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Abstract

This work presents a study of particle correlations with the formalism of femtoscopy.
Within this field the kinematic geometries of the emission source of particles in a
collider event can be interpreted by means of studying the characteristics of two-particle
correlations, thereby providing insight into the underlying forces that dictate the space-
time evolution of the system. Furthermore, this method offers greater access to unstable
hadrons less accessible by traditional scattering experiments, such as hyperons.

Previous studies of the source with high-multiplicity data taken in the second
operational run (2015–2018) of the Large Hadron Collider (LHC) concluded in a
common baryonic source from which primordial particles are emitted. The foundation
of which was laid by correlations between proton-proton (p–p) and proton-lambda
(p–Λ) pairs. This finding was subsequently endorsed by further studies with a plethora
of particle pairs, ranging from mesons to hyperons.

The aim of this thesis is to further investigate the common source with the newly
acquired data from the third run of the LHC. During the Long Shutdown 2 of the
LHC several upgrades to its systems were introduced that now offer unprecedented
high luminosity capabilities and unmatched counts of events. Accordingly, a first of its
time multi-differential analysis in transverse mass (mT) and multiplicity of the source
is presented for the systems of p–p and p–Λ pairs. Additionally, a comparison with
different potentials for the p–p interaction is provided to set a precedent for future
studies.
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1 Introduction

One of the main ambitions of high-energy particle physics is to understand the be-
haviour of strongly interacting matter under conditions of extreme temperatures and
densities. Heavy-ion collisions at accelerators like the Large Hadron Collider (LHC)
and the Relativistic Heavy Ion Collider (RHIC) provide adequate conditions to produce
quark-gluon plasma (QGP), a phase of deconfined quarks and gluons that is thought to
have existed microseconds after the Big Bang. However, as the QGP and its dynamics
cannot be directly observed, experimental physicists are forced to use indirect probes
that are able to reconstruct data regarding its space-time evolution on a femtometer
(10−15 m) scale.

Femtoscopy is the study of the space-time geometries relevant to the particle-emitting
source through two-particle correlations at small relative momenta, thus offering a
femtometer-scale viewpoint to assess the final moments of the evolution of the system
before freeze-out. This is a direct application of photon intensity interferometry in
particle physics, where quantum statistical correlations are employed for indistinguish-
able particles created in high-energy collisions. The use of femtoscopy allows access to
important constraints regarding the system size, time duration, expansion dynamics,
and collective properties of the created system. This, in turn, provides immediate input
to the equation of state (EoS) for strongly interacting matter.

Femtoscopy is based on the Hanbury Brown–Twiss effect, initially used in astronomi-
cal applications for the determination of the angular diameters of stars by the study
of intensity correlations between photons measured by two independent receivers [1].
The main discovery was that quantum statistical correlations between indistinguishable
bosons lead to an enhancement of the measured correlation function at low relative
momentum, which is inherently connected with the spatial sizes of the emitting source.

In the late 1950s and early 1960s, Gerson Goldhaber, Sulamith Goldhaber, Won-Yong
Lee, and Abraham Pais used an analogous method to examine pions produced in
high-energy proton-proton (pp) collisions [2]. They observed an enhancement in the
production of identical pions at low relative momenta, which they interpreted as an
interference effect due to the symmetry in the wave function and showed that identical
pions are subject to Bose-Einstein correlations. Furthermore, they presumed that those
might be connected to the space-time separation of the origin of emission. However, the
theoretical framework was not complete then, and experimental resolution constrained
the extraction of precise spatial sizes.

It was only after the 1980s that the rise of relativistic heavy-ion experiments made
the potential of studying hot and dense matter a reality, thus opening the door to
examining the formation and evolution of QGP. In this context, femtoscopy allowed to
inquire and compare these measurements with transport and hydrodynamic models,
which subsequently unlocked a possible path to help understand and constrain the EoS.
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1 Introduction

Eventually, with the advent of the LHC and RHIC enough precision was achieved to
provide evidence for strong collective flow in heavy-ion collisions [3]. The culmination
of effort such as these is the phase diagram for matter bound by the laws of QCD, as
shown in figure 1.1, where the temperature is plotted against the baryon density and
the phases are separated by the transition boundaries.

Figure 1.1: Schematic representation of the QCD phase diagram, taken from [4].

One of the constituents in the realm of extremely dense matter are neutrons stars,
the remnants of the collapsed core of a supergiant stars that are riddled with many
open questions. Recent measurements of their masses have shown an upper limit
exceeding two solar masses [5, 6]. However, theoretical calculations are in conflict with
these values as the densities reached by such neutron stars far exceed the required to
produce hyperons [7]. The existence of which softens the EoS, i.e. reduces the pressure
excluded by the given density, as they act as a further degree of freedom and reduce
the number of neutrons, consequently diminishing the Fermi pressure exerted by close
indistinguishable particles. Thus, their presence makes such masses unviable; this is
known as the hyperon puzzle.

From Stars to Particles

Modern femtoscopy offers an alternative experimental approach to solve the puzzle
to the conventional adjusting of effective theoretical models. One of the proposed
solutions for it is by reevaluating the interactions of nucleons and hyperons in dense
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1 Introduction

matter, as for example a repulsive hyperonic three-body interaction could help stiffen
the EoS. To this end, the accurate description of two-body forces is a must.

In recent times, measurements from small collision systems, such as pp collisions from
the first and second data-taking periods of the LHC, have been used to undertake this
ordeal by means of profiling the particle-emitting source, as the production mechanism
for particles is expected to be similar between species. The simpler pp system offers
the platform to evaluate the correlations between individual particles without pollution
from collective effects seen in heavy-ion collisions. Additionally, the reduced size
of the system provides an increased sensitivity to smaller-range forces acting on the
emitted particles. These attributes were used in the analysis of proton-proton (p–p),
proton-lambda (p–Λ) and lambda-lambda (Λ–Λ) pairs with the ALICE detector at the
LHC to study the correlations between the particles at an energy of

√
s = 7 TeV during

the first run [8]. The second run presented the opportunity to study the interactions in
high-multiplicity events at an energy of

√
s = 13 TeV and resulted in measurements of

the particle emitting source as a function of the transverse mass, defined as

mT =
√

k2
T + m2 , (1.1)

where m is the average mass and kT the average transverse momentum of the particle
pair [9]. The collection of values were perceived as a scaling in mT, which is typically
attributed to the collective expansion of the system. Furthermore, the comparison of the
different pairs and the consideration of their origin, i.e. primordial particles or decays
from resonances for example, delivered evidence for a common particle emitting source.
Following this hypothesis various other systems were studied to further strengthen
its validity [10]. Further improvements were proposed by studying the multiplicity
dependence and characteristics of the source.

This analysis aims to bridge the gap with the newly acquired data in the third
data-taking run of the LHC by the upgraded ALICE detector. The unprecedented
number of collected events surpassing the 500 billion mark at an energy of

√
s = 13 TeV

offers for the first time the precision and statistics to investigate the particle-emitting
source and its size in a multi-differential environment. In this analysis the method of
reconstruction and event selection to partitioning of the data in multiplicity percentiles
and mT intervals will be shown. Subsequently, the processed data will be used to obtain
a measurement of the source for p–p, p–p and p–Λ, p–Λ pairs. Additionally, the size
for the p–p and p–p correlations will be compared to those obtained by modelling the
interaction with different potentials. Finally, the extent of the primordial source will be
reported.
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2 Femtoscopy

Inspired by intensity interferometry observations in astronomy, femtoscopy aims to
relate correlations from measured particles to their origin. To this end, the correlation
function is used as an observable, since it represents the most direct link to the pairwise
particle correlations. This follows as a consequence of its definition as the ratio of the
two-particle to the single-particle inclusive spectra

C(p1, p2) =
P(p1, p2)

P(p1)P(p2)
=

E1E2dN/d3 p1d3 p2

(E1dN/d3 p1)(E2dN/d3 p2)
, (2.1)

where in absence of any correlations, the probability P(p1, p2) of finding a particle with
momentum p1 and a second with p2 in a collision should be equal to the individual
probabilities, P(p1) and P(p2), independent of their origin [11].

This however is not the case due to final state interactions that occur after the freeze-
out of a collision is reached. Attractive forces between particles result in an increased
likelihood of finding pairs closer in phase-space, while a repulsive interaction decreases
it. Consequently, an enhancement or depletion in the two-particle spectra will be
present, respectively, which translates to a ratio above or below unity.
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Figure 2.1: Example correlation function resulting from the ratio of the shown normal-
ized same event and mixed event distributions of proton pairs.

The correlated signal is experimentally obtained by directly taking the distribution
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2 Femtoscopy

of relative momentum, k∗ = 1
2 |p1 − p2|, of particle pairs from a single event, while the

uncorrelated signal has to be generated by applying event mixing techniques; the idea
being that particles stemming from different events should not be correlated. Thus, the
correlation function reads

Cexp(k∗) = N · Nsame(k∗)
Nmixed(k∗)

, (2.2)

for which the additional factor N is introduced to normalize the function in a regime
where no femtoscopic signal is expected; this usually is the case above 200 MeV/c.
Unfortunately, care must be taken for the long range regime, as non-femtoscopic
correlations contribute to spurious effects and drive the correlation function away from
unity; therefore, a restriction of the normalization region is necessary.

As an example, figure 2.1 shows the normalized same event and mixed event
distributions for proton pairs in the femtoscopic region of interest, and the resulting
correlation function. In this case, there is an enhancement of the same event distribution
in the low k∗ region, due to the strong force, that translates into a very pronounced
peak.

2.1 Theoretical Correlation Function

In order to associate the experimentally available data to the governing underlying
forces, ample work has been performed on the theory side over the past decades. The
culmination of which is the Koonin-Pratt equation

C(k∗) =
∫

d3r∗S(r∗)|ψk∗(r∗)|2, (2.3)

which forms the basis of most femtoscopic analyses [11]. In a nutshell, it links the
interaction between particle pairs to the spatiotemporal geometry of the collision. This
is achieved through the combination of two components: the two-particle wave function
ψk∗(r∗), which obviously incorporates the potential between the pair of constituent
particles, and thus the interaction; and the two-body emission source function S(r∗),
or commonly the source, which intends to parameterize the shape of the region of
homogeneity from where particle with specific momenta are emitted.

Originally, the source function came to existence in an approximation of the two-
proton inclusive cross-section that was split into the scattering wave functions multiplied
by two space and time dependent distributions for the single particle spectra [13]. The
two distributions were then combined to yield the two-body source function whose
parameterization was akin to a gaussian profile, and as such, later assimilated in heavy-
ion collisions to model the larger sources with space and time dependencies [11]. The
function was thus comprised of

SP(r′) ∼ exp

{
− [r′out − X̄out]2

4γ2
⊥R2

out
−

r′2side

4R2
side

−
r′2long

4R2
long

}
,
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Figure 2.2: Example square of two-proton wave function for k∗ = 40 MeV/c, modeled
with the AV18 potential [12]; and two source functions S4π(r∗; r0) of sizes
r0 = 1 fm and 2.5 fm, the scale of whom is drawn on the right side.

for which the out-side-long frame of reference is favoured: the longitudinal axis is
defined by the beam direction; the outwards by the perpendicular direction of the
momentum of the pair; the sideward by the axis perpendicular to the previous two.
The main point of this function is its Rx parameters that can be thought of defining
the axes of an ellipsoid. Fortunately, for smaller sources the assumption of isotropic
emission can be made due to the fast freeze-out of the region of homogeneity. As a
consequence, the function simplifies to a more accessible gaussian

S(r∗; r0) =
1

(4πr2
0)

3/2
exp

(
− r∗2

4r2
0

)
(2.4)

with its width r0, commonly referred to as the radius, as the sole parameter. A further
dimensional reduction occurs due to the radial symmetry of the function; the integration
over the angular part in the correlation function yields 4πr∗2 and can be incorporated
into one of the constituents. Thus, the source function becomes

S4π(r∗; r0) =
4πr∗2

(4πr2
0)

3/2
exp

(
− r∗2

4r2
0

)
. (2.5)

In this case, the parameter r0 acquires a new side effect compared to the width of a
default gaussian distribution; increasing its value does not only broaden the distribution
but also shift its mean to larger values. This behavior is illustrated in figure 2.2 where
two source functions of widths 1 fm (red) and 2.5 fm (green) are superimposed with
the square of a two-particle wave function (blue).
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2 Femtoscopy

2.2 The Two-Particle Interaction

Returning to the Koonin-Pratt equation, the connection to the underlying physics is
provided by the two-body interaction wave function. As such, it is of great importance
to understand its meaning in the relation. Its dependency on not only space, through
the relative distance r∗, but also momentum, through k∗, might seem contradictory
to ordinary quantum mechanics; yet the answer lies in the Schrödinger equation and
the classical kinetic energy Ek =

1
2 mv2 = p2

2m , which are linked through the de Broglie
relations of matter waves. The momentum of a free particle of mass m is accordingly
given by

p2 = 2mEk,

with which the relative momentum of two particles can easily be obtained. Therefore,
the momentum dependence of the wave function should be understood as the energy
between the two particles after the final state interactions have taken place. Conse-
quently, the square of the two-particle wave function as the probability to find a pair
with distance r∗ for any given energy in the continuum.

2.3 The Source Function

The last hurdle to overcome is understanding the meaning and effect of the source on
the correlation function. To this end, it is convenient to think about the convolution of
the two elements. For proton collisions the region of homogeneity, and thus the size
of the source, is in the range of 1-2 fm and small compared to heavy ion collisions,
where the size is around 10 fm. This difference is imprinted into the characteristics of
the particle emission, as the larger size equals a larger area from where particles can
originate. Consequently, the probability of finding close pairs in phase-space decreases
and the contribution of the short ranged strong force is smaller. It is for this reason that
the source acquires the meaning of a probability density function, as it represents the
likelihood to find pairs of particles with a specific relative distance for a given spatial
configuration.

Taking figure 2.2 as a reference, the smaller source (red), i.e. the distribution with
the smaller radius r0, is much more localized and encompasses a larger area of the
squared two-proton wave function; while the broader (green) source covers with its
shifted mean a less populated region. This translates to a bigger or smaller contribution
to the correlation function; therefore, allowing the probing of the interaction for longer
or shorter ranged forces by means of adjusting the size of the source.

2.4 Features of the Correlation Function

On a final note, the correlation function is very sensitive to different effects of the
dynamics and the composition of the particles observed. The raw, unfiltered C(k∗)
obtained from measurements is a mixture of the primordial particles, originating
from the event, and those stemming from decays; referred to as feed-down. For
example, protons can originate from the collision itself or result from the weak decay

7



2 Femtoscopy

of a Λ (uds) into a proton (uud) and a π− (dū). A more in depth analysis of these
contributions is provided in chapter 5. Additionally, for proton pairs, i.e. identical and
indistinguishable particles, another effect that has to be taken into consideration is that
of the symmetrization of the wave function. In terms of the two-body wave function,
some channels might not be accessible due to this constrain.

A further effect that might have an impact, albeit not for proton pairs, is that of
coupled-channel dynamics; this plays a role in the analysis of proton-lambda (p–Λ)
pairs. When a system shares the same quantum numbers as another, its wave func-
tion is no longer an independent solution of the Schrödinger equation and can thus
transition, as given by quantum mechanics, into each other. This coupling results in
an enhancement, a cusp, in the correlation function at the point where the external
system has enough energy to transition into the particles of interest. This behaviour
can be observed in chapter 7 where fits of the p–Λ correlation function are shown. The
cusp appears at around 290 MeV/c, where the Λ (uds, isospin 0) couples to Σ0 (uds,
isospin 1).

8



3 Experimental Setup

The Large Hadron Collider, known globally as the LHC, is to date the largest and most
powerful particle accelerator in the world. Situated over 100 m beneath Geneva in the
27 km long tunnel from its predecessor, the Large Electron-Positron Collider (LEP), it
reaches collision energies up to 13.6 TeV; more than enough to dissolve the boundaries
of matter. Around its circumference four major experiments can be found: ATLAS,
CMS, ALICE, and LHCb; each of which is located at one of the four interaction points.
It is at these points were bunches of protons or heavy ions, such as lead nuclei, are
made to collide. In the case of the later, the exotic state of matter known as QGP, were
quarks and gluons are deconfined, can be created and studied, for example, in A Large
Ion Collider Experiment (ALICE).

Figure 3.1: The CERN complex, taken from [14].

The LHC underwent a big upgrade during the Long Shutdown 2 (2019-2022) were
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all experiments improved their capabilities to comply with the higher luminosity
aspirations of its planned third data taking period, which successfully began on July of
2022 and is planed to last until 2026.

In the following sections an overview of the ALICE detector and a detailed description
of the more important subsystems needed for this analysis is provided, both of which
heavily rely on the following references for details [15, 16].

3.1 ALICE Detector

A Large Ion Collider Experiment is one of the four major experiments located at
CERN and focuses on heavy-ions, matter at extreme temperatures, and more generally,
physics of strongly interacting matter. To this end, the detector specializes on Particle
IDentification (PID) which is an essential requirement for many of the observables, as
they tend to depend on the mass or flavour. Despite the vast amount of particles in
the order of 10000 created in heavy-ion collisions, this goal is achieved and reflected in
the layout and construction of the experiment, which can be found in the schematic
representation in figure 3.2.

Figure 3.2: The ALICE 2 detector, taken from [16].

The core of the detector is comprised of the central barrel detector system; a cylindri-
cal structure housing high precision instruments to track particles and assess the origin
of the collision. Particles emitted from the collision point, the primary vertex, first
encounter in transversal direction the Inner Tracking System (ITS), which was purpose
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build to determine not only the primary but also reconstruct secondary vertices from
the decays of hyperons and other particles. Tracks measured in the ITS are extrapo-
lated to their origin and can later be matched with the succeeding layers for increased
precision. Longitudinally, the muon forward tracker is found, which assists the outer
tracking chambers extending the capabilities of muon spectrometry. To accomplish the
goal of particle identification, the former L3 experiment magnet of the LEP collider
envelops the whole structure and provides a magnetic field of 0.5 T; the resulting effect
is a curvature of charged particles that is used to determine their mass and charge.
Another key piece of the central barrel are the two fast interaction triggers that enclose
the ITS in beam direction and act as a measurement of the moment in time and a
counter for forward multiplicity of an event.

The next stage of the experiment is made out of a number of different detectors
that are build as layers on top of each other. The first of which is the Time Projection
Chamber (TPC) whose purpose is to assist in the task of tracking along with identifying
particles via their energy loss. Measured signals in the TPC are matched to the outgoing
tracks of the ITS resulting in better identification and a reduction of the error from
effects such as track splitting and merging. Additionally, due to its large width, it
also provides the capabilities of achieving great dE/dx resolution and is therefore
used for particle identification. The Transition Radiation Detector (TRD) follows and is
employed to single out electrons above 1 GeV/c, by detecting transition radiation, and
lower the background of misidentified hadrons; electrons below this threshold can be
distinguished in the TPC. The trifecta of ITS, TPC and TRD allows studies of light and
heavy vector-meson resonance production. The final layer covering the full azimuth
is the Time-Of-Flight (TOF) detector; its specialization is that of particle identification
in the intermediate momentum range by measuring their travel time. Consisting of
Multi-gap Resistive-Plate Chamber (MRPC) strip detectors, the TOF can discriminate
pions, kaons and protons up to a few GeV/c and paired with the ITS and TPC aid in
the reconstruction of tracks and vertices.

The last three detectors confined within the solenoid magnet are: the High-Momentum
Particle Identification Detector (HMPID), a ring-imaging Cherenkov detector; the Elec-
troMagnetic Calorimeter (EMCal) composed of Pb-scintillator sampling calorimeters;
and the Photon Spectrometer (PHOS) which uses PbWO4 crystals as scintillators with
an Avalanche Photon Diode (APD) readout, same as the EMCal.

3.2 Inner Tracking System

As already stated, the purpose of the inner tracking system is to find the primary
vertex by tracking particles at the early stages of an emission. Originally, the ITS was
constructed out of three sets of two layers of detectors: the first employed Silicon Pixel
Detectors (SPD); the next set was comprised of Silicon Drift Detectors (SDD); and
the final was fitted with double-sided Silicon micro-Strip Detectors (SSD). During the
LHC Long Shutdown 2 these detectors where replaced with Monolithic Active Pixel
Sensors (MAPS) in the form of ALPIDE chips with the goal of reaching greater tracking
precision.

The chips are built as a matrix of 152 × 1024 sensing pixels that individually measure
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29.24 µm× 26.88 µm resulting in a total size of 15 mm by 30 mm and a higher granularity
for all layers. The current iteration, the ITS2, consists of seven layers of MAPS, three for
the inner barrel and four in the form of two sets of double layers for the outer barrel.
The upgrade concludes in an improvement of the material budget per layer to 0.36%
X0 (radiation length) for the inner barrel and 1.10% X0 for the outer, compared to the
global 1.14% X0 of the original. On a side note, the beam pipe was likewise reduced in

Figure 3.3: The ITS2 detector constructed out of 7 layers of MAPS, taken from [16].

size to 18 mm for the outer radius, which was achieved by replacing the segment with
one made out of beryllium, and allowed to shrink the radial dimension of the ITS to
22-395 mm. Compared to its predecessor which extended from 39 mm to 430 mm, the
innermost layer now sits 17 mm closer to the interaction point and thus helps achieve
greater precision in the task of finding the primary vertex. Additionally, pseudorapidity
coverage increased by 0.4 units to |η| ≤ 1.3. Overall, the spatial resolution saw a major
increase from 12 µm × 100 µm (rφ × z) to 5 µm × 5 µm.

3.3 Time Projection Chamber

The time projection chamber is a large hollow cylindrical detector that covers the
entire azimuth around the interaction point and a symmetrical pseudorapidity range
of |η| < 0.9. Its radial dimensions of around 85 cm to 250 cm and a length of 500 cm
provide an active gas volume of 88 m3. The cavity is filled with a mixture comprised
of 90 parts Neon, 10 parts CO2 and 5 parts N2 wherein charged particles leave a trail
of ionization when passing through. The released electrons are immediately directed
by an electric field of 400 V/cm towards the outer readout planes that are divided into
18 trapezoidal segments on each side and create a projection of the taken path. Given
that the chamber is split in half by a thin central electrode, the maximum drift length
is 250 cm and the maximum electron drift time is 97 µs; ions take 214 ms to reach the
edges.
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The unavoidable drift time and, specifically, the memory time of the TPC acted as
a restriction during the first two runs of the LHC and resulted in a pile-up from the
merging of past tracks with more contemporary ones when an events were triggered.
The maximum trigger rate limits were thus 300 Hz for Pb–Pb and 1 kHz for p–p. To
mitigate these pile-up effects and improve upon the rate a new continuous readout
strategy was adopted in ALICE for Run 3. However, to accommodate those ambitions
the multiwire proportional chambers used until then were made obsolete and Gas
Electron Multipliers (GEMs) were proposed, which could also be operated without
an active ion gate unlike the former; the gate is necessary to mitigate space charge
accumulation, due to ions from the amplification area, that lead to distortions of the
path.

(a) ALICE TPC detector, taken from [17]. (b) dE/dx plot, taken from [16].

Figure 3.4: A schematic view of the ALICE TPC detector and a dE/dx plot from quality
control during the pilot run in October 2021.

The improved TPC now utilizes stacks of four GEM foils that are arranged as a double
layer of large-hole pitch (LP, 280 µm) foils sandwiched between foils of standard sized
holes (S, 140 µm). Such S-LP-LP-S configuration enables a separation of amplification
stages and a blockage of back-drifting ions that emerge from following layers, thus
satisfying the requirement of below 2% backflow. The gas composition used remains
Ne-CO2-N2 and was originally chosen for its high ion mobility, which compared to
argon based mixtures halves space-charge distortions. These factors allow for a dE/dx
resolution of 5% for isolated tracks at an interaction rate for Pb–Pb of 50 kHz and for
good momentum resolution in a large pT range from a low value of 100 MeV/c up to
100 GeV/c. It is for those reasons that the TPC is the main tracking detector which
also allows accurate identification of particles for low momenta. As an example, figure
3.4 (b) shows the energy loss recorded during the pilot run in 2021, which distinctly
separates into the different species of particles.

3.4 Time-Of-Flight Detector

The time-of-flight detector is a subsystem of ALICE that is build as a ring of 18 segments
and sits on top of the TRD. It is realized as a gas detector that employs a mixture
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of C2H2F4, i-C4H10 and SF6 in a composition of 90%, 5% and 5%. The inner radius
of the ring is 3.7 m and the external 3.99 m. Each segment, which is referred to as a
supermodule, contains 91 10-gap double-stack MRPC strips that are 13 cm wide and
stretch for 1.22 m. The active width of the detector is 7.4 cm wherein two pads of
3.5 × 2.5 cm2 fit. A total of 96 pads cover the active area which totals 120 × 7.4 cm2.
The detector covers 360◦ in azimuth and a pseudorapidity range of |η| < 0.9.

Figure 3.5: ALICE TOF detector highlighted in turquoise, taken from [18].

The TOF specializes in PID and for this reason a very high time resolution is required.
This prerequisite can be realized with the MRPC technology which utilizes a high and
uniform electric field throughout the gas volume. An avalanche of electrons is instantly
induced when passing particles ionize the gas and, due to the size of the detector and
strength of the field, the electrons are immediately absorbed which results in practically
no drift time.

During the first data taking period of the LHC the detector showed a stable perfor-
mance with a time resolution of 80 ps, while tests of the MRPC strips showed a time
resolution below 40 ps with a very small intrinsic dead time of ∼10 ns and an efficiency
close to 100% [19, 15]. The measured signals captured in one of the 18 supermodules
was read by four custom VME (Versa Module Eurocard) crates that contained nine or
ten Time-to-digital-converter Readout Module (TRM) boards, a single Local Trigger
Module (LTM) and a Data Readout Module (DRM). The last of which was the limiting
factor to accomplish the aspiration of an increased interaction rate in the next data
taking period of Run 3, for which the goal of 50 kHz for Pb–Pb and 1 MHz for p–p was
set. To this end, a newer Digital Readout Module 2 (DRM2) was designed and the
previous modules were replaced; DRM2s offer enough bandwidth to realize the sought
after continuous readout.

Returning to the workings of the TOF, signals captured in the detector are saved
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Figure 3.6: "TOF Beta vs Momentum performance in Pb-Pb at 5.02 TeV (LHC15o)",
taken from the ALICE figure repository (ALI-PERF-106336).

as time stamps and used to determine the velocity of a particle. The complementary
information from other detectors about the momentum enables the calculation of the
mass, which is given by

m = p
√

β−2 − 1, (3.1)

as a function of β(p). This enables PID capabilities in the intermediate momentum
range below 2.5 GeV/c for pions and kaons, and from 0.5 to 4 GeV/c for protons. An
example of which can be found in figure 3.6 where a performance plot is shown of the
β(p) for Pb–Pb.

3.5 Fast Interaction Trigger

The fast interaction trigger is a system of four detector stations. Its purpose among other
things is to signal when a bunch-crossing occurs and measure the number of collided
bunches; in other words a luminometer. A single bunch contains over 1011 protons
and intersects with a another in opposite direction roughly every 25 ns. Therefore, a
dead time below 25 ns and even lower timing resolution is required to precisely assess
the primary vertex. However, fluctuation around the real interaction point demand a
reconstruction of the vertex which is performed offline with data from the tracking
detectors. This means that a preliminary estimation is necessary for the triggering
without delay and is realized by the time measurements of the time-zero (FT0) detector.
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The FT0 detectors are found on each side of the interaction point, FT0-A at 3.3 m and
FT0-C at 1 m on the opposite side; FT0-A is located on the left side of the detector in
figure 3.2 and as can be seen in figure 3.7 in a station inside of the vertex-zero (FV0)
detector. They are build as quartz Cherenkov radiators with a time resolution of ∼25 ps.

The FV0 is a circular detector build out of five rings of plastic scintillators. Each ring
provides an equal pseudorapidity coverage and the detector achieves a time resolution
of below 200 ps. This detector combined with the information of the others is used to
evaluate the centrality and even plane resolution. Furthermore, pairing it up with the
FT0 allows for the generation of minimum bias and multiplicity triggers.

The final detectors, the Forward Diffractive Detector (FDD), are again based on
scintillators. Both of them are build with two layers of four scintillator counters and
achieve a sensitivity to a single minimum ionizing particle. Its use case is among
other things to provide an independent measurement of centrality and selection of
ultra-peripheral collisions.

The layout of these detectors and their pseudorapidity range is shown in figure 3.7.

Figure 3.7: Layout of the FIT detectors, taken from [20].
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In this chapter a summary of the steps taken for the acquisition of the data will be
presented. This topic is not the main focus of the thesis and was primarily performed
by my colleagues with whom I worked alongside to complete the broader analysis.
Nevertheless, it is as much needed to gain a deeper understanding as the rest.

4.1 O2 Physics

First, the ALICE Computing Model for the current Run 3 and future Run 4 is called the
O2 project [21] and receives its name from its Online-Offline approach.

The online aspect is represented in the readout and reconstruction tasks that have
to deal with the vast amounts of data produced by the experiment. Data is accessed
through the Common Readout Units (CRUs) that act as a front end interface to the
individual detectors and whose task is to gather signals from the continuous readout.
The bandwidth of the unfiltered signal reaches 3.5 TB/s and can be compressed by
parsing the original time frames, named Heartbeat Frames (HBF), into Sub-Time
Frames (STF) which amount to ≈ 20 ms and lower the bandwidth to 0.9 TB/s. This first
compression allows for a manageable throughput and thus a viable first-hand quality
control, in addition to any necessary calibrations. Thereafter, a further combination of
the frames is performed by Event Processing Nodes (EPNs). Around 128 LHC orbits
are merged into a Time Frame (TF) which represents the unit of precision to which
tracks can be discriminated. Finally, the TFs are compressed into Compressed Time
Frames (CTFs) and contain ≈ 20 ms of the processed data of all active detectors. CTFs
are then saved into persistent memory for further offline analysis.

The offline element comes into play later in the asynchronous reconstruction of
the tracks which require their full track information. For example, secondary track
contributions from weak decays are taken into consideration in the TPC by performing
an on-the-fly recalibration. Furthermore, it also represents the offline tasks necessary
for retrieving data to perform an analysis.

More extensive information about the handling of the raw data can be found in the
technical design report of the computing system [22].

4.1.1 The O2 Software Framework

The filtered and persistent data from the experiment is made accessible through
Analysis Object Data stored in ROOT trees as AO2D files, from the ROOT data analysis
framework [23]. These files constitute the basis of any analysis and store physical
properties of collisions as columns with their respective rows characterizing analytical
objects such as tracks. Instances of these matrices are called tables and can be filtered
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and partitioned efficiently with the assistance of helper tasks, which are necessary
since derived information such as the momentum of particles is calculated on-the-fly.
Parsed tables can be saved or subsequently passed to further tasks to create new tables.
This approach lowers the amount of data that needs to be saved persistently at a
computational cost and with the additional benefit of turning an analysis into a chain
of helper tasks.

Producer tasks similarly generate tables of data but are developed by groups of
researchers that might specialize in certain physics; such tasks are made available to
all members and can be used analogously to helper tasks. Furthermore, these tasks
can be used to generate data models whose output is, unlike helper tasks, saved as
derived datasets for future reference. Digital storage limitations require the area of
applicability to be broad enough to justify saving. An example of a producer task is the
FemtoDream framework that was used for this analysis to generate the same event and
mixed event distributions for the correlation functions.

4.1.2 The FemtoDream Framework

The FemtoDream framework provides the best environment to generate the necessary
distributions for the analysis of the p–p and p–Λ correlation functions and, more
generally, for femtoscopic analyses. Its principle follows the general guidelines of
attaining the maximum reduction in size while retaining the most information possible.
The project can be found in the O2 github repository under /PWGCF/FemtoDream [24].

The core of the framework lies in its producer task: femtoDreamProducer; whose
combination with femtoDreamPairTaskTrackTrack and femtoDreamPairTaskTrackV0
allows for selecting charged and neutral particles, respectively. The Producer is used
to generate the derived dataset and save the most crucial properties from selected
particles in two O2 tables: FDParticles and FDCollisions. The structures of the tables
are shown in table 4.1. FDParticles encompasses the characteristics of particles, as
its name suggests, and starts off with the three necessary kinematic variables pT, η

and φ, needed for the computation of their momentum. The variable PartType is used
to save the identity of the particle and defines the method to estimate the primary
fraction of a candidate by setting the variable TempFitVar to either use the distance of
closest approach (DCA) or for V0 candidates the cosine of the pointing angle (CPA).
The DCA quantifies the proximity of a reconstructed trajectory of a particle to the
primary vertex and the CPA gauges the alignment of the reconstructed momentum
with the reconstructed decay path. For the later the invariant mass is saved to evaluate
the mass hypothesis; in MLambda for particles and MAntiLambda for the antiparticles.
Additionally, in case of a particle reconstructed from their decay products, such as a Λ,
the daughters are linked to the mother through the Children variable. The final two,
Cut and PIDCut, are used as bit masks internally to specify which selection criteria were
passed and primarily concern detector specific variables. The combination of these
few variables is already enough to only tag relevant particles and generate the derived
dataset with a reduction factor of size of around 200. Moreover, for the purpose of
reducing computational load, only those events are selected that contain the particles
of interest; for example, in p–Λ correlations events with at least one proton and a Λ
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baryon are taken.
The FDCollisions table is used to link related particles to a collision and subsequently

apply the event mixing techniques for the mixed k∗ distributions. To this end, the z
position and the multiplicity of an event are stored; the former in the PosZ variable
while the later utilizes two variables: V0M for the amplitude of the V0M detector, and
MultNtr for the number of tracks. The sphericity of the event is stored in Sphericity
and lastly the strength of the magnetic field in the MagField variable. While the first
is not needed for the mixing, the later is necessary to reduce the error caused from
the effect of track splitting, where two separate tracks are reconstructed from a single
physical one.

FemtoDream datamodel

FDParticles

Pt float pT of the particle
Eta float η of the particle
Phi float φ of the particle

PartType integer value associated to particle type
TempFitVar float variable for the template fits

Cut integer cutbit for selection cuts
PIDCut integer cutbit for PID cuts

Children internal link links a Λ (Λ) candidate to its decay products
MLambda float invariant mass of Λ

MAntiLambda float invariant mass of Λ

FDCollisions

PosZ float z coordinate of the primary vertex
MultV0M float multiplicity based on the V0M signal
MultNtr float number of primary charged tracks with η < 0.8

Sphericity float event sphericity
MagField float strength of detector magnet

Table 4.1: The FemtoDream datamodel for particle candidates and collisions. The
contained variables in each table are listed in the first column alongside their
type and a description of each.

4.2 Event Selection

To perform the analysis of the p–p and p–Λ pairs, it is necessary to reconstruct the
tracks of both protons and Λ particles. To ensure the best quality selection cuts to the
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data have to be applied to discriminate background from true signal. Accordingly, the
minimum bias data, composed of all collisions including high and low multiplicity
events, is used to study the pairs. The following sections describe in more detail the
cuts applied to protons and Λ particle candidates.

4.2.1 Proton Candidate Selection

The selection cuts for the protons and antiprotons follow a similar criteria to the Run
2 analysis [8]; adapted however to the new detectors of ALICE and can be found in
table 4.2. Given that protons can be directly measured by reconstructing their tracks,
the selection cuts of the particle candidates are presented as selection criteria for the
tracks. The chosen pseudorapidity range is symmetrical and below 0.8 units. The
detectors used to find the primary vertex, the ITS and TPC, and those for PID are
capable of measuring at larger values; to achieve greater quality of the tracks and
secure the reconstruction the range is reduced. The interval of transverse momentum is
0.5 < pT < 2.2 GeV/c for which protons of below 0.75 GeV/c are identified exclusively
by the TPC. For values above 0.75 GeV/c both TPC and TOF are used and the combined
number of standard deviations, nσ,comb =

√
(nσ,TPC)2 + (nσ,TOF)2, is used to apply the

cut on the nσ of below 3 units; the deviation represents the agreement of measured to
expected value.

Track selection criteria

Pseudorapidity |η| < 0.8
Transverse momentum 0.5 < pT < 2.2 GeV/c
TPC cluster nTPC > 80
Crossed TPC rows ncrossed > 80

Distance of closest approach xy |DCAxy| <
(

0.105 + 0.0305
(pT / GeV/c)1.1

)
cm

Distance of closest approach z |DCAz| < 0.1 cm

Particle identification
|nσ,TPC| < 3 for p < 0.75 GeV/c
nσ,comb. < 3 for p > 0.75 GeV/c

Table 4.2: Selection criteria for the proton candidates.

Within the TPC a cut on the clusters and the crossed rows is imposed. The first
determines the number of clusters assigned to a single track and is set to at least 80,
which guarantees enough hits in the detector to achieve great track quality for the
measurement of the momentum. The latter sets the threshold on the count of crossed
rows from the available 152 of the TPC readout pads.

Lastly, for the distributions of DCA in the transverse plane, DCAxy, and in z-direction,
DCAz, a cut on the distance is necessary to suppress contamination of non-primary
protons; for example, material protons from interactions with the matter of the detector
or secondary protons from the decays of Λ particles, both contributing to the back-
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ground signature. The DCAz is cut at a value of 0.1 cm while for the DCAxy the formula
(0.105 + 0.0305/(pT/GeV/c)1.1) is used to set a pT dependent cut. The information
from the TOF for high pT tracks allows for a more precise track to vertex association
and therefore a more narrow cut to the DCA distribution.

4.2.2 Λ Baryon Candidate Selection

The selection cuts for the Λ and Λ particles differ substantially from those of the protons
due to their nature, as they are neutral charged and thus require to be reconstructed
from their decay products. The most common decay mode of a Λ with a branching ratio
of 63.9 % is the weak decay into a proton and a negatively charged pion, Λ → p + π−.
The topology of such an event is a split of the single trajectory into two diverging
tracks due to the curvature from their opposed charges in the magnetic field of the
experiment; this characteristic classifies it as a V0 decay and necessitates cuts to the V0

candidates as well as the daughter tracks, both of which can be found in table 4.3.

Daughter track selection criteria

Pseudorapidity |η| < 0.8
TPC Cluster nTPC > 70
DCA from primary vertex |DCA| > 0.05 cm
Particle identification nσ,TPC < 5

V0 selection criteria

Transverse momentum pT > 0.5 GeV/c
Λ decay vertex |ivertexΛ | < 100 cm, i = x, y, z
Transverse radius of the decay vertex rxy 0.2 < rxy < 100 cm
DCA of daughter tracks at the decay vertex DCAdaugh < 1.5 cm
Pointing angle α cos α > 0.99
K0 rejection 0.48 < Mπ+π− < 0.515 GeV/c2

Λ selection |Mpπ − MΛ,PDG| < 8 MeV/c2

Table 4.3: Selection criteria for the Λ candidates.

Beginning with the similarities to the protons, the daughter tracks are selected in the
same pseudorapidity range of |η| < 0.8 but require a minimum of 70 hits in the TPC
clusters. For these tracks a DCA larger than 0.05 cm is used and for PID the number of
standard deviations in the TPC is chosen to be nσ,TPC < 5. For the V0 candidates the
DCA is set to a maximum of 1.5 cm. The DCA allows to determine the decay vertex
between the daughter tracks from the decay vertex of the Λ and combined with the
CPA appraise the purity of the candidates; the CPA is defined as the angle between the
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momentum vector of the particle candidate and the line connecting the primary vertex
to its decay vertex. The CPA, which is calculated as the cosine of the pointing angle α,
is chosen to be above 0.99.

For the V0 candidates a minimum transverse momentum of 0.5 GeV/c is required to
register and their invariant mass needs to fall within ±8 MeV/c2 of the PDG mass of
1115.683(6)MeV/c2 to be classified as a Λ particle. Candidates with an invariant mass
compatible with a K0 meson, under the assumption of a π+π− decay, are dismissed
from the sample.

4.2.3 Analysed Datasets

On a final note, the analysed Run 3 dataset for this analysis is the LHC22_pass4_highIR,
which stands for the fourth reconstruction pass of the high interaction rate data taken
in 2022. The total events alongside the count of protons, Λ particles and pairs in the
derived dataset, generated by the FemtoDream producer, are listed in table 4.4. The
full dataset is additionally catalogued into the individual data taking periods for which
the configuration of the detector was the same. The different periods differ in some
aspects of the setup but the overall characteristics are deemed to be of similar quality.
The original raw data for the dataset was deleted due to disk space constrains, which
makes the fourth reconstruction pass the last of its kind. Nevertheless, this dataset is
the most suited for a differential analysis as it contains the most statistics.

Number of particles in the dataset

Merge List Events p p Λ Λ
(109) (106) (106) (106) (106)

FullTrain 23.6 23.9 23.2 20.08 20.6
LHC22m 2.31 2.34 2.05 1.97 1.96
LHC22o 14.6 14.8 13.2 12.44 12.91
LHC22p 1.16 1.17 1.00 0.98 0.98
LHC22r 3.0 3.06 2.71 2.57 2.58
LHC22t 2.45 2.47 2.20 2.08 2.09

Table 4.4: Number of events, protons, antiprotons, Λs and Λs in the dataset and from
the individual periods.
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In order to correctly assess the genuine signal of the previously selected particles, it is
essential to first model the different contributions that feed down into them and those
that form the background, in addition to applying any necessary corrections to the data.
In this chapter, the steps needed to prepare the raw data and subsequently estimate the
share of the non-genuine signal are shown.

5.1 Multiplicity Re-Weighting

Starting off with a correction, after applying the event mixing techniques to generate
the mixed event distribution, an unbalance is created. The same event distribution,
in contrast to the mixed, is limited by the composition of the measured signal. Only
a certain amount of events contain both particles of interest and contribute therefore
to the same event sample. Conversely, the techniques used for the mixed rely on
combining particles from different events, thus allowing the creation of pairs orders of
magnitude larger than the other. However, this procedure breaks the conservation of
energy and momentum, thus introducing an unrealistic multiplicity distribution and
an unphysical correlation signal.

To correct for this effect the mixed event distribution is weighted in each bin by the
yield of the same event. Following the example set in [25], the new weights are given
by solving the condition∫ ∞

0
Nsame,m(k∗)dk∗ = ωn

∫ ∞

0
Nmixed,m(k∗)dk∗,

where for each multiplicity interval m, the Nsame represents the yield of the same event
sample, Nmixed the yield of the mixed, and ωm are the weights for each class. The
resulting value for the mixed event yield is thus given by

N′
mixed(k

∗) = ∑
m

ωmNmixed,m(k∗) (5.1)

Figure 5.1a shows the effect of the re-weighting. In the left panel the unweighted
distribution (blue) is shown, which includes an order of magnitude more counts of pairs
than its same event counterpart (green). The re-weighting normalizes the distribution
to the yield of the same event sample and creates therefore a comparable count, shown
in the right panel.

The correlation functions resulting from each sample are drawn in figure 5.1b. A
difference can be spotted in both, the low and large k∗ regions. The re-weighted C(k∗)
for lower values of k∗ is larger than the unweighted, although this is then compensated
in the larger k∗ region.
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(a) The mixed event distribution (blue) and the re-weighted (red) compared to the same event
distribution.

0 200 400 600 800 1000 1200 1400
)c* (MeV/k

1

1.5

2

2.5

3

3.5

*)k(
C Correlation Function

Reweighted

(b) The unweighted C(k∗) (blue) compared to the C(k∗) resulting from the re-weighting.

Figure 5.1: Comparison of the effect of the re-weighting on the mixed event distribution
in the top panels, and the resulting correlation functions in the lower panel.

5.2 Decay Feed-Down

As previously mentioned, the experimental correlation function is a mixture of the
genuine particle of interest and, among other things, weakly decaying resonances that
feed into the same species. On the theoretical side, this not only requires consideration
of the possible decay channels but also the underlying forces acting on a pair of
particles. For example, the correlations between a set of protons are subject to the
strong interaction, the Coulomb force and, as fermions, the antisymmetrization of the
wave function.

To tackle the first hurdle, the formalism of the λ (lambda) parameters was introduced
in previous analyses and concludes in a sum of the single contributions weighted by a
fraction λi, whose sum over all adds to one [8]. In its most essential form it reads

Cmodel(k∗) = 1 + ∑
i

λi(Ci(k∗)− 1) (5.2)
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and, as expected, adds to unity in the absence of correlations. The λ parameters are
calculated as the product of the purity of a particle sample and the fraction of expected
yield from the measured signal. The first can usually be obtained with the help of
Monte Carlo simulations but, unfortunately, no anchored simulations to the detector
were available at the time of writing and a data-driven approach was favoured based
on the nσ distribution of the TPC and TOF signal [26]. For the second, a general
purpose dataset, intended for testing purposes and limited in size, was available and
used to roughly estimate the share of each contribution. Consequently, the obtained
fractions have to be evaluated with care as the dataset is not expected to reproduce
the conditions of the detector faithfully; a detailed analysis of these is provided in the
following section 5.3.

The contributions considered for the evaluation of the p–p correlation function follow
the example set in [8]. Accounting for misidentified particles, the set is composed of

{p-p} = p-p + p-pΛ + pΛ-pΛ + p-pΣ+ + pΣ+-pΣ+ + pΛ-pΣ+

+ p̃-p + p̃-pΛ + p̃-pΣ+ + p̃-p̃,
(5.3)

where protons from feed-down are represented with a subscript pX for its mother
particle X and misidentified indicated by the tilde X̃ for a particle of species X. Given
the share and relative size of each contribution, as reported in 5.3, only the most
prominent are considered to have a substantial correlation and the rest is taken as
a constant, referred to as flat, equal to its λ parameter. However, the k∗ dependent
analysis of both, the fractions and the purity, allows likewise evaluation of the weights
as a function of k∗. Therefore, the model correlation function consists of

Cmodel(k∗) = λpp(k∗) Cpp(k∗) + λpΛp(k∗) CpΛp(k∗) + λpΣp(k∗) CpΣp(k∗)

+ λfeed(k∗) + λfake(k∗),
(5.4)

for which the less prominent feed-down contributions are merged into the flat feed and
the misidentified into fake.

Similarly, the composition of the p–Λ correlation function can be listed as

{p-Λ} = p-Λ + p-ΛΣ0 + p-ΛΞ− + p-ΛΞ0 + pΛ-Λ + pΛ-ΛΣ0

+ pΛ-ΛΞ− + pΛ-ΛΞ0 + pΣ+-Λ + pΣ+-ΛΣ0 + pΣ+-ΛΞ− + pΣ+-ΛΞ0

+ p̃-Λ + p̃-ΛΣ0 + p̃-ΛΞ− + p̃-ΛΞ0 + p-Λ̃ + p-Λ̃Σ0 + p-Λ̃Ξ− + p-Λ̃Ξ0 + p̃-Λ̃

(5.5)

where apart from the already introduced protons and their channels, the Λ particles
themselves can also stem from feed-down. In this case, from the decay of a Ξ−

(dss), a Ξ0 (uss) or a Σ0 (uds) particle. Unfortunately, the Monte Carlo data needed
for the constraining of the fractions was not available at the time of writing and
thus the evaluation of the λ parameters defaulted to using the fractions from the
previous analysis of the p–Λ correlation function [8]. The result from the fit to the
data should therefore be taken as preliminary to assess the quality of the data. Further
discussion is provided in the later sections. Regardless, the model correlation function
is correspondingly used in the same way as in the previous analysis and reads

Cmodel(k∗) = λpΛCpΛ(k∗) + λpΛΣ0 CpΛΣ0 (k
∗) + λpΛΞ CpΛΞ(k

∗)

+ λfeed + λfake
(5.6)
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where unlike for the protons, the λ parameters are constant. Once again, the less
prominent feed-down contributions are collected in the feed term and the misidentified
in fake.

The final ingredient to model the experimental correlation function is to account
for the non-femtoscopic background that appears at large k∗. The necessary mixed
event distribution for the function is one obtained by applying event mixing techniques.
As was mentioned before, such a sample does not include two-particle correlations in
theory, as the individuals stem from different events. In practise, long-range effects
infiltrate the distribution, for example, in the form of artificial correlations from the
inability of assuring compatible single particle kinematics. As a consequence, a non-
femtoscopic tail appears in the distribution.

Given that the correlation function is normalized in the region where it is assumed
that no correlations of any kind are expected and the function equals unity, this interval
can be used as a lower limit for modelling the baseline. The requirement of a smooth
transition into the femtoscopic region is thus ensured, and a flat contribution to it by
employing a third degree polynomial with its linear term removed; this additionally
guarantees a flat contribution to the low k∗ region. The polynomial can then be
restructured by taking the constant term to be one and having a constant, associated
to the normalization N , as a value affecting the whole polynomial. The correlation
function used to fit the experimental data thus reads

Cfit(k∗) = Bnon−femto(k∗)× Cmodel(k∗), (5.7)

with Bnon-femto = N
(
1 + ak2 + bk3).

5.3 Template Fitting

To evaluate the fractal amount of each contribution in the measured signal, a comparison
of data to simulation can be performed. The signal can be fitted by spectra given by
the simulation of the events in a reconstructed environment. The DCA distribution
offers the best observable in the case of protons and antiprotons for this task and can
be produced in the transversal plane xy or the longitudinal z.

One option to undertake such a fit is by performing a combined one to both distribu-
tions. The shapes of the individuals can be fitted by their independent spectra in each
dimension while the total fraction is taken as a free parameter. Although this approach
was used to gauge the contributions in the earlier stages, the loss of information from
the projection onto the single dimensions and the poor quality of the simulated spectra
made an approach less prone to bias a necessity. The lack of quality comes from the fact
that the sum of the simulated distributions from the general purpose dataset does not
accurately represent the measured signal; they include larger yield in the tails which in
turn underestimates the signal region.

To mitigate the bias a two-dimensional fit of the DCAxy vs DCAz is favoured. This
allows for better capture of the topology and is less prone to outliers in the signal. For
the evaluation of the proton and antiproton fractions, a set of five two-dimensional
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templates is used: primary, the genuine signal; secondary, from the feed-down of either
a Λ or Σ particle whose spectra are similar to such an extend that they cannot be
separated in the fit; wrong collision, from pile-up of the events; material, stemming
from interactions which cause the material to release protons; and misidentified (fake),
whose fraction is fixed to the value given by the purity. An example of such a fit is
shown in figure 5.2a, where the resulting fit is drawn as a red mesh on top of the DCA
distribution.

(a) Two-dimensional fit drawn as a red mesh over the DCA distribution.

(b) Projection of the DCA fit with vertical lines drawn to indicate the signal region.

Figure 5.2: Two-dimensional fit of the DCAxy vs DCAz distribution of antiprotons in
the pT range of [0.75, 1.00) GeV/c.

In this analysis the template fitting is performed differentially in the pT ranges of:
[0.500, 0.625), [0.625, 0.750), [0.750, 1.000), [1.000, 1.500), [1.500, 2.200) GeV/c. The DCA
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region for the execution of the fit is in all cases 0.5 cm in DCAxy and 0.2 cm in DCAz. To
evaluate the fraction of each contribution a signal region is defined wherein the share
of each in relation to the total is computed. The signal region in DCAz is a constant
0.1 cm while for DCAxy the formula(

0.0105 +
0.035
⟨pT⟩1.1

)
cm

is used to define a symmetrical region that captures the shrinking characteristic of the
distribution with increasing pT. Figure 5.2b shows the projection of the two-dimensional
fit in the selected fit range in each dimension, and the signal region used for the calcu-
lation of the fractions. As is evident, the fit (red line) does not completely reproduce
the experimental distribution (black line) due to the aforementioned discrepancy in
the templates. The tails of the distribution are overestimated while the signal region is
underestimated. To reflect this inaccuracy, the hereby obtained fractions will later be
varied a certain percentage to compute the systematic uncertainty from fitting with the
λ parameters obtained from these fits.

Repeating the fit for all the pT bins allows to create a scaling which is later used
alongside the purity of the different constituents to generate the k∗ dependent λ

parameters. The resulting scaling for both protons and antiprotons is shown in 5.3. The
average value for protons is ≈ 87% while for antiprotons it is ≈ 91%. The difference is
due to the proton signal being contaminated in the lower pT values by material protons
and by the lack of separation in the TOF signal at high momenta between kaons and
protons.
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(a) Proton fractions.

(b) Antiproton fractions.

Figure 5.3: Fractions resulting from a two-dimensional fit of the DCA distribution in
five pT bins.
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5.4 Resonance Source Model

To review the results in the later sections it is necessary to compare them to those of
previous analyses that concluded a common hadron-emission source [9, 27].

Given that the size of the source in pp collisions is around 1-2 fm and resonances
that decay via the strong nuclear force have a typical decay length around the same
size of 1 fm, it stands to reason that the source functions is affected by them. In other
words, the modelled source is the effective size measured for a correlation function.
This reasoning was the inspiration to develop the Resonance Source Model (RSM) and
capture the effect of resonances on the source function.

The assumptions behind the RSM are: an equal time of emission of all primordial
particles and resonances; an independent emission of all primordial particles and
resonances from the same core source distribution; and a free propagation of the
resonances before decaying. The last of them is rationalized by the difference in
time-scales between the decays and the final state interactions.

Figure 5.4: Sketch of the decay and propagation of resonances (gray) affecting the core
radius of the source function for the particles of interest (blue), taken from
[9].

The idea behind the RSM is to have the core source distribution as a basis, broadened
by a halo representing the spatial offset induced by the resonances. Schematically, it
can be illustrated as two particles separated by an effective size r∗ that originate from,
for example, two resonances at a closer distance r∗core. A representation can be seen in
figure 5.4, where the resonances decay into the particles of interest after a distance s∗

in the pair rest frame; alternatively, the combination of a single resonance decaying
and a primordial particle contributes to the source similarly. The computation of the
distribution therefore requires the specification of the resonance yields in the form
of their abundances and their decay kinematics. The first can be obtained through
calculations based on the Statistical Hadronization Model (SHM) [28]. For protons
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the fraction of primordial particles is 35.78 % and for Λ particles it is 35.62 %; the rest
of the particles are taken as the product of resonance decays. The kinematics can be
computed with the help of the EPOS transport model [29]. Through Monte-Carlo
simulation the spatial coordinates of the emission can be generated from which the
angular distribution of the decays are created. Combining this information with the
lifetimes of the decay channels is enough to account for the dynamics. For protons
the average lifetime of the resonances is ⟨cτres⟩ = 1.65 fm and their average mass
is ⟨mres⟩ = 1.362 GeV/c2. The resonances for Λ particles have a larger lifetime of
⟨cτres⟩ = 4.69 fm and a mass of ⟨mres⟩ = 1.463 GeV/c2 [25].

As an example of the effect of the resonances, the effective source function and a
core distribution of the same size are shown in figure 5.5 for the p–p and p–Λ system.
The discontinued lines show the effective size while the dots represent the combination
of core distribution and resonance halo. The difference is substantial, as the source
function is parametrized as a Gaussian and the large tails from the resonances broaden
the distributions, thus generating a larger width.

Figure 5.5: Comparison of the core and effective source functions for p–p and p–Λ,
taken from [9].

In previous analyses the discovery was made that by computing the core source size
differentially in mT for the p–p and p–Λ system, a common scaling appeared [9]. This
claim will be further investigated in the femtoscopic analysis of the data from Run 3
and extended by a differential study in multiplicity.
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In this chapter, the selected particle pairs are first split differentially in transversal mass
mT and multiplicity, and subsequently fitted with the previously constructed model to
obtain a measurement for the source. Additionally, a comparison for the p–p system
with different potentials is performed.

6.1 Data Partitioning

The candidates, selected in section 4.2, from the different periods, listed in table 4.4,
and their resulting same and mixed event distributions, are first merged into single
distributions representing the whole dataset and subsequently re-weighted according
to section 5.1. The evaluation of the correlation function for both p–p and p–Λ is
then executed differentially in mT and in the three multiplicity percentiles: 0-10%,
10-50%, and 50-100%. The percentiles correspond to the decreasing number of particles
in an event. The smallest percentile represents the events with the highest count of
particles while the largest the events with the least particles. To this end, the same
and mixed event distributions for the systems are divided in mT segments containing
approximately the same amount of pairs. The p–p and p–p systems are split into seven
intervals: [1.02, 1.14), [1.14, 1.20), [1.20, 1.26), [1.26, 1.38), [1.38, 1.56), [1.56, 1.86), [1.86,
2.40) GeV/c; these correspond to the values that were used in the previous analysis [9].
The number of pairs for each are listed in table 6.1, where the p–p and p–p pairs are

Number of p–p and p–p pairs

p–p p–p

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.02, 1.14) 6.98 × 107 1.12 × 108 3.99 × 107 5.40 × 107 8.60 × 107 3.01 × 107

[1.14, 1.20) 2.91 × 107 4.51 × 107 1.51 × 107 2.27 × 107 3.49 × 107 1.15 × 107

[1.20, 1.26) 2.50 × 107 3.77 × 107 1.21 × 107 1.99 × 107 2.97 × 107 9.57 × 106

[1.26, 1.38) 3.86 × 107 5.60 × 107 1.73 × 107 3.17 × 107 4.56 × 107 1.41 × 107

[1.38, 1.56) 3.75 × 107 5.12 × 107 1.49 × 107 3.22 × 107 4.37 × 107 1.28 × 107

[1.56, 1.86) 2.50 × 107 3.13 × 107 8.56 × 106 2.30 × 107 2.86 × 107 7.96 × 106

[1.86, 2.40) 5.38 × 106 6.06 × 106 1.60 × 106 5.38 × 106 6.11 × 106 1.68 × 106

Table 6.1: Number of p–p and p–p pairs divided in seven mT bins for the three multi-
plicity percentiles of 0-10%, 10-50%, and 50-100%.
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subdivided into two tables split into the three multiplicity percentiles and each row
represents a single mT interval. As can be seen, most distributions include ≈ 107 entries
regardless of multiplicity and mT; only in the highest range of both do the counts drop
to 106 entries.

For the p–Λ and p–Λ systems six intervals are used, which correspond again to the
values from the same analysis and are: [1.08, 1.26), [1.26, 1.32), [1.32, 1.44), [1.44, 1.65),
[1.65, 1.90), [1.90, 4.50) GeV/c; for which the number of pairs are listed in table 6.2. This
gives a total of 21 correlation functions for each proton particle pairs and antiparticle
pairs, respectively, and 18 for the p–Λ and p–Λ pairs each.

Number of p–Λ and p–Λ pairs

p–Λ p–Λ

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.08, 1.26) 2.80 × 107 4.30 × 107 1.52 × 107 2.37 × 107 3.59 × 107 1.25 × 107

[1.26, 1.32) 8.55 × 106 1.27 × 107 4.40 × 106 7.20 × 106 1.06 × 107 3.64 × 106

[1.32, 1.44) 1.51 × 107 2.18 × 107 7.24 × 106 1.29 × 107 1.84 × 107 6.07 × 106

[1.44, 1.65) 1.97 × 107 2.66 × 107 8.23 × 106 1.71 × 107 2.30 × 107 7.09 × 106

[1.65, 1.90) 1.38 × 107 1.72 × 107 5.01 × 106 1.23 × 107 1.53 × 107 4.42 × 106

[1.90, 4.50) 1.26 × 107 1.42 × 107 3.88 × 106 1.11 × 107 1.26 × 107 3.40 × 106

Table 6.2: Number of p–Λ and p–Λ pairs divided in seven mT bins for the three multi-
plicity percentiles of 0-10%, 10-50%, and 50-100%.

6.2 Data Fitting

The fitting of the experimental data is achieved as a simultaneous fit to a set of the
previously obtained correlation functions, one of each particle-particle and antiparticle-
antiparticle for a given mT and multiplicity. The shape of the distributions changes
between the two, due to the different contributions as for example antiprotons are
not affected by material knock-out, and therefore requires a unique modelling of both
baseline and signal.

The baseline is for all cases a polynomial of third degree with its linear term removed,
as described in section 5.2. The normalization is then left as a free fit parameter to
absorb any bias introduced from the arbitrary normalization of the correlation functions,
which is performed in a range where the distributions equal unity, for visual purposes.
The chosen k∗ range for this is [240, 340] MeV/c. The data can then be pre-fitted with
the baseline to allow a direct comparison between different models or fitted directly
with eq. 5.7 to get the best overall agreement.

The signal is then separately modelled, according to section 5.2, as the sum of the
individual feed-down contributions; the p–p (p–p) system with eq. 5.4 and p–Λ (p–Λ)
with eq. 5.6. The weights of each are realized as the λ parameters and obtained in
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section 5.3 from the combination of the purity of a particle and the fraction of the
signal. The latter is estimated for the p–p (p–p) system from template fits to the DCA
distribution, which uses only the merged distribution of the secondary contributions
due to the individual spectra being similar to the point of detriment to the fit. For the
calculation of the λ parameters of the secondary protons, the obtained values of the
fraction in figure 5.3 are divided, due to isospin considerations, into a composition
of 70 % from Λ and 30 % from Σ+ particles, according to [8]. The fraction of the
misidentified protons is given by 1 − purity of the sample. The average values of
the proton and antiproton λ(k∗) parameters are displayed in table 6.3 and as can be
identified, show a strong dependence on mT and a small dependence on the multiplicity.
This is due to a stronger dependency on the pT distribution for the mT ranges.

The values for the p–Λ (p–Λ) are, as already mentioned, taken from the analysis
performed in [9] and equal:

λpΛ = 0.5031, λpΛΣ0 = 0.1677, λpΛΞ = 0.0832, λfeed = 0.2038, λfake = 0.0422.

To model the isolated genuine signal and compare it to theory, eq. 2.3 is used. For
the source function a Gaussian profile is used, as characterized in eq. 2.4. Within
the simultaneous fit, the width of both distributions is shared and left as a free-fit
parameter. This allows to retrieve a single value representing the size of the particle
emitting source for a set of particles and antiparticles.

The last component needed is the two-particle wave function for a given pair of
particles and can be obtained by solving the Schrödinger equation for a given potential.
To this end, the CATS framework [30] can be used to perform the computation. Addi-
tionally, the wave functions for a given interaction can be independently calculated and
later fed into the framework, alongside a source function, to compute the correlation
function for any desired k∗ value.

For proton pairs the strong interaction is modelled with the Argonne v18 potential
[12] up to the L=2 partial wave (D wave) and, additionally, the Coulomb interaction
and the antisymmetrization of the wave functions are taken into consideration inside of
the framework. The nucleon-hyperon interaction is modelled with the help of Chiral
Effective Field Theory (χEFT) [31]. The idea of this effective theory is to mediate the
interaction between hadrons through pions and, thereby, reducing the degrees of free-
dom. The model is constrained by the available scattering data of hyperons, which is
used to adjust the low-energy constants internally. For the fitting, the Next-to-Leading
Order (NLO) 19 version of the model was used, in the form of wave functions, as an
input for CATS; a cutoff scale of 600 MeV/c for the model is used, which internally
prevents unphysical momentum contributions in the computation from higher values.
Additionally, χEFT allows the calculation of the couple-channel dynamics from the
coupling of NΣ ↔ NΛ, as described in section 2.4.

The last step is to perform the fits. For this the fit region for the femtoscopic signal
of the protons is set to [0, 280] MeV/c, which is used internally in CATS to evaluate
the interaction and thus the individual correlation functions after providing the λ

parameters. The output of the framework is then used to fit the experimental data in
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Average value of the proton and antiproton λ(k∗) parameters

Protons Antiprotons

mT [GeV/c] λpp λpΛp λpΣp λfeed λfake λpp λpΛp λpΣp λfeed λfake

0
-

10
%

[1.02, 1.14) 0.657 0.031 0.016 0.294 0.003 0.830 0.038 0.019 0.109 0.004
[1.14, 1.20) 0.719 0.031 0.015 0.228 0.007 0.820 0.035 0.017 0.119 0.010
[1.20, 1.26) 0.754 0.030 0.015 0.191 0.010 0.813 0.033 0.017 0.124 0.014
[1.26, 1.38) 0.783 0.030 0.015 0.161 0.011 0.814 0.032 0.016 0.123 0.016
[1.38, 1.56) 0.805 0.028 0.014 0.139 0.015 0.813 0.029 0.014 0.124 0.019
[1.56, 1.86) 0.779 0.024 0.012 0.154 0.031 0.786 0.025 0.013 0.143 0.033
[1.86, 2.40) 0.663 0.018 0.009 0.256 0.054 0.684 0.019 0.009 0.236 0.052

10
-

50
%

[1.02, 1.14) 0.656 0.031 0.016 0.294 0.003 0.830 0.038 0.019 0.109 0.004
[1.14, 1.20) 0.719 0.031 0.015 0.229 0.007 0.820 0.035 0.017 0.119 0.010
[1.20, 1.26) 0.754 0.030 0.015 0.191 0.010 0.813 0.033 0.017 0.124 0.014
[1.26, 1.38) 0.782 0.030 0.015 0.162 0.011 0.814 0.032 0.016 0.123 0.016
[1.38, 1.56) 0.805 0.028 0.014 0.139 0.015 0.813 0.029 0.014 0.124 0.019
[1.56, 1.86) 0.779 0.024 0.012 0.154 0.030 0.787 0.025 0.013 0.143 0.032
[1.86, 2.40) 0.665 0.018 0.009 0.254 0.054 0.686 0.019 0.009 0.234 0.052

50
-

10
0

%

[1.02, 1.14) 0.655 0.031 0.016 0.296 0.003 0.830 0.038 0.019 0.109 0.003
[1.14, 1.20) 0.718 0.031 0.015 0.229 0.007 0.820 0.035 0.017 0.118 0.010
[1.20, 1.26) 0.753 0.030 0.015 0.192 0.010 0.813 0.033 0.017 0.124 0.014
[1.26, 1.38) 0.781 0.030 0.015 0.163 0.011 0.814 0.032 0.016 0.123 0.016
[1.38, 1.56) 0.804 0.028 0.014 0.140 0.015 0.813 0.029 0.014 0.124 0.019
[1.56, 1.86) 0.781 0.024 0.012 0.153 0.030 0.788 0.025 0.013 0.142 0.032
[1.86, 2.40) 0.667 0.018 0.009 0.252 0.053 0.688 0.019 0.009 0.232 0.052

Table 6.3: Average value of the λ(k∗) parameters for the different contributions for
the modelling of the correlation function. The values are divided into three
multiplicity percentiles and seven mT intervals.

a range of k∗ ∈ [0, 400] MeV/c; this range is incidentally used as well for the baseline
with the normalization N in eq. 5.7 as a free-fit parameter alongside the coefficients
of the polynomial, as both baseline and signal are modelled simultaneously. For the
p–Λ (p–Λ) pairs, the femtoscopic signal region is set to k∗ ∈ [0, 400] MeV/c in order to
capture the topology of the cusp, resulting from the couple-channel dynamics. The fit
range of these pairs for the data is set to the same interval and the fit is, similar to the
protons, performed in combination with the baseline, where the baseline can be taken
as another free-fit parameter.

6.2.1 Fitting with the RSM

Similarly to the previously described fitting procedure, the evaluation of the core
source distribution can be accomplished by applying the RSM within a fit for both
systems in an analogous approach. First, the angular distributions obtained from the
EPOS transport model, as explained in section 5.4, are loaded into CATS by reading
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them from files as inputs. The source is then, unlike the Gaussian profile used before,
replaced by the one resulting from the RSM. This necessitates providing the model
with the fraction of primordial particles and that of those resulting from strongly
decaying resonances. For protons and antiprotons the value of primordial particles is
ωprim = 35.78 % and, therefore, the value for the resonances is set to 64.22 %. For Λ
particles and Λ antiparticles the primordial fraction is ωprim = 35.62 %. Additionally,
the average mass and lifetime of the resonances are required. As stated in section
5.4, the proton resonances have an average mass of ⟨mres⟩ = 1.362 GeV/c2 and an
average lifetime of ⟨cτres⟩ = 1.65 fm. The average mass of the Λ particles is set to
⟨mres⟩ = 1.463 GeV/c2 and their average lifetime is set to ⟨cτres⟩ = 4.69 fm.

The fit itself proceeds in the same manner as the fit of the effective size from this point
onwards. The femtoscopic signal is evaluated in the same range of k∗ ∈ [0, 280] MeV/c
for protons and k∗ ∈ [0, 400] MeV/c for the p–Λ (p–Λ) system. The global fit region for
the signal of the correlation function and the baseline is again set for both system to
k∗ ∈ [0, 400] MeV/c. The baseline is likewise left unconstrained and taken as a free-fit
parameter of the fit. The source modelled by the RSM then returns a value for the core
distribution that, if resonances are taken into consideration, corresponds to an effective
size of the same experimental data fitted with a Gaussian profile instead.

The two-particle wave function is independent of the model used for the source and
thus the same interactions are considered for the systems. The p–p and p–p correlation
functions are modelled again with the Argonne v18 potential and the p–Λ and p–Λ
with the NLO19 version of the χEFT model with a cut-off of 600 MeV/c.

6.2.2 Fitting with Other Potentials

On a final note, the fitting process can also be performed by providing CATS with a
potential to examine the theoretical description of the interaction and its sensitivity to
the applied model for the source. The two-particle wave function is then computed
by the framework and used to model the correlation function. As an alternative to
the Argonne v18, the Reid 68 and its next iteration, Reid 93, are considered [32, 33].
The main difference between the two is the addition of the 1D2 partial wave. This can
be seen from the phase shifts computed by CATS and displayed in figure 6.1b. The
phase shift of the Reid 68 potential in the 1D2 partial wave in yellow is zero. Another
difference is the resulting phase shift of the 3P2 wave, which for Reid 68 tends towards
a negative value in contrast to the very similar positive curve that the Argonne and
Reid 93 potentials take. Given that the partial waves and phase shifts of Argonne v18

and Reid 93 are very similar, the resulting fit is expected to be of similar character. The
radial partial waves are shown in figure 6.2.

In order to compare the quality of the fits between the different potentials, the
baseline is fitted individually in the region of k∗ ∈ [0, 280] MeV/c for a single mT

and multiplicity. The resulting coefficients are then used to fix the baseline within
the fit of the model to the correlation function. The only free-fit parameters are the
normalization and the size of the source function, which in all cases is a Gaussian
profile. The resulting width of the distribution is later used to compare the size of the
particle emitting source.
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6.3 Systematic Uncertainties

The statistical and systematic uncertainties of the source sizes by means of fitting the
correlation functions are obtained in a bootstrapping approach. The main idea is to
use random sampling of the data combined with systematic variations to obtain an
estimate for the total error. The square of the total can be computed as the square sum
of the statistical and systematic

σ2
total = σ2

stat + σ2
syst , (6.1)

where it is assumed that they are independent of each other. Sampling the correlation
function alone without any systematic variations, allows to get a distribution for the
fits that should reproduce the statistical fluctuations. This allows to get the systematic
uncertainty, which might be subject to some bias not considered, by subtracting the
statistical from the total

σsyst =
√

σ2
total − σ2

stat . (6.2)

6.3.1 Statistical Uncertainties

To compute the statistical uncertainty, the correlation function of a single mT interval for
a given multiplicity is sampled by taking the value of a bin in the histogram and using
its statistical uncertainty to generate a new value for it. Applying this to each bin of a
correlation function generates a new sample which is then fitted with the procedure
described in section 6.2 for any source or interaction. The distribution of source radii
generated from the individual fits follows a normal distribution as it is expected to
have as a mean the true value and the width represent the statistical fluctuations from
the fitting procedure. As such, the width of the resulting distribution is taken as the
statistical uncertainty.

6.3.2 Total Uncertainties

Generating the total uncertainties of a sample is a more complicated endeavour as it
incorporates both fluctuations of statistical and systematic nature. The systematic intro-
duce a non-statistical bias that originates from the fitting procedure, the reconstruction
of the data, or any other source which might not even be considered. As explained
earlier, the total uncertainty is used as a proxy to obtain the systematic. For this, the
process to obtain the statistical error is combined with systematic variations to random
sample an estimate for the total.

To this end, two sources of systematic variations are introduced into the system. First,
the method to obtain the experimental data is varied itself by changing the parameters
that steer the particle identification and reconstruction, i.e. the selection criteria. The
second, is to change the settings of the fitting routine to introduce a bias that applies
equally to all performed fits.
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Systematic Variations of the Data

Starting with the variations of the selection criteria, these are only applied to the protons
and antiprotons due to the computational expense of generating the distributions. The
selection of the Λ (Λ) still require further improvement and, therefore, their variations
were neglected. The default values and the variations of the cuts are displayed in
table 6.4 and are combined with each other to generate a total of 45 distribution, of
which only those are accepted that are within 20 % of the pair yield in the range of
k∗ < 200 MeV/c. That amounts to 15 different variations of the data.

Variations of the selection criteria

Variable Default Variations

min pT (GeV/c) 0.5 0.45, 0.55
max |η| 0.8 0.77, 0.83
max nσ 3 2.5
max number of TPC clusters 80 70, 90
max number of shared TPC clusters 10 8, 12

Table 6.4: Variations of the selection criteria for the proton candidates.

Systematic Variations of the Fit

The variations of the fitting parameters are very similar for both systems and are shown
in table 6.5 for the p–p and p–p correlation functions, and in table 6.6 for the p–Λ and
p–Λ correlation functions. The first variable varied is the femtoscopic region where the
interaction is calculated; the default value is varied by ±40 MeV/c. The same amount
is used to modify the range for the fitting of the correlation function and allows to
capture more or less of the non-femtoscopic region, which introduces some bias into
the shape of the baseline. Additionally, the λ parameters of the genuine signal are
adjusted by ±5 % to counteract the bias from the template fits performed with the
general purpose dataset. This is implemented as a change to the genuine signal; the
amount removed from the genuine is added as a total percentage distributed between
the rest of the contributions. Lastly, for the RSM two further variations are applied.
First a ±10 % modification of the fraction of the resonances and another of the same
amount to the average mass of the resonances.

Bootstrapping

Finally, with all variations configured, the method to obtain the total uncertainty of the
fit is by random sampling. The aforementioned process for the statistical uncertainty is
combined with the variations to obtain a value for the total. To this end, all variations
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Variations of the proton fit parameters

Variable Default Variations

Femtostopic range (MeV/c) 280 240, 320
Fitting range (MeV/c) 400 360, 440
λ parameter Genuine +5 %, -5 %

Resonance Source Model

Resonance fraction 0.6422 +10 %, -10 %
Resonance mass (MeV/c) 1362 +10 %, -10 %

Table 6.5: Variations of the parameters for the fits of the p–p and p–p correlation
function.

of the experimental correlation function are merged and the resulting distribution is
used for the sampling. Next, the experimental correlation function is transformed,
analogous to the statistical process, by traversing the points and generating a new value
for each. The first sampling is performed from a normal distribution with its mean
set on the value of the point and its width equal to the statistical uncertainty of the
data. Thereafter, a uniform distribution is used around the obtained value to simulate
a systematic bias, which is expected to affect the correlation function uniformly. The
resulting correlation function is subsequently used as the input to be fitted, for which
the previously introduced fit variations are considered. The fitting procedure is then
repeated with random sampled correlation functions and randomly chosen variations
500 times to generate a distribution for the total uncertainty, which should account
for different biases from either the fit routine or the detection devices. The systematic
uncertainty is then calculated with eq. 6.2.
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Variations of the p–Λ fit parameters

Variable Default Variations

Femtostopic range (MeV/c) 400 360, 440
Fitting range (MeV/c) 400 360, 440
λ parameter Genuine +5 %, -5 %

Resonance Source Model

Resonance fraction 0.6438 +10 %, -10 %
Resonance mass (MeV/c) 1462 +10 %, -10 %

Table 6.6: Variations of the parameters for the fits of the p–Λ and p–Λ correlation
function.
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Figure 6.1: Phaseshifts of the Argonne v18, Reid93 and Reid68 potentials for the partial
waves 3P0 (a), 3P1 (b), 3P2 (c), 1S0 (d), 1D2 (e).
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Figure 6.2: Radial wave functions for a value of 20 MeV/c in k∗ of the Argonne v18,
Reid93 and Reid68 potentials for the partial waves 3P0 (a), 3P1 (b), 3P2 (c),
1S0 (d), 1D2 (e).
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7 Results

In this chapter the resulting fits to the correlation functions are shown and discussed.
Each set of fits corresponds to a simultaneous fit to the particle-particle pair and the
antiparticle-antiparticle pair for a given mT interval and multiplicity percentile. Only a
selection of the fits are shown here, due to the number of them performed; the rest can
nevertheless be found in the appendix.

As an example, figure 7.1 shows the combined fit to the p–p and p–p correlations
functions for the multiplicity percentile of 0 to 10 % in the mT interval of [1.02, 1.14).
The markers represent the experimental correlation function from the processed ALICE
data of pp collisions at an energy of

√
s = 13.6 TeV and are weighted with the mean

value of the mixed event distribution within the width of the bin. The weighting is
most prominent in the first bin as the shape of the mixed distribution changes the
most for the lowest k∗ values and results in a shifted marker off the centre of the
bin. The horizontal bars depict the width of the binning of the histogram and the
vertical bars the statistical uncertainty of the data; the width corresponds to a binning
of 8 MeV/c. The red boxes indicate the systematic uncertainty of the data from the
variations performed on the selection cuts of the particle candidates. The blue band
drawn alongside the data characterizes the fits performed, for which all variations of
the fitting procedure, as explained in the previous chapter, are plotted as a distribution;
its mean is consequently taken as the centre of the band. The distribution itself is, due
to the variations introducing a systematic bias, a uniform and therefore the size of the
band is obtained by taking its width divided by the square root of twelve. The baseline
used in combination with the model for the correlation function is drawn as well as a
gray band, for which the same method is used to obtain its width.

The lower panel displays the agreement of the fit to the data in nσ, i.e. number of
standard deviations. The value for each bin is obtained by calculating the difference of
the estimate of the fit to the data and weighting the result with the total uncertainty:

nσ =
Cdata(k∗)− Cfit(k∗)√

σ2
stat + σ2

syst

. (7.1)

The lower the value of the nσ the better the agreement. In general, as will be seen across
the performed fits, the value of the nσ tends to deviate from zero for the lower bins
due to the shape of the fit being dictated by the falling slope of the distribution when
going from the peak of the correlation function to larger values of k∗. Nevertheless, the
agreement after around 30 MeV/c improves significantly in spite of the decreasing size
of the uncertainties.

Additionally, a zoomed in version of the correlation function and the fit for the p–p
and p–p systems is drawn over the histogram in the range of around [55, 165] MeV/c
to show more detail about the captured shape of the distribution by the fit.
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7.1 The p–p correlation function

The fits to the p–p and p–p correlation functions are shown in the appendix (chapter 9).
As already described, an example fit is presented in figure 7.1 from which the most
prominent difference between the two systems is revealed. The correlations between
antiprotons is consistently larger than for the protons over multiplicity percentiles and
the lower mT intervals. For higher mT the difference decreases and the strength is
similar, which can be seen by comparing figure 9.1 that shows the fits for the first mT

interval, and figure 9.7 for the last mT interval.
The features of the p–p and p–p systems that can be distinguished are a drop of the

correlations for k∗ → 0 MeV/c and a peak at around 20 MeV/c. The pit for 0 MeV/c
is due to Pauli blocking of the identical particles and a repulsive core from the strong
interaction. Given that as fermions they cannot inhabit the same state, the correlation
function goes to 0 as the repulsion will deprive the region from any correlations. The
peak is due to the attractive force of the strong interaction that draws pairs closer in
phase space and thus creates a higher density in the same-event pair distribution.

Afterwards, the correlation function falls below unity for 80 < k∗ < 100 MeV/c due
to the interplay of strong interaction and the repulsive Coulomb interaction between
the two same-charged particles. Finally, the function goes to unity and no further final
state interactions take place.

Figure 7.1: Simultaneous fits with the Argonne v18 potential to the p–p and p–p corre-
lation functions in the mT range of [1.02, 1.14) for the multiplicity percentile
of 0 to 10 %.

Comparing the multiplicity percentiles of a single mT interval reveals that the magni-
tude of the correlations increases alongside the percentile, i.e. as the number of particles
in a collision decreases. This effect is larger for the p–p most likely due to the already
larger initial magnitude of the function.

Increasing the average mT affects the correlations in a similar fashion, as its strength
increases. This results in a steeper and narrower distribution which when fitted with a
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Gaussian source returns a smaller value for its width. Within a multiplicity percentile,
the size shrinks in such manner that a scaling can be perceived as an exponential
decrease. More about this in the later section 7.3 about the mT scaling.

As a final remark, the correlation function for larger values of mT and multiplicity
percentile is influenced by statistical fluctuations and therefore low statistics that result
in a sporadic value for the first bin of the function. Moreover, the distributions of the
two highest mT intervals, [1.56, 1.86) and [1.86, 2.40) GeV/c, are all missing the first bin
between 0 and 8 MeV/c due to the small statistics in this region.

Fitting with the RSM

Similar to the previous fits with a Gaussian source, the fits with the RSM and the
Argonne v18 potential are characterized by the same features. The quality of the fits,
which can be seen in figure 9.8, is similar but the secret lies within the source. As
explained in section 5.4, due to the consideration of resonances feeding into the particles
of interest, i.e. protons or antiprotons, the underlying source function is of smaller
nature. The resonances broaden the distribution and generate a tail. Therefore, the core
distribution from where the primordial particles are emitted is smaller. The trend of
decreasing size still prevails for increasing mT and smaller event multiplicity and thus
it is expected for a scaling of similar exponential decrease but shifted to lower values.

7.2 The p–Λ correlation function

The fits to the p–Λ and p–Λ correlation functions are shown in the appendix (chapter 9).
As an example, figure 7.2 shows the simultaneous fit for the multiplicity percentile of
0 to 10 % in the mT interval of [1.08, 1.26) MeV/c. Unlike protons, the p–Λ and p–Λ
pairs do not experience from Pauli blocking and thus the mixed-event distribution is
not drained from its entries in the lower k∗ region. The correlation function therefore
reaches its peak value for k∗ → 0 MeV/c. An additional difference to the previous
system is the lack of Coulomb interaction because of the neutral charge of the Λ (Λ)
particle; the correlation function should not dip below unity. Unfortunately, the unique
feature of the p–Λ and p–Λ correlation function, the cusp from the couple-channel
dynamics, is not very pronounced in the experimental data due to the large bin width
of 10 MeV/c. Nevertheless, the expected behaviour is displayed in the theoretical
estimation of the fit.

The experimental correlation function, similar to the protons, suffers from a lack
of statistics in the first bin, given that many of the partitions in mT and multiplicity
percentile are unstable in it and result in an unpredictable value. The fit however is
once again dictated by the slope of the function and is thus resilient to this volatility.

Comparing the fits for a single mT interval in the different multiplicities, e.g. figure
9.16, the shape of the function does not change as much as the protons. There is a slight
increase which corresponds to a smaller width of the source function, and thus results
in a systematic decrease of the source across the three percentiles.

Unfortunately, the increase of the mT interval does not result in a smooth exponential
decrease due to some unexpected properties of the experimental data. The two central
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bins in mT, [1.32, 1.44) and [1.44, 1.64) MeV/c, are affected by some contamination that
elevates the distributions from their expected value of unity in the k∗ region above
120 MeV/c. From the comparison of figure 9.16 and figure 9.18, a difference of up to
0.3 of units for the baseline can be observed for the lowest k∗ values.

Figure 7.2: Simultaneous fits with the NLO19 potential to the p–Λ and p–Λ correlation
functions in the mT range of [1.08, 1.26) for the multiplicity percentile of
0 to 10 %.

7.3 The mT Scaling

After many fits and much work, the size of the source function for all mT intervals and
multiplicity percentiles can be graphed. Figure 7.3 shows the scaling that occurs from
plotting the size of the p–p and p–p source at the weighted mT value within an interval;
the weight is calculated by considering the density of the pT distribution. The values
themselves are displayed in table 7.1. Three distinct scalings can be distinguished from
the Run 3 data for either source and correspond to the three multiplicity percentiles.
The gray markers denote the scaling from the Run 2 high-multiplicity analysis, which
corresponds to a percentile of the 0 to 0.017 % highest multiplicity events with an
average charged track multiplicity at mid-pseudorapitity of ⟨dN/dη⟩|η|<0.5 ≈ 30 tracks.
Underneath the scaling for the 0 to 10 % percentile of the Run 3 data can be found,
which is marked by the red systematic uncertainties and translates to an average
charged track multiplicity of ⟨dN/dη⟩|η|<0.5 = 25.12+0.25

−0.19. The middle percentile,
10 to 50 %, is associated with the green systematic uncertainties in the plot and a value
of ⟨dN/dη⟩|η|<0.5 = 16.48+0.15

−0.11 charged tracks. The last, 50 to 100 %, is displayed with
blue uncertainties and matches an average value of ⟨dN/dη⟩|η|<0.5 = 12.33+0.07

−0.05. The
scalings follow a distinct order related to their multiplicity. The higher the multiplicity,
the larger the volume of the particle emission, thus leading to an increase in inter-
particle distances. Similarly, the bigger the transverse mass, the larger the average
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inter-particle momentum and thus an earlier departure from the region of emission
which in turns reduces its size. As a last remark, the largest mT interval appears to
reach a value for which all multiplicity percentiles saturate and hint at the fact that the
region of particle emission has a lower limit for its size due to the finite dimensions of
particles.

Source sizes of the p–p and p–p fits

Effective Core

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.02, 1.14) 1.315(25) 1.212(26) 1.135(24) 1.126(25) 1.026(24) 0.951(23)
[1.14, 1.20) 1.269(25) 1.168(24) 1.078(24) 1.083(24) 0.985(24) 0.895(24)
[1.20, 1.26) 1.186(24) 1.101(22) 1.005(25) 1.002(23) 0.919(22) 0.824(25)
[1.26, 1.38) 1.146(24) 1.078(23) 1.008(24) 0.963(23) 0.896(22) 0.828(23)
[1.38, 1.56) 1.098(24) 1.034(22) 0.975(25) 0.915(23) 0.852(22) 0.794(24)
[1.56, 1.86) 1.026(23) 0.969(23) 0.914(30) 0.844(23) 0.776(23) 0.727(30)
[1.86, 2.40) 0.862(24) 0.815(25) 0.801(48) 0.680(24) 0.627(26) 0.601(57)

Table 7.1: Source sizes for the Gaussian and RSM source of the p–p and p–p fits with
the Argonne v18 potential.

Source sizes of the p–Λ and p–Λ fits

Effective Core

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.08, 1.26) 1.573(3) 1.499(4) 1.468(4) 1.411(4) 1.335(14) 1.298(4)
[1.26, 1.32) 1.287(6) 1.207(4) 1.130(17) 1.115(5) 1.033(3) 0.949(18)
[1.32, 1.44) 1.061(43) 0.975(51) 0.879(40) 0.898(43) 0.807(46) 0.724(27)
[1.44, 1.65) 1.451(38) 1.444(42) 1.503(43) 1.297(40) 1.288(42) 1.351(44)
[1.65, 1.90) 1.146(5) 1.098(11) 1.098(12) 0.979(4) 0.932(12) 0.928(12)
[1.90, 4.50) 1.096(21) 1.072(11) 1.116(30) 0.936(24) 0.909(12) 0.954(31)

Table 7.2: Source sizes for the Gaussian and RSM source of the p–Λ and p–Λ fits with
the NLO19 potential.

From measurements of the common baryonic source it is known that it follows a
decreasing exponential function [27]. The p–p Run 2 scaling is included in the afore-
mentioned source and displayed in the lower panel of figure 7.3 again marked by gray
coloured uncertainties. For that reason a future improvement of the here presented
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scalings could be the study of the dependence of the individuals as a parametrization
by an exponential function. Nevertheless, the obtained scalings include a slight dip in
the third bin. This imperfection might be due to the interval being associated with the
switch in particle identification from TPC only to TPC and TOF, thus losing statistics
from the unmatched tracks of the TPC in the TOF. Both the Gaussian source and the
RSM source follow the same tendencies in all bins but are shifted by ≈ 0.05 fm each
scaling from the preceding in percentile.

For the p–Λ and p–Λ the previously mentioned issue with the two middle mT

intervals becomes apparent when comparing the values in table 7.2 and figure 7.4.
Once more the gray markers denote the Run 2 high-multiplicity scaling and the Run
3 scalings are denoted by the same colour scheme as for the proton pairs. For the
Run 3 scalings, the third bin is consistently lower than expected as it lies beneath the
fifth. The reverse applies for the fourth bin as it consistently lies above the second. As
previously mentioned, this is due to the contamination in the two mT intervals and
affects them, due to the interplay of source and interaction, in such sporadic manner.
Regardless, all bins fluctuate around the Run 2 scaling and, while there is a clear
order of the sizes from different multiplicities, the overall result cannot be said to be
conclusive as it is evidently; the multiplicity of the Run 2 data is larger and thus its
scaling should consistently be larger than the rest. One of the reasons for this could
be the λ parameters as they were taken from the Run 2 analysis and therefore should
not be representative for the Run 3 feed-down contributions. Moreover, the genuine
contribution is likely to be overestimated. A computation of the λ parameters from
template fits and the calculation of them as a function of k∗ should allow for a more
correct extraction of the source sizes. Additionally, stricter selection cuts could mitigate
the contamination in the middle bins and result in a scaling similar to that of Run 2.

7.4 Reid Potentials

As a final remark, a comparison of the p–p and p–p correlation function fits is shown
in here for the Argonne v18, Reid68, and Reid93 potentials. To this end, the prior
introduced routine for fitting is redone with a fixed baseline, fitted beforehand. This
allows to have equal terms for all models. The result of this procedure is shown in
table 7.3 for the Argonne v18 and in table 7.4 for the Reid potentials.

Fitting the baseline first and later the correlation functions for the Argonne potential
results in a difference of ≈ 1 % for the radii. The pre-fitted is consistently smaller
than the free-fit baseline fit. Comparing this to the Reid93 potential yields a smaller
difference, as they consistently lie within the uncertainties. The Reid68 potential on the
other hand, is systematically above the other two. This is within expectation due to the
missing 1D3 partial wave and the different phase shift in the 3P2 wave, as explained
in chapter 6.2.2, which results in a weaker attractive force for the strong interaction,
and thus, an inability to reach the peak of the correlation function. This can also be
observed in figure 7.5, where the pre-fitted baseline fit with the Argonne v18 potential
is displayed alongside the fit with the Reid93 potential in the left panel, and with the
Rei68 on the right. While the former is almost indistinguishable, as both fits lie on top

48



7 Results

of each other, the latter is made out of two separate bands: Argonne v18 in blue and
below Rei68 in red. The baseline obtains a small constant shift due to the normalization
N being a common variable for both model and baseline. Nevertheless, the difference
is substantial.

Figure 7.5: Simultaneous fits with the Argonne v18 potential to the p–p and p–p corre-
lation functions in the mT range of [1.20, 1.26) for the multiplicity percentile
of 0 to 10 %.

Source sizes of the Argonne v18 potential

Effective Core

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.02, 1.14) 1.273(24) 1.166(24) 1.109(23) 1.085(23) 0.981(23) 0.926(23)
[1.14, 1.20) 1.233(23) 1.135(23) 1.032(23) 1.048(22) 0.952(22) 0.849(23)
[1.20, 1.26) 1.164(23) 1.084(21) 0.983(22) 0.948(22) 0.904(20) 0.803(22)
[1.26, 1.38) 1.122(21) 1.052(21) 0.971(21) 0.940(21) 0.872(20) 0.794(21)
[1.38, 1.56) 1.068(22) 1.004(20) 0.949(23) 0.887(21) 0.824(20) 0.770(23)
[1.56, 1.86) 1.002(22) 0.922(21) 0.874(26) 0.821(21) 0.741(21) 0.686(27)
[1.86, 2.40) 0.828(23) 0.758(25) 0.667(72) 0.645(25) 0.565(30) 0.461(54)

Table 7.3: Source sizes for the Gaussian and RSM source of the p–p and p–p fits with
the Argonne v18 potential and a pre-fitted baseline.
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Source sizes for the Reid potentials

Reid93 Reid68

mT [GeV/c] 0 - 10% 10 - 50% 50 - 100% 0 - 10% 10 - 50% 50 - 100%

[1.02, 1.14) 1.276(24) 1.169(24) 1.111(23) 1.332(23) 1.228(23) 1.177(22)
[1.14, 1.20) 1.237(24) 1.139(23) 1.035(23) 1.300(23) 1.205(22) 1.103(23)
[1.20, 1.26) 1.170(23) 1.088(20) 0.988(22) 1.261(26) 1.177(24) 1.069(25)
[1.26, 1.38) 1.126(21) 1.055(21) 0.976(20) 1.212(24) 1.142(23) 1.063(28)
[1.38, 1.56) 1.071(22) 1.006(21) 0.950(23) 1.157(24) 1.095(22) 1.043(26)
[1.56, 1.86) 1.005(22) 0.925(21) 0.877(26) 1.089(23) 1.009(23) 0.958(29)
[1.86, 2.40) 0.832(23) 0.762(26) 0.686(82) 0.909(24) 0.836(25) 0.641(79)

Table 7.4: Source sizes for the Gaussian source of the p–p and p–p fits with the Reid93
and Reid68 potentials and a pre-fitted baseline.
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Figure 7.3: The p–p mT scaling for the effective Gaussian source (top panel) and the core
RSM source (bottom panel) separated into the three multiplicity percentiles.
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Figure 7.4: The p–Λ mT scaling for the effective Gaussian source (top panel) and the core
RSM source (bottom panel) separated into the three multiplicity percentiles.
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8 Summary and Outlook

In this work the correlation function and, specifically, the particle emitting source
was analysed differentially in transverse mass and event multiplicity. This was made
possible by the large statistics obtained in the Run 3 data-taking period of the LHC.
The continuous readout of the upgraded ALICE detector allowed for unprecedented
precision, which was made accessible by the O2 Project and the FemtoDream framework.
The conclusion of which were the partition of the same-event and mixed-event pair
distributions in multiple multiplicity percentiles. A further split was included in the
form of mT intervals. A total of seven bins for the p–p and p–p system and six for the
p–Λ and p–Λ which resulted in distinct mT scalings for the size of the source; one for
each multiplicity class. The pair distributions for the p–p and p–p correlation functions
were well selected and the fitting worked as intended, which was performed as a
simultaneous fit to both systems. To this end, the resonance feed-down contributions
were controlled by template Monte Carlo fits to the two-dimensional DCA distribution.
Combined with the purity of the particles, k∗ dependent λ parameters were obtained
and used to weight the individual contributions. Additionally, the RSM was used to
examine the size of the core particle emitting source from where primordial particles
originate. In this context it was shown that the mT scaling follows a clear order
dependent on the average charged-track multiplicity and saturate for larger values of
mT due to the finite size of particles.

Unfortunately, the p–Λ and p–Λ were plagued by an unconstrained background
contamination and thus the resulting scaling was not smooth. For future reference,
an improvement on the selection cuts might help mitigate the contamination and the
acquisition of purpose-built Monte Carlo simulations could be used to compute k∗

dependent λ parameters for the Λ and Λ particles. Furthermore, a sideband analysis
could additionally help mitigate the background. Those improvements could then be
used to analyse the core source distribution of the system and compare it to the protons
to investigate the and extend the common mT scaling of the source.

Lastly, from the comparison of the fits with different potentials it was made apparent
that interactions modelled by other potentials can be compatible with the typically
used Argonne ν18 potential. Accordingly, including those as a variation to the fitting
procedure could be used in future studies to better compute the total and systematic
uncertainty.
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Figure 9.1: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.02, 1.14) GeV/c2.
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Figure 9.2: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.14, 1.20) GeV/c2.
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Figure 9.3: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.20, 1.26) GeV/c2.
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Figure 9.4: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.26, 1.38) GeV/c2.
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Figure 9.5: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.38, 1.56) GeV/c2.
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Figure 9.6: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.56, 1.86) GeV/c2.
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9 Appendix

Figure 9.7: Simultaneous fits to the p–p and p–p correlation functions with the Argonne
v18 potential in the mT range of [1.86, 2.40) GeV/c2.
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9 Appendix

Figure 9.8: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.02, 1.14) GeV/c2.
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9 Appendix

Figure 9.9: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.14, 1.20) GeV/c2.
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Figure 9.10: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.20, 1.26) GeV/c2.
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Figure 9.11: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.26, 1.38) GeV/c2.
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Figure 9.12: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.38, 1.56) GeV/c2.
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Figure 9.13: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.56, 1.86) GeV/c2.
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9 Appendix

Figure 9.14: Simultaneous fits to the p–p and p–p correlation functions with the RSM
and the Argonne v18 potential in the mT range of [1.86, 2.40) GeV/c2.
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9 Appendix

Figure 9.15: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.08, 1.26) GeV/c2.
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9 Appendix

Figure 9.16: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.26, 1.32) GeV/c2.
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9 Appendix

Figure 9.17: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.32, 1.44) GeV/c2.

71



9 Appendix

Figure 9.18: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.44, 1.65) GeV/c2.
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9 Appendix

Figure 9.19: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.65, 1.90) GeV/c2.

73



9 Appendix

Figure 9.20: Simultaneous fits to the p–Λ and p–Λ correlation functions with the NLO19
potential in the mT range of [1.90, 4.50) GeV/c2.
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9 Appendix

Figure 9.21: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.08, 1.26) GeV/c2.
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9 Appendix

Figure 9.22: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.26, 1.32) GeV/c2.
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9 Appendix

Figure 9.23: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.32, 1.44) GeV/c2.
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9 Appendix

Figure 9.24: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.44, 1.65) GeV/c2.
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9 Appendix

Figure 9.25: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.65, 1.90) GeV/c2.
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9 Appendix

Figure 9.26: Simultaneous fits to the p–Λ and p–Λ correlation functions with the RSM
and the NLO19 potential in the mT range of [1.90, 4.50) GeV/c2.
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9 Appendix

Figure 9.27: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.02, 1.14) GeV/c2.

81



9 Appendix

Figure 9.28: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.14, 1.20) GeV/c2.
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9 Appendix

Figure 9.29: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.20, 1.26) GeV/c2.
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Figure 9.30: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.26, 1.38) GeV/c2.
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9 Appendix

Figure 9.31: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.38, 1.56) GeV/c2.
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9 Appendix

Figure 9.32: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.56, 1.86) GeV/c2.
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9 Appendix

Figure 9.33: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid93 potential in the mT range of
[1.86, 2.40) GeV/c2.
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9 Appendix

Figure 9.34: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.02, 1.14) GeV/c2.
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9 Appendix

Figure 9.35: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.14, 1.20) GeV/c2.
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9 Appendix

Figure 9.36: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.20, 1.26) GeV/c2.
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9 Appendix

Figure 9.37: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.26, 1.38) GeV/c2.

91



9 Appendix

Figure 9.38: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.38, 1.56) GeV/c2.
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9 Appendix

Figure 9.39: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.56, 1.86) GeV/c2.
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9 Appendix

Figure 9.40: Comparison of the simultaneous fits to the p–p and p–p correlation func-
tions with the Argonne v18 and the Reid68 potential in the mT range of
[1.86, 2.40) GeV/c2.
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