approach
with complex f0, however compatible within uncertainties.

The values obtained for the parameters of the Gaussian-type potential, namely its strength Veff

88



0 50 100 150 200 250 300 350 400

)c* (MeV/k

 

1

1.1

1.2

1.3

1.4

1.5
*)

k(
C

φ-p ⊕ φp-

-Lyuboshits modelyLednick

 = 13 TeVsALICE pp 

 0.17% INEL > 0)−High-mult. (0 

 < 1.0TS0.7 < 

 0.03 (syst.) fm± 0.05 (stat.) ±) = 0.29 
0

f(ℜ

 0.06 (syst.) fm± 0.04 (stat.) ±) = 0.15 
0

f(ℑ

 

Figure 6.2: The correlation function for p–φ compared to the Lednický-Lyuboshits approach with
complex scattering length and zero effective range approximation.
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Figure 6.3: Correlation functions obtained from the potentials by employing CATS in comparison to
the result from the Lednický-Lyuboshits approach with real scattering length.

Table 6.2: Scattering parameters with statistical and systematic uncertainties extracted from the
bootstrap fit with the Lednický-Lyuboshits approach with real scattering length.

Variable Result σstat σsyst

effective range d0 (fm) 8.90 1.25 0.71
scattering length f0 (fm) 0.95 0.41 0.23
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and range, accessible via µ ≈ 1/R2, can be found in Tab. 6.3. Similar to the results obtained by the
Lednický–Lyuboshits approach, the small Veff indicates a shallowly attractive strong interaction,
with a moderate range of ∼ 3 fm. In particular, this potential is much more shallow than results
on the strong interaction among N–J/ψ obtained from lattice QCD calculations, performed by
the HAL QCD collaboration [178]. A parameterization of these results with a Gaussian-type
potential yields Veff = 133.4 MeV and µ = 5.5 fm−2.

The fit results from the Yukawa-type potential are summarized in Tab. 6.4. The parameter values
are found to be significantly smaller than the ones from studies of possible N–φ bound states,
which use the same kind of potential with α = 600 MeV and A = 1.25 [51]. Therefore, the data
analysis performed in this work excludes a possible bound state.

Summarizing, the p–φ interaction measured in pp collisions, hence vacuum, is found to be
attractive and dominated by elastic contributions. A bound state is not supported. This conclusion
is obtained by employing the Lednický–Lyuboshits approach, which yields consistent results for
three different hypotheses, including (i) f0 ∈ C, d0 ∈ R, (ii) f0 ∈ C, d0 = 0 fm and (iii) f0, d0 ∈
R. These results are compatible with the ones obtained numerically from phenomenological
potentials, which also yield a shallowly attractive strong FSI between proton and φ meson. A
paper based on the results of this work [177], has been accepted for publication in Physical Review
Letters.

Table 6.3: Parameters of the Gaussian-type of potential with statistical and systematic uncertainties
extracted from the bootstrap fit.

Variable Result σstat σsyst

Veff (MeV) 2.52 0.85 1.40
µ (fm−2) 0.14 0.06 0.09

Table 6.4: Parameters of the Yukawa-type of potential with statistical and systematic uncertainties
extracted from the bootstrap fit.

Variable Result σstat σsyst

A 0.021 0.009 0.006
α (MeV) 65.90 38.04 17.52
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6.2 Discussion

There are several approaches and experiments which derive the scattering length of the p–φ

interaction and can be used as a comparison to the results obtained in this work. Some are listed
in the following:

• An analysis of differential cross section measurements near threshold from φ photoproduc-
tion data recorded with the CLAS experiment reports | f0| = (0.063± 0.010) fm [179].

• From QCD sum rules a value of f0 = (−0.15± 0.02) fm [180] is obtained, which is in
agreement with results of the φ differential cross section near-threshold, measured by the
LEPS collaboration [181, 182].

• By modeling the forward N–φ scattering amplitude based on an effective Lagrangian
combining chiral SU(3) dynamics with vector meson dominance, an effective scattering
length of f0 = (−0.01 + i 0.08) fm is found [183].

• By means of an attractive QCD van der Waals potential for N–φ, employed in a bound state
analysis, a scattering length of 2.37 fm is found [51]. This approach assumes a Yukawa-type
potential of strength A = 1.25 and α = 600 MeV.

Notably, the values from literature are inconclusive as they deviate among the different ap-
proaches and contradict the results presented in Sec. 6.1. Besides some of the results being
only theoretical calculations, the measured ones listed above, are derived in a model-depended
manner as the data refer to the properties of the φ meson within the nucleus. Therefore, they are
strongly dependent on the exact modeling of the surrounding medium. Accessing the interaction
in a two-body system instead, provides a much cleaner approach. Therefore, the femtoscopy
method utilized in this work to directly measure the two-body N–φ interaction in vacuum, pro-
vides constraints to theoretical models, hence, improves the interpretation of results from nuclear
collisions, related to the search for chiral symmetry restoration.

Additionally, the N–φ coupling constant can be directly extracted from the results obtained from
the Yukawa-type potential as gN–φ =

√
A. It is found to be gN–φ = 0.14± 0.03 (stat.)± 0.02 (syst.).

This result contradicts calculations employing pure SU(6) symmetry, which lead to a vanishing
gN–φ = 0. However, the small value found in this work is compatible with expectations of a weak
N–φ coupling, as discussed in Sec. 1.4. The N–φ coupling constant also provides indirect access
to the Y–Y interaction in neutron stars via Eq. 1.14, where the measured gN–φ are related to gY–φ,
relevant for the φ meson exchange between hyperons in NS.

Figure 6.4 shows the resulting coupling constant in the specific case of Λ hyperons as function of
αV and z, assuming gN–φ = 0.14. As already discussed in Sec. 1.4, the variable αV = F/(F + D)
weighs the symmetric (D) and the anti-symmetric (F) part of the octet-octet interaction, while
z = g8/g1 is the ratio of the meson singlet and octet coupling constants g1 and g8. In the specific
case of SU(6) symmetry, these variables take the values z = 1/

√
6 and αV = 1. Notably, most

combinations of z and αV lead to a vanishing gΛ–φ. This is in agreement with results obtained from
femtoscopic measurements of the Λ–Λ interaction, which is found to be weakly attractive [184].

As discussed in Sec. 6.1, the parameter values of a Gaussian-type potential used to parameterize
the results on the strong interaction among N–J/ψ (N–cc) obtained from lattice QCD calcula-
tions [178] deviate strongly from the ones obtained for p–φ (N–ss). As the interaction mechanism
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is expected to be similar for both pairs, it might be interesting to extend correlation measurements
to the charm sector, in order to investigate and understand the origin of such difference.

However, as the uncertainties of the experimental results are still relatively large, more data are
needed to extract precise parameter values, especially of the imaginary part of the scattering
length, and the here reported results should serve as an input for more advanced modelings
in medium. Data taken at the LHC during the upcoming Run 3 and Run 4 will significantly
improve the precision of the extracted interaction parameters.
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Figure 6.4: The coupling constant gΛφ as function of αV and z, assuming gN–φ = 0.14.
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7 Summary

This work presents the first femtoscopic measurement of the p–φ correlation function in high
multiplicity pp collisions at

√
s = 13 TeV. A paper based on the results of this work [177], has

been accepted for publication in Physical Review Letters.

The analysis is conducted employing data measured by the ALICE experiment at the Large
Hadron Collider (LHC) during the Run 2 data-taking period. The φ candidates are reconstructed
from the φ → K+K− decay channel with a branching ratio of ∼ 50%, while the protons are
detected directly. In total, about 4.17× 104 p–φ and 3.61× 104 p –φ pairs with small relative
momenta of k∗ < 200 MeV/c are found. The corresponding measured correlation functions are
compatible within uncertainties and consequently combined as p–φ ⊕ p –φ.

The resulting total correlation function Ctot(k∗) shows indicates an attractive interaction between
the two particles at small k∗, where it is sensitive to the strong final-state interaction (FSI).
However, an enhancement in the intermediate k∗ region hints at the existence of additional
contributions, which are studied and accounted for in the analysis in order to obtain a conclusion
on the genuine p–φ interaction.

First of all, Ctot(k∗) is affected by so-called minijets, which are associated with hard parton-parton
scatterings. The resulting long-ranged contribution to the measured correlation function consists
of auto-correlated protons and φ mesons emitted in jet-like structures and can be effectively
suppressed by selecting spherical events. This is achieved by applying cuts on the transverse
sphericity of the event (0.7 < ST < 1.0 [161]). The remaining mini-jet background CMJ,p–φ is
modelled using PYTHIA 8 simulated data. The rise of the correlation function at large k∗ is
associated to energy-momentum conservation effects and accounted for by a baseline. Both
contributions do not arise from strong FSI and therefore contribute to the non-femtoscopic
background.

As the reconstructed φ candidates have a moderate purity of ∼ 57% in the transverse momentum
region of interest, additional contributions from the combinatorial p–(K+K−) background are
present in the measured signal. The observed correlation signal arises mainly from two-body
interactions among the triplet. It can be measured by pairing protons with the candidates
in the sidebands, which correspond to the intervals next to the φ resonance in the invariant
mass distribution. The so obtained left and right sideband correlation functions are combined
as weighted sum in order to describe the combinatorial background CpKK(k∗). The weights
correspond to the relative amount of background present underneath the φ meson resonance
in the left and right half of the invariant mass interval, which is also used to reconstruct the φ

candidates. All other femtoscopic contributions which can be associated with strong FSI are
assumed to be flat.

Finally, the background contributions are combined with the respective weights, which are ob-
tained from single-particle properties. By correcting the measured signal for these contributions,
the genuine p–φ correlation function is extracted from the data.

In order to access information on the underlying strong interaction, the genuine p–φ correlation
function is compared to the one obtained from different theoretical approaches and models. In
addition to the two-particle wave-function, incorporating the FSI, the correlation function also
depends on the particle-emission via the source function, which has to be well understood in
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order to study the p–φ interaction. It is parameterized by a Gaussian core, which depends on
the transverse mass of the pair and is constrained from p–p correlation measurements [164].
Short-lived strongly decaying resonances feeding protons, which effectively increase the core
radius, are taken into account.

Having constrained the particle-emitting source it is possible to extract the scattering parameters
of the interaction. The fit of the genuine p–φ correlation with the Lednický-Lyuboshits model de-
termines <( f0) = 0.85± 0.34 (stat.)± 0.14 (syst.) fm, =( f0) = 0.16± 0.10 (stat.)± 0.09 (syst.) fm,
and d0 = 7.85± 1.54 (stat.) ± 0.26 (syst.) fm. Remarkably, the imaginary contribution to the
scattering length vanishes within the uncertainties, indicating that inelastic processes do not play
a prominent role and the p–φ interaction in vacuum is dominated by elastic contributions. Also,
a N–φ bound state can be excluded due to the large effective range d0 and <( f0) > 0.

Finally, phenomenological potentials are probed. The corresponding correlation function is
derived by employing the Correlation Analysis Tool using the Schrödinger Equation (CATS) [121],
which solves the Schrödinger Equation for a given potential.
The values of the parameters for a Gaussian-type potential (Eq.2.27) are found to be Veff = 2.52±
0.85 (stat.)± 1.40 (syst.)MeV and µ = 0.14± 0.06 (stat.)± 0.09 (syst.) fm−2, again indicating a
shallow strong interaction potential. The N–φ (N–ss) system is expected to behave very similar
to N–J/ψ (N–cc), as in both cases the interaction is expected to be suppressed by the OZI rule.
However, the N–φ potential is much more shallow than results from lattice QCD calculations of
the strong interaction among N–J/ψ performed by the HAL QCD collaboration [178].
Employing a Yukawa-type potential (Eq. 2.26) yields A = 0.021± 0.009 (stat.)± 0.006 (syst.) and
α = 65.90± 38.04 (stat.)± 17.52 (syst.)MeV. The N–φ coupling constant can be directly extracted
from these results as gN–φ =

√
A and is found to be gN–φ = 0.14± 0.03 (stat.) ± 0.02 (syst.),

which suggests a weak but non-vanishing coupling between the two particles. Additionally, the
parameter values are significantly smaller than the ones from studies of possible N–φ bound
states, which use the same kind of potential with α = 600 MeV and A = 1.25 [51].

Overall, this work provides valuable experimental input to improve the understanding of the N–φ

interaction, which is relevant for the more fundamental studies on the partial restoration of chiral
symmetry in-medium. Additionally, in the context of the effective meson-exchange picture of
the interaction, it is possible to link the extracted N–φ coupling constant to the hyperon-hyperon
interaction in neutron stars via SU(3) relations. Such results can contribute to pin down the
equation of state of dense hadronic matter, which is still an important topic of ongoing research.

Data from the upcoming Run 3 of the LHC will significantly reduce the uncertainties, providing
even more stringent constraints. Also extending correlation measurements to the charm sector
will help to understand the unexpected deviation between the predicted N–J/ψ interaction
potential and the one obtained experimentally for N–φ. Therefore, this work paves the way for a
detailed understanding of the gluon-exchange picture of the interaction.
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A Sideband kinematics and momentum
transformation

In the following a data-driven approach is described to derive an effective proton-kaon correlation
function p–Keff, incorporating the two- and three-body interactions among p, K+ and K−, which
can be used to extract the combinatorial background of the experimental p–φ correlation function.

The main obstacle to obtaining a description of the combinatorial background is the fact that
the measured left and right sideband differ from each other at low k∗ and it is not obvious that
they can be combined. The different choice of MK+K− modifies the kinematics and accordingly
different kinematic regimes of the correlation function are probed. The assumption of the
approach, presented in the following, is that the actual interaction among the triplet p–(K+K−) is
independent of the invariant mass of the system.

To correct for the different kinematics resulting from the different choice of invariant mass of
the K+K− system, phase space simulations are conducted. Therefore, by using random values
of η, pT and ϕ of the kaon and proton candidates according to the experimental distributions,
the relative momenta of p–K+ and p–K− and p–(K+K−) can be related to one another. Since the
mass of K+ and K− is the same, no differentiation among the two is necessary. Accordingly, the
three-body variables of p–(K+K−) can be projected onto an effective two-body system. This way,
different kinematic transformation matrices are computed for different invariant mass windows
MK+K− , where the relative momentum of the p–K system can be found on the x-axis. The y-axis
displays the k∗ of p–(K+K−) or p–φ, depending on the selected invariant mass interval, which is
also the relative momentum of the measured correlation functions.

With these momentum transformation matrices, it is possible to transform the k∗ of one momen-
tum system to another and study the kinematic effects in the sidebands. The goal is then to
use different sidebands, distributed all over the k∗ range, to derive a general p–Keff correlation
function describing the interaction among the triplet. In a final step, this correlation function is
transformed to the kinematic regime of the p–φ pair. The whole process can be written as

p–(K+K−)→ p–Keff → p–φ. (A.1)

The second transformation, p–K→ p–φ, is a simple matrix multiplication BGp–φ = Mp–φ · BGpK,
where the lower index describes the momentum system depending on the invariant mass window,
M is the corresponding momentum transformation matrix and bkgp–φ

is the combinatorial
background of p–(K+K−) in the kinematic regime of the p–φ correlation function. BGpK will
be denoted as effective proton-kaon correlation function p–Keff, incorporating the two- and
three-body interactions, which are not yet known.

The first transformation, namely p–(K+K−) → p–K, is more complicated as the experimental
sideband correlation functions are measured in the p–(K+K−) momentum system. Therefore,
by matrix inversion an expression for the effective proton-kaon correlation function is obtained
BGpK = M−1

p–(K+K−),i · BGp–(K+K−),i, where BGp–(K+K−),i corresponds to the measured sideband
correlation function in the invariant mass interval i.

As it is not trivial to invert the momentum transformation matrices in order to unfold the mea-
sured sideband correlation functions, an alternative approach is used to obtain p–Keff, which uses
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Figure A.1: Momentum transformation matrices and correlation function for different invariant mass
windows.
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Figure A.2: Momentum transformation matrices and correlation function for different invariant mass
windows.
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the fact that for low relative momentum of the sidebands (y-axis of the matrices) the momentum
of the p−K system is tested within a relatively small range (x-axis), see Fig. A.1 and A.2. What
is also noticeable, is the fact that with increasing invariant mass, this sector moves to larger
k∗pK. This can be ultimately used to derive p–Keff by combining different sideband correlation
functions. The method is illustrated in Fig. A.3. It takes a low k∗-bin of one sideband correlation
function while considering the bin width. The corresponding slice in the momentum transfor-
mation matrix of the sideband is then projected to the x-axis to get a distribution of the relative
momentum in the kinematic system of p−K. The mean value of this distribution is then taken as
k∗pK and the width of the distribution is the corresponding uncertainty in x, whereas the y-value
and statistical uncertainty is taken from the bin in the sideband correlation function. This is then
repeated for several invariant mass windows of the sidebands, where each time one data point of
the effective proton-kaon function is obtained. The relative momentum of the specific function
can then be transformed to the system of interest via the corresponding transformation matrix
(BGp−i = Mp−i · BGpK), which gives the correlation function of the combinatorial background,
considering the kinematics of the system. The results from using first, second and third bin of the
sideband correlation functions are in agreement within the uncertainties, see Fig. A.4. Therefore,
the second bin is used to extract p–Keff, as it is the best choice concerning the uncertainties in x
and the statistical ones. Due to the still large errors the data points will be only used as rough
estimate of the shape of p–Keff.

In a next step, the graph is pre-fitted with a Gaussian on top of a background described by
polynomials. The latter consists of a polynomial of second-order up to 600 MeV/c matched with
a first-order polynomial to describe the flat behavior at large k∗pK. The uncertainties of the data
points are reflected in relatively large errors of the fit result. Therefore, it is necessary to also
include the measured sidebands next to the φ-peak (notably not the same intervals as left and
right sideband of Sec. 5.3.1) and the corresponding sideband functions in the fitting procedure,
to constrain p–Keff more efficiently. These sideband functions are obtained when transforming
p–Keff to the momentum system of the left and right sideband (BGleft/right = Mleft/right · BGpK). If
the effective proton-kaon function is accurate, they should agree with the measured sideband
correlation function.

In a next step, the Minuit minimization package is used [185] with the Migrad algorithm and
start parameters obtained by the pre-fit, in order to parallel minimize the χ2 of the p–Keff-fit and
the χ2 obtained from the difference between the experimental left and right sideband and the
corresponding sideband functions obtained by momentum transformation. The results of the
pre-fit, as well as the parallel minimization fit, can be seen in Fig. A.5. From the Minuit result
of p–Keff a function for the combinatorial background can be derived via the transformation
p–K → p–φ and a re-normalization, which is in agreement with the weighted sum of left and
right sideband from Sec. 5.3.1, see Fig. A.5. As it is a more direct and data-driven approach, the
latter is employed to model the contribution of the combinatorial background in the correlation
function. However, the method introduced in this section can be used to cross-check and validate
the experimental results.
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Figure A.3: Illustration of how a qualitative description of p–Keff is derived. At the beginning, the
second bin of a sideband correlation function (here the one within 1.028 < MK+K− < 1.044 GeV) is
taken, while also considering its bin-width. Then the corresponding slice of the momentum smearing
matrix is projected to the x-axis to obtain a momentum distribution in k∗pK. From this a point of p–Keff
is acquired, where k∗pK the mean value of the distribution, with an uncertainty that corresponds to the
width of the distribution and the y-value and corresponding statistical uncertainty is taken from the
measured sideband bin.
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Figure A.4: The p–Keff obtained by using the first, second and third bin entry of the measured
sideband correlation functions. Within the uncertainties they are in agreement with each other.
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Figure A.5: On the left plot the effective proton-kaon correlation function p–Keff is shown as well
as the pre-fit with confidence interval and the result of the parallel minimization using MINUIT.
The right plot shows the combinatorial background obtained from experimental data together with
the function that is derived from p–Keff using the transformation matrix that relates the relative
momentum of p–φ to p–K.
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B Projector Method

The combinatorial background of p–(K+K−), which arises from the moderate purity of the φ

mesons reconstructed through the decay to charged kaons, can be studied by employing the
projector method [186]. This formalism describes the three-body correlation function between the
p–(K+K−) triplet in terms of the respective two-body correlation functions by projecting them
into the p–φ relative momentum k∗pφ

. In the following the three-body interaction is assumed to be
negligibly small.

According to the Kubo’s cumulant expansion rule [187], the triplet sample denoted by (p, K+, K−)
can be decomposed as

(p, K+, K−) = −2× (p)(K+)(K−) + ([p, K+], K−) + ([p, K−], K+) + ([K+, K−], p) + ([p, K+, K−]),
(B.1)

where the particles in the squared brackets interact with each other, while the ones outside are
not correlated and treated as spectators. Hence, in absence of a genuine three-body interaction
the contribution from ([p, K+, K−]) drops out. In terms of correlation functions, this results in

C3(~pp,~pK+ ,~pK−) = C3([~pp,~pK+ ],~pK−) + C3([~pp,~pK− ],~pK+) + C3([~pK+ ,~pK− ],~pp)− 2, (B.2)

where ~pi are the momentum vectors of the individual particles in the laboratory reference
frame. It is shown in Ref. [186] that, if one of the three particle is a spectator, the correlation
function C3([~pi,~pj],~pk) is equivalent to the two-body correlation function of the interacting pair,
i.e. C3([~pi,~pj],~pk) = Cij(~pi,~pj).

The relative momentum of the p–φ pair is defined as

~kpφ =
mφ

mp + mφ

~pp −
mp

mp + mφ

(~pK+ + ~pK−). (B.3)

In the non-relativistic approximation the relative momentum is a Lorentz invariant and kpφ = k∗pφ
,

where the ∗ symbol denotes the center-of-mass frame of the p–φ pair. The projection of each term
in the right side of Eq. B.2 onto k∗pφ

is performed as

Cij(k∗pφ) =
∫∫∫

(~pi ,~pj,~pk)∈D

Cij(~pi,~pj)d3~pid3~pjd3~pk, (B.4)

where the integration domainD is defined by the equation k∗pφ
= constant. Applying now Eq. B.4

to all the terms in Eq. B.2 the correlation function due to the combinatorial p–(K+K−) background
is obtained as

CpK+K−(k∗pφ) = CpK+(k∗pφ) + CpK−(k∗pφ) + CK+K−(k∗pφ)− 2. (B.5)

More precisely, to account for the kinematic constraint imposed by the cut in the K+K− invariant
mass (i.e. MK+K− ∈ [Mφ − δ, Mφ + δ] with δ = 8 MeV/c2) used to select the φ candidates (see
Fig. 4.8), the projection is performed in two steps. First, the integral in Eq. B.4 is calculated by
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fixing the invariant mass MK+K− . The integration domain is then

D = {(~p1,~p2,~p3) ∈ S|k∗pφ = constant∧MK+K− = constant}. (B.6)

In the second step, the resulting projected correlation function Ci,j(k∗pφ
; MK+K−) at fixed MK+K− is

weighted as

Cij(k∗pφ) =

Mφ+δ∫
Mφ−δ

Ci,j(k∗pφ; MK+K−)wbkg(MK+K−)dMK+K− . (B.7)

The weight wbkg is given by

wbkg(MK+K−) =
fbkg(MK+K−)∫ Mφ+δ

Mφ−δ fbkg(MK+K−)dMK+K−
, (B.8)

where fbkg is the function used to describe the background, which is a quadratic polynomial in
the specific case of p–φ.

The two-body correlation functions are obtained experimentally by employing the same kaon
and proton candidate selection cuts as in Tab. 4.2 and 4.3 in chapter 4. Given the conditions in
Eq. B.6, the contribution from K+K− is flat when projected onto k∗pφ

. Therefore, the shape of the
combinatorial background p–(K+K−) is driven by the interaction among p–K+ and p–K−. The
corresponding experimental correlation functions, not yet projected into the k∗pφ

, are shown in
Fig. B.1. Following [161], both are normalized within k∗ ∈ [400, 600] MeV/c. No unfolding is
performed, which accounts for the finite momentum resolution of ALICE, as the effect is found
to be negligible [161].

Figure B.2 shows the combinatorial p–(K+K−) background obtained from the projector method
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Figure B.1: Experimental correlation function of p–K+ and p–K− obtained from the particle selection
in Sec. 4.2.2.1. Both are normalized in the range [400, 600] MeV/c, following [161].
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Figure B.2: Comparison of the combinatorial background obtained from the sideband analysis and
projector method.

(red dots). Within the uncertainties, it is compatible with the results from the sideband approach
(black dots). When compared to the corrected sideband correlation function (orange band), where
the residual φ mesons in the sideband intervals are considered (Sec. 5.3.1), a deviation at small
k∗ is found. This might suggest that the genuine three-body interaction among the triplet is
non-negligible. Deeper studies are required in order to draw a final conclusion. For this reason,
the data-driven sideband approach has been used to extract the final results of this analysis.
Anyways, the study performed with the projector method confirms that the combinatorial
p–(K+K−) background to the p–φ correlation function is properly accounted for by the sideband
approach.
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C Scattering parameters of the potential
approach

It is possible to extract the scattering parameters of a potential from the phase-shift of the
corresponding wave-function via Eq. 2.16. Figure C.1 shows exemplary the phase-shift as
function of k∗ for a Gaussian-type of potential with parameters from Sec. 6.1. The corresponding
k∗ cot(δ(k∗)) and parameterization with the effective range expansion (Eq. 2.16) is depicted on the
right.

When considering systematic and statistic uncertainties of both the Gaussian- and Yukawa-type
potential obtained from the fit to data (Sec. 6.1), a phase-space of possible scattering parameters
can be derived. For each parameter combination a correlation function is obtained by employing
CATS and the degree of consistency between data and calculation is expressed by the χ2 for
k∗ < 200 MeV/c. Figure C.2 shows the resulting phase-space for both potential types and the
corresponding nσ levels with respect to the minimum χ2. It can be seen that the Yukawa-type
potential, Fig. C.2a, yields much larger effective ranges than the Gaussian one, shown in Fig. C.2b,
and does not constrain the phase-space significantly, including also unphysically large values of
the scattering length. The 1σ contour constrains the scattering parameters to f0 ∈ [0.33, 1.16] fm
and d0 ∈ [11.48, 16.73] fm for the Gaussian-type of potential. In case of the Yukawa-type
f0 ∈ [0.39, 9.03] fm and d0 ∈ [17.19, 35.62] fm are obtained. While the scattering length f0 is found
to be consistent with the results obtained from the Lednický–Lyuboshits approach, summarized
in Tab. 6.2, the effective range d0 is much larger.

Additionally, this approach allows testing the results obtained from the Lednický-Lyuboshits model,
which includes a correction term for small sources [118]. However, as already mentioned in
Sec. 2.2.2, this might result in additional uncertainties on the resulting scattering parameters due
to their limited accuracy for large effective ranges induced by the correction therm ∝ d0/r0.

Figure C.3 shows the correlation function of the Lednický-Lyuboshits approach with values
from Tab. 6.2 and the best matching Gaussian potential, from which d0 = 15.10± 0.51 fm and
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Figure C.1: Left: The phase-shift of the wave-function evaluated for a Gaussian potential (Veff =
2.52 MeV, µ = 0.14 fm−2) as function of k∗. Right: Corresponding k∗ cot(δ(k∗)) fitted with Eq. 2.16 to
extract the scattering parameters.
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(a) Yukawa-type potential
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(b) Gaussian-type potential

Figure C.2: Scattering parameter phase-space for both Yukawa (left) and Gaussian type of potential
(right). The degree of consistency is expressed as the number of σ with regard to the χ2 for k∗ <
200 MeV/c between data and correlation function of the respective potential, which is obtained by
employing CATS.

f0 = 0.62 ± 0.01 fm can be derived. When compared to the Lednický-Lyuboshits values a
deviation of 6.8 fm between the effective ranges d0 is observed and 0.33 fm between the scattering
lengths f0.

Due to a lack of alternative methods, those could be interpreted as the errors related to the small
source correction term in the Lednický-Lyuboshits approach, which also hold when considering a
complex scattering length. However, this conclusion assumes that the Gaussian-type of potential
is the correct approach to the p–φ interaction. Generally, such inconsistency just highlights the
importance of more advanced theoretical models.
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Figure C.3: Comparison between the Lednický-Lyuboshits approach and Gaussian potential approach.
From the potential the scattering parameters d0 = 15.10± 0.51 fm and f0 = 0.62± 0.01 fm can be
derived, which deviate from the Lednický-Lyuboshits result.

108



D Figures to the p–φ femtoscopic fits
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.1: Distribution of nσ between data and C(k∗) = 1 obtained from the bootstrap only method
and combined with systematic variations. The mean of the central interval (including 90% of the
entries) is displayed as solid pink line and the corresponding limits within the standard deviation as
dashed blue lines. The interval limits are dashed yellow lines. From this, the value and statistical and
total error of the parameters is obtained.
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D.1 Lednický-Lyuboshits approach with complex scattering length

D.1.1 Full model
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.2: Distribution of <( f0) obtained from the bootstrap only method and combined with
systematic variations. The mean of the central interval (including 90% of the entries) is displayed
as solid pink line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this, the value and statistical and total error of the
parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.3: Distribution of =( f0) obtained from the bootstrap only method and combined with
systematic variations. The mean of the central interval (including 90% of the entries) is displayed
as solid pink line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this, the value and statistical and total error of the
parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.4: Distribution of d0 obtained from the bootstrap only method and combined with systematic
variations. The mean of the central interval (including 90% of the entries) is displayed as solid pink
line and the corresponding limits within the standard deviation as dashed blue lines. The interval
limits are dashed yellow lines. From this, the value and statistical and total error of the parameters is
obtained.
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D.1.2 Zero effective range approximation
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.5: Distribution of <( f0) obtained from the bootstrap only method and combined with
systematic variations. The mean of the central interval (including 90% of the entries) is displayed
as solid blue line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this, the value and statistical and total error of the
parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.6: Distribution of =( f0) obtained from the bootstrap only method and combined with
systematic variations. The mean of the central interval (including 90% of the entries) is displayed
as solid pink line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this, the value and statistical and total error of the
parameters is obtained.

D.2 Lednický-Lyuboshits approach with real scattering length
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.7: Distribution of f0 obtained from the bootstrap only method and combined with systematic
variations. The mean of the truncated interval (excluding the upper 10% of the entries) is displayed
as solid blue line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this, the value and statistical and total error of the
parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.8: Distribution of d0 obtained from the bootstrap only method and combined with systematic
variations. The mean of the truncated interval (excluding the upper 10% of the entries) is displayed
as solid pink line and the corresponding limits within the standard deviation as dashed blue lines.
The interval limits are dashed yellow lines. From this the value and statistical and total error of the
parameters is obtained.

D.3 Potentials

D.3.1 Yukawa-type
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.9: Distribution of the Yukawa-type potential parameter α obtained from the bootstrap only
method and combined with systematic variations. The mean of the truncated interval (excluding
the upper 10% of the entries) is displayed as solid blue line and the corresponding limits within the
standard deviation as dashed blue lines. The interval limits are dashed yellow lines. From this the
value and statistical and total error of the parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.10: Distribution of the Yukawa-type potential parameter A obtained from the bootstrap
only method and combined with systematic variations. The mean of the truncated interval (excluding
the upper 10% of the entries) is displayed as solid pink line and the corresponding limits within the
standard deviation as dashed blue lines. The interval limits are dashed yellow lines. From this the
value and statistical and total error of the parameters is obtained.

D.3.2 Gaussian-type
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.11: Distribution of the Gaussian-type potential parameter µ obtained from the bootstrap
only method and combined with systematic variations. The mean of the truncated interval (excluding
the upper 10% of the entries) is displayed as solid blue line and the corresponding limits within the
standard deviation as dashed blue lines. The interval limits are dashed yellow lines. From this the
value and statistical and total error of the parameters is obtained.
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(a) Statistical distribution.
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(b) Total distribution.

Figure D.12: Distribution of the Gaussian-type potential parameter Veff obtained from the bootstrap
only method and combined with systematic variations. The mean of the truncated interval (excluding
the upper 10% of the entries) is displayed as solid pink line and the corresponding limits within the
standard deviation as dashed blue lines. The interval limits are dashed yellow lines. From this the
value and statistical and total error of the parameters is obtained.
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