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Abstract

With the advent of large-scale, high-energy particle accelerators like the Relativistic Heavy
Ion Collider (RHIC) or the Large Hadron Collider (LHC), the study of ultrarelativistic
heavy-ion collisions became feasible. Such collisions are of particular interest, as they
produce an extreme state of matter of deconfined quarks and gluons, called the quark–
gluon plasma. This state of matter is characterized by the collective phenomena of the
produced particles and its behaviour resembles the properties of a perfect liquid. The
study of these collective phenomena are nowadays to a great extent built on the so-called
flow amplitudes vn and symmetry planes Ψn. Both of these quantities are used as two
distinct degrees of freedom in the Fourier series expansion, which is utilized to parametrize
the anisotropic distribution of azimuthal angles of the produced particles. While analysis
techniques for the flow amplitudes vn have advanced over the past years, the observables
used for measuring symmetry planes Ψn are often plagued by built-in biases.

After a short explanation of heavy-ion collisions and the phenomenon of anisotropic
flow as a transfer of anisotropy from coordinate to momentum space via thermalized
medium, this thesis discusses a recently developed analysis technique for the measurement
of symmetry plane correlations. This so-called Gaussian Estimator is shown to reduce
the bias present in the previous approaches, and thus providing a more precise technique
for the studies of symmetry plane correlations. In addition to that, a new conceptual
approach of utilizing cumulants of symmetry planes is presented as well.

Employing the newly developed Gaussian Estimator, the first experimental results of
symmetry plane correlations are presented for Pb–Pb collisions at

√
sNN = 2.76 TeV. The

data used in this analysis has been recorded by the ALICE experiment in 2010. With
simulated data from the HIJING Monte Carlo generator, it is shown that this analysis
technique is not biased by contributions from few particle correlations and is thus only
sensitive to the collective evolution of the system. In addition to this, a careful analy-
sis of systematic effects on the analysis is conducted. The final experimental results are
compared to state-of-the-art theoretical predictions for the initial coordinate space pro-
vided by the TRENTo model and for the momentum space obtained with iEBE-VISHNU.
Together with these predictions, an interpretation of the results in terms of linear and
non-linear response is given.
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Chapter 1

Introduction

1.1 The Standard Model
1Introduced in the 1970s, the Standard Model (SM) of particle physics is currently the
most successful model in describing the interaction of particles (despite missing gravity).
Its elementary constituents are the quarks, leptons and mediator particles (see Fig. 1.1).
The quarks and leptons are fermions with spin 1

2
. There exist six different leptons, which

Figure 1.1: Overview of the Standard Model of Particle Physics, taken from [2].

are classified by their charge Q and their leptonic number (the electron Le, muon Lµ and
tau Lτ number). The six flavours of quarks are classified by their charge Q as well as
their strangeness S, charm C, beauty B and truth T . In total, the fermions of the SM
are combined into three generations (also called families). Each generation consists of a

1Unless indicated otherwise, this section is based on [1].
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2 CHAPTER 1. INTRODUCTION

quark with charge 2
3
, a quark of charge −1

3
, a lepton with charge −1 and its corresponding

neutrino - a massless, uncharged lepton. As such, the first family consists of the up quark
u (charge 2

3
), the down quark d (charge −1

3
), the electron e (charge −1) and the electron

neutrino νe. In the same ordering, the second generation is made up of the charm quark
c, the strange quark s, the muon µ and the muon neutrino νµ, while the third generation
consists of the top quark t, the bottom quark b, the tau τ and the τ neutrino.

For each quark and lepton, there exists a corresponding antiparticle with a reversed
sign for the charge as well as for the leptonic number in case of leptons. Considering the
quarks, their respective antiparticles have opposite strangeness, charm, beauty and truth.
Therefore, the SM considers in total 12 different leptons as well as 12 different quarks.

The interactions of these particles are described via the exchange of the mediators,
which are bosons with spin 1. The photon γ is the mediator of the electromagnetic force,
while theW+,W− and Z0 bosons are the exchange particles for the weak interaction. The
strong force, which will be explained in more detail in Sec. 1.2, has the so-called gluons
g as carriers. Additionally, since its experimental discovery in 2012 by the CMS and
ATLAS Collaborations at CERN [3, 4], the in 1964 proposed Higgs boson H0 [5, 6, 7, 8]
has officially been confirmed as a part of the SM. This spin 0 particle, describes how all
the fundamental particles within the SM obtain their mass.

Despite its great successes, it is known that the SM is not complete. For instance,
gravity — which is one of the four fundamental forces — is not included in the SM. Other
phenomena that are not described by the SM are the neutrino oscillations (which can be
explained by a non-zero neutrino mass [1]) or the so-called Dark Matter, whose existence
is indirectly observed by the measurement of rotation curves of galaxies (see e.g. [9]).

1.2 Quantum chromodynamics
2Within the SM, the strong nuclear force is on its most fundamental level described
by quantum chromodynamics (QCD). The name “chromodynamics” is a reference to the
associated charge of the strong force — the so-called color. Quarks carry a single positive
color charge, which can take one of three possibilities (red, blue or green), while antiquarks
carry a single negative color, also called anticolor (anti-red, anti-blue or anti-green). As the
color is a conserved quantity in QCD, the gluons have to carry away the color difference
when a quark changes its color within a strong interaction. Therefore, gluons have to
carry both a color and an anticolor, and are as such bicolored.

Due to this non-zero color charge that the gluons carry, they can themselves interact
with other gluons and even form particles consisting purely of gluons, which are called
glueballs. A recent study [10] reported the discovery of the odderon - a exclusive three-
.gluon state that was predicted in 1973 [11].

In addition to the formation of glueballs, the gluon-gluon self-interactions have fur-
ther consequences for the strong interaction. Due to these, virtual gluon-loops can form
between the main interaction vertices of strongly interacting particles. This ultimately
leads to the running of the strong interaction constant αs, which was theoretically studied
in [13, 14, 15] and awarded the Nobel prize in 2004. It describes that αs is small (i.e. the
strong interaction is weak) at small separation distances R (or equivalently high energies)
and becomes stronger with increasing distance R (or at lower energies, see Fig. 1.2). This
phenomenon is called asymptotic freedom and it is contrary to the effects observed in the
electromagnetic interaction, which is described by quantum electrodynamics (QED). In

2Unless indicated otherwise, this section is based on [1].
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Figure 1.2: Strong coupling constant αs as a function of the energy scale Q, taken
from [12].

QED, virtual electron-positron loops lead to a screening effect of the charges and there-
fore to a depletion of the electromagnetic constant with rising distance. While virtual
quark–antiquark pairs lead to a similar depletion of αs with increasing distance due to
screening effects of the color, the described gluon loops drive αs up at the same time
and dominate the effect, leading to the increase of αs with increasing R. An additional
phenomenon associated with the strong force is the confinement, which describes that, in
nature, only color-neutral particles can be observed. As such, quarks can be found in ei-
ther a color-neutral quark–antiquark state, which is called a meson, or in a color-neutral
state of three quarks, a so-called baryon. Consequently, quarks can never be observed
isolated. These phenomena of the strong force are mathematically described by the QCD
Lagrangian density [16]

L = ψ̄i
(
iγµDµij −mδij

)
ψj −

1

4
FµναFµνα . (1.1)

Equation (1.1) contains the quark field ψi and the corresponding quark mass m as well
as Fµνα the field strength tensor of the gluons. Further, γµ denotes the Dirac matri-
ces, Dµ the covariant derivative and δij the Kronecker symbol. In this representa-
tion of the Lagrangian, natural units (~ = c = kB = 1) and the Minkowski metric
(gµν = diag(1,−1,−1,−1)) have been used.

As a last important phenomenon of the strong interaction stands the so-called chiral
symmetry restoration. The QCD Lagrangian in Eq. (1.1) is only invariant under chiral
symmetry transformation in the limit of massless quarks. However, due to the non-zero
mass of quarks, chiral symmetry is broken explicitly. Additionally, due to the presence
of quark-antiquark pairs in the QCD “vacuum” (also called qq̄ condensate), the ground
state of the QCD Lagrangian breaks the chiral symmetry as well. This is referred to as
the dynamic breaking [17]. The chiral symmetry can, however, be restored in very hot (or
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dense) environments [18], such as the quark–gluon plasma (QGP), which will be described
in more details in the next section.

1.3 Quark–gluon plasma

The running of the strong coupling constant αs is the key phenomenon behind many im-
portant properties of strongly interacting matter. In 1978, Edward Shuryak [19] theorised
that there might exist an environment, in which the asymptotic freedom of the quarks
allows a state of matter consisting of deconfined quarks and gluons. This state of matter
was then called the quark–gluon plasma. The QGP has already been of huge interest as
many people suggested the presence of a deconfined phase of quarks and gluons inside
a neutron star [20] due to the high densities inside the core. Besides that, the QGP is
expected to be one of the initial stages of matter a few microseconds after the Big Bang,
thus playing a key role in the physics and evolution of the Early Universe [21, 22]. Lastly,
as it has been shown in Sec. 1.2, in very hot environments, the restoration of chiral sym-
metry is expected which additionally contributes to the interest of the physics community
in the QGP [23].

As depicted in Fig. 1.3, this state of matter exists at very high temperatures and/or
high baryonic densities. In fact, a study of the MIT Bag Model [24] showed that the
pressure of the qq̄ condensate, which is attributed to the confinement of quarks, can be
overcome at a temperature of around 144 MeV [25]. At this point, the model predicts
the existence of a gas of deconfined quarks. This is supported by recent lattice QCD
calculations, which predict the occurrence of QGP at T = (154±9) MeV for low baryonic
densities µ ≈ 0 [26]. Most notably, the knowledge about the QGP has changed over
the years. In the first years after its proposal, it was suspected that the QGP behaves
like a gas, i.e. its constituents interact only weakly with each other. However, with the
emergence of the first large scale hadron colliders like the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC), the experimental study of ultrarelativistic
heavy-ion collisions became accessible. In such collisions, temperatures of about 300 MeV
(for Pb–Pb at

√
sNN of 2.76 TeV in 0-20% centrality) [27] are reached at low baryonic

densities. A more detailed description of heavy-ion collision is provided in Sec. 1.4. The
obtained experimental results show that the QGP does not behave like a gas, but rather
like a strongly coupled fluid. In fact, it was found that the shear-viscosity of entropy den-
sity η/s of the QGP is extremely close to the universal lower boundary of 1/4π provided
in [28]. Thus, the QGP is found to be the most perfect fluid known so far.
Despite the various successes in the research about the QGP over the past years, many
open questions remain. For example, the exact place of the phase transition within the
phase diagram is yet to be determined, as is the existence of a critical point. Furthermore,
the properties of the transition — whether it is a smooth crossover or for example a first
order phase transition — are left unanswered as well. Programs like the beam energy
scan at RHIC [30, 31], the study of heavy-ion collisions and collisions of lighter nuclei
like xenon, or the planned oxygen-oxygen collisions [32] at the LHC try to provide new
insights into these questions. In addition to the study of the QGP in new collision systems
and at different collision energies, the development of new experimental observables is of
greatest importance. The comparison of new experimental data to model predictions of
the initial and final state of a heavy-ion collision can provide new important and indepen-
dent information on the properties of the QGP. Additionally, these new observables can
be used as an input to Bayesian analyses to constraint the properties of the QGP.
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Figure 1.3: Sketch of the QCD phase diagram as a function of the system temperature
and the baryon chemical potential, taken from [29].

1.4 Heavy-ion collisions

As described in Sec. 1.3 and shown in Fig. 1.3, the QGP is supposed to form at very large
temperatures and low baryon densities. Such a condition can be experimentally produced
in particle accelerators by the collision of ultrarelativistic heavy ions. These high-energy
collisions, such as Pb–Pb at a centre of mass per nucleon pair

√
sNN of 2.76 TeV at the

LHC, reach effective temperatures of about 300 MeV [27]. In the collision process, the
nucleons that collide with each other are destroyed and form the QGP, while the remaining
fragments of the nuclei fly away fast from the point of collision. This results in a system
with low baryon density.

To describe such a collision of two heavy ions, two main aspects have to be taken into
account as both have a crucial influence on the measured signals: The geometry of the
initial stage as well as the time evolution of the system. A schematic description of the
basic collision geometry and its relevant quantities is provided in Fig. 1.4. There, the
beam axis along which the two heavy ions travel is referred to as z. The vector pointing
from the centre of one nucleus to the other in the plane transverse to the beam axis is
referred to as the impact parameter vector ~b [33]. The magnitude of ~b is called the impact
parameter b and it determines how much the two colliding nuclei overlap. Collisions with
b = 0 are called head-on. Events with small impact parameter are in general referred to
as central, while collisions with large impact parameter (i.e. the nuclei only have small
overlapping region) are called peripheral.

Experimentally, the impact parameter is not accessible. However, it is related to the
amount of produced particles in the event, also called the multiplicity. In general, the
multiplicity of head-on collisions is much greater than it is for peripheral collisions. Ex-
periments thus classify events by the so-called centrality c, where for instance a centrality
of 5% stands for the 5% of events with the highest multiplicities (see Fig. 1.5). Using
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Figure 1.4: Sketch of the basic collision geometry of two heavy ions in the transverse
plane perpendicular to the beam axis z. The impact parameter b and the reaction plane
angle ΨRP fully describe the basic geometry.

the total inelastic nucleus-nucleus cross-section σinel, an approximate relation between the
centrality c and the impact parameter b is given by [34]

c ≈ πb2

σinel
. (1.2)

The impact parameter vector spans together with the beam axis the so-called reaction
plane, whose orientation in respect to the x-z plane of the laboratory frame is characterised
by the reaction plane angle ΨRP [33]. The nucleons that collide with each other (i.e.
nucleons within the green ellipse in Fig. 1.4) are referred to as participants, while nucleons
which do not undergo any collision are called spectators.

The orientation of the impact parameter vector ~b and thus ΨRP fluctuate randomly
in each event. In theoretical studies this is not of any concern, as most models provide
a notion of ΨRP or fix this angle within the model to a specific value. Experimentally
however, the reaction plane angle is (like the impact parameter) not directly accessible and
can therefore not be easily accounted for [33]. Therefore, any experimental observables
that involve the azimuthal angle ϕ of emitted particles has to be rotationally invariant
under a random shift by ΨRP . The importance of this will be explained in more detail in
Sec. 2.2.
Besides this basic geometrical description of the collision, one has to take into account

that the colliding nuclei are built out of protons and neutrons. As such, the overlapping
region of heavy-ion collisions is not perfectly elliptical as it is shown in Fig. 1.4. To
describe the initial geometry of the collision more realistically, one (at least) has to take
the nucleons within the nuclei and their fluctuating positions into account. Including this
leads to a more complex picture in which the initial geometry is not fully described by
an elliptic overlapping region. Additional shapes of higher order n > 2, whose orientation
with respect to the x − z plane are characterised by their participant plane Φn, have to
be taken into account (see Fig. 1.6) [33]. A more detailed description of these angles is
provided in Sec. 2.1.
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Figure 1.5: Exemplary normalized multiplicity distribution of heavy-ion collisions and the
categorisation by centrality, taken from [35].

�3
<latexit sha1_base64="h5OoZtFpOvEBovGnprKfz1TGZhk=">AAACGnicbVDLSsNAFJ3UV62vqks3g6XgqiStoCspuHFZwT6gDWUymbRjJzNh5kYoof/gVvFr3IlbN36NJm0WtvXAwOGce+/ce7xIcAO2/W0VNja3tneKu6W9/YPDo/LxSceoWFPWpkoo3fOIYYJL1gYOgvUizUjoCdb1JreZ331i2nAlH2AaMTckI8kDTgmkUmfQGvNhY1iu2DV7DrxOnJxUUI7WsPwz8BWNQyaBCmJM37EjcBOigVPBZqVBbFhE6ISMWD+lkoTMuMl82xmupoqPA6XTJwHP1b8dCQmNmYZeWhkSGJtVLxP/8/oxBNduwmUUA5N08VEQCwwKZ6fjpUGeJhMGS6sm2UhQSphZqepzzSiIKfY5oZqnh2E6JppQSNMspYk5q/msk0695jRq9fvLSvMmz66IztA5ukAOukJNdIdaqI0oekTP6AW9Wm/Wu/VhfS5KC1bec4qWYH39ArC9oUQ=</latexit>

�2
<latexit sha1_base64="zKR7R0zLU3w/o/IqQpkKp77XCnw=">AAACGnicbVDLSsNAFJ34rPFVdelmsBRclaQKupKCG5cV7APaUCaTSTt2MhNmboQS+g9uFb/Gnbh149do0mZhWw8MHM659869x48FN+A439ba+sbm1nZpx97d2z84LB8dt41KNGUtqoTSXZ8YJrhkLeAgWDfWjES+YB1/fJv7nSemDVfyASYx8yIylDzklEAmtfvNER/UB+WKU3NmwKvELUgFFWgOyj/9QNEkYhKoIMb0XCcGLyUaOBVsavcTw2JCx2TIehmVJGLGS2fbTnE1UwIcKp09CXim/u1ISWTMJPKzyojAyCx7ufif10sgvPZSLuMEmKTzj8JEYFA4Px0vDPI1GTNYWDXNR4JSwkztasA1oyAmOOCEap4dhumIaEIhS9POEnOX81kl7XrNvajV7y8rjZsiuxI6RWfoHLnoCjXQHWqiFqLoET2jF/RqvVnv1of1OS9ds4qeE7QA6+sXrwyhQw==</latexit>

Figure 1.6: Ellipticity and triangularity in the initial stage of a heavy-ion collision. Figure
obtained with the output of the MuPa Glauber model (see Sec. 3.1), inspired from [36].

There are various models which take such initial stage fluctuations into account with
different levels of complexity. One of the most commonly used initial stage models is the
Glauber model [37], which will be explained in greater detail in Sec. 3.1.

As explained before, besides the geometry of the initial collision, the time evolution of
the system plays a crucial role in the final state that can be experimentally observed. The
typical time evolution of a heavy-ion collision is depicted in Fig. 1.7. After the collision
of the two heavy ions, the system is shortly in an out of equilibrium state. Already in
this early stage, hard processes (which are characterized by large transferred momenta
Q > 10 GeV/c) can occur [38]. The particles resulting from these processes (e.g. hadronic
jets or direct photons) have energies and transverse momenta of the order of Q. With
the formation of the thermal equilibrium at a proper time τ ≈ 1 fm/c, the QGP phase
is reached and the system continues to expand [39]. This expansion can be described
by relativistic hydrodynamics as it was found in various studies [23, 40] by comparison
of theoretical predictions to experimental data. During the expansion, the system cools
down and at a time of about τ ≈ 10 fm/c [38] hadronization will start leading to a gas
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of hadrons. As the system still has a high temperature, the produced hadrons undergo
inelastic collisions. This goes on till the system cools down that much, that the point of
chemical freeze-out with a temperature Tchem is reached at τ ≈ 20 fm/c [38]. Then, any
inelastic collisions cease and the particle composition does not change further. However,
elastic collisions still occur leading to a momentum transfer between the particles. At
the point of kinematic (or thermal) freeze-out, which is characterized by the temperature
Tkin, the elastic processes stop and the produced particles travel freely to the detector.

Figure 1.7: Evolution of a heavy-ion collision in space-time diagram. The ions collide at
τ = 0 at a longitudinal position z = 0. Taken from [39].



Chapter 2

Flow

2.1 Anisotropic flow
Considering that the QGP is one of the earliest stages of a heavy-ion collision (see Sec. 1.4),
the question on how to infer on its properties from the finally measured particles inevitably
arises. Indeed, there are many physical phenomena to study the system properties such
as jet quenching [41, 42] or strangeness enhancement [43].

However, the focus here lies on the phenomenon of anisotropic flow. In non-central
heavy-ion collisions, the overlapping region and thus the initial energy distribution in coor-
dinate space is, to leading order, elliptical and as such anisotropic. This initial anisotropy
leads to anisotropic pressure gradients inside the medium if — and only if — the medium
thermalized, i.e. the QGP was formed. Thus, the coordinate space anisotropy is trans-
ferred into an anisotropy in momentum space. Consequently, the particles that stem
from the collision will have a non-uniform distribution in azimuthal angles (see Fig. 2.1).
Therefore, anisotropic flow can be investigated experimentally by studying those distri-
butions and one can infer on the properties of the QGP as it will be further explained in
this section.

2.1.1 Description of the initial state

In order to quantify the description of anisotropic flow given above, one traditionally
describes the anisotropy in coordinate space by the so-called eccentricities En

En = εne
inΦn , (2.1)

where εn is the magnitude of the nth order asymmetry and Φn the participant planes.
By definition, ε2 corresponds to the ellipticity, ε3 to the triangularity and so forth. The
participant planes provide the phase (or orientation) of these higher order asymmetries
(see Fig. 1.6). As it was briefly explained in Sec. 1.4, the fact that the colliding nuclei
are built of protons and neutrons with fluctuating positions consequently leads to the
emergence of eccentricities of higher orders. The most commonly used mathematical
definition of the eccentricities is given by [44]

En = εne
inΦn =

−
{r3einϕ}

r3
for n = 1

−{r
neinϕ}
rn

for n > 1
(2.2)

where r and ϕ are the transverse coordinates which are used in the average {· · · } =∫
rdrdϕe(r, ϕ) over the initial energy density distribution e(r, ϕ). An alternative approach

9
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(a) System with thermalized medium and anisotropic flow 

(b) System without anisotropic flow 
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(a) A system where the medium thermalized. The geometrical anisotropy translated into an
anisotropy in momentum space, resulting in an anisotropic distribution of azimuthal angles.

(a) System with thermalized medium and anisotropic flow 

(b) System without anisotropic flow 
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(b) A system with no thermalized medium and thus no anisotropic flow. The distribution of
azimuthal angles is flat.

Figure 2.1: Examples of a system in which flow did (a) and did not (b) evolve, inspired
by [16].

to characterise the initial state was first introduced by Teaney and Yan in [45] and studied
further in [46, 47]. This approach deviates from the traditional description of the initial
state via its moments, i.e. the eccentricities, but characterises it rather by the cumulants
of energy density. Here, these cumulants of energy density will be denoted by the complex
number Cn

Cn = cne
inφn , (2.3)

where cn is its magnitude and φn its phase, i.e. its participant plane. By slightly adjusting
the notation in [48], the first four complex cumulants of energy density can be expressed
as

C2 = c2e
i2φ2 = ε2e

i2Φ2

C3 = c3e
i2φ3 = ε3e

i3Φ3

C4 = c4e
i2φ4 = ε4e

i4Φ4 + 3

(
{r2}2

{r4}

)
ε22e

i4Φ2

C5 = c5e
i2φ5 = ε5e

i5Φ5 + 10

(
{r2}{r3}
{r5}

)
ε2ε3e

i2Φ2ei3Φ3 .

(2.4)

It becomes evident that C2 and C3 correspond to the eccentricity E2 and E3 respectively,
while for higher orders additional terms appear. Therefore, C4 has a non-linear contri-
bution from E2

2 and C5 from E2E3. The advantage of these cumulants of energy density
compared to the traditional eccentricities is that higher order eccentricities contain lower
order contributions, which are removed in the cumulants of energy density. For example,
using a Gaussian shape as the initial state, one would expect to only find ellipticity [45].
However, also a fourth order moment can be found in this case simply due to the residual
contribution of the ellipticity. This lower order contribution is removed in the cumulant
approach, therefore the fourth order asymmetry is zero.
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2.1.2 Description of the final state

On the other hand, the distribution of the final state is characterised by the so-called
flow amplitudes vn and symmetry planes Ψn, with again n referring to the order. Most
commonly, v1 is called directed flow, v2 elliptical flow, v3 triangular flow, etc. These final
state quantities can be combined into the complex flow harmonic Vn, which is defined as

Vn = vne
inΨn . (2.5)

Using the flow amplitudes and symmetry planes, one can describe the distribution of
particles in momentum space as [49]

E
d3N

d3p
=

d3N

pTdpTdηdϕ
=

1

2π

d2N

pTdpTdη

[
1 + 2

∞∑
n=1

vn(pT , η) cos [n (ϕ−Ψn)]

]
. (2.6)

Equation (2.6) represents the Lorentz-invariant distribution of particles where E is the
energy and p the three-momentum of the particles. As seen in Eq. (2.6), this distribution
can be rewritten in terms of the transverse momentum pT, the pseudorapidity η and
the azimuthal angle ϕ. Most notably, in Eq. (2.6) a Fourier series consisting of the flow
amplitudes and symmetry planes is used to describe the anisotropy in the transverse
plane, i.e. the anisotropy in the distribution of azimuthal angles dN/dϕ. In general, vn
depend on pT, η and the species of the particles. Therefore, vn(pT , η) is called nth order
differential flow [50, 51]. Considering the averaged value of vn over pT, η and particle
species, one generally speaks of nth order integrated flow [52], which will be denoted by vn.
As the integrated flow has no dependence on pT and η besides the integration boundaries,
the single event particle distribution simplifies into the Fourier series

dN
dϕ

=
M

2π

[
1 + 2

∞∑
n=1

vn cos [n (ϕ−Ψn)]

]
, (2.7)

which is a distribution purely for the azimuthal angle ϕ in the transverse plane. In
Eq. (2.7), M denotes the multiplicity of an event. Additionally it has to be stressed, that
the symmetry planes are rotationally invariant under the operation

Ψn → Ψn +
2π

n
, (2.8)

which becomes evident by the definition of the Ψn within the Fourier series Eq. (2.6)
itself. Most importantly, the described phenomenon of flow affects all particles, which
are emitted from the common source — the QGP — in an independent way. It is there-
fore a genuine multiparticle collective effect. Assuming that M final state particles are
emitted independently from the source and that there are no other correlations between
them, one can thus factorise the common multiparticle probability density function (p.d.f.)
f(ϕ1, ϕ2, ...ϕM) as

f(ϕ1, ϕ2, ...ϕM) = fϕ1(ϕ1)fϕ2(ϕ2)...fϕM (ϕM) . (2.9)

In the latter equation, fϕi(ϕi) stands for the single-particle p.d.f., which can be obtained by
proper normalisation of Eq. (2.7). This factorisation property in the context of anisotropic
flow will be exploited in Sec. 2.3 where the technical details of measuring flow are discussed.
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2.1.3 From initial to final state: linear and non-linear response

Given the description of eccentricities and flow harmonics above, the relation between
them is governed by the so-called linear and non-linear response. Considering a flow
harmonic Vn, it can be a general function of the eccentricities [44], i.e.

Vn = Vn(E , α) , (2.10)

where α contains the dynamic medium properties, for instance the shear viscosity over
entropy density η/s. In general, the response of Vn to the eccentricity of the same order
En is referred to as linear response, while the dependence of Vn to (a combination of)
lower order eccentricities is called non-linear response. As the exact form of the relation
between V and E is not known, an expansion of the form

Vn = κ(α)E +O(E2) + δn (2.11)

is made [44]. In Eq. (2.11), the complex number δn is introduced to capture additional
fluctuations and is by assumption not directly related to the initial state. The expansion in
Eq. (2.11) is justified if the involved En are small, which is generally satisfied in heavy-ion
collisions. Additionally, the different dependences of the eccentricities En on the medium
properties are accounted for by the introduction of the individual expansion coefficients
κ(α). As the flow harmonics Vn are rotationally invariant under the transformation

Ψn → Ψn +
2π

n
, (2.12)

the right side of the Eq. (2.11) has to be invariant under these transformations as well.
Thus, the allowed combinations of eccentricities E in the expansion are determined by this
transformation invariance, given that the expansion coefficients κ(α) are real numbers.
Therefore, one finds for the first flow harmonics up to the sixth order the following leading
order linear and non-linear responses [44]:

V2 = κ2E2 + κ′2ε
2
2E2 + δ2 ,

V3 = κ3E3 + κ′23ε
2
2E3 + δ3 ,

V4 = κ4E4 + κ422E2
2 + δ4 ,

V5 = κ5E5 + κ523E2E3 + δ5 ,

V6 = κ6E6 + κ633E2
3 + κ624E2E4 + κ6222E3

2 + δ6 .

(2.13)

It becomes evident that V2 and V3 exhibit only linear response while non-linear terms
appear only for harmonics n > 3.

In particular, it is possible that the initial state does not contain a higher order event
plane like Φ5, while the corresponding symmetry plane Ψ5 may exist due to the non-linear
response the Φ2 and Φ3.

Similar to the linear and non-linear response of the flow harmonics Vn to the eccen-
tricities E , the expansion can be performed on the cumulants of energy density Cn as it
is shown in [48]. The first four expressions for the leading terms in response are thus

V2 = ω2C2 ,

V3 = ω3C3 ,

V4 = ω4C4 + ω422C
2
2 ,

V5 = ω5C5 + ω523C2C3 ,

(2.14)

where the subleading contributions have been neglected. Again, V2 and V3 exhibit only
linear response to C2 and C3 while V4 and V5 have additional non-linear terms.
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2.2 From azimuthal angles to flow observables
As presented in Sec. 2.1, the central formalism, which is used to describe anisotropic flow
is the Fourier series Eq. (2.7). In fact, by proper normalisation this series can be seen
as a probability density function (p.d.f.) for the particle emission at a certain azimuthal
angle ϕ. For this section, this p.d.f. will be expressed as

f (ϕ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos [n (ϕ−Ψn)]

]
. (2.15)

Additionally, 〈· · ·〉 will be used to denote the single-event average, i.e. the average over
the azimuthal angles of the particles of interest in one given event. Furthermore, 〈〈· · ·〉〉
denotes the average over all events.

Using this notation in addition to Eq. (2.15), one can show the following relation (see
App. A.1 for details)

vn = 〈cos [n (ϕ−Ψn)]〉 . (2.16)

This result is, however, of limited importance as Ψn cannot be measured directly in the
experiment. One method traditionally used for estimating Ψn is the so-called event plane
method with

Ψn(EP ) =
1

n
arctan

(∑
iwi sin(nϕi)∑
iwi cos(nϕi)

)
, (2.17)

which was first introduced in [49]. In Eq. (2.17), the sum runs over the azimuthal angles
ϕ of all measured particles weighted with wi to optimize the experimental resolution.
Despite this, the event plane method cannot reliably estimate a single symmetry plane
Ψn within one event as the resolution is limited by the finite amount of final state par-
ticles. Additionally, the technique is affected by the event-by-event flow fluctuations,
and the strong dependence on the resolution limits the reproducibility between different
experiments as pointed out in [53].

The problem of estimating Ψn can be circumvented by applying the flow principle, i.e.
that all particles are emitted from the common source independently of each other. Using
this, one can introduce a 2-particle correlator 〈ein(ϕ1−ϕ2)〉, which evaluates the azimuthal
angles ϕ1 and ϕ2 of two particles relative to each other. In the single event average, which
takes all possible combinations between distinct particle pairs (see Sec. 2.3), one recovers
for the real part < of the 2-particle correlator the following relation

<
(
〈ein(ϕ1−ϕ2)〉

)
= <

(
〈ein(ϕ1−Ψn−ϕ2+Ψn)〉

)
= <

(
〈ein(ϕ1−Ψn)〉〈ein(ϕ2−Ψn)〉

)
= v2

n .

(2.18)

Note that in the short calculation above, the factorisation from the first to the second
line is justified by the flow principle. Further, it was exploited that the imaginary part of
〈ein(ϕ−Ψn)〉 is zero (see App. A.1). This result was generalized by Bhalerao et al. [54] to

〈k〉n1,n2,··· ,nk ≡
〈
ei(n1ϕ1+n2ϕ2+...+nkϕk)

〉
= vn1vn2 ...vnke

i(n1Ψn1+n2Ψn2+...+nkΨnk ) , (2.19)

which links a generic multiparticle correlator of k azimuthal angles to the flow ampli-
tudes vn and symmetry planes Ψn. In Eq. (2.19), {n1, · · · , nk} are the so-called flow
harmonics. Additionally, the notation 〈k〉n1,··· ,nk has been introduced for a k-particle
correlator with harmonics {n1, · · · , nk}. As such, by utilizing multiparticle azimuthal
correlation techniques, the symmetry planes Ψn are not needed any longer as an input for
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the measurement of flow amplitudes, but rather become a part of the experimental results
themselves. By proper choice of the flow harmonics, the symmetry planes cancel out on
the right-hand side of Eq. (2.19) such that it is possible to measure only flow amplitudes.
However, it is not possible to find a set of harmonics that result in an expression only for
the symmetry planes without any contribution of the flow amplitudes. Thus, one needs
to employ estimators for the measurement of symmetry planes as it is shown in Sec. 5.1.

At this point, one has to stress that for particle detectors, which cover the full trans-
verse plane (i.e. ϕ ∈ [0, 2π)), the flow harmonics {n1, · · · , nk} cannot be chosen arbitrarily.
They have to obey the isotropy condition [54]

n1 + · · ·+ nk = 0 . (2.20)

If this condition is violated, the multiparticle correlator of Eq. (2.19) will trivially lead to
zero when averaged over all events due to the randomness of the reaction plane. As an
example, consider the schematic representation of a few heavy-ion collisions in Fig. 2.2.
In this sketch, every heavy-ion collision is assumed to be perfectly identical with the only

Figure 2.2: Schematic representation of the event-by-event fluctuation of the reaction
plane ΨRP .

difference being the random orientation of the reaction plane ΨRP . As such, every distri-
bution of emitted particle relative to the corresponding reaction plane will be identical for
each of these collisions. However, as the laboratory frame does not shift correspondingly
to the fluctuation of the reaction planes, the truly measured distributions will be shifted
by the random phase ΨRP for each collision. As the physics of the collisions do not change,
any experimental observable has to be invariant under these random shifts of the reac-
tion plane. In case of the observables that are accessible by the multiparticle correlators
(Eq. (2.19)), this means that the left-hand side (and consequently the right-hand side)
has to be isotropic for the azimuthal angles ϕ and the symmetry planes Ψn such that any
shift

ϕ→ ϕ+ ΨRP , (2.21)
Ψn → Ψn + ΨRP , (2.22)

does not affect the observable. It thus becomes evident, that the isotropy condition must
not be violated, otherwise the all-event average will trivially lead to zero (see App. A.2
for exemplary calculation).
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2.3 Multiparticle correlation techniques
After introducing the connection between multiparticle correlators and the flow observ-
ables in the previous section, this part will focus on the evaluation of the correlators
themselves.

2.3.1 Single-event averages

At first, consider the introductory example of the 2-particle correlator

〈2〉n,−n = 〈ein(ϕ1−ϕ2)〉 . (2.23)

To evaluate the single-event average, one has to take all possible combinations of pairs of
particles, i.e.

〈2〉n,−n =
〈
ei(n(ϕ1−ϕ2))

〉
≡ 1

M(M − 1)

M∑
l1,l2=1
l1 6=l2

ei(n(ϕl1−ϕl2 )) .
(2.24)

In Eq. (2.24) it is assumed that the event consists of M particles. In addition, Eq. (2.24)
contains the important condition l1 6= l2. This prevents the presence of the so-called
autocorrelations where a particle is correlated to itself, i.e. ϕ1 = ϕ2 = ϕi. If not removed
properly, the autocorrelations will artificially add a 1 to the real part of the correlator
for each particle that is correlated to itself as ei(ϕi−ϕi) = 1. This results in a large bias
of the final result as flow amplitudes per definition are smaller than 1 (see App. A.3).
Generalised in [55], a k-particle correlator with a set of harmonics {n1, · · · , nk} can be
written as

〈k〉n1,n2,...,nk
≡
〈
ei(n1ϕl1+n2ϕl2+...+nkϕlk)

〉

≡

M∑
l1,l2,...lk=1
l1 6=l2 6=...6=lk

wl1wl2 · · · wlke
i(n1ϕl1+n2ϕl2+...+nkϕlk)

M∑
l1,l2,...lk=1
l1 6=l2 6=... 6=lk

wl1wl2 · · · wlk

≡
N 〈k〉n1,n2,...,nk

D 〈k〉n1,n2,...,nk

,

(2.25)

where the numerator of the k-particle correlator is denoted by N 〈k〉n1,n2,...,nk
and the

denominator by D 〈k〉n1,n2,...,nk
. Both are trivially related as the denominator can be

calculated by setting all harmonics to zero in the numerator expression, i.e.

D 〈k〉n1,n2,...,nk
= N 〈k〉0,0,...,0 . (2.26)

Most importantly, Eq. (2.25) properly removes autocorrelations with the condition l1 6=
l2 6= ... 6= lk. Additionally, particle weights wi have been introduced. These weights can
be used to correct for various detector inefficiencies (see Sec. 6.3). Thus, they can be set
up as the most general functions, e.g. with dependencies on pT , η or the particle species.

Finally, the question on how a k-particle correlator can be evaluated has to be an-
swered. An easy and straightforward approach would be the implementation of nested
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loops. This approach, however, is computationally very expensive as a k-particle corre-
lator needs k nested loops, which all run over the full event multiplicity M with proper
if -statements to avoid autocorrelations. A much more efficient way to compute the cor-
relator presented in Eq. (2.25) was first introduced in [55] and is called the Generic
Framework. The basis of this framework are the so-called Q-vectors

Qn =
M∑
j=1

einϕj , (2.27)

which were introduced in [56, 57]. The Q-vector in Eq. (2.27) can be computed by one
single loop over the set of azimuthal angles in a single event. Using this, one can rewrite
Eq.(2.24) as

〈2〉n,−n ≡
〈
ei(n(ϕ1−ϕ2))

〉
=

1

M(M − 1)

M∑
l1,l2=1
l1 6=l2

ei(n(ϕl1−ϕl2 ))

≡ 1

M(M − 1)

(
|Qn|2 −M

)
.

(2.28)

The advantage of using Q-vectors is evident directly from the 2-particle case provided
in Eq. (2.28). Instead of two loops over all particles, only one loop is needed for the
computation of the Q-vectors. The Generic Framework generalises this usage of Q-vectors
for any k-particle correlators. Firstly, particle weights are used for the Q-vectors, i.e.

Qn,p =
M∑
j=1

wpj e
inϕj . (2.29)

Additionally, an efficient algorithm is provided exploiting the recursive calculation of
higher order correlators from lower order ones. This is needed as the amount of terms per
k-particle correlators grows with the Bell sequence and as such, a direct implementation
of higher order correlators becomes difficult. In particular, only up to the sixth order the
hardcoded expressions for the multiparticle correlators evaluate faster than the recursive
algorithm [55].

2.3.2 All-event averages

Finally, after description of the single-event averages, the transition to the averages over
all events will be explained. In general, such an average over Nev events can be defined as

〈〈k〉〉 =

∑Nev Wi · 〈k〉i∑Nev Wi

(2.30)

where 〈k〉i are the results from the multiparticle correlator in one event and Wi the event
weights.

In the averaging over many events, one has to keep in mind that the multiplicity is a
fluctuating quantity. As such, a multiparticle correlator from one event is often calculated
with a different amount of particles than the one in another event. These event-by-event
multiplicity fluctuations have to be taken into account. In general, the statistical stability
of a multiparticle correlator increases with the event multiplicity [52]. As it was shown
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in [16], a unit weight in the all-event average can bias flow measurements with multiparticle
correlators and can lead to a larger statistical error if the multiplicity fluctuations are not
taken into account. This problem can be circumvented by averaging only events with
the same multiplicity with a unit weight and later rebin the obtained results [58]. An
alternative approach to this is based on the number of combinations [59] of creating k
tuples of particles in an event of multiplicity M . In particular, this method was shown to
reduce the statistical spread of the final observable after the all-event averaging [16]. In
the case where no particle weights have been used, the event weights of this method are
given for a 2-, 3- and 4-particle correlator by

W〈2〉 = M(M − 1) ,

W〈3〉 = M(M − 1)(M − 2) ,

W〈4〉 = M(M − 1)(M − 2)(M − 3) .

(2.31)

This can be generalised to the event weight of a k-particle correlator as

W〈k〉 =

(
M
k

)
k! . (2.32)

Should particle weights have been used, the corresponding event weights can be obtained
by the evaluation of the denominator in Eq. (2.25). In fact, the weights in Eqs. (2.31) are
easily obtained from the denominator of Eq. (2.25) in the case of unit particle weights.

2.4 Flow vs non-flow
In contrast to the previously defined phenomenon of flow, one categorises any kind of
few particle correlations which are not directly linked to the common source of emis-
sion, i.e. the QGP, as non-flow. Typical non-flow phenomena involve jet fragmentation,
interactions between final state particles or resonance decay. These effects violate the
independent emission of particles, and thus break the factorisation in Eq. (2.9). It is
therefore important to understand the contribution of non-flow phenomena in experi-
mental analyses. It is common to use a probabilistic approach to estimate the non-flow
contribution δk to a k-particle correlator as [58, 60]

δk ≈
1

Mk−1
. (2.33)

Consider the example in Fig. 2.3 which is composed of particles only genuinely correlated
by the source (i.e. flow) and a non-flow contribution stemming from a particle decaying
into four daughters. The probability to have purely the daughters in e.g. a 3-particle
correlator is thus given by

δ3 ∝
4

M

3

M − 1

2

M − 2
≈ 1

M3
(2.34)

where the prefactor of 4 accounts for the 4 possible combinatorial groups of having three
daughters together. The approximation on the right-hand side in Eq. (2.34) is justified
if the event multiplicity M is large, which is the case for heavy-ion collisions. It thus
becomes evident, that higher order correlators are less affected by non-flow even though
it has to be noted that they are statistically more demanding. Non-flow effects can at
least partially be reduced in the experiment by e.g. excluding high-pT particles as jets in
general originate from high-pT partons and hard processes. As such, excluding high-pT
particles in flow analyses can effectively reduce the contributions from jets.
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QGP

Figure 2.3: Schematic representation of non-flow. The black arrows represents particles,
which are only correlated to the common source (the QGP), while the daughters of a
particle decay (blue arrows) introduce non-flow correlations to the measured azimuthal
correlations.

2.5 Summary of important experimental results in flow

In this section, a short overview over key measurements of flow observables obtained in the
past years is given. While the study of anisotropic flow has a long history, especially with
many flow measurements performed at RHIC, this section will focus mostly on results
obtained in the LHC area.

The first measurements of anisotropic flow at the LHC have been provided by the
ALICE Collaboration [51] with the measurement of the flow amplitudes v2 for Pb–Pb
collisions at

√
sNN = 2.76 TeV. The results have been obtained as a function of centrality

(see Fig. 2.4) and also as a function of transverse momentum pT. In particular, this study

Figure 2.4: v2 as a function of centrality measured by ALICE in Pb–Pb collisions at√
sNN = 2.76 TeV [51].

has utilized a cumulant-based approach for the measurement of the flow amplitudes [52,
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59, 60], which has been shown to suppress non-flow contributions. The first two orders of
this method are

v2{2} =
√
〈v2
n〉 (2.35)

v2{4} = 4
√
−〈v4

n〉+ 2〈v2
n〉2 (2.36)

(2.37)

where 〈v2
n〉 and 〈v4

n〉 are estimated via 2- and 4-particle correlators, respectively. The
obtained results show the general behaviour for anisotropic flow as a function of centrality:
v2 is small for the most central collisions as anisotropic flow cannot develop in this region
due to the lack of initial anisotropy. With increasing centrality the magnitude of v2 rises,
reaching a maximum for mid-central collisions around 40–50%. Afterwards, the signal
starts to go down again, which indicates less strong anisotropic flow. Latter observation
is expected for peripheral collisions at the system size is small and the evolution time very
short, such that the initial anisotropy cannot be transferred into the momentum space.

A significant progress in the measurement of flow amplitudes has been obtained with
the introduction of the so-called symmetric cumulants (SC) [55], which are defined as

SC(n,m) = 〈v2
nv

2
m〉 − 〈v2

n〉〈v2
m〉 . (2.38)

These observables measure the genuine correlations between the two flow amplitudes v2
n

and v2
m. The first experimental study of the SC have been conducted by the ALICE Col-

laboration [61] and has found non-zero signals for the SC(2,4) and SC(2,3), demonstrating
the correlations between the involved flow amplitudes (see Fig. 2.5). The SC proved to

Figure 2.5: SC(2,4) and SC(2,3) as a function of centrality measured by ALICE in Pb–Pb
collisions at

√
sNN = 2.76 TeV [61].

be particularly useful, as they provided a sensitivity to the temperature dependence of
the shear viscosity over entropy density ratio η/s, which was not present in previous mea-
surements. A recent study generalized the SC to higher orders [58], with the first results
of correlations between three flow amplitudes provided by the ALICE Collaboration [62].

The first measurements of symmetry plane correlations were conducted by the E877
experiment [63], with many more studies performed by the PHENIX experiment at
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RHIC [64, 65]. The first results of SPC during the LHC area have been obtained by
the ALICE Collaboration [66]. In this study, no quantitative values of the SPC have
been extracted, but the measurement provided the first information that such a corre-
lation exists. The most detailed study of SPC at the LHC to this day were carried out
by the ATLAS Collaboration [67, 68, 69], measuring a wide range of correlations be-
tween two and three symmetry planes (see Fig. 2.6 for an example) in Pb–Pb collisions
at
√
sNN = 2.76 TeV. This study utilized two methods in the analysis, the event plane

Figure 2.6: SPC between two planes as a function of number of participants Npart mea-
sured by ATLAS in Pb–Pb collisions at

√
sNN = 2.76 TeV [67]. The solid symbols are the

data obtained via the SP method, while the open symbols correspond to the EP method.

method (see Sec. 2.2) and the so-called Scalar Product (SP) method [70, 71], where the
latter method resulted in slightly larger values for some of the measured SPC observables
(see Fig. 2.6). In the latter approach, the SPC is measured as

〈cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉SP =
〈va1n1

· · · vaknk cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉√
〈v2a1
n1 〉 · · · 〈v2ak

nk 〉
,

(2.39)
where a quantity consisting of flow amplitudes and symmetry planes is measured for the
numerator. The contribution of the flow amplitudes is divided out by a factorised mean of
the respective flow amplitudes in the denominator. This last step in particular introduces
a bias into the measurement as a joined mean of flow amplitudes (numerator) is divided
by a factorised mean in the denominator. However, this factorisation is not valid as the
flow amplitudes themselves are correlated as it was shown by the measurement of the
SC. The presence of this bias will be demonstrated in Sec. 5.1.3 where a new approach
for measuring SPC will be demonstrated based on [72]. A similar approach to the SP
method has been used in a study by the ALICE Collaboration [73], which partially solved
the issue of factorised means but did not overcome it fully.



Chapter 3

Theoretical models

In this chapter, the theoratical models that are used throughout the thesis are described.
In Sec. 3.1 and Sec. 3.2 the Glauber and TRENTo initial state models are discussed, while
Sec. 3.3 and Sec. 3.4 focus on the iEBE-VISHNU and HIJING model, respectively.

3.1 Glauber model

The Glauber model can be used for calculating the initial geometry of high-energy nuclear
collisions. There exist two approaches for the model, the optical Glauber model and a
Monte Carlo based Glauber [37]. Focussing on the latter version, the colliding nuclei are
sampled from scratch on an event basis according to the Woods-Saxon distribution

ρ(r) = ρ0

1 + w
(
r
R

)2

1 + exp
(
r−R
a

) . (3.1)

In the above equation, ρ is the nucleon density, ω a parameter describing the deviation
from a perfect sphere, R the nuclear radius and a the skin depth of the nucleus. As
such, the radial position can be sampled from a distribution proportional to ρ(r) r2, while
the azimuthal and polar angle can be obtained from uniform distributions in the interval
[0, 2π) and [0, π), respectively. During this sampling process, it is possible to require a
minimal distance between the nucleons of the same nucleus.

After the sampling, the two nuclei, which are displaced relative to each other in the
transverse plane by the impact parameter b, are then collided. For this collision process,
the Glauber model makes the assumption that any nucleon that undergoes an inelastic
interaction continues to travel on a straight path after the collision. In particular, the
nucleons can participate in many of such collisions. Whether a nucleon undergoes an in-
elastic process can be determined in several ways. The simplest is the black disk approach,
which assigns a collision between two nucleons of the two different nuclei if their distance
in the transverse plane is smaller than a distance Rc. This distance is determined via the
inelastic proton-proton cross-section σinelNN as [37]

Rc =

√
σinelNN

π
. (3.2)

Using this approach of independent nucleon-nucleon collisions, one obtains the number
of colliding nucleons Npart (also called wounded nucleons), as well as the total amount
of binary collisions Ncoll per event. In addition, using the positions of the participants

21



22 CHAPTER 3. THEORETICAL MODELS

in the transverse plane, one can calculate the eccentricities and participant planes of the
collision as [74]

εn =

√
〈rn · cos (n · ϕ)〉2 + 〈rn · sin (n · ϕ)〉2

〈rn〉
, (3.3)

Φn =
1

n
· [atan2 (〈rn · sin (n · ϕ)〉 , 〈rn · cos (n · ϕ)〉) + π] . (3.4)

Therefore, the MC Glauber can be used to model the anisotropies in the initial state.

3.1.1 MuPa Glauber model

A local version of the Monte Carlo Glauber model, dubbed MuPa Glauber has been pre-
sented in its first version in [75]. Since then, the model has been improved to accommodate
a random impact parameter drawn from a distribution proportional to b in the interval
b ∈ [0, 20] fm. Additionally, the minimal distance required between nucleons within the
same nucleus is set from 0.8 fm to a new value of 0.4 fm in accordance to [76].

To validate the MuPa Glauber model, Pb–Pb collisions at
√
sNN = 2.76 TeV are

simulated. For sampling the lead ions, a nuclear radius of R = 6.67 fm, a sphere parameter
of ω = 0 and a nuclear skin depth of a = 0.44 fm are used. These parameters were chosen
in accordance to [77]. The minimal distance of 0.4 fm between the nucleons in the same
nucleus is required in the sampling. The inelastic nucleon-nucleon cross-section is chosen
as σinelNN = 61.8 mb [76]. In addition to that, the wounded nucleons are smeared around
their position in the radial direction with a Gaussian distribution of width 0.25 fm2.
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Figure 3.1: Impact parameter distribution of all events (black) and of events with at least
one inelastic nucleon-nucleon interaction (blue).

In total, 106 collisions have been simulated amongst which about 56 % have under-
gone inelastic collisions (see Fig. 3.1). For the centrality determination of the collisions,
Eq. (1.2) is used with an inelastic Pb–Pb cross-section of σPb,Pb = 7.55 b in accordance
to [76].

The results of this setup of the MuPa Glauber are compared to the results obtained of
the SuperMC Glauber model implemented for the iEBE-VISHNU model [77]. As a cross-
check, ε22 and ε23 (Fig. 3.2a) as well as the symmetric cumulants SC(2, 3) and SC(2, 4)
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Figure 3.2: Comparison between the MuPa Glauber and the SuperMC Glauber from
iEBE-VISHNU for ε22 and ε23 (a) and SC(2, 3) and SC(2, 4) (b).

(Fig. 3.2b) are compared. As it can be seen, the two models agree well with each other,
given the fact that no sophisticated centrality determination is employed in the MuPa
Glauber model. In particular, Eq. (1.2) is only valid for central to mid-central collision,
which explains the great agreement between the MuPa Glauber and the SuperMC in this
region.

3.1.2 Centrality determination

In addition to its usage as an initial state model, the MC Glauber model can be used to
parametrise the experimental multiplicity distribution. For this, it is assumed that the
amount of produced particles per nucleon-nucleon collision is parametrized by a negative
binomial distribution (NBD) [76] of the form

Pµ,k(n) =
Γ(n+ k)

Γ(n)Γ(k)
· (µ/k)n

(µ/k + 1)n+k
. (3.5)

The above equation gives the probability of producing n particles per ancestor with an
expected multiplicity of µ and width k. Γ is the gamma function, i.e. Γ(m) = (m − 1)!
for positive integer m. The number of ancestors Nancestor is parametrised as Nancestor =
f ·Npart+(1−f) ·Ncoll [76]. Nancestor represents a two-component approach that separates
the collision into soft and hard processes, where the soft interactions produce particles
with a multiplicity proportional to Npart and the hard processes proportional to Ncoll.
The NBD above is then utilized Nancestor times per MC Glauber event to obtain the
final multiplicity distribution. Using µ, k and f as parameters, one can fit the Glauber
multiplicity to the measured experimental distribution as shown in Fig. 3.3.

This allows to relate the experimentally measured centrality classes to the averages of
number of participants, number of binary collisions and impact parameter in the initial
state.

3.2 TRENTo
The Reduced Thickness Event-by-event Nuclear Topology, in short TRENTo [78], is an
initial state model for the study of high-energy nuclear collisions. The model uses the
so-called participant thickness TA,B(x, y) of the two nuclei A and B, which collide along
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Figure 3.3: Experimentally measured multiplicity distribution of Pb–Pb at
√
sNN =

2.76 TeV with ALICE and the corresponding MC Glauber multiplicity fit. Taken from [76].

the beam axis z for the calculation of the initial entropy density profile. The thicknesses
are obtained via the density ρpartA,B of nuclear matter participating in the collision as

TA,B(x, y) =

∫
ρpartA,B(x, y, z)dz . (3.6)

For obtaining the entropy density profile, TRENTo assumes that there is a scalar field
f(TA, TB) proportional to the entropy deposition, which is related to the participant
thicknesses. In particular, the model uses the reduced thickness Tr as the scalar field in
the form of

f = TR(p;TA, TB) =

(
T pA + T pB

2

)1/p

. (3.7)

In Eq. (3.7), p is a dimensionless, continuous parameter. Using this approach, TRENTo
is an effective model that does not make any assumption of the underlying physics of the
mechanisms leading to the initial entropy density. However, the parameter p allows the
interpolation between different physical mechanisms related to the entropy production.
For example, by using p = 1, one obtains the wounded nucleon approach, which can be
similarly obtained from the Glauber model.

3.3 iEBE-VISHNU

Given an initial energy density profile, e.g. from the Glauber model or TRENTo, the
iEBE-VISHNU model [77] is used for modelling the subsequent hydrodynamic evolution
of the system. It uses 2+1 causal hydrodynamics (this part is called VISH2+1), and an
equation of state obtained via lattice QCD and the hadronic resonance gas model [79].
After the hydrodynamic evolution, the Cooper-Frye formalism [80] is used for obtaining
the distribution of hadrons from the evolved fluid. After this hadronization, the UrQMD
model [81, 82] is utilised to simulate the subsequent evolution in the hadronic stage.

Throughout this thesis, the iEBE-VISHNU model will be used in two distinct setups.
The first setup uses the SuperMC Glauber implemented within iEBE-VISHNU as the
initial state, where the hydrodynamic evolution is initiated at τ = 0.6 fm/c. The shear
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viscosity over entropy density η/s is fixed to 0.08. After the freezout, no evolution in the
hadronic stage is considered, such that an exact event-by-event determination of vn and
Ψn is feasible without using any estimators (see [72] for more details). For each centrality
bin, 14k Pb–Pb collisions at

√
sNN = 2.76 TeV are generated with this setup.

The second setup has TRENTo as the initial state with p = 0.007. After the hydrody-
namic evolution, UrQMD is used for the evolution in the hadronic stage. The parameters
of the initial conditions, the transport properties, like the shear viscosity over entropy
densityη/s and bulk viscosity over entropy density ζ/s, as well as other free parameters
of the combined model have been obtained from a global Bayesian analysis [83]. The
used values in this model are chosen from the best-fit parameters from the maximum a
posteriori for Pb–Pb collisions at

√
sNN = 2.76 TeV. In this setup, the model does not

provide direct access to the vn and Ψn and thus one needs to use multiparticle correlation
techniques.

3.4 HIJING
The last model used is the Heavy-Ion Jet INteraction Generator (HIJING) model [84, 85],
which is a Monte Carlo based event generator introduced for the study of jet and particle
production in high-energy collisions between pp, p-A and A-A. The model contains various
physical mechanisms such as jets, minijet production or jet quenching. These effects are
obtained via the inclusion of other models within HIJING, e.g. pQCD and PYTHIA for
the modelling of interactions between hadrons. However, HIJING does not contain any
notion of anisotropic flow and it can thus be used to study non-flow effects on the flow
observables of interest. The model can also be used in the study of inefficiencies and non-
uniform acceptances of the ALICE detector (see Sec. 4.2). For this, simulations based on
HIJING propagated through the ALICE detector are analysed. Specifically for this study,
simulated data anchored the LHC10h Pb–Pb data at

√
sNN = 2.76 TeV is used, where

the same detector conditions are used in the model as they were during the LHC10h data
taking. More details on this is provided in Sec. 6.3.
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Chapter 4

Experimental setup

4.1 LHC
1Located at the European Organisation for Nuclear Research (fr. former “Conseil Eu-
ropéen pour la Recherche Nucléaire”) – short CERN – the Large Hadron Collider (LHC)
is the largest and most powerful particle accelerator in existence. Built as a synchrotron-
type accelerator, the LHC is placed within the tunnel of its predecessor, the Large Elec-
tron Positron (LEP), which was dedicated to the precision study of the Z0 and later W±

bosons [87]. The LHC has a total circumference of 26.7 km and is placed at an average
depth of 100 m underground.

Figure 4.1: Overview of CERN and LHC, taken from [86].

The particles collided in the LHC are not injected directly into the machine but un-
dergo a whole chain of pre-accelerators (see Fig. 4.1). For proton beams, hydrogen atoms

1Section based on [86].
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are stripped of their electrons leaving the bare protons, which are then accelerated to
an energy of 50 MeV in the LINAC2. After this, the protons are injected into the PS
Booster (PSB), which further accelerates them to an energy of 1.4 GeV after which they
are guided into the Proton Synchrotron (PS). After the PS, the protons have an energy
of 25 GeV and are further injected into the Super Proton Synchrotron (SPS), where they
are accelerated to an energy of 450 GeV. Only then, the protons are injected into the
LHC. Concerning heavy ions, a lead sample is heated up to 800 °C and the resulting gas
is ionized up to Pb29+. After an acceleration to 4.2 MeV per nucleon, the particles are
further ionised with a carbon stripping foil. These further ionized lead particles (mostly
comprised of Pb54+), are transferred to the Low Energy Ion Ring (LEIR) where they are
accelerated further and passed to the PS and then in the SPS. Before the injection into
the SPS, the ions are fully ionized by passing them through a second stripping foil. After
the acceleration in the SPS to 177 GeV per nucleon, the lead beam is injected into the
LHC.

There, a total of eight radio-frequency cavities accelerate the particles to their final
energies and compensate for synchrotron radiation losses. In total, 9600 superconducting
magnets comprised of mainly dipole and quadrupole magnets define the particles trajec-
tories. The main dipoles (in total 1232) have a magnetic field of up to 8.33 T and are
cooled to 1.9 K. These dipole magnets are used to keep the particles on their circular
orbit, while quadrupole magnets are used for beam focusing. With this setup, the LHC
was able to accelerate and collide protons at a centre of mass of

√
s = 7 TeV and Pb–Pb

at centre of mass per nucleon pair of
√
sNN = 2.76 TeV during Run 1.

Distributed along its beam line are the four major LHC experiments. A Toroidal
LHC ApparatuS (ATLAS) and the Compact Muon Solenoid (CMS) are multipurpose
experiments covering a broad range of physics. These experiments were in particular
involved in the experimental discovery of the Higgs Boson mentioned in the introduction
and are further involved in other physics programs like the search for Supersymmetry. In
addition to this, there are two more dedicated experiments. The Large Hadron Collider
beauty (LHCb) experiment is used for investigating the differences between matter and
antimatter, while A Large Ion Collider Experiment (ALICE) is the only dedicated heavy-
ion experiment at the LHC (see Sec. 4.2).

Besides these four major experiments, there are three smaller detectors located at
the LHC, the Large Hadron Collider forward (LHCf), the TOTal Elastic and diffractive
cross section Measurement (TOTEM) and the Monopole and Exotics Detector at the LHC
(MoEDAL).

4.2 ALICE

Mostly devoted to the study of the strongly interacting QCD matter at extreme temper-
atures, ALICE [88, 89] is the dedicated heavy-ion experiment at the LHC. To fulfil the
requirements of such research goals, ALICE is able to track and identify particles with
extremely low momenta of 100 MeV/c up to large momenta of 100 GeV/c while offering
outstanding particle identification (PID) capabilities. In addition, ALICE is able to cope
with the large amount of particles produced in central heavy-ion collisions.

ALICE, which measures 16 × 16 × 26 m3 and weighs about 10000 t, can be divided
into two main parts (see Fig. 4.2). The first region is placed within the solenoid magnet
with a nominal magnetic field of 0.5 T and is called the central barrel. Within this central
part, the most important detectors of ALICE are placed for the detection of hadrons,
electrons and photons within a pseudorapidity range of |η| < 0.9.
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Figure 4.2: Overview of ALICE, taken from [90].

Closest to the beam line is the Inner Tracking System (ITS) whose main purpose is the
determination of the primary collision vertex as well as the reconstruction of secondary
vertices of fast decaying particles such as heavy flavours or strange particles. In particular,
the ITS allows the tracking of low momentum particles that do not reach the more outer
detectors. After the ITS, a gas detector, the so-called Time Projection Chamber (TPC),
is placed. Its main purpose is the tracking and high resolution PID of the produced
charged particles. The momentum resolution and PID of high momentum particles can
be further improved by employing the subsequent detectors, the Transition Radiation
Detector (TRD) and the Time Of Flight (TOF), which are placed still within the central
barrel.

Placed between the structural support of the above mentioned detectors, the Electro-
magnetic Calorimeter (EMCal) is used for the energy measurement of charged particles
as well as a trigger of high momentum particles. During the long shutdown between Run
1 and Run 2, the Dijet Calorimeter (DCal) has been added following the EMCal. Com-
plementing these main detectors of ALICE, two smaller detectors are placed within the
central barrel. Those are the High Momentum Particle Identification (HMPID) and the
Photon Spectrometer (PHOS). It has to be stressed that the EMCal, DCal, HMPID and
PHOS do not provide a full azimuthal coverage. Placed at large rapidities on one side of
ALICE is additionally the muon spectrometer with its own dipole magnet.

In addition to these detectors, ALICE has several detectors in the forward and back-
ward region located close to the beam pipe. The Zero Degree Calorimeter (ZDC) provides
information for the estimation of the impact parameter, while the Photon Multiplicity De-
tector (PMD) is dedicated for measurement of the amount of produced photons. The For-
ward Multiplicity Detector (FMD), the T0 and V0 are employed as fast triggers. Above
the L3 magnet is an additional detector specialized for the measurement of cosmic rays
which is called the ALICE Cosmic Ray Detector (ACORDE).
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4.2.1 ITS

ALICE most inner tracking system – the ITS [88] – is composed of six layers of semicon-
ductor detectors based on three different types of technologies (see Fig. 4.3). The two
innermost layers are the Silicon Pixel Detector (SPD), followed by two layers called the
Silicon Drift Detectors (SDD). The two outermost layers of the ITS are the Silicon Strip
Detectors (SSD).

Figure 4.3: Model of the ITS detector, taken from [91].

Placed at radii of 3.9 cm and 7.6 cm, the two SPD layers are crucial in the determi-
nation of the primary vertex as well as measurement of the distance of closest approach
of secondary particles, stemming from weak decays of heavy flavour particles. In total,
9.8 × 106 cells give the SPD the fine granulation needed to be operated in environments
with track densities up to 80 tracks/cm2. The SDD, which are placed at distances of
15 cm and 23.9 cm have to cope with lower track densities of about 7 tracks/cm2. They
have good multitrack capabilities and provide two of the four dE/dx samples needed for
the particle identification of the ITS. The last two layers of the ITS, the SSD, are located
at radii of 38 cm and 43 cm. They are employed for the track fitting between ITS and
TPC.

Combining all the ITS layers, the primary vertex of a collision can be located with
high resolution within 100 µm while providing a pseudorapidity coverage of |η| < 0.9 for
the full azimuth. In addition to this, the SPD clusters can be employed for centrality
determination.

4.2.2 TPC

Utilized as the main tracking and PID detector in ALICE, the TPC [88] provides informa-
tion about the tracks, momenta as well as PID of the charged particles. It is a cylindrical
gas detector with an inner radius of 85 cm, an outer radius of 250 cm and a length of
500 cm. During the LHC Run 1, the 88 m3 of detector volume contained a mixture of
90 % Ne and 10 % CO2.

Along its length, the TPC is divided into two sections by a central high-voltage elec-
trode with 100 kV, which generates a highly uniform electrostatic drift field of about 400
V/cm. When a charged particle traverses the detector gas, it interacts with it, leading to
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Figure 4.4: Model of the TPC detector, taken from [88].

the creation of ionized particles. With the applied electrostatic field, these ions drift with
a maximum time of about 90 µs from the centre of the TPC before reaching one of the
endplates. These endplates contain the readout chambers made of Multi-Wire Propor-
tional Chambers (MWPC) and amplify the incoming signal of primary electrons. For the
reconstruction of the radial r and azimuthal coordinates ϕ of the track, the localisation
of the produced ions registered by the readout chambers is used. The third coordinate
z in the longitudinal direction is obtained by the time of flight measurement. As such,
the TPC allows a whole three-dimensional reconstruction of the tracks in the momentum
range of 0.1 < pT < 100 GeV/c while covering a pseudorapidity range of |η| < 0.9 with
uniform azimuthal coverage.

As a final remark, it has to be noted that during the LHC Run 1 and Run 2, the
TPC had a gating system. The gate would be opened 6.5 µs after a collision has been
triggered and is kept open for the maximum drift time of 90 µs. After this time, the gate
is closed such that no further electrons can reach the readout chambers. This prevents
space charge distortions from secondary ionisations in the gas as well as ions drifting back
to the active volume where they pertubate the homogeneous electrostatic drift field. As
such, the TPC can cope with collisions at a rate of about 10 kHz. For the upcoming
LHC Run3, a new readout system is installed for the TPC which employs so-called Gas
Electron Multipliers (GEMs) [92, 93]. This technology allows for a continuous readout of
the incoming signals and thus a higher detection rate.

4.2.3 V0

The V0 is a detector consisting of two parts called the V0A and V0C. The V0A is located
329 cm from the nominal interaction point along the beam line while V0C has a distance
of 90 cm and is located at the opposite side of the interaction point compared to the
V0A. Together, the V0A and V0C cover a pseudorapidity range of 2.8 < η < 5.1 and
−3.7 < η < −1.7. These detectors are utilized to provide various triggers for the ALICE
amongst which is the minimum bias trigger used for Pb–Pb collisions. An event has been
triggered as minimum bias in 2010 if two of the following conditions are given: hits in at
least two pixels of the outer SPD are detected, a signal in the V0A is detected or a signal
in the V0C is detected.
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Chapter 5

New technical developments for
symmetry plane correlations

5.1 New estimator for SPC
This section presents the key idea behind the new conceptual approach on how to measure
SPC as well as how this measurement would be performed ideally. After a brief expla-
nation of the limits of this idealistic approach, a new estimator for SPC is presented and
discussed. If not indicated otherwise, the results of this section are based on [72].

5.1.1 Ideal measurement of SPC

As presented in Sec. 2.5, the current methods of measuring SPC are often plagued by
built-in biases due to neglected correlations between flow amplitudes. To avoid this, an
ideal measurement would recover the SPC on an event basis and average this result over
many events. This type of approach, which will be referred to as the event-by-event (EbE)
approach, is at least in theory possible. As an introductory example, one can consider
the ratio of two 6-particle correlators within the same event

〈cos(2ϕ1+2ϕ2−ϕ3−ϕ4−ϕ5−ϕ6)〉
〈cos(2ϕ1−2ϕ2+ϕ3−ϕ4+ϕ5−ϕ6)〉

=
v2

2v
4
1 cos 4(Ψ2−Ψ1)

v2
2v

4
1

= cos 4(Ψ2−Ψ1) , (5.1)

where Eq. (2.19) has been used to translate the multiparticle azimuthal correlators into
the flow observables. Numerator and denominator have been constructed carefully, such
that the numerator contains flow amplitudes and symmetry planes. The denominator is
built out of the same flow amplitudes as the numerator but without any contribution of
symmetry planes. As this ratio is by construction taken within the same event, the flow
amplitudes cancel out exactly, resulting in a pure contribution from the symmetry planes.

This concept of event-by-event ratios of two carefully chosen correlators can be gen-
eralized for any number of k symmetry planes

〈cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉EbE =

〈
va1n1
· · · vaknk cos (a1n1Ψn1 + · · ·+ aknkΨnk) + δ

va1n1 · · · vaknk + δ′

〉
,

(5.2)
where the numbers a1, · · · , ak have to fulfil a certain set of constraints for the EbE ap-
proach (see [75]). Considering that numerator and denominator use different multiparticle
correlators, their statistical errors will be different and are denoted in Eq. (5.2) by δ and δ′,
respectively. This difference in per-event statistical properties limits the EbE approach.
Especially, the estimation of multiparticle azimuthal correlators with Q-vectors (presented

33
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in Sec. 2.3) has large statistical uncertainties on the single event basis due to the finite
multiplicity in experimental heavy-ion collisions. This limits the applicability of Eq. (5.2)
further, resulting in an unstable approach for the measurement of SPC with the currently
available technologies. This instability of the EbE approach was first reported in [75].

The previously presented scalar product method [70, 71] is not affected by this statis-
tical limitation, as the ratio is built after averaging the involved observables over many
events. However, the observable used in [67],

〈cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉SP =
〈va1n1

· · · vaknk cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉√
〈v2a1
n1 〉 · · · 〈v2ak

nk 〉
,

(5.3)
has a built-in bias. Its origin is due to neglected correlations between flow amplitudes,
as a joined mean of flow amplitudes is divided by the product of factorised means of the
same amplitudes.

The limits of both the idealistic EbE approach as well as the scalar product method
lead to the development of a new estimator for SPC. The derivation of this new approach,
which is called the Gaussian Estimator (GE), is presented in the following subsection.

5.1.2 Gaussian Estimator

The GE has been developed to take into account the genuine correlations between the flow
amplitudes which bias the present SPC estimators, while being statistically stable. It was
shown in [94, 95] that single flow harmonics and their fluctuations can be approximated
well in central to mid-central collisions with a Gaussian distribution. As such, the key
idea for the derivation of the new estimator is the approximation of multi-harmonic flow
fluctuations with a two-dimensional Gaussian distribution. To begin with, one defines the
following quantities

R = va1n1
· · · vaknk , Θ = a1n1Ψn1 + · · ·+ aknkΨnk , (5.4)

where R consists purely of flow amplitudes while Θ is built only from symmetry planes.
The expressions of R and Θ, which describe a polar coordinate system, can be translated
into a Cartesian coordinate system using the variables Rx and Ry with

Rx = R cos Θ, Ry = R sin Θ. (5.5)

In general, the quantities Rx and Ry undergo event-by-event fluctuations due to un-
derlying flow fluctuations per event. These fluctuations can be described via the p.d.f.
P (Rx,Ry) or alternatively in polar coordinates P (R,Θ). Using this p.d.f., one can study
any moment of the form 〈Rp

xRq
y〉 = 〈Rp+q cosp Θ sinq Θ〉, where only positive integers p

and q are of interest. For odd q, these moments will trivially lead to zero due to sine terms
with odd power. To further illustrate this latter statement made in [72], one can consider
as an example the sketch provided in Fig. 5.1 where on the left-hand side, Ψ3 > Ψ2.
However, it is equally possible to find the system in the mirrored configuration shown
in the right-hand side in Fig. 5.1 where Ψ3 < Ψ2. As the sine is an odd function, the
mirrored configuration will lead to the same value of SPC, only with the inverted sign
as the absolute value in difference between the two planes is equal, only differing in the
sign. As both configurations are equally probable, the average of the sine term will thus
trivially lead to zero.
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Figure 5.1: The SPC configuration on the left-hand side is as equally probable to the
mirrored configuration on the right-hand side with an inverse sign in the difference of
symmetry planes.

As the underlying p.d.f. P (R,Θ) is not known, it is approximated by a two-dimensional
Gaussian distribution

N (Rx,Ry) =
1

2πσxσy
exp

[
−(Rx − µx)2

2σ2
x

−
R2
y

2σ2
y

]
, (5.6)

which is justified due to the Central Limit Theorem. In Eq. (5.6) the variables µx = 〈Rx〉,
σ2
x = 〈R2

x〉−〈Rx〉2, and σ2
y = 〈R2

y〉, which are the mean and variance of the multi-harmonic
variables respectively, have been introduced. In the next step, the radial part of this two-
dimensional distribution is integrated out as only the symmetry planes are of interest.
This leads to the spatial angular distribution

Nθ(Θ) ≡
∫
R dR N (R,Θ) =

σ3
xσy e

−µ2x/2σ2
x

πσ2
θ

[
1 +

√
πµxσy e

µ2θ

σθ
[1 + erf (µθ)]

]
, (5.7)

where

σθ(Θ) = σx

√
2σ2

y cos2 Θ + 2σ2
x sin2 Θ, µθ(Θ) =

µxσy cos Θ

σΘ

. (5.8)

In Eq. (5.7), erf represents the Gauss error function. To obtain the new estimator for
SPC, the distribution in Eq. (5.7) is used to calculate the average 〈cos Θ〉. The latter
expression is of interest, as it represents the angular, real part of the experimentally
usable multiparticle correlation techniques (see Sec. 2.2). Thus, the Gaussian Estimator
for SPC is defined as

〈cos Θ〉GE =

∫
dΘ NΘ(Θ) cos Θ . (5.9)

To find an analytic result for this estimator, additional approximations have to be made.
Assuming that the fluctuations in x and y are of the same order σx ∼ σy ∼ σr/

√
2 where

σr =
√
σ2
x + σ2

y, the Θ dependence of σΘ in Eq. (5.8) cancels out. As such, one can expand
Eq. (5.9) in terms of µx/σr which gives the following, leading order expression for the GE
estimator

〈cos Θ〉GE '
√
π

4

(
µx
σr

)
. (5.10)
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Finally, this expression has to be translated into the original flow amplitudes and sym-
metry planes. Using the expressions from Eq. (5.4) and Eq. (5.5), one obtains the new
estimator in terms of flow amplitudes and symmetry planes as

〈cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉GE '
√
π

4

〈va1n1
· · · vaknk cos (a1n1Ψn1 + · · ·+ aknkΨnk)〉√

〈v2a1
n1 · · · v2ak

nk 〉
.

(5.11)

For the denominator in Eq. (5.11), σr =
√
〈R2

x〉 − µ2
x + 〈R2

y〉 '
√
〈R2

x〉+ 〈R2
y〉 has been

made as an approximation, which has an error of (µx/σr)
2. Besides the numerical factor

of
√
π/4, the most notable difference between the Gaussian Estimator in Eq. (5.11) and

the scalar product method from Eq. (5.3) is the joined mean of flow amplitudes in the
denominator. Regarding the integers ai, their choice is not arbitrary and has to follow a
certain set of constraints, which are explained in detail in App. B.1.

5.1.3 Validation of the Gaussian Estimator
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Figure 5.2: GE and SP method compared to the true value of correlation between two
symmetry planes in iEBE-VISHNU.

To verify that the GE provides a better estimate of SPC in heavy-ion collisions, this
new method is tested with the state-of-the-art realistic Monte Carlo generator iEBE-
VISHNU with Monte Carlo Glauber as the initial state (see Sec. 3 for a detailed description
of the models). As the used setup does not consider the system evolution in the hadronic
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Figure 5.3: GE and SP method compared to the true value of correlation between three
symmetry planes in iEBE-VISHNU.
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Figure 5.4: GE and SP method compared to the true value of correlation between four
symmetry planes in iEBE-VISHNU.

stage, a precise event-by-event notion of symmetry planes and flow amplitudes is available
within the model. As such, the SPC can directly be calculated on an event-by-event basis
without the use of any estimator. These unbiased and directly obtained SPC values have
been calculated per centrality bin and averaged over the available events. The result of
this procedure is called the “true value”. In comparison to that, estimates of SPC using the
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SP method (Eq. (5.3)) and the GE (Eq. (5.11)) are provided as a function of centrality.
The results of this study for correlations between two, three and four symmetry planes
are presented in Fig. 5.2, Fig. 5.3 and Fig. 5.4, respectively.

Focusing on the results for the SPC between two planes, it becomes obvious that the
GE shows a great improvement when compared to the SP method. In the presented cases,
the GE estimators reproduce the true value very well. This is especially true for SPC where
the final state symmetry planes have a strong correlation due to the geometric relation
from the initial state (e.g. Ψ2 and Ψ4). In cases where no such initial geometric correlation
exists, the GE and SP method are comparable to each other. Considering further the
study of correlations between three and four symmetry planes, the improvement of the GE
estimator becomes even more evident. Overall, these studies demonstrate the huge bias
introduced to the measurements by neglecting the correlations between flow amplitudes.
However, in a few cases it is evident that the GE still deviates from the true value of SPC,
as it can be seen for instance for Θ = 2Ψ2 + 3Ψ3− 5Ψ5 in Fig. 5.3 (d). In these cases, the
initial assumption of the GE, namely the modelling of multi-harmonic flow fluctuations
with a two-dimensional normal distribution, is violated. In [72], a conceptual event-
shape-engineering approach for correcting these deviations from a Gaussian distribution
is presented (called “GE Corrected” in the figures). The experimental feasibility of this
approach is yet to be determined in a follow up study.

Besides the argumentation in [72], the difference between the GE and the true value,
in particular for peripheral collisions, can be understood as follows: In the same way that
the SP method has a bias from neglecting the correlations between the flow amplitudes, a
small bias from neglecting the correlations between the amplitudes and symmetry planes
in the numerator is left in the GE. It has to be noted that this bias is also present in
the SP method. To demonstrate that the prefactor of amplitudes in the numerator and
the difference of planes are correlated already in the initial state, the MuPa Glauber
model is employed in the same setup as in its validation in Sec. 3.1.1. Figure 5.5 shows
the correlations between ε22ε4 and Φ4 − Φ2 for the centrality ranges 0–5%, 20–30% and
50–60%. This kind of correlations have already been reported in [75] as a function of
the impact parameter and dubbed “Wolverine Plots”. As one can see, the distribution is
uniform for very central collisions indicating uncorrelated amplitudes and phases, while
correlations between them arise and become more and more pronounced with increasing
centrality. The bias from factorising the numerator of the GE and SP method into the
amplitude and phase part is thus expected to increase with the centrality as well. This
explains the small deviation between the GE and the true value that is left in particular
for large centralities.
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Figure 5.5: Correlation plots between ε22ε4 and Φ4 − Φ2 for the centrality ranges 0–5%,
20–30% and 50–60% obtained with the MuPa Glauber model.
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5.2 Cumulants of SPC
This section will present a short overview of the cumulant formalism by Kubo [96], which
is then applied to the concept of symmetry plane correlations. This leads to the definition
of a new observable whose properties are tested with Toy Monte Carlo studies. All of the
presented results of this section are based on [97] if not indicated otherwise.

5.2.1 Conceptual introduction to cumulants
1For the conceptual approach to cumulants, consider a general p.d.f. f(X1, X2) of two
random variables X1 and X2. This p.d.f. can be split into two contributions: first, the
product of univariate p.d.f. f(X1)f(X2) where X1 and X2 are uncorrelated, and second
a contribution that cannot be factorised due to the genuine correlation between the two
variables (see Fig. 5.6).

Figure 5.6: Decomposition of a two particle distribution into the uncorrelated, singe
particle distributions and the distribution with the genuine correlation (indicated by the
blue ellipse). Taken from [29].

The latter contribution is denoted by fc(X1, X2). This leads to the mathematical
expression

f(X1, X2) = f(X1)f(X2) + fc(X1, X2) , (5.12)

where it has been used that for a univariate p.d.f. the correlated term is always equal to
the p.d.f. itself, i.e. f(Xi) = fc(Xi). The term fc(X1, X2) is the so-called cumulant which
can be measured by reordering Eq. (5.12) into

fc(X1, X2) = f(X1, X2)− f(X1)f(X2) . (5.13)

The cumulant is thus obtained by subtracting all lower order contributions (in this case
the univariate p.d.f. f(X1) and f(X2)) from the two-variate p.d.f. f(X1, X2). As such,
the cumulant fc(X1, X2) represents the genuine correlation between the two variables X1

and X2.

5.2.2 Cumulant formalism according to Kubo

After the conceptual introduction of cumulants, this subsection describes the mathemat-
ical formalism of cumulants based on the work of Kubo [96]. The notation used in this
subsection is based on [97].

Consider a general multivariate p.d.f. f(X1, · · · , XN) forN random variablesX1, · · · , XN .
This p.d.f. can in general be fully described by its moments

µν1,··· ,νN =

∫
Xν1

1 · · ·X
νN
N f(X1, · · · , XN)dX1 · · · dXN . (5.14)

The notations
µν1,··· ,νN ≡ 〈X

ν1
1 · · ·X

νN
N 〉 (5.15)

1This subsection is based on [29].
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will be equally used throughout this section. As an alternative to Eq. (5.14), the moments
µν1,··· ,νN can be obtained via the moment generating function M(ξ1, · · · , ξN), which is
defined as

M(ξ1, · · · , ξN) = 〈e
∑N
j=1 ξjXj〉 . (5.16)

To calculate the moments, M(ξ1, · · · , ξN) has to be differentiated and evaluated in the
following way

µν1,··· ,νN =
∂ν1

∂ξν11

· · · ∂
νN

∂ξνNN
M(ξ1, · · · , ξN)

∣∣∣∣
ξ1=···=ξN=0

. (5.17)

Alternatively, the p.d.f. f(X1, · · · , XN) can be studied via its cumulants, which will be
denoted by the two following expressions equivalently

κν1,··· ,νN ≡ 〈X
ν1
1 · · ·X

νN
N 〉 . (5.18)

Two of the advantages of cumulants are that their higher orders are not influenced by
lower order contributions as it is the case for the moments, and cumulants have in general
a smaller sample variance [98]. They are obtained via the cumulant generating function
K(ν1, · · · , νN) introduced as

K(ν1, · · · , νN) = lnM(ξ1, · · · , ξN) . (5.19)

Using Eq. (5.19), the cumulants κν1,··· ,νN are then derived as

κν1,··· ,νN =
∂ν1

∂ξν11

· · · ∂
νN

∂ξνNN
K(ξ1, · · · , ξN)

∣∣∣∣
ξ1=···=ξN=0

. (5.20)

In the univariate case, one obtains for the first two orders of cumulants

κ1 = µ1 , (5.21)
κ2 = µ2 − µ2

1 , (5.22)

where it becomes obvious that κ1 is just the mean while κ2 is the variance of the random
variable. In the two-variate case, the first three cumulants are

κ1,1 = µ1,1 − µ0,1µ1,0 , (5.23)
κ1,2 = µ1,2 − µ0,2µ1,0 − 2µ1,1µ0,1 + 2µ1,0µ

2
0,1 , (5.24)

κ2,1 = µ2,1 − µ2,0µ0,1 − 2µ1,0µ1,1 + 2µ2
1,0µ0,1 . (5.25)

While these expression are directly derived from the cumulant generating function, other
expressions might be considered to be cumulants. However, these expression have to be
tested, as cumulants fulfil by definition the following properties:

1. Statistical independence. If the statistical variables X1, . . . , XN can be divided into
at least two statistically independent subgroups, the cumulant κν1,...,νN will be zero.
Thus, a cumulant can only lead to a non-zero result if all involved variables are
genuinely correlated to each other.

2. Reduction. In case that some of the random observables X1, . . . , XN in the cumulant
expression are identical, the cumulant will be of lower order, i.e.

κν1,...,νN = 〈Xν1
1 · · ·X

νN
N 〉c = 〈X ν̃1

1 · · ·X
ν̃M
M 〉c = κν̃1,...,ν̃M . (5.26)

In the last equation,M < N , and ν̃i represents the sum over all exponents of distinct
Xi in the initial cumulant. As an example, consider that all variablesX1, . . . , XN are
the same and equal to X. The initial multivariate cumulant can thus be expressed
as a lower univariate cumulant of X of order ν1 + · · ·+ νN :

κν1,...,νN = 〈Xν1
1 · · ·X

νN
N 〉c =

〈
Xν1+···+νN

〉
c

= κν1+···+νN . (5.27)
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3. Semi-invariance. If a multivariate cumulant κν1,...,νN has at least one index νi ≥ 2 or
minimum two indices equal to 1 (i.e. if

∑
i νi ≥ 2), the following expressions holds

true

κ((X1 + c1)ν1 , . . . , (XN + cN)νN ) = κ(Xν1
1 , . . . , X

νN
N ) ,

∑
i

νi ≥ 2 . (5.28)

In Eq. (5.28) c1, . . . , cN are constants. In particular, it follows that all univariate
cumulants of order ν ≥ 2 are shift-invariant for any constant c:

κ((X + c)ν) = κ(Xν) , ∀ν ≥ 2 . (5.29)

This semi-invariance is only broken for first order cumulants where the relation
κ(X + c) = c+ κ(X) is satisfied instead.

4. Homogeneity. For a general set of constants c1, . . . , cN , the cumulant satisfies

κ((c1X1)ν1 , . . . , (cNXN)νN ) = cν11 · · · c
νN
N κ(Xν1

1 , . . . , X
νN
N ) . (5.30)

5. Multilinearity. Consider a random variable Z1 that is a linear combination of vari-
ables Xi, i.e.

Z1 =
∑
i

Xi . (5.31)

Then, the multivariate cumulant for Z1, · · ·ZN can be rewritten as

κ(
∑
i

Xi, Z
ν2
2 , ..., Z

νN
N ) =

∑
i

κ(Xi, Z
ν2
2 , ..., Z

νN
N ) . (5.32)

This can be generalised in the case where multiple variables are linear.

6. Additivity. If a set of random variables Xi are statistically independent observ-
ables, the Nth-order cumulant of their sum is equal to the sum of their Nth-order
cumulants, i.e.

κ((
∑
i

Xi)
N) =

∑
i

κ(XN
i ) . (5.33)

The proofs for all of these properties can be found in [97]. If a expression violates one of the
presented properties characteristic to cumulants, the expression is not a valid cumulant.

5.2.3 New formalism for cumulants of SPC

For flow analysis, the cumulant provided in [52, 59, 60] is based on the expansion on
azimuthal angles and has been found to suppress the non-flow contribution in flow anal-
ysis. While the used formalism has been criticised for violating some of the cumulant
properties [97], the expression was well studied and understood, providing important new
insights into flow. Another important cumulants utilised in flow analysis are the symmet-
ric cumulants [55], which are able to measure the genuine correlation between two flow
amplitudes by using v2

n and v2
m as the basic observables in κ1,1. The measurement of these

symmetric cumulants provided important information on the temperature dependence of
the shear viscosity of entropy density ratio η/s. The formalism of symmetric cumulants
has been generalised to higher orders [58] with the first measurements of the genuine
correlation between three flow amplitudes provided in [62].
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The described cumulants either used azimuthal angles ϕ or the flow amplitudes as
stochastic variables in the cumulant expansion. However, here the cumulant expansion
based on symmetry planes is explained as it was introduced in [97]. This formalism
provides the first proper cumulant expansion using only symmetry planes, which are
the second degree of freedom used in the characterisation of the anisotropic flow p.d.f.
Eq. (2.15). Thus, the cumulants of symmetry planes have to potential of providing further
information compared to SPC.

Unlike the flow amplitudes vn, the symmetry planes Ψn are affected by the random
event-by-event fluctuations of the reaction plane. As such, when one expands the cumu-
lant on observables that are not invariant under these random shifts, the single means will
trivially lead to zero making the cumulant expression useless. Due to this requirement
of rotational invariance and further to the accessibility by multiparticle correlation tech-
niques, the only proper choice of stochastic observables are those who contain isotropic
sums of symmetry planes. The following two observables X1 and X2 contain each two
symmetry planes and, are thus the simplest possible observable satisfying the described
requirements

X1 = eib(Ψc−Ψd) , (5.34)

X2 = eik(Ψl−Ψm) . (5.35)

In the definition of X1 and X2 above, it was assumed that b and k are non-zero, positive
integers and that no symmetry plane cancels out if the product X1 ·X2 is taken. To write
the differences of symmetry planes in a more compact form, the following abbreviations
are introduced

δc,d ≡ Ψc −Ψd , (5.36)
δl,m ≡ Ψl −Ψm . (5.37)

As such, X1 and X2 can be written as

X1 = eibδc,d , (5.38)
X2 = eikδl,m . (5.39)

Inserting these two stochastic observables into the expression of the two-variate cumulant
κ1,1 in Eq. (5.23) leads to

CSC (bδc,d, kδl,m) =
〈
ei(bδc,d+kδl,m)

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉
, (5.40)

which is the simplest possible Cumulant of Symmetry Plane Correlations (CSC). This cu-
mulant is rotationally invariant and fulfils all needed cumulant properties as it is demon-
strated in App. B.2. The interpretation of Eq. (5.40) can be rather complex, thus the
focus here lies on the case where all involved symmetry planes are different from each
other (i.e. Ψc 6= Ψd 6= Ψl 6= Ψm). In this case, the cumulant in Eq. (5.40) consists by
definition of two distinct isotropic terms in the joined mean. To further understand the
properties of this specific cumulant, the following cases have to be considered:

1. All involved symmetry planes are completely uncorrelated, i.e. the symmetry plane
correlations δc,d and δl,m fluctuate randomly and independently from each other.
The cumulant leads to zero.

2. The symmetry plane correlations δc,d and δl,m are constant and independent of each
other. Equation (5.40) yields zero.
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3. The symmetry plane Ψc is correlated to Ψd, as well as Ψl to Ψm. However, the
correlations δc,d and δl,m fluctuate independently from each other. Equation (5.40)
yields zero.

4. The SPC δc,d and δl,m are genuinely correlated to each other. The cumulant defined
in Eq. (5.40) yields a non-zero value.

Based on these exemplary scenarios, the cumulant Eq. (5.40) cannot be understood as
a cumulant of symmetry planes but only as a cumulant of symmetry plane correlations.
This is not surprising as the fundamental stochastic observable in the cumulant expansion
is the isotropic sum of symmetry planes. While SPC can be seen as a static observable,
which tells whether symmetry planes are correlated (and if so to which extent), the CSC
captures more of their dynamics telling how SPC behave and evolve relative to each other.

To test if the cumulant expression Eq. (5.40) has the expected behaviour, a Toy Monte
Carlo (TMC) study is used. In such a study, a p.d.f. similar to Eq. (2.15) is used to
generate azimuthal angles per event with a given multiplicity M . The involved flow
amplitudes and symmetry planes that characterise the p.d.f. Eq. (2.15) can fluctuate on
an event basis in a predefined way. As such, one knows the exact input values and input
correlations of the p.d.f. used to generated the azimuthal angles ϕ. After the generation
of the azimuthal angles, the multiparticle correlation techniques are used to calculate the
desired quantities which then can be averaged over many events.

In this TMC, a p.d.f. of the form

f(ϕ) =
1

2π
[1 + 2 (v1 cos [(ϕ−Ψ1)] + v2 cos [2 (ϕ−Ψ2)] + v3 cos [3 (ϕ−Ψ3)]

+ v4 cos [4 (ϕ−Ψ4)] +v5 cos [5 (ϕ−Ψ5)] + v6 cos [6 (ϕ−Ψ6)])]
(5.41)

is used for the study of the four different scenarios presented above using the exemplary
CSC

CSC (4δ4,2, 6δ6,3) =
〈
ei(4δ4,2+6δ6,3)

〉
−
〈
ei4δ4,2

〉 〈
ei6δ6,3

〉
=
〈
ei(4(Ψ4−Ψ2)+6(Ψ6−Ψ3))

〉
−
〈
ei4(Ψ4−Ψ2)

〉 〈
ei6(Ψ6−Ψ3)

〉
.

(5.42)

In particular, the following choices are made for the event-by-event fluctuations of the
symmetry planes which correspond to the presented cases before:

1. All involved symmetry planes Ψ2, Ψ3, Ψ4 and Ψ6 fluctuate independently from each
other within [0, 2π). Thus, δ4,2 and δ6,3 fluctuate randomly and uncorrelated in the
interval [0, 2π).

2. Ψ2 fluctuates randomly in the interval with [0, 2π) and Ψ4 = Ψ2 + π
12

leading to a
constant correlation between those planes δ4,2 = π

12
= const. The symmetry plane

Ψ3 fluctuates with Ψ3 ∈ [0, 2π) and Ψ6 = Ψ3 + π
18

such that δ6,3 = π
18

= const.
represents a constant correlation as well. However, the two SPC are independent
from each other.

3. Ψ2 fluctuates according to Ψ2 ∈ [0, 2π) and Ψ4 = Ψ2 + a with a a random number
a ∈

[
0, π

12

]
. Similarly, Ψ3 fluctuates randomly in the interval with [0, 2π) and

Ψ6 = Ψ3 + b with b ∈
[
0, π

18

]
. Again, the two SPC are uncorrelated to each other.

4. Ψ2 is chosen according to the uniform distribution Ψ2 ∈ [0, 2π) and Ψ4 = Ψ2+a with
fluctuating a ∈

[
0, π

12

]
. Ψ3 is fluctuating with Ψ3 ∈ [0, 2π) and Ψ6 = Ψ3 + a+ π

6
√

2
with a having the same value per event as for δ4,2. As such, the two SPC are
correlated to each other as δ4,2 also determines the value of δ6,3.
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If, during the sampling, a symmetry plane Ψj = Ψi + h (h is a constant and Ψi ∈ [0, 2π))
turns out to be greater than 2π, it is brought back to the interval between 0 and 2π. Over-
all, the study is conducted in bins of fixed multiplicities ofM = 50, 100, 250, 500, 750, 1000
with in total Nev = 108 events for each multiplicity.

As there is no exact way for measuring SPC using multiparticle correlation techniques,
a trick is used to obtain the behaviour of the CSC without the influence of the flow
amplitudes. In Eq. (5.41), all flow amplitudes are set to a constant value, which does not
change between the events, in particular v1 = v5 = 0 and v2 = v3 = v4 = v6 = 0.1. As
such one can measure the quantities〈

v2
2v

2
3v4v6e

i(4δ4,2+6δ6,3)
〉
, (5.43)〈

v2
2v4e

i4δ4,2
〉
, (5.44)〈

v2
3v6e

i6δ6,3
〉
, (5.45)

as they are accessible by multiparticle correlation techniques. Afterwards, the constant
prefactor of flow amplitudes is divided out leaving the pure contribution of symmetry
planes.
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Figure 5.7: Outcome of the TMC for the 4 scenarios of CSC, taken from [97].

The results of the TMC in Fig. 5.7 demonstrate that the CSC indeed has the expected
cumulant properties. The CSC is zero in all the cases where no genuine correlation between
the SPC is present, while it exhibits a non-zero value in case of a genuine correlation. As
such, the CSC is a valid cumulant of symmetry plane correlations.

In addition to the presented TMC studies, a realistic model consisting of Monte Carlo
Glauber for the initial state and iEBE-VISHNU for the hydrodynamic evolution (see
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Sec. 3.3 for details) has been employed in [97] to study the CSC. In particular, the real
part of the two combinations

CSC(4δ4,2, 6δ6,3) =
〈
ei4(Ψ4−Ψ2)+i6(Ψ6−Ψ3)

〉
−
〈
ei4(Ψ4−Ψ2)

〉 〈
ei6(Ψ6−Ψ3)

〉
, (5.46)

CSC(6δ6,2, 8δ8,4) =
〈
ei6(Ψ6−Ψ2)+i8(Ψ8−Ψ4)

〉
−
〈
ei6(Ψ6−Ψ2)

〉 〈
ei8(Ψ8−Ψ4)

〉
, (5.47)

has been investigated for the initial state given by the participant planes and the final state
given by the symmetry planes. As one can see in Fig. 5.8, a non-trivial relation between
the initial and final state emerges. For the cumulant CSC(4δ4,2, 6δ6,3), the SPC δ4,2 and
δ6,3 seem to be anticorrelated for peripheral collisions in the initial state, while this signal
changes its sign for the final state. For CSC(6δ6,2, 8δ8,4), the initial state shows only weak
correlations between the evolved planes, while a strongly correlated signal can be observed
for the final state for mid-central collisions. These non-trivial signals promise access to
new information on the hydrodynamic evolution of the system and will be investigated
further in future studies.
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Figure 5.8: Study of CSC(4δ4,2, 6δ6,3) and CSC(6δ6,2, 8δ8,4) given by MC-Glauber and
iEBE-VISHNU, taken from [97].
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Chapter 6

Experimental data analysis

For this analysis, Pb–Pb data at a centre of mass energy of
√
sNN = 2.76 TeV recorded by

the ALICE detector in 2010 is used. This data set is particularly suitable for the study
of anisotropic flow due to the uniform azimuthal acceptance in the transverse plane,
especially when using tracks reconstructed only by the TPC. Additionally, the data is not
affected by pileup or charge distortions in the TPC, as it was at larger Run 2 energies.
Overall, 84 runs have been included in this analysis with a total of 7.36× 106 events after
selection in the centrality range of 0–50 %.

6.1 Event selection

Considering a collision, one can classify the event by two global properties: the primary
vertex PV , which is the location of the initial collision within the ALICE detector and
the centrality. Additionally, one has to take into consideration how the event has been
triggered for recording, as well as potential reconstruction inefficiencies in the event clas-
sification. All of these quantities and their selection criteria are explained in the following
subsections with a summary of the default selection values provided in Tab. 6.1.

Table 6.1: Summary of the default event selection criteria.

Property Selection Criterion
Trigger Minimum Bias (kMB)
Centrality Estimator SPD Clusters (CL1)
Primary vertex in z direction |PVz| < 10 cm
High multiplicity outliers MTPC < 1.54Mgl − 65.00

MTPC > 2.30Mgl + 90.00
Event multiplicity of passed tracks M ≥ 14

6.1.1 Primary vertex selection

The PV represents the main interaction location at which the two heavy ions collide.
By definition, the nominal zero point of the primary vertex along the beam axis PVz is
located at the middle of the ALICE detector in longitudinal direction. As the colliding
lead bunches are not localised at one common position along the beam axis, collisions do
not only occur at PVz = 0 cm, but might be shifted along the z axis towards one side
of ALICE. Thus, collisions might happen close to the edge of the detector in which case

47
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not all produced charged particles can be detected, which leads to a biased multiplicity,
and thus a biased centrality of the event. Therefore, a cut along the primary vertex in z
direction has to be used. Restricting the collisions to |PVz| < 10 cm (i.e. to the region ±
10 cm around PVz = 0 cm) allows for a full acceptance of the ITS and a coverage of the
TPC of |η| < 0.9. This is of importance as the ITS is used for centrality determination
and as such the misidentification of events due to only a partial reconstruction is avoided
by this criterion.
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Figure 6.1: Distribution of PVx before and
after the event selection.
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Figure 6.2: Distribution of PVy before and
after the event selection.
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Figure 6.3: Distribution of PVz before and after the event selection.

Analogous to the primary vertex in z direction, PVx and PVy represent the primary
vertex in x and y direction respectively. As the beams are focussed very precisely in the
transverse plane, the distribution of PVx and PVy are well defined and have a sharp peak.
As such, no further selection criteria are applied for PVx and PVy. The distribution of
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events in respect to the primary vertex in x, y and z before and after the application of
the PV selection can be seen in Fig. 6.1, Fig. 6.2 and Fig. 6.3 respectively.

6.1.2 Triggering, centrality and multiplicity selection

The events have been triggered to the condition of being minimum bias events (abbre-
viated by “kMB”). This trigger selects the events based on a simultaneous detection by
two out of the following three detectors: the V0A, the V0C and the SPD. This guaranties
that trigger efficiency for hadronic interactions is maximised.

Figure 6.4: Performance of various ALICE centrality estimators, taken from [99].

After the triggering of the event, one of the most important event classifications is
the centrality determination. Most commonly in ALICE, the V0M is used for this task
as it has the best centrality resolution compared to the other estimators (see Fig. 6.4).
However, as it was reported in [29], the V0M has additional problems with the so-called
high multiplicity outliers (HMOs), which will be explained further in Sec. 6.1.3. Thus,
the centrality determination by SPD clusters (CL1) is used in this analysis. This method
has a slightly worse centrality resolution of 0.5− 2.5% compared to 0.5− 2% of the V0M.
This is however negligible, especially compared to the effects of not removing the high
multiplicity outliers.

Lastly, one has to take into consideration the multiplicity of final state particles after
application of the track selection. Considering a k-particle correlators one has to detect
at least k final particles in the event. Given the fact the analysis of SPC requires up to 12-
particle correlators, and later possibly 14-particle correlators, a minimum of 14 final-state
particles is needed. As such, events that have a multiplicityM less than 14 tracks passing
the track selection described in Sec. 6.2 are disregarded. This cut however impacts only
very peripheral collisions.
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6.1.3 Removal of the high multiplicity outliers

As discussed above, the classification of the event centrality is related to the amount of
produced particles. Therefore, one expects to have a high multiplicity for the most central
collisions, while mid-central and peripheral collisions have in general lower multiplicities.
However, the reconstruction of the centrality and its connection to the multiplicity is
not perfect. Thus, there exist events in mid-central and peripheral collisions with an
abnormally large multiplicity compared to what is expected in their centrality range.
These events are the so-called high multiplicity outliers, which were studied in detail
in [29]. The amount of these HMOs is on the per-mill level and their effect is for most
analyses negligible. This, however, is not true for flow analyses due to the multiplicity
weights used in the all-event averages. In this case, the HMO events will overweight the
healthy events of lower multiplicity.

Figure 6.5: Multiplicity of global hybrid versus TPC-only tracks before (left) and after
(right) application of the HMO cuts. Taken from [29].

To remove these HMOs, the approach used in [29] is employed. Here, the multiplicity
of the global hybrid filterbit and the TPC-only filterbit are compared to each other. Using
this histogram, two criteria are introduced as

MTPC < 1.54Mgl − 65.00 , (6.1)
MTPC > 2.30Mgl + 90.00 . (6.2)

Only events fulfilling these criteria are further used for the analysis (see Fig. 6.5). The
effect on the multiplicity distributions can be seen in Fig. 6.6 and Fig. 6.7, which show the
multiplicity distribution for the event centrality 40–50 % without and with the application
of the HMO cut. As one can see in Fig. 6.6, a few events with abnormally large multiplicity
are present when no HMO cut is applied, while these events are removed by the application
of the cut (Fig. 6.7).

6.2 Track selection
Regarding the track selection, one has to consider the basic kinematic properties of a
track, namely its transverse momentum pT, its pseudorapidity η as well as its distance
of closest approach to the primary vertex. Additionally, depending on the subdetectors
used for the track reconstruction, different cuts have to be applied to assure a high quality
of track reconstruction. A summary of the applied track selection criteria is provided in
Tab. 6.2.
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Figure 6.6: Multiplicity distribution after
the track selection without the application
of the HMO cut.
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Figure 6.7: Multiplicity distribution after
the track selection with the application of
the HMO cut.

Table 6.2: Summary of the default track selection criteria.

Quantity Selection Criterion
Filterbit 128 (TPC-only)
Transverse Momentum pT ∈ [0.2, 5.0] GeV/c
Pseudorapidity |η| < 0.8
Distance of closest approach in z direction |DCAz| < 3.2 cm
Distance of closest approach in xy direction |DCAxy| < 2.4 cm
Number of TPC clusters NTPC > 70
χ2 per TPC cluster χ2/NTPC ∈ [0.3, 4.0]

6.2.1 Reconstruction selection

For this analysis, the TPC has been used as the main detector for track reconstruction.
This is ensured by applying the so-called filterbit 128 to use only tracks reconstructed with
the information provided by the TPC. Using these TPC-only tracks has the advantage
of a great uniform acceptance, as shown in Fig. 6.8. There, the distribution of azimuthal
angles ϕ becomes perfectly flat after the track selection and application of the filterbit.

Concerning the track reconstruction itself, two main quantities have to be considered.
First is the number of TPC clusters NTPC , which represents the amount of clusters that
have been used in the track reconstruction. In the TPC, up to 159 clusters can be used
for this task. Naturally, the quality of the reconstructed track becomes higher if more
clusters are used for its reconstruction. For this analysis, a minimum of 70 TPC clusters
are required to ensure a good track quality in this regard (see Fig. 6.9). This minimum
can, however, not be chosen too large as this biases the sample towards tracks with high
transverse momenta pT.

The second quantity important for the reconstruction is the χ2 per TPC cluster. It
relates the goodness of the track fitting to the measured points used in its reconstruction.
As a default, χ2/NTPC ∈ [0.3, 4.0] is used (Fig. 6.10).
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Figure 6.8: Distribution of ϕ before and after the track selection.
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Figure 6.9: Distribution of NTPC before
and after the track selection.
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Figure 6.10: Distribution of χ2/NTPC be-
fore and after the track selection.

6.2.2 Kinematic cuts

Regarding the pT selection of tracks, the following criterion is applied pT ∈ [0.2, 5.0] GeV/c
(see Fig. 6.11). The lower boundary assures that the tracks can reach the TPC, as the
TPC is not one of the innermost detectors within ALICE. As such, this minimum removes
artefacts in the TPC reconstruction, which would lead to a bias in the analysis. The
motivation for the upper boundary of 5.0 GeV/c lies in the removal of jets, which in
general contain high pT particles from the hard processes that generated the jet [38]. As
jets represent a few-particle non-flow contribution, their influence has to be suppressed to
not bias the flow analysis. These jets have to be removed not only due to non-flow, but
also as they lead to event-by-event anisotropies which bias the measurement as well.
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Figure 6.11: Distribution of pT before and
after the track selection.
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Figure 6.12: Distribution of η before and
after the track selection.

Further, a cut along the pseudorapidity η is used as |η| < 0.8 (see Fig. 6.12). This
guarantees the usage of almost the full coverage of the TPC (|η| < 0.9), while removing
edge effects and guaranty a uniform acceptance in pseudorapidity.
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Figure 6.13: Distribution of DCAz before
and after the track selection.
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Figure 6.14: Distribution of DCAxy before
and after the track selection.

Lastly, cuts on the so-called distance to closest approach DCA are used along the
beam axis z and in the transverse plane xy. The distance of closest approach represents
the minimal distance a track has to the reconstructed primary vertex of the collision.
Minimising the allowed DCA of tracks leads to the selection of mainly primary particles,
as particles stemming from decays (the so-called secondaries) have in general a larger
DCA. The removal of secondaries is of interest, as they are correlated to the other
products of their decay and thus they represent non-flow. However, as the TPC is located
rather far from the inner part of the detector, the cut on DCA cannot be chosen too
narrow. As a default for this analysis, the selection criteria DCAz < 3.2 cm (Fig. 6.13)
and DCAxy < 2.4 cm (Fig. 6.14) are chosen.
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6.3 Weights

In addition to event and track selections, particle weights1 have to be introduced to correct
for non-uniform efficiency (NUE) and non-uniform acceptances of the detector.

For obtaining the NUE for each centrality bin, HIJING simulations anchored to the
real LHC10h Pb–Pb data are used. This Monte Carlo generator has been tuned to pro-
duce events for Pb-Pb collisions at

√
sNN = 2.76 TeV. The information collected at this

stage, the so-called “kinematics” level, represents the particle distributions that should
be obtained for an ideal case (or with an ideal/perfect detector). These data is then be
propagated through a simulation of the ALICE detector (using softwares like GEANT3 or
Geant4). The distribution after this propagation through the detector is called the “recon-
struction” level and it uses the same event and track selection criteria as the real analysis.
By comparing the pT distribution of particles at the kinematics and reconstruction level,
one can obtain the efficiency of the detector for measuring particles with a certain trans-
verse momentum pT. In particular, the efficiency ε is defined as the pT distribution at
reconstructed level divided by the kinematics level. An example for the centrality 10–20%
is shown in Fig. 6.15. As one can see, the efficiency of reconstructed particles has a max-
imum for low momenta and then drops to a constant value for higher pT, meaning that
the detector is less good at reconstructing those tracks. The corresponding NUE weights
are then obtained as 1/ε for each centrality range.
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Figure 6.15: Reconstruction efficiency as a function of pT for centrality 10-20%.

In addition to the NUE, weights for the NUA have been investigated via a data driven
method for each run and centrality bin separately. In this procedure, three-dimensional
histograms between the azimuthal angle ϕ, the pseudorapidity η and the PVz are obtained
and called the correction maps. Inverting this three-dimensional correction maps results
in the weights. An example for the projection of the correction map of run 137161 in
centrality 10–20% onto the three axis is shown in Fig. 6.16, Fig. 6.17 and Fig. 6.18. In
particular, one can see that the corrections for the pseudorapidity and azimuthal angle are

1The implementation of obtaining the weights is the work of Dong Jo Kim.
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flat, as it is expected for the TPC-only tracks in LHC10h. Due to this uniform acceptance
of the TPC in the LHC10h data, it has been decided to not use NUA corrections for the
default analysis. A systematic check with their application will be performed at a later
point.
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Figure 6.16: Projection of the correction map of run 137161 in centrality 10-20% onto the
PVz axis.
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Figure 6.17: Projection of the correction
map of run 137161 in centrality 10-20%
onto the η axis.
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Figure 6.18: Projection of the correction
map of run 137161 in centrality 10-20%
onto the ϕ axis.

6.4 Final quality assurance
As final quality assurance, the results of the multiparticle correlators from the numerator
and denominator in Eq. (5.11) are plotted for each run and centrality bin, as well as
the corresponding average multiplicity of the run and its total amount of events (see
Figs. E.1-E.2 in App. E.1 as an example). With this run by run trending, four runs
with an extremely low number of events were found with outliers in the numerator and
denominator for some of the measured SPC. Removing these low statistics runs improved
the stability of the statistical errors while only loosing 0.2% of the data. The details on
how the statistical errors are computed can be found in Sec. 6.6.
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Figure 6.19: Distribution of centrality after the event selection.

Additionally, the centrality distribution of all 84 used runs has been obtained (see
Fig. 6.19). As it can be seen, there is a slight excess of events in the 0-10% centrality
bin. The effects of this will be studied in a future systematic check, but no huge impact
is expected.

As a final quality assurance, the framework employed for this analysis is used with
the above described event and track selection criteria to measure already published flow
observables, in particular v2{2} and v2{4} and the symmetric cumulants SC(2, 3) and
SC(2, 4). The results for v2 in Fig. 6.20 show a good agreement with the published
data [51], in particular as the analysis in [51] did not use the same centrality selection
framework, and had a smaller data set as the one in the presented analysis. Similarly,
the results of the symmetric cumulants provided in Fig. 6.21 are in great agreement with
the published data [61] as well. Here, one has to emphasise that the analysis in [61] did
not use TPC-only tracks but a combination of ITS and TPC tracks (also called hybrid
tracks).
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Figure 6.20: Comparison of v2{2} and v2{4} obtained with the code from this analysis to
the published data [51].
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Figure 6.21: Comparison of SC(2, 3) and SC(2, 4) obtained with the code from this analysis
to the published data [61].

6.5 Non-flow estimation
One of the most important studies in flow analyses is the impact of non-flow on the final
observables. To investigate its effects in this analysis, the multiparticle correlators in the
numerator and denominator of the GE are obtained using simulated data from HIJING
(see Sec. 3.4) on a data set, which mimics the real data of Pb–Pb collisions at

√
sNN =

2.76 TeV recorded by ALICE. The obtained results are then plotted in comparison to the
real experimental data. An example of this procedure for the SPC 〈cos [4 (Ψ4 −Ψ2)]〉 is
shown in Fig. 6.22. As it can be seen, the results of the multiparticle correlators from
HIJING are compatible with zero when compared to the real data, which has a clear,
non-zero signal. Thus one can conclude, that non-flow does not affect the multiparticle
correlators in the numerator and denominator in the presented centrality region. This is
true for the other measured SPC as well. The respective plots are provided in App. C. It
has to be noted, that the GE estimator itself cannot be measured using the HIJING data,
as one will face a 0/0 situation between the numerator and denominator. However, the
provided study shows that the numerator and denominator themselves are not affected
by non-flow in the relevant scale.
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Figure 6.22: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [4 (Ψ4 −Ψ2)]〉 obtained with HIJING and the real experimental
data.
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6.6 Statistical errors

The often used bootstrap method divides the measured data into N subsamples. For
each subsample, the desired quantity is calculated individually. Finally, the mean of the
subsamples is calculated and its standard deviation used as the error. However, this
procedure is not feasible for SPC given the fact that the GE uses higher order correlators
(at least a 6 particle correlator for the denominator). Such higher order correlators are
statistically very demanding and as such, dividing the data into subsamples can lead to a
negative denominator purely due to fluctuations and lack of statistics. This renders the
bootstrap method not feasible for the measurement of SPC using the Run 1 data. As such,
the alternative technique of first order error propagation has been employed [16, 100]. For
this, the GE is written in the form

SPC =

√
π

4

〈N〉√
〈D〉

. (6.3)

In Eq. (6.3), 〈N〉 and 〈D〉 are the weighted averages for the numerator and denominator
obtained with the multiparticle correlators. Using first order error propagation on these
quantities results into the leading order estimate of the error σSPC as

σ2
SPC =

(
SPC

〈N〉
· s〈N〉

)2

+

(
1

2

SPC

〈D〉
· s〈D〉

)2

− 1

2

SPC2

〈N〉〈D〉
Cov(〈N〉〈D〉) , (6.4)

where s〈N〉 and s〈D〉 are the unbiased estimates for the square-root of the sample variance
on the numerator and denominator, respectively. The term Cov(〈N〉〈D〉) describes the
estimate for the sample covariance between numerator and denominator. See App. D for
the definition of the unbiased estimate of an error.

Regarding the estimate of the covariance, the classical approach is

Cov(〈N〉〈D〉) ∝

∑Nev
i=1 (ωN )i(ωD)iNiDi∑Nev

i=1 (ωN )i(ωD)i
−

∑Nev
i=1 (ωN )iNi∑Nev
i=1 (ωN )i

∑N
j=1(ωD)jDj∑Nev
j=1 (ωD)j

1−
∑Nev
i=1 (ωN )i(ωD)i∑Nev

i=1 (ωN )i
∑Nev
j=1 (ωD)j

(6.5)

where Ni and Di are the measured values of numerator and denominator per event with
their corresponding event weights (ωN)i and (ωD)i. In this regard, an alternative approach
for estimating the covariance term has been studied, which estimates the joined mean of
numerator and denominator not as their respective product, but as a single multiparticle
correlator J , i.e.

Cov(〈N〉〈D〉) ∝

∑Nev
i=1 (ωJ )iJi∑Nev
i=1 (ωJ )i

−
∑Nev
i=1 (ωN )iNi∑Nev
i=1 (ωN )i

∑N
j=1(ωD)jDj∑Nev
j=1 (ωD)j

1−
∑Nev
i=1 (ωN )i(ωD)i∑Nev

i=1 (ωN )i
∑Nev
j=1 (ωD)j

(6.6)

This multiparticle correlator J has the same output in terms of flow amplitudes and
symmetry planes as the product of numerator and denominator. This is motivated by
fact that the same event product of two multiparticle correlators is not the same after
averaging as if one uses a joined multiparticle correlator, even if the output in terms of
flow amplitudes and symmetry planes is the same. This differences originates from the
fact that the product of two lower order multiparticle correlators does not remove all
autocorrelations as the joined one does (see [29] for more details). To study the impact
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Figure 6.23: Error of the classical approach relative to the signal as an absolute value (up-
per panel) and relative difference in error between the classical and alternative approaches
(bottom panel).

of this alternative approach, the relative difference between the two errors are calculated
as

Relative Difference in Error =
σclassical − σalternative

σclassical
, (6.7)

where σclassical and σalternative are the errors of the classical and alternative approaches,
respectively. The difference between the two approaches is found to be around 5–10%
for most SPC combinations (see App. E.2). The biggest difference is found for the SPC
between Ψ2 and Ψ4 with a value about 30 % (see Fig. 6.23). However, this huge difference
is in a region where the statistical error is two orders of magnitude smaller compared to
the actual SPC signal.

In addition, the alternative approach limits the amount of feasible SPC drastically.
If the numerator is a multiparticle correlator of order k, the denominator subsequently
is of order 2k and thus the correlator J will be of order 3k. This implies, that only
combinations of SPC using at most a 4-particle correlator in the numerator can be used
in this approach. From this limitation and the extremely small size of the statistical errors
of both approaches, it has been decided to continue the usage of the classical approach.
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6.7 Systematic checks
To evaluate the systematic errors of this analysis the so-called Barlow test is employed [101,
102]. In this procedure, one of the default values in the event or track selection is changed
and the analysis is performed with this variation. As such, the results related to this
single change of a parameter are referred to as the trial (denoted by SPCtrial). To study
whether the divergence between the trial and the default results SPCdef is of significance,
their difference is calculated as a first step. It is defined as

Diff = SPCtrial − SPCdef . (6.8)

To determine its statistical significance, the error of the trial σtrial in comparison to the
one of the default analysis σdef has to be accounted for. The importance of this lies in the
statistical influence of the used trials. In general, when a selection cut is tightened, less
data is used for the analysis leading to an increased statistical error for the trial, while a
looser cut leads to the opposite effect in general. To account for this, the so-called error
on the difference is used

Err =
√∣∣σ2

trial − σ2
def

∣∣ . (6.9)

In the last equation, the minus sign has to be used because the data sets used for the
trial and default are correlated to each other as they only differ in one selection criterion
while being part of the larger, default data set. Would the two data sets be uncorrelated
to each other, a plus sign would have to be used in Eq. (6.9). Given the difference and
the error in difference, the so-called σBarlow can be computed as

σBarlow =
Diff

Err
. (6.10)

The σBarlow quantifies the statistical significance of the performed trial. If it is found to
be greater than a certain value, the trial is classified as a statistically relevant deviation.
For this analysis of symmetry plane correlations, a critical value of σBarlow = 1 is used i.e.
every trial with σBarlow > 1 is counted as statistically important.

As a last step, the systematic error has to be assigned. For this, the so-called relative
variation is computed as

Rel.V ar. =
Diff

SPCdef
(6.11)

The overall relative variation of all trials is then obtained as the square root of the indi-
vidual relative variations added in quadrature. To obtain the final systematic error of this
trial, the relative variation has to be multiplied by the absolute value of the SPC from
the default analysis.

This procedure of the Barlow test is in general applied to each data point individually.
As such, the overall significance of the trial is evaluated by fitting all σBarlow in the cen-
trality range of interest with a polynomial of zeroth order. If this fit returns a σBarlow,fitted
greater than one, the relative variation is assigned. The latter is also obtained as a fit
with a polynomial of zeroth order of all the individual relative variations in the same
centrality range.

However, the latter strategy leads to a negligible amount of statistically significant
trials, and as such another approach is finally used to obtain the systematic uncertainties.
For this, the default and the trial results of SPC are rebinned separately of each other in
the centrality range of interest consisting of Nc data points according to [100] as

SPCrebinned =

∑Nc
i=1 SPCi/σ

2
i∑Nc

i=1 1/σ2
i

(6.12)
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In the above equation, SPCi are the single data points that get binned together and
σ2
i are their corresponding statistical error squared. The error of the rebinned SPC is

obtained as

σrebinned =

√
1

Nc

· 1∑Nc
i=1 1/σ2

i

. (6.13)

With the rebinned values of the default and trial, the Barlow test is then performed
leading directly to one single value of σBarlow and the relative variation. As the obtained
σBarlow with this method are in general very large, the critical value has been adapted to
σBarlow > 2.

Overall, twelve systematic trials have been performed. The first part of these trials
concerns the centrality and event selection. To study the effect of the centrality estimation,
a trial using the V0M instead of the SPD clusters has been used. Additionally, the primary
vertex in z direction has been narrowed to 8 cm and 6 cm. From these last two trials,
only the largest significant check is assigned to the systematic error. Concerning the
track selection, two trials for the DCA have been used, namely DCAxy < 1 cm and
DCAz < 2 cm. The track quality is checked by varying the boundaries of the χ2/NTPC

to 0.3 < χ2/NTPC < 4.0 and 0.1 < χ2/NTPC < 3.5. Three systematic trials concerning
the number of TPC clusters have been performed, in particular NTPC > 80, NTPC > 90
and NTPC > 100. From these three NTPC trials, again only the largest, statically relevant
trial is assigned. Lastly, the magnetic field configuration of the L3 solenoid magnet is
used as a systematic trial. For this, the runs are divided into two groups with magnetic
field polarity “++” and “--”. From these two trials, again only the largest relevant check
is assigned.

As an example, the systematic trials of 〈cos [4 (Ψ4 −Ψ2)]〉 are shown in Fig. 6.24.
There, the integrated SPC between 0—50 % for the default and trial values are shown,
as well as the corresponding σBarlow and the absolute value of relative variation for each
trial. The exact values of relative variations for all SPC and the corresponding figures
can be found in App. E.3.

Table 6.3 summarizes the considered ranges of centrality for each SPC combination as
well as the total relative variation that was found.

Table 6.3: Summary of all measured SPC with their relevant centrality range and the
total relative variation.

SPC Centrality range Total relative variation
〈cos [4 (Ψ4 −Ψ2)]〉 0–50% 0.111
〈cos [6 (Ψ2 −Ψ3)]〉 0–50% 1.373
〈cos [6 (Ψ6 −Ψ2)]〉 0–50% 0.252
〈cos [6 (Ψ6 −Ψ3)]〉 0–50% 0.093
〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 0–50% 0.075
〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 10–50% 1.341
〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 0–50% 0.202
〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉 0–50% 0.102
〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉 5–50% 0.133
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Figure 6.24: Results for σBarlow and the relative variation (both in absolute values) of the
systematic trials for 〈cos [4 (Ψ4 −Ψ2)]〉.



Chapter 7

Experimental results and discussion

In this chapter, the experimental results for SPC obtained with ALICE using the GE
are presented. First, the data for the SPC observable 〈cos [4 (Ψ4 −Ψ2)]〉 is presented in
Fig. 7.1 with a comparison to the ATLAS results [67], estimated with the SP method.
The comparison of the other SPC measurements of this work to the ATLAS results can
be found in App. F.1. From the results in Fig. 7.1, it can be seen that the two experimen-
tal approaches lead to a different magnitude of the final state SPC, especially for larger
centralities. Focussing on the ALICE data with the GE, one can see that the signal of
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Figure 7.1: Comparison of the measured ALICE data of 〈cos [4 (Ψ4 −Ψ2)]〉 as function of
centrality using the GE to the ATLAS results [67] using the SP method.

SPC goes towards zero when approaching a centrality of 0%. This result indicates that
the two symmetry planes Ψ2 and Ψ4 are uncorrelated to each other for these ultra-central
collisions. This is expected, as in this regime no anisotropy in the initial state is present.
Any participant planes, and later symmetry planes, stem from random fluctuations and
are thus expected to be uncorrelated. Further, one expects that the signal of SPC goes
to zero again when approaching ultra-peripheral collisions. In this regime, the initial

63
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anisotropy cannot be translated into the final state as the system size is extremely small
and the evolution time very short. Thus, the final state is mainly dominated by fluctua-
tions for such ultra-peripheral collisions, leading again to a SPC signal compatible with
zero. However, in the regime of central to mid-central collisions, one can see a non-zero
signal below unity. The latter observation indicates that Ψ2 and Ψ4 are two distinct
planes (otherwise the SPC would yield one), while the non-zero signal shows that the two
symmetry planes are on average correlated to each other.

To further understand the origin of this correlation, the ALICE data are compared to
model predictions1. For the initial state, the GE is provided by the TRENTo model in
two distinct ways. First, the participant plane correlations are obtained via the eccentric-
ities En, and second by the energy density cumulants Cn, which were both presented in
Sec. 2.1.1. For the final state, the hydrodynamic evolution is given by VISH2+1 and the
evolution in the hadronic phase by UrQMD (see Sec. 3.3).
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Figure 7.2: Comparison of the TRENTo and iEBE-VISHNU models to the measured
ALICE data of 〈cos [4 (Ψ4 −Ψ2)]〉.

The first comparison of these model predictions to the experimental data is presented
for the SPC 〈cos [4 (Ψ4 −Ψ2)]〉 in Fig. 7.2. As one can see, the signal of the eccentricities
is of opposite sign when compared to the results of the energy density cumulants and the
final state. As it was pointed out in [103], the participant planes defined via eccentricities
point in the direction of the strongest pressure gradient and are thus the minor axis of
the associated anisotropic shape. In contrast to that, the symmetry planes point in the
direction of the largest flow and represent therefore a major axis. If no additional inter-
ferences are present, the participant plane and its corresponding symmetry plane point in
the same direction. The study conducted in [104] investigated correlations between two

1The model data for the SPC is courtesy of Seyed Farid Taghavi.
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participant planes in the initial state and “for a matter of convenience” shifted the minor
axis participant planes Φn to major axis Φ∗n via the transformation

Φ∗n = Φn +
π

n
. (7.1)

Therefore, the participant plane correlation with a numerical prefactor a is transformed
as

a (Φ∗n − Φ∗m) = a (Φn − Φm) + a
(π
n
− π

m

)
, (7.2)

which introduces a phase δn,m = aπ (1/n− 1/m) that inverts the sign of the signal for
some participant plane correlations. In particular, if δn,m mod 2π = |π|, the sign of the
participant plane correlation is inverted while δn,m mod 2π = 0 results in no change.
Generalizing this approach presented in [104], one can express the correlation between k
participant planes a1Φn1 + · · · akΦnk in their major axis as

a1Φ∗n1
+ · · · akΦ∗nk = a1Φn1 + · · · akΦnk + π

(
a1

n1

+ · · · ak
nk

)
. (7.3)

Again, the last term in the above equation presents the phase shift δ for the transfor-
mation of k participant planes from minor to major axis. It has to be stressed again
that if δ mod 2π = |π| , the sign of the participant plane correlation is inverted, while δ
mod 2π = 0 does not change it. In particular, for the initial participant plane correlation
〈cos [4 (Φ4 − Φ2)]〉, one obtains δ = π(4/4 − 4/2) = −π. Therefore, the transformation
of the participant planes from minor to major axis introduces a sign change for this par-
ticular combination. In general, a similar transformation from minor axis participant
planes to major axis symmetry planes is a possible reason for the sign change that one
can observe in Fig. 7.2 from the initial state via eccentricities to the final state. Why this
change of sign is not present in the description of the initial state via the energy density
cumulants has to be investigated further.

Focussing on the results obtained with the energy density cumulants and the final
state, one can study this signal further by employing the linear and non-linear response
formalism presented in Sec. 2.1.3:

v2
2v4e

i4(Ψ4−Ψ2) = V4

(
V 2

2

)∗
=
(
ω4C4 + ω422C

2
2

)
· ω2

2

(
C2

2

)∗
= ω2ω4c

2
2c4e

i4(φ4−φ2) + ω422ω
2
2c

2
2 .

(7.4)

As one can see from the above equation, the phase of the final state corresponds to the
measured symmetry plane correlations. In the absence of non-linear response between the
second and forth order, i.e. ω422 = 0, this final state SPC would be equal to the initial
state participant plane correlation, while a difference can be obtained by having a non-
zero non-linear coupling constant. Using this, one can see in Fig. 7.2 that the predictions
for the initial state participant plane correlations via the energy density cumulants and
for the final state are equal to each other for the centrality range 0–10%. With rising
centrality, the difference between these predictions becomes larger, indicating an increas-
ing non-linear response. In particular, the TRENTo + iEBE-VISHNU model describes
the measured data very well only in the regime of linear response while the predictions
deviate increasingly stronger with increasing centrality and non-linear response.

As a second SPC between two planes, the correlation 〈cos [6 (Ψ2 −Ψ3)]〉 is presented
in Fig. 7.3. It can be observed that the measured data is compatible with zero over
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the whole centrality range 0–50%, indicating that the symmetry planes Ψ2 and Ψ3 are
uncorrelated. This absence of correlation between the two planes is well predicted in the
final state by the employed model. This is, however, a non-trivial result. Considering the
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Figure 7.3: Comparison of the TRENTo and iEBE-VISHNU models to the measured
ALICE data of 〈cos [6 (Ψ2 −Ψ3)]〉.

linear and non-linear response formalism, there is no non-linear phase between the second
and third harmonic, i.e.

v3
2v

2
3e
i6(Ψ3−Ψ2) = V 2

3

(
V 3

2

)∗
= ω2

3C
2
3ω

3
2

(
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)∗
= ω3

2ω
2
3c

3
2c

2
3e
i6(φ3−φ2) .

(7.5)

Thus, one would expect a direct translation of the initial state signal into the final state
via this linear response. While TRENTo first predicts participant plane correlations com-
patible with zero, a non-zero signal in the initial state is predicted for centralities bigger
than 30 %. Yet, in this regime the measured SPC signal is zero, indicated that during the
hydrodynamic evolution of the system the planes get uncorrelated. This is particularly
interesting, as the correlation between v2 and v3 measured via the symmetric cumulant
SC(2,3) is non-zero for larger centralities [61]. This would indicate that the amplitudes
themselves are correlated for larger centralities while the phases, i.e. the symmetry planes,
are uncorrelated.

The last two SPC between two planes are 〈cos [6 (Ψ6 −Ψ2)]〉 and 〈cos [6 (Ψ6 −Ψ3)]〉
presented in Fig. 7.4 and Fig. 7.5, respectively. These results show a great difference
between the model predictions and the measured data. This is, to a certain extent,
not surprising as the sixth order asymmetry has multiple non-linear phases with various
contributions from the second, third and forth order initial state.

In addition to the four measured SPC between two planes, additional correlations
between three symmetry planes have been extracted. The first presented SPC of this
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Figure 7.5: Comparison of the TRENTo
and iEBE-VISHNU models to the mea-
sured ALICE data of 〈cos [6 (Ψ6 −Ψ3)]〉.

kind is 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 shown in Fig. 7.6. Concerning the phases in the linear
and non-linear response, one obtains

V2V3V
∗

5 = v2v3v5e
i(2Ψ2+3Ψ3−5Ψ5)

= ω2C2ω3C3 · (ω5C
∗
5 + ω523C

∗
2C
∗
3)

= ω2ω3ω5c2c3c5e
i(2φ2+3φ3−5φ5) + ω523ω2ω3c

2
2c

2
3

(7.6)

Again a non-zero non-linear coupling constant ω523 6= 0 modifies the phase between the
initial and final state, leading to a difference between the participant plane and symmetry
plane correlations. As one can see in Fig. 7.6, the initial and final state model predictions
lie very close to each other, indicating only a weak non-linear term. In particular, the
final state predictions describe the measured data extremely well. Additionally, these three
particular symmetry planes have been studied further by arranging them in a different way
in the SPC. The resulting combination 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 is presented in Fig. 7.7 for
the centrality range 10–50 % (the lower centrality bins have been excluded due to unstable
statistical errors). It has to be noted that the final state predictions for this combination
could not yet be obtained but are currently under preparation. The obtained data show a
signal compatible with zero, in particular when compared with the previously presented
result of 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉, which was non-vanishing in the same centrality range.
For the linear and non-linear response of 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 one obtains

V 4
2 V
∗

3 V
∗

5 = v4
2v3v5e

i(8Ψ2−3Ψ3−5Ψ5)

= ω4
2C

4
2ω3C

∗
3 · (ω5C

∗
5 + ω523C

∗
2C
∗
3)

= ω2ω3ω5c2c3c5e
i(8φ2−3φ3−5φ5) + ω523ω2ω3c

2
2c

2
3e
i6(φ2−φ3) .

(7.7)

The latter equation in particular shows that the non-linear part is not only governed by
the hydrodynamic coupling constant ω523, but also that it has a contribution from the
initial state participant plane correlation ei6(φ2−φ3). Similar to 〈cos [6 (Ψ2 −Ψ3)]〉, a slight
correlation in the initial state can be observed for 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉, which is then
lost during the hydrodynamic evolution. More investigations how the symmetry planes
get uncorrelated during the hydrodynamic evolution will be addressed in further studies.

Next, the results obtained for the SPC 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 are presented in Fig. 7.8.
For this combination, it can be seen that a negative signal is observed and is qualitatively
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very well described by the model predictions. This result is particularly interesting, as
Ψ3 does not have any direct connection to Ψ2 and Ψ4 in the non-linear response model.
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Thus, one would naïvely expect that Ψ3 fluctuates completely independent from the other
two planes, in particular as 〈cos [6 (Ψ2 −Ψ3)]〉 has been observed to be zero in the same
centrality range. This independent fluctuation of Ψ3 would lead to a zero result for this
SPC. However, the non-zero and negative signal indicates a correlation and thus more
complex hydrodynamics beyond the leading order picture of the linear and non-linear
response model.
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Figure 7.8: Comparison of the TRENTo and iEBE-VISHNU models to the measured
ALICE data of 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉.

As a last SPC between three planes, the observable 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉 is pre-
sented (Fig. 7.9). The presented results show a big discrepancy between the model pre-
dictions and the experimental data. This is not surprising, given the observation that
the model fails to reproduce the SPC between two planes that involve Ψ6 as well (i.e.
〈cos [6 (Ψ6 −Ψ2)]〉 and 〈cos [6 (Ψ6 −Ψ3)]〉). These results in particular show that more
detailed studies with these higher order planes are needed, and especially that the results
presented here can be used as valuable input for future Bayesian analyses to constrain
model parameters.

The last measured observable is the SPC between four planes, namely the combination
〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉 (see Fig. 7.10). Within the errors, the measured data show
a clear non-zero signal presenting the first extraction of a SPC between four planes. The
final state predictions of the model describe the data at least qualitatively. However,
again due to the involvement of multiple non-linear phases, a quantitative description of
the data is not achieved.

Overall, the presented results show that more studies of non-linear response are needed,
as the models fail to describe the data in this regime. Additionally, the data provided
here offers the opportunity to tune higher harmonics up to the sixth order, which are not
reproduced by the models.
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Figure 7.9: Comparison of the TRENTo and iEBE-VISHNU models to the measured
ALICE data of 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉.

5 10 15 20 25 30 35 40 45 50
Centrality percentile

0.2−

0

0.2

0.4

0.6

0.8

〉] 5
Ψ

+
5

4
Ψ

-4 3
Ψ

-3 2
Ψ

co
s[

2
〈

| < 0.8η, |c < 5.0 GeV/
T

p = 2.76 TeV, 0.2 < 
NN

sPb −Pb
This Work

ALICE GE

ENTo GE (energy density cumulants)RT

ENTo GE (eccentricities)RT

ENTo + VISH2+1 + UrQMD GERT

Figure 7.10: Comparison of the TRENTo and iEBE-VISHNU model to the measured
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Chapter 8

Summary

In this thesis, a new method for measuring symmetry plane correlations in ultrarelativistic
heavy-ion collisions has been presented based on [72]. This so-called Gaussian Estimator
shows a great improvement over existing estimators for SPC, which are biased due to the
neglect of correlations between the flow amplitudes. The study of the symmetry planes is
particularly interesting, as they are the second degree of freedom in the Fourier series used
to describe the distribution of azimuthal angles of produced particles. This distribution
contains the information about the initial coordinate anisotropy of the heavy-ion collision
as well as the collective evolution of the QGP.

Furthermore, a new cumulant for symmetry plane correlations, abbreviated as CSC,
has been discussed in this thesis. The conceptual feasibility of the CSC has been demon-
strated by carefully designed toy Monte Carlo studies. Additionally, predictions from
realistic Monte Carlo generators have been presented. The study of these observables
would allow the access to new information on the QGP and the genuine correlations
between different symmetry plane correlations.

Using the ALICE detector at the LHC, the new Gaussian Estimator has been used
for the first time in Pb–Pb collisions at

√
sNN = 2.76 TeV recorded in 2010. In particular,

the presented analysis is based on tracks reconstructed only with the information from
the TPC, which has a great uniform acceptance in azimuthal angles important for flow
analyses. Various detector inefficiencies have been accounted for by removing high multi-
plicity outliers and correcting non-uniform efficiencies for the transverse momenta pT of
reconstructed particles. Using the Barlow test, a total of twelve systematic checks have
been performed to study the effects of the event and track selections. The statistically sig-
nificant deviations between these trials and the default analysis have been accounted for
in the systematic errors of the presented results. In addition to that, by using the HIJING
Monte Carlo generator anchored to detector conditions from ALICE real data, it has been
demonstrated that the performed analysis is not biased by non-flow contributions in the
centrality range of 0–50%.

In total, four combinations for correlations between each two and three symmetry
planes, as well as the first experimental measurement of a SPC between four planes, have
been extracted. The results show significant lower signals for the SPC when compared to
the results of previous analyses. Employing state-of-the-art models for the initial state
given by TRENTo and for the final state by TRENTo +iEBE-VISHNU, a comparison
between theoretical predictions and the experimental data has been performed. Utilizing
the linear and non-linear response formalism, one could in particular see that theoretical
predictions describe the experimental data very well only in the region where the linear
response dominates. Additionally, SPC involving higher order harmonics like Ψ6 are
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only poorly described by the model. This in particular will allow to further tune model
parameters using the here presented experimental data as input.

Future analyses of SPC will have to study these novel correlations differentially for
different pseudorapidity η and transverse momentum pT ranges. This will be feasible
with the larger statistics of the LHC Run 2 data sets and beyond, which will also allow
to decrease the statistical errors of the presented analysis. Further, the experimental
feasibility of the CSC and its application on real data, will be addressed in future studies
as well.



Appendix A

Basics of flow

A.1 Proof of 〈exp [in (ϕ− Ψn)]〉 = vn

In this section, the statements

〈cos [n (ϕ−Ψn)]〉 = vn , (A.1)

and
〈sin [n (ϕ−Ψn)]〉 = 0 , (A.2)

will be proven simultaneously by the calculation of the expectation value

〈ein(ϕ−Ψn)〉 . (A.3)

First, the p.d.f. provided in Eq. (2.15) is rewritten as

f (ϕ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos [n (ϕ−Ψn)]

]
(A.4)

=
1

2π

[
1 +

∞∑
n=1

vn
[
ein(ϕ−Ψn) + e−in(ϕ−Ψn)

]]
(A.5)

=
1

2π

[
1 +

∞∑
n=1

[
V ∗n e

inϕ + Vne
−inϕ]] , (A.6)

where in the last line the complex flow harmonics

Vn = vne
inΨn (A.7)

V ∗n = vne
−inΨn (A.8)

have been used. By defining V0 = 1 [33] and using V−n = V ∗n (i.e. v−n = vn and
Ψ−n = Ψn), one can further simplify the p.d.f. to

f (ϕ) =
1

2π

∞∑
n=−∞

Vne
−inϕ . (A.9)
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Thus, one can compute 〈ein(ϕ−Ψn)〉 as

〈ein(ϕ−Ψn)〉 =

∫ 2π

0

dϕ ein(ϕ−Ψn)f(ϕ) (A.10)

=

∫ 2π

0

dϕ ein(ϕ−Ψn) 1

2π

∞∑
m=−∞

Vme
−imϕ (A.11)

=
1

2π

∞∑
m=−∞

∫ 2π

0

dϕ ein(ϕ−Ψn)Vme
−imϕ (A.12)

=
1

2π

∞∑
m=−∞

∫ 2π

0

dϕ vme
i(mΨm−nΨn)ein(iϕ(n−m) . (A.13)

Using ∫ 2π

0

dϕ ein(iϕ(n−m) = 2πδm,n , (A.14)

with δm,n being the Kronecker delta, leads to the final result

〈ein(ϕ−Ψn)〉 = vn . (A.15)

In particular, this means for the real part

〈cos [n (ϕ−Ψn)]〉 = vn , (A.16)

and the imaginary part
〈sin [n (ϕ−Ψn)]〉 = 0 . (A.17)

A.2 Importance of the isotropy condition

Consider a generic flow observable vn1vn2 ...vnke
i(n1Ψn1+n2Ψn2+...+nkΨnk ) with a set of flow

harmonics {n1, · · · , nk}. To calculate its all-event average, it has to be integrated over
the p.d.f. f(v1, · · · ,Ψ1, · · · ), which contains the information on how the flow amplitudes
and symmetry planes fluctuate per event, i.e.

〈vn1vn2 ...vnke
i(n1Ψn1+n2Ψn2+...+nkΨnk )〉 =

∫
vn1vn2 ...vnke

i(n1Ψn1+n2Ψn2+...+nkΨnk )

· f(v1, · · · ,Ψ1, · · · )dvn1 · · · · vnkdΨn1 · · ·Ψnk .

(A.18)

In particular, the information about the symmetry planes is given relative to the impact
parameter vector ~b, as any physical fluctuations are only meaningful with respect to ~b.
However, in the experiment the orientation ~b is not fixed in respect to the laboratory
frame and fluctuates event-by-event. This random orientation of ~b is characterised by the
fluctuation of the reaction plane ΨRP ∈ [0, 2π). To account for these fluctuations, any
“measured” symmetry plane have to be transformed as Ψn → Ψn−ΨRP ≡ Ψ∗n. Therefore,
in the all-event average one has to perform an additional integration

1

2π

∫ 2π

0

dΨRP 〈vn1vn2 ...vnke
i(n1Ψ∗n1+n2Ψ∗n2+...+nkΨ∗nk

)〉 , (A.19)
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where the factor 1/(2π) is the proper normalisation for the p.d.f. of the fluctuations of
ΨRP . In particular, the flow observable vn1vn2 ...vnke

i(n1Ψn1+n2Ψn2+...+nkΨnk ) transforms as

vn1vn2 ...vnke
i(n1Ψn1+n2Ψn2+...+nkΨnk ) → vn1vn2 ...vnke

i(n1Ψn1+n2Ψn2+...+nkΨnk )·e−i(n1+···+nk)ΨRP .
(A.20)

Note that the transformed flow observable only differs in the prefactor e−i(n1+···+nk)ΨRP ,
thus

1

2π

∫ 2π

0

dΨRP 〈vn1vn2 ...vnke
i(n1Ψ∗n1+n2Ψ∗n2+...+nkΨ∗nk

)〉

= 〈vn1vn2 ...vnke
i(n1Ψn1+n2Ψn2+...+nkΨnk )〉 · 1

2π

∫ 2π

0

dΨRP e
−i(n1+···+nk)ΨRP .

(A.21)

If the isotropy condition n1 + · · ·nk = 0 is fulfilled, this prefactor is trivially equal to
one and the averaging over ΨRP has no effect on the final observables, i.e. its physics
information is unchanged. However, if n1 + · · ·nk ≡ m 6= 0, the integral becomes

1

2π

∫ 2π

0

dΨRP e
−imΨRP = 0 , (A.22)

leading to trivial zero in the all-event average of the measured flow observable.

A.3 P.D.F. characteristics
In this section, the basic mathematical properties of the p.d.f.

f(ϕ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

]
, (A.23)

are investigated. Based on the Kolmogorow axioms, a p.d.f. has to fulfil two important
criteria: the p.d.f. has to be equal to 1 when integrated over the whole space (the so-
called unity) and it has to be non-negative [100]. Both of these criteria are shown in the
following for the p.d.f. in Eq. A.23:

1. Unity is trivially fulfilled, i.e. no condition on vn and Ψn have to be imposed as∫ 2π

0

dϕf(ϕ)
!

= 1 (A.24)∫ 2π

0

dϕ
1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

]
(A.25)

= 1 +
1

π

∫ 2π

0

dϕ
∞∑
n=1

vn cos[n(ϕ−Ψn)] (A.26)

= 1 +
1

π

∞∑
n=1

∫ 2π

0

dϕvn cos[n(ϕ−Ψn)] (A.27)

= 1 +
∞∑
n=1

vn
sin(nΨn)− sin(nΨn − n2π)

nπ︸ ︷︷ ︸
= 0

(A.28)

= 1 (A.29)
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In the latter step, the 2π periodicity of the sinus

sin(nΨn − n2π) = sin(nΨn) cos(2πn)− sin(n2π) cos(nΨn) = sin(nΨn) , (A.30)

has been used.

2. Non-Negativity

∀ϕ : f(ϕ) =
1

2π

[
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

]
≥ 0 (A.31)

Let’s consider two extreme cases to find the uppermost and lowermost bounds,
namely

∃ϕ0 ∀n : cos[n(ϕ0 −Ψn)] = 1 (A.32)
∃ϕ0 ∀n : cos[n(ϕ0 −Ψn)] = −1 . (A.33)

Both cases can exist by artificially adjusting Ψn. Then one obtains

1 + 2
∞∑
n=1

vn ≥ 0 (A.34)

1− 2
∞∑
n=1

vn ≥ 0 . (A.35)

Therefore,

∞∑
n=1

vn ≥ −
1

2
(A.36)

∞∑
n=1

vn ≤
1

2
(A.37)

=⇒

∣∣∣∣∣
∞∑
n=1

vn

∣∣∣∣∣ ≤ 1

2
(A.38)

As vn are per construction positive, the lower boundary is trivially fulfilled.



Appendix B

Supplements for new formalisms for
SPC

B.1 Choice of correlators in the GE
In this section1, the most general form of multiparticle correlators is used to derive con-
straints for their application in the GE. This procedure generates rules for the coefficients
ai used in Eq. (5.11).
Considering two general multiparticle correlators 〈k〉n1,n2,...,nk

(k-particle correlator with
set of harmonics {n1, n2, ... nk}) and 〈l〉p1,p2,...,pl (l-particle correlator with set of harmon-
ics {p1, p2, ... , pl}), their all-event ratio can in general be written as〈

〈k〉n1,n2,··· ,nk

〉
√〈
〈l〉p1,p2,··· ,pl

〉 ∝ 〈vn1 · · · vnkei(n1Ψn1+···+nkΨnk )
〉√〈

vp1 · · · vplei(p1Ψp1+···+plΨpl )
〉 . (B.1)

The above equation presents the most general ratio in terms of multiparticle correlators as
it is given in the GE (Eq. (5.11)). Utilizing this general ansatz, the following constraints
have to be satisfied to obtain the desired GE:

k∑
j=1

nj = 0 (B.2)

l∑
j=1

pj = 0 (B.3)

k∑
j=1

nj ·Ψnj 6= 0 (B.4)

l∑
j=1

pj ·Ψpj = 0 (B.5)

k∏
i=1

v2
ni

=
l∏

i=1

vpi . (B.6)

The constraints (B.2) and (B.3) ensure the isotropy condition, which has to be fulfilled
for any non-trivial multiparticle correlator. The constraint (B.4) leads to a non-vanishing

1This section is based on [72].
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contribution of symmetry planes in the numerator, while the constraint (B.5) ensures that
the denominator does not depend explicitly on symmetry planes. The last constraint (B.6)
enforces that the product of flow amplitudes in numerator is equal to the product of flow
amplitudes squared in the denominator. In particular, from the constraint (B.6), it follows
directly that l = 2k. Therefore, the numerator uses a k-particle correlator while the one
in the denominator is of order 2k. To obtain a particular SPC, one has to choose specific
sets of correlators {n1, n2, ... nk} and {p1, p2, ... , p2k}, which have to fulfil the constraints
in Eqs. (B.2) - (B.6). In the following, this approach is discussed for the SPC between two
symmetry planes Ψm and Ψn. It will be shown that strict constraints for the coefficients
ai emerge for the case of two planes. The presented formalism can be generalized for
correlations between any number of symmetry planes, which will be further demonstrated
in the case for three symmetry planes.

B.1.1 Correlators between two symmetry planes

Focussing on the SPC between two planes Ψm and Ψn, the general sets of harmonics with
m and n (where m 6= n) can be set up as m︸︷︷︸

am times

, · · · ,m, −n︸︷︷︸
an times

, · · · ,−n

 (numerator) (B.7)

m,−m︸ ︷︷ ︸
2am times

, · · · ,m,−m, n,−n,︸ ︷︷ ︸
2an times

, · · · , n,−n

 (denominator) , (B.8)

where am, an ∈ N. These sets explicitly fulfil the constraints in Eq. (B.4) to Eq. (B.6).
Given the constraints Eq. (B.2) and Eq. (B.3), the following rules for am and an have to
be satisfied

am∑
j=1

m+
an∑
k=1

(−n) = amm− ann = 0 =⇒ am
n

=
an
m
, (B.9)

and
2am∑
j=1

(−1)j ·m+
2an∑
k=1

(−1)k · n = 0 =⇒ 2am ∧ 2an even . (B.10)

In the latter equation, ∧ denotes the logical AND. With this, the constraints from
Eq. (B.2) and Eq. (B.3) are fulfilled as well. In particular, Eq. (B.10) is true for any
choice of am and an.

With this approach, the smallest possible valid choice of the coefficients am and an for
the SPC between two planes is given as

am =
lmn
m

, (B.11)

an =
lmn
n
, (B.12)

where lmn denotes the least common multiple between m and n. With this, the order of
the multiparticle correlator in the numerator is given as

lmn

(
1

m
+

1

n

)
, (B.13)
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while the denominator has an order twice that large. Any other choice of the coefficients
will exhibit higher order of correlators. Thus, the lowest order GE for two symmetry
planes is given as

〈cos [lmn (Ψm −Ψn)]〉GE ∝
〈vamm vann cos [lmn (Ψm −Ψn)]〉√

〈v2am
m v2an

n 〉
. (B.14)

Although this method of using the least common multiple presents the lowest possible
order correlators, any multiple k ∈ N of this method results in a valid correlator as well.
Thus, one can expand the set of correlators by transforming am → kam and an → kan,
resulting in the more general expression

〈cos [klmn (Ψm −Ψn)]〉GE ∝
〈
vkamm vkann cos [klmn (Ψm −Ψn)]

〉√
〈v2kam
m v2kan

n 〉
. (B.15)

B.1.2 Correlators between three symmetry planes

Consider three symmetry planes of distinct harmonics m, n and p. Satisfying the con-
straints in Eq. (B.4) to Eq. (B.6), the following general choice for the set of harmonics
can be made: m︸︷︷︸

am times

, · · · ,m, −n︸︷︷︸
an times

, · · · ,−n, −p︸︷︷︸
ap times

, · · · ,−p

 (numerator) (B.16)

m,−m︸ ︷︷ ︸
2am times

, · · · ,m,−m, n,−n,︸ ︷︷ ︸
2an times

, · · · , n,−n, p,−p,︸ ︷︷ ︸
2ap times

, · · · , p,−p

 (denominator) (B.17)

Following the same approach as for the SPC between two planes, the following constraints
on am, an and ap

am∑
j=1

m+
an∑
k=1

(−n) +

ap∑
l=1

(−p) = amm− ann− app = 0 (B.18)

2am∑
j=1

(−1)j ·m+
2an∑
k=1

(−1)k · n+

2ap∑
l=1

(−1)l · p = 0 =⇒ 2am ∧ 2an ∧ 2ap even , (B.19)

are derived. Again, the second constraint is fulfilled trivially. The correlators for the
SPC between three planes will, in general, be of high order, limiting the experimental
feasibility. Due to the large amount of possible combinatorial solutions for Eq. (B.18), a
closed formula for the coefficients ai cannot be found as it was the case for two symmetry
planes. However, a trivial example for the special case m = n + p can be found as
am = an = ap = 1. In particular, in this case the GE takes the following form

〈cos [mΨm − nΨn − pΨp]〉GE ∝
〈vmvnvp cos [mΨm − nΨn − pΨp]〉√〈

v2
mv

2
nv

2
p

〉 . (B.20)

B.2 Cumulant properties of CSC
In this section, the cumulant properties of

CSC (bδc,d, kδl,m) =
〈
ei(bδc,d+kδl,m)

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉
. (B.21)

are demonstrated according to [97].
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B.2.1 Statistical independence

Assuming that the variables δc,d and δl,m are independent from each other, one obtains

CSC (bδc,d, kδl,m) =
〈
ei(bδc,d+kδl,m)

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉
=
〈
eibδc,d

〉 〈
eikδl,m

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉
= 0 .

(B.22)

Thus, the statistical independence is fulfilled.

B.2.2 Reduction

Considering the equality eibδc,d = eikδl,m , the reduction is fulfilled as

CSC (bδc,d, bδc,d) =
〈
ei2bδc,d

〉
−
(〈
eibδc,d

〉)2
. (B.23)

The above equation presents the equation for κ2.

B.2.3 Semi-invariance

Using two constants c1 and c2, the semi-invariance is proven by〈(
eibδc,d + c1

) (
eikδl,m + c2

)〉
−
〈(
eibδc,d + c1

)〉 〈(
eikδl,m + c2

)〉
=
〈
ei(bδc,d+kδl,m)

〉
+ c1

〈
eikδl,m

〉
+ c2

〈
eibδc,d

〉
+ c1c2−(〈

eibδc,d
〉 〈
eikδl,m

〉
+ c1

〈
eikδl,m

〉
+ c2

〈
eibδc,d

〉
+ c1c2

)
=
〈
ei(bδc,d+kδl,m)

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉
= CSC (bδc,d, kδl,m) .

(B.24)

B.2.4 Homogeneity

Considering the two constants c1 and c2, one obtains〈(
c1e

ibδc,d
) (
c2e

ikδl,m
)〉
−
〈(
c1e

ibδc,d
)〉 〈(

c2e
ikδl,m

)〉
= c1c2CSC (bδc,d, kδl,m) ,

(B.25)

and therefore, the homogeneity requirement is fulfilled.

B.2.5 Multilinearity

The multilinearity condition is proven correct by using an additional stochastic observable
eixδy,z . Then, one can see〈

eibδc,d
(
eikδl,m + eixδy,z

)〉
−
〈
eibδc,d

〉 〈(
eikδl,m + eixδy,z

)〉
=
〈
ei(bδc,d+kδl,m)

〉
+
〈
ei(bδc,d+xδy,z)

〉
−
(〈
eibδc,d

〉 〈
eikδl,m

〉
+
〈
eibδc,d

〉 〈
eixδy,z

〉)
=
(〈
ei(bδc,d+kδl,m)

〉
−
〈
eibδc,d

〉 〈
eikδl,m

〉)
+
(〈
ei(bδc,d+xδy,z)

〉
−
〈
eibδc,d

〉 〈
eixδy,z

〉)
= CSC (bδc,d, kδl,m) + CSC (bδc,d, xδy,z) .

(B.26)



Appendix C

Non-flow studies

In this section, the non-flow studies of the multiparticle correlators of the numerator and
denominator in the GE are present. The results concerning the correlations between two
symmetry planes are shown in Figs.C.1-C.3, between three planes in Figs. C.4-C.7 and for
the SPC between four planes in Fig. C.8. All of the provided results show that non-flow
is not significant and compatible with zero when compared to the signal of the real data.
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Figure C.1: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [4 (Ψ4 −Ψ2)]〉 obtained with HIJING and the real experimental
data.
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Figure C.2: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [6 (Ψ6 −Ψ2)]〉 obtained with HIJING and the real experimental
data.
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Figure C.3: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [6 (Ψ6 −Ψ3)]〉 obtained with HIJING and the real experimental
data.
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Figure C.4: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 obtained with HIJING and the real experi-
mental data.
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Figure C.5: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 obtained with HIJING and the real experi-
mental data.
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Figure C.6: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 obtained with HIJING and the real experi-
mental data.
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Figure C.7: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉 obtained with HIJING and the real experi-
mental data.
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Figure C.8: Comparison of the multiparticle correlators from the numerator and denom-
inator in the GE of 〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉 obtained with HIJING and the real
experimental data.



Appendix D

Statistical error propagation

In this chapter, the basics of the statistical errors and the error propagation are discussed
for the most general case. After this, the specific error propagation for the GE is presented.

D.1 Errors of one-dimensional variables
Consider a one-dimensional, random variable x with a p.d.f. f(x). Two of the most
important characteristics of this p.d.f. are its mean µx and its variance σ2

x (also written
as V [x]) which are defined as

µx = E[x] =

∫ ∞
−∞

xf(x)dx , (D.1)

and

σ2
x = V [x] = E[(x− E[x])2] = E[x2]− E[x]2 =

∫ ∞
−∞

(x− µx)2f(x)dx . (D.2)

In the above equations E(g(x)) denotes the expectation value of a function g(x) depending
on the random variable x. In general, the p.d.f. of the random variable x is unknown. To
infer onto a property θ of the p.d.f., the so-called estimators θ̂ are used. These estimators
are general functions of a set of n independent observations of x (a so-called sample) [100].
As the estimator θ̂ is a function of the random variable x, it is itself a random variable
following a sampling p.d.f. g(θ̂; θ). The expectation value of the estimator can thus be
expressed as [100]

E[θ̂(x)] =

∫
θ̂g(θ̂; θ)dθ̂

=

∫
θ̂(x)f(x1, θ) · · · f(xn, θ)dx1 · · · dxn .

(D.3)

The bias of an estimator is defined as

b = E[θ̂]− θ . (D.4)

An estimator with b = 0 independent of the sample size is called unbiased.
With these definitions, the sample mean 〈x〉 is introduced as the unbiased estimator

of the mean µx. It is defined as

〈x〉 =

∑N
i=1(ωx)ixi∑N
i=1(ωx)i

, (D.5)
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where the sample size is N and (ωx)i is the weight attributed to the ith measurement xi.
The proof that it is unbiased goes as the following

E[〈x〉] = E

[∑N
i=1(ωx)ixi∑N
i=1(ωx)i

]
=
E
[∑N

i=1(ωx)ixi

]
∑N

i=1(ωx)i

=

∑N
i=1(ωx)iE [xi]∑N

i=1(ωx)i
=

∑N
i=1(ωx)iµx∑N
i=1(ωx)i

= µx .

(D.6)

An unbiased estimator for the variance σ2
x is given as [16]

s2
x =

∑N
i=1(ωx)ix

2
i∑N

i=1(ωx)i
−

(∑N
i=1(ωx)ixi∑N
i=1(ωx)i

)2
×

 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2

 . (D.7)

The proof that this estimator is not biased is

E[s2
x] = E

∑N
i=1(ωx)ix

2
i∑N

i=1(ωx)i
−

(∑N
i=1(ωx)ixi∑N
i=1(ωx)i

)2
×

 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


=

∑N
i=1(ωx)iE[x2

i ]∑N
i=1(ωx)i

−
E
[∑N

i=1(ωx)ixi
∑N

i=1(ωx)jxj

]
∑N

i=1(ωx)i
∑N

j=1(ωx)j

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


=

E[x2]−

∑N
i,j=1
i 6=j

(ωx)i(ωx)jE[xixj] +
∑N

i=1(ωx)
2
iE[x2

i ]∑N
i=1(ωx)i

∑N
j=1(ωx)j

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


=


∑N

i,j=1(ωx)i(ωx)jE[x2]−
∑N

i,j=1
i 6=j

(ωx)i(ωx)jE[x]2 −
∑N

i=1(ωx)
2
iE[x2]∑N

i=1(ωx)i
∑N

j=1(ωx)j

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


=


∑N

i,j=1
i 6=j

(ωx)i(ωx)j(E[x2]− E[x]2)∑N
i=1(ωx)i

∑N
j=1(ωx)j

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


= σ2

x


∑N

i,j=1
i 6=j

(ωx)i(ωx)j∑N
i,j=1(ωx)i

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


= σ2

x

1−
∑N

i=1(ωx)
2
i(∑N

i=1(ωx)i(ωx)j

)2

×
 1

1−
∑N
i=1(ωx)2i

(
∑N
i=1(ωx)i)

2


= σ2

x ,

(D.8)

where E[x2
i ] = E[x2], E[xixj] = E[xi]E[xj] = µ2

x and the abbreviation
∑N

i=1(ωx)i
∑N

j=1(ωy)j =∑N
i,j(ωx)i(ωy)j was used
As the sample mean 〈x〉 is the unbiased estimator of the mean µx, its final error is

reported as [16]
〈x〉 ±

√
V [〈x〉] , (D.9)
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where V [〈x〉] is the sample variance (also denoted by σ2
〈x〉). This sample variance is given

as

σ2
〈x〉 = V [〈x〉] =

∑N
i=1(ωx)

2
i(∑N

i=1(ωx)i

)2σ
2
x . (D.10)

The proof of the latter equation is

σ2
〈x〉 = E[〈x〉2]− E[〈x〉]2

= E

[∑N
i=1(ωx)ixi∑N
i=1(ωx)i

·
∑N

j=1(ωx)jxj∑N
j=1(ωx)j

]
− µ2

x

=
1(∑N

i=1(ωx)i

)2

(
E

[
N∑

i,j=1

(ωx)i(ωx)jxixj

]
−

N∑
i,j=1

(ωx)i(ωx)jµ
2
x

)

=
1(∑N

i=1(ωx)i

)2

(
N∑

i,j=1

(ωx)i(ωx)jE[xixj]−
N∑

i,j=1

(ωx)i(ωx)jµ
2
x

)

=
1(∑N

i=1(ωx)i

)2

 N∑
i,j=1
i 6=j

(ωx)i(ωx)jµ
2
x +

N∑
i=1

(ωx)i(ωx)iµx2 −
N∑

i,j=1

(ωx)i(ωx)jµ
2
x


=

∑N
i (ωx)i(ωx)i(∑N
i=1(ωx)i

)2

(
µx2 − µ2

x

)
=

∑N
i (ωx)

2
i(∑N

i=1(ωx)i

)2 · σ
2
x .

(D.11)

Thus, the estimate of the sample mean 〈x〉 and its error are reported as [16]

〈x〉 ±

√√√√√ ∑N
i=1(ωx)2

i(∑N
i=1(ωx)i

)2 s
2
x , (D.12)

where the unbiased estimator s2
x for the variance has been used. The term

s2
〈x〉 =

∑N
i=1(ωx)

2
i(∑N

i=1(ωx)i

)2 s
2
x (D.13)

will be referred to as the unbiased estimator for the sample variance.

D.2 General error propagation

Consider a function h(x, y) of two random variables x and y that follow a p.d.f. f(x, y).
Using leading order error propagation [100], the mean of h, µh, is given as

µh = E[h(x, y)] ≈ h(µx, µy) . (D.14)
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The corresponding, first order term of the variance σ2
h is

σ2
h ≈

[(
∂h

∂x

) ∣∣∣∣
x=µx,y=µy

· σx

]2

+

[(
∂h

∂y

) ∣∣∣∣
x=µx,y=µy

· σy

]2

+ 2

(
∂h

∂x

∂h

∂y

) ∣∣∣∣
x=µx,y=µy

Vxy

(D.15)

In the above equation, Vxy denotes the covariance between the two random variables x
and y, and is defined as

Vxy = E[(x− µx)(y − µy)] = E[xy]− E[x]E[y] . (D.16)

An unbiased estimator of this covariance is given as [16]

Cov(x, y) =

∑N
i=1(ωx)i(ωy)ixiyi∑N
i=1(ωx)i(ωy)i

−
∑N
i=1(ωx)ixi∑N
i=1(ωx)i

∑N
j=1(ωy)jyj∑N
j=1(ωy)j

1−
∑N
i=1(ωx)i(ωy)i∑N

i=1(ωx)i
∑N
j=1(ωy)j

, (D.17)

where (ωx)i and (ωy)i are the weights for the ith measurement xi and yi, respectively.
The proof that this estimator is unbiased is the generalisation of the proof for s2

x

E[Cov(x, y)] = E

[∑N
i=1 (ωx)i (ωy)i xiyi∑N
i=1 (ωx)i (ωy)i

−
∑N

i=1 (ωx)i xi∑N
i=1 (ωx)i

∑N
j=1 (ωy)j yj∑N
j=1 (ωy)j

]
×

 1

1−
∑N
i=1(ωx)i(ωy)i∑N

i=1(ωx)i
∑N
j=1(ωy)j



=

[∑N
i,j=1 (ωx)i (ωy)j µxy −

∑N
i,j=1
i 6=j

(ωx)i (ωy)j µxµy −
∑N

i=1 (ωx)i (ωy)i µxy

]
∑N

i,j=1 (ωx)i (ωy)j

×

 1

1−
∑N
i=1(ωx)i(ωy)i∑N

i=1(ωx)i
∑N
j=1(ωy)j


=

(µxy − µxµy)
∑N

i,j=1
i 6=j

(ωx)i (ωy)j∑N
i,j=1 (ωx)i (ωy)j

×

 1

1−
∑N
i=1(ωx)i(ωy)i∑N

i=1(ωx)i
∑N
j=1(ωy)j


= Vxy

[
1−

∑N
i=1 (ωx)i (ωy)i∑N

i=1 (ωx)i
∑N

j=1 (ωy)j

]
×

 1

1−
∑N
i=1(ωx)i(ωy)i∑N

i=1(ωx)i
∑N
j=1(ωy)j


= Vxy

(D.18)

The final result on the measurement of h is reported as 〈h〉, and it is to leading order
given as

〈h〉 ≈ h(〈x〉, 〈y〉) (D.19)

The error on this measurement is given according to [16] as

σ2
〈h〉 ≈

[(
∂h

∂x

) ∣∣∣∣
x=µx,y=µy

· σ〈x〉

]2

+

[(
∂h

∂y

) ∣∣∣∣
x=µx,y=µy

· σ〈y〉

]2

+2

(
∂h

∂x

∂h

∂y

) ∣∣∣∣
x=µx,y=µy

V〈x〉〈y〉 ,

(D.20)
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where σ〈x〉 and σ〈y〉 are the variances of the sample means 〈x〉 and 〈y〉, respectively. In the
above equation, V〈x〉〈y〉 is used to denote the sample covariance, which can be obtained as

V〈x〉〈y〉 =

∑N
i=1 (ωx)i (ωy)i∑N

i=1 (ωx)i
∑N

j=1 (ωy)j
Vxy . (D.21)

The later equality can be proven as

V〈x〉〈y〉 = E[〈x〉〈y〉]− E[〈x〉]E[〈y〉]

= E

[∑N
i=1(ωx)ixi∑N
i=1(ωx)i

·
∑N

j=1(ωy)jyj∑N
j=1(ωy)j

]
− µxµy

=
1∑N

i=1(ωx)i
∑N

j=1(ωy)j

(
E

[
N∑
i,j

(ωx)i(ωy)jxiyj

]
−

N∑
i,j

(ωx)i(ωy)jµxµy

)

=
1∑N

i=1(ωx)i
∑N

j=1(ωy)j

(
N∑
i,j

(ωx)i(ωy)jE[xiyj]−
N∑
i,j

(ωx)i(ωy)jµxµy

)

=
1∑N

i=1(ωx)i
∑N

j=1(ωy)j

 N∑
i,j
i 6=j

(ωx)i(ωy)jµxµy +
N∑
i

(ωx)i(ωy)iµxy −
N∑
i,j

(ωx)i(ωy)jµxµy


=

∑N
i (ωx)i(ωy)i∑N

i=1(ωx)i
∑N

j=1(ωy)j
(µxy − µxµy)

=

∑N
i (ωx)i(ωy)i∑N

i=1(ωx)i
∑N

j=1(ωy)j
Vxy ,

(D.22)

where the abbreviation
∑N

i=1(ωx)i
∑N

j=1(ωy)j =
∑N

i,j(ωx)i(ωy)j has been used. Using the
unbiased estimator for the covariance Vxy, one thus obtains the unbiased estimator for
the sample covariance Cov(〈x〉〈y〉) as

Cov(〈x〉〈y〉) =

∑N
i=1 (ωx)i (ωy)i∑N

i=1 (ωx)i
∑N

j=1 (ωy)j
Cov(xy) . (D.23)

With this, one reports the estimate on the error of 〈h〉 as

s2
〈h〉 ≈

[(
∂h

∂x

) ∣∣∣∣
x=〈x〉,y=〈y〉

· s〈x〉

]2

+

[(
∂h

∂y

) ∣∣∣∣
x=〈x〉,y=〈y〉

· s〈y〉

]2

+ 2

(
∂h

∂x

∂h

∂y

) ∣∣∣∣
x=〈x〉,y=〈y〉

Cov〈x〉〈y〉 ,
(D.24)

where the unbiased estimators for the sample variances s2
〈x〉 and s

2
〈y〉 have been used.

D.3 SPC specific error propagation
Using the previously defined estimators for the sample variance and covariance, this sec-
tion presents the final error propagation on the measurement for the Gaussian Estimator.
For this purpose, the final SPC is written as

SPC =

√
π

4

〈N〉√
〈D〉

, (D.25)
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where 〈N〉 and 〈D〉 are the measured unbiased estimators for the observables in the
numerator and denominator, respectively. Thus, the partial derivatives are obtained as(

∂SPC

∂N

) ∣∣∣∣
N=〈N〉,D=〈D〉

=

√
π

4

1√
〈D〉

=
SPC

〈N〉
, (D.26)(

∂SPC

∂D

) ∣∣∣∣
N=〈N〉,D=〈D〉

= −1

2

√
π

4

1√
〈D〉3

= −1

2

SPC

〈N〉
. (D.27)

Using the unbiased estimates for the sample variance on the numerator and denominator
s〈N〉 and s〈D〉 as well as the estimate for the sample covariance between numerator and
denominator Cov(〈N〉〈D〉), one obtains for the estimate of the variance on the SPC s2

SPC

s2
SPC =

(
SPC

〈N〉
· s〈N〉

)2

+

(
1

2

SPC

〈D〉
· s〈D〉

)2

− 1

2

SPC2

〈N〉〈D〉
Cov(〈N〉〈D〉) . (D.28)



Appendix E

Supplements data analysis

E.1 Run-by-run trending

Figure E.1 shows an example of run-by-run trending of the multiparticle correlators used
in the GE for the SPC 〈cos [6 (Ψ6 −Ψ3)]〉, while Fig E.2 shows the average multiplicity
and the number of events. Both figures are a trending for the 0-5 % centrality range.
Based on this run-by-run trending, four runs with extremely low amount of events have
been excluded, leading to an improvement of the stability of the statistical uncertainties.
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Figure E.1: Example of run-by-run trending of the multiparticle correlators of numerator
and denominator of 〈cos [6 (Ψ6 −Ψ3)]〉 for the centrality 0–5 %.
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Figure E.2: Example of run-by-run trending of the average multiplicity and the amount
of events for the centrality 0–5 %.

E.2 Comparison of statistical errors

In this section, the comparisons between the classical and alternative approaches for the
covariance term in the error propagation are provided for the remaining SPC (see Sec. 6.6).
The results for SPC between two planes are presented in Fig. E.3 and Fig. E.4, between
three planes in Figs. E.5-E.7 and between four planes in Fig. E.8. The results show
that the deviation between the two approaches is usually at most around 5%, while the
maximum of deviation is found especially in the region where the error to signal ratio is
extremely small. This study could not be performed for the SPC 〈cos [6 (Ψ2 −Ψ3)]〉 as
the order of the multiparticle correlator for the alternative approach is too large.
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Figure E.3: Comparison between classical and alternative approach in error propagation
for 〈cos [6 (Ψ6 −Ψ2)]〉.
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Figure E.4: Comparison between classical and alternative approach in error propagation
for 〈cos [6 (Ψ2 −Ψ3)]〉.



94 APPENDIX E. SUPPLEMENTS DATA ANALYSIS

0 5 10 15 20 25 30 35 40 45 50
Centrality percentile

5−

4−

3−

2−

1−

0

1

2

3

4

5

 E
xc

lu
de

d/
A

ll
〉] 5

Ψ
-5 3

Ψ
+

3
2

Ψ
co

s[
2

〈

0 5 10 15 20 25 30 35 40 45 50
Centrality percentile

0

0.02

0.04

0.06

0.08

0.1

0.12

/S
P

C
|

S
P

C
,d

ef
au

lt
σ|

 = 2.76 TeV
NN

s, Pb-Pb 〉]5Ψ-53Ψ+3
2

Ψcos[2〈
This Work

0 5 10 15 20 25 30 35 40 45 50
Centrality percentile

0.3−

0.25−

0.2−

0.15−

0.1−

0.05−

0

0.05

0.1

R
el

at
iv

e 
D

iff
er

en
ce

 in
 E

rr
or

Figure E.5: Comparison between classical and alternative approach in error propagation
for 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉.
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Figure E.6: Comparison between classical and alternative approach in error propagation
for 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉.
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Figure E.7: Comparison between classical and alternative approach in error propagation
for 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉.
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Figure E.8: Comparison between classical and alternative approach in error propagation
for 〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉.
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E.3 Systematic Errors

In this section, the results of the systematic errors for the measured SPC are provided.
The results for the SPC between two planes are summarized in Tab. E.1 and E.2 and
shown in Fig. E.9-E.11. Similarly, the results for three planes are presented in Tab. E.3
and Tab. E.4 as well as in the Figs. E.12-E.15. Table E.5 and Fig. E.16 present the
results concerning the systematic errors measured for the SPC between four planes. An
em-dash “—” in the tables shows that a systematic trial was found to be statistically
insignificant, i.e. its corresponding σBarlow is below two, indicated by the horizontal line
in the corresponding figures.

Table E.1: Summary of the statistically significant relative variations (absolute val-
ues) per systematic trial and the total relative variation for 〈cos [4 (Ψ4 −Ψ2)]〉 and
〈cos [6 (Ψ2 −Ψ3)]〉 .

Systematic Variation SPC
〈cos [4 (Ψ4 −Ψ2)]〉 〈cos [6 (Ψ2 −Ψ3)]〉

V0M 0.058 —
PVz < 8 cm 0.003 —
PVz < 6 cm 0.007 —
DCAxy < 1 cm 0.018 —
DCAz < 2 cm 0.008 —
0.3 < χ2/NTPC < 4.0 0.001 0.442
0.1 < χ2/NTPC < 3.5 0.001 0.545
NTPC > 80 0.013 0.333
NTPC > 90 0.031 0.372
NTPC > 100 0.005 —
Magnetic ++ 0.012 1.025
Magnetic −− 0.086 1.120
Total Rel. Var. 0.111 1.373
Figure 6.24 E.9
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Figure E.9: Results for σBarlow and the relative variation (absolute values) of the system-
atic trials for 〈cos [6 (Ψ2 −Ψ3)]〉.

Table E.2: Summary of the statistically significant relative variations (absolute val-
ues) per systematic trial and the total relative variation for 〈cos [6 (Ψ6 −Ψ2)]〉 and
〈cos [6 (Ψ6 −Ψ3)]〉 .

Systematic Variation SPC
〈cos [6 (Ψ6 −Ψ2)]〉 〈cos [6 (Ψ6 −Ψ3)]〉

V0M 0.194 0.068
PVz < 8 cm 0.045 —
PVz < 6 cm 0.052 —
DCAxy < 1 cm 0.030 0.063
DCAz < 2 cm — —
0.3 < χ2/NTPC < 4.0 0.038 —
0.1 < χ2/NTPC < 3.5 0.047 —
NTPC > 80 — —
NTPC > 90 0.008 0.011
NTPC > 100 0.016 —
Magnetic ++ 0.049 —
Magnetic −− 0.137 —
Total Rel. Var. 0.252 0.093
Figure E.10 E.11
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Figure E.10: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [6 (Ψ6 −Ψ2)]〉.
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Figure E.11: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [6 (Ψ6 −Ψ3)]〉.
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Table E.3: Summary of the statistically significant relative variations (absolute val-
ues) per systematic trial and the total relative variation for 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 and
〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 .

Systematic Variation SPC
〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉

V0M 0.012 —
PVz < 8 cm 0.019 —
PVz < 6 cm 0.022 —
DCAxy < 1 cm 0.054 0.422
DCAz < 2 cm 0.030 —
0.3 < χ2/NTPC < 4.0 — 0.407
0.1 < χ2/NTPC < 3.5 0.004 —
NTPC > 80 — —
NTPC > 90 0.010 —
NTPC > 100 0.033 —
Magnetic ++ 0.009 0.962
Magnetic −− — 1.206
Total Rel. Var. 0.075 1.341
Figure E.12 E.13
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Figure E.12: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉.
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Figure E.13: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉.

Table E.4: Summary of the statistically significant relative variations (absolute val-
ues) per systematic trial and the total relative variation for 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 and
〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉 .

Systematic Variation SPC
〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉

V0M 0.064 —
PVz < 8 cm — 0.018
PVz < 6 cm 0.056 —
DCAxy < 1 cm 0.030 0.076
DCAz < 2 cm 0.019 0.054
0.3 < χ2/NTPC < 4.0 — 0.020
0.1 < χ2/NTPC < 3.5 0.019 0.015
NTPC > 80 0.029 0.011
NTPC > 90 0.079 —
NTPC > 100 — 0.026
Magnetic ++ 0.051 —
Magnetic −− 0.161 —
Total Rel. Var. 0.202 0.102
Figure E.14 E.15
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Figure E.14: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉.
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Figure E.15: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉.
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Table E.5: Summary of the statistically significant relative variations (absolute values)
per systematic trial and the total relative variation for 〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉 .

Systematic Variation SPC
〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉

V0M 0.084
PVz < 8 cm —
PVz < 6 cm —
DCAxy < 1 cm 0.091
DCAz < 2 cm —
0.3 < χ2/NTPC < 4.0 0.025
0.1 < χ2/NTPC < 3.5 0.013
NTPC > 80 —
NTPC > 90 0.040
NTPC > 100 —
Magnetic ++ —
Magnetic −− —
Total Rel. Var. 0.133
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Default

0.12

0.14

0.16

0.18

0.2

0.22

0.24

〉] 5
Ψ

+
5

4
Ψ

-4 3
Ψ

-3 2
Ψ

co
s[

2
〈

 = 2.76 TeVNNsPb-Pb 
This Work

Default

1

B
ar

lo
w

σ

Default

V0M  < 8 cm
z

PV  < 6 cm
z

PV
 < 1 cm

xy

DCA
 < 2 cm

z

DCA

 < 4.0
TPC

/N
2χ

0.3 < 

 < 3.5
TPC

/N
2χ

0.1 <  > 80
TPC

N
 > 90

TPC

N
 > 100

TPC

N Magnetic ++

Magnetic --

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

|R
el

. V
ar

.|

Figure E.16: Results for σBarlow and the relative variation (absolute values) of the sys-
tematic trials for 〈cos [2Ψ2 − 3Ψ3 − 4Ψ4 + 5Ψ5]〉.



Appendix F

Supplements experimental results

F.1 Comparison between ALICE and ATLAS data

In this section, the comparisons between the ALICE results using the GE and the ATLAS
results [67] using the SP method are provided. Figures F.1-F.3 present the results for
correlations between two symmetry planes, while Figs. F.4-F.7 are for correlations between
three planes. Overall it can be seen that, especially in case of strongly correlated symmetry
planes (i.e. non-zero values), the results from the GE lead to far smaller values than
those reported by the ATLAS Collaboration using the SP method. This observation is in
agreement with the observed difference between GE and SP method in the Glauber and
iEBE-VISHNU model (see Sec. 5.1.3).
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Figure F.1: Comparison of the measured ALICE data of 〈cos [6 (Ψ2 −Ψ3)]〉 as function
of centrality using the GE to the ATLAS results [67] using the SP method.
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Figure F.2: Comparison of the measured ALICE data of 〈cos [6 (Ψ6 −Ψ2)]〉 as function
of centrality using the GE to the ATLAS results [67] using the SP method.
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Figure F.3: Comparison of the measured ALICE data of 〈cos [6 (Ψ6 −Ψ3)]〉 as function
of centrality using the GE to the ATLAS results [67] using the SP method.
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Figure F.4: Comparison of the measured ALICE data of 〈cos [2Ψ2 + 3Ψ3 − 5Ψ5]〉 as func-
tion of centrality using the GE to the ATLAS results [67] using the SP method.

10 15 20 25 30 35 40 45 50
Centrality percentile

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.1

0.12〉] 5
Ψ

-5 3
Ψ

-3 2
Ψ

co
s[

8
〈

 = 2.76 TeVNNsPb −Pb
This Work

| < 0.8η, |c < 5.0 GeV/
T

pALICE GE, 0.2 < 

| < 2.5η, |
T

p < cATLAS SP, 0.5 GeV/

Figure F.5: Comparison of the measured ALICE data of 〈cos [8Ψ2 − 3Ψ3 − 5Ψ5]〉 as func-
tion of centrality using the GE to the ATLAS results [67] using the SP method.
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Figure F.6: Comparison of the measured ALICE data of 〈cos [2Ψ2 − 6Ψ3 + 4Ψ4]〉 as func-
tion of centrality using the GE to the ATLAS results [67] using the SP method.
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Figure F.7: Comparison of the measured ALICE data of 〈cos [2Ψ2 + 4Ψ4 − 6Ψ6]〉 as func-
tion of centrality using the GE to the ATLAS results [67] using the SP method.



Bibliography

[1] David Griffiths, Introduction to Elementary Particles (Second, Revised Edition).
WILEY-VCH, 2008.
Cited on pages 1 and 2.

[2] A. Purcell, “Go on a particle quest at the first CERN webfest. Le premier webfest
du CERN se lance à la conquête des particules,”.
https://cds.cern.ch/record/1473657.
Cited on page 1.

[3] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo,
T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, and et al. (CMS Collaboration),
“Observation of a new boson at a mass of 125 GeV with the CMS experiment at
the LHC,” Physics Letters B 716 no. 1, (Sep, 2012) 30–61.
http://dx.doi.org/10.1016/j.physletb.2012.08.021.
Cited on page 2.

[4] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim,
O. Abdinov, R. Aben, B. Abi, M. Abolins, and et al. (ATLAS Collaboration),
“Observation of a new particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC,” Physics Letters B 716 no. 1, (Sep, 2012)
1–29. http://dx.doi.org/10.1016/j.physletb.2012.08.020.
Cited on page 2.

[5] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector
Mesons,” Phys. Rev. Lett. 13 (Aug, 1964) 321–323.
https://link.aps.org/doi/10.1103/PhysRevLett.13.321.
Cited on page 2.

[6] P. Higgs, “Broken symmetries, massless particles and gauge fields,” Physics Letters
12 no. 2, (1964) 132–133.
https://www.sciencedirect.com/science/article/pii/0031916364911369.
Cited on page 2.

[7] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev.
Lett. 13 (Oct, 1964) 508–509.
https://link.aps.org/doi/10.1103/PhysRevLett.13.508.
Cited on page 2.

[8] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws
and Massless Particles,” Phys. Rev. Lett. 13 (Nov, 1964) 585–587.
https://link.aps.org/doi/10.1103/PhysRevLett.13.585.
Cited on page 2.

107

https://cds.cern.ch/record/1473657
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
http://dx.doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
https://www.sciencedirect.com/science/article/pii/0031916364911369
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevLett.13.585


108 BIBLIOGRAPHY

[9] E. Corbelli and P. Salucci, “The Extended Rotation Curve and the Dark Matter
Halo of M33,” Mon. Not. Roy. Astron. Soc. 311 (2000) 441–447,
arXiv:astro-ph/9909252.
Cited on page 2.

[10] V. A. et al. (D0 Collaboration and T. Collaboration), “Comparison of pp and pp̄
differential elastic cross sections and observation of the exchange of a colorless
C-odd gluonic compound,” 2021.
Cited on page 2.

[11] N. B. Łukaszuk, L., “A possible interpretation of pp rising total cross-sections,”
Lett. Nuovo Cimento 8, 405–413 (1973).
https://doi.org/10.1007/BF02824484.
Cited on page 2.

[12] Particle Data Group Collaboration, M. T. et al., “Review of Particle Physics,”
Phys. Rev. D 98 (Aug, 2018) 030001.
https://link.aps.org/doi/10.1103/PhysRevD.98.030001.
Cited on page 3.

[13] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Non-Abelian Gauge
Theories,” Phys. Rev. Lett. 30 (Jun, 1973) 1343–1346.
https://link.aps.org/doi/10.1103/PhysRevLett.30.1343.
Cited on page 2.

[14] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?,” Phys.
Rev. Lett. 30 (Jun, 1973) 1346–1349.
https://link.aps.org/doi/10.1103/PhysRevLett.30.1346.
Cited on page 2.

[15] H. David Politzer, “Asymptotic freedom: An approach to strong interactions,”
Physics Reports 14 no. 4, (1974) 129–180.
https://www.sciencedirect.com/science/article/pii/0370157374900143.
Cited on page 2.

[16] Ante Bilandzic, PhD Thesis, Anisotropic Flow Measurements in ALICE at the
Large Hadron Collider. Utrecht University, 2012.
Cited on pages 3, 10, 17, 58, 86, 87, and 88.

[17] S. LEUPOLD, V. METAG, and U. MOSEL, “HADRONS IN STRONGLY
INTERACTING MATTER,” International Journal of Modern Physics E 19
no. 02, (Feb, 2010) 147–224. http://dx.doi.org/10.1142/S0218301310014728.
Cited on page 3.

[18] S. Klimt, M. Lutz, and W. Weise, “Chiral phase transition in the SU(3) Nambu
and Jona-Lasinio model,” Physics Letters B 249 no. 3, (1990) 386–390.
https://www.sciencedirect.com/science/article/pii/037026939091003T.
Cited on page 4.

[19] E.V. Shuryak, Theory of Hadronic Plasma, vol. 27. Sov. Phys. JETP , 1978.
Cited on page 4.

http://dx.doi.org/10.1046/j.1365-8711.2000.03075.x
http://arxiv.org/abs/astro-ph/9909252
http://arxiv.org/abs/Lett. Nuovo Cimento 8, 405\T1\textendash 413 (1973)
https://doi.org/10.1007/BF02824484
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevLett.30.1343
https://link.aps.org/doi/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.30.1346
https://link.aps.org/doi/10.1103/PhysRevLett.30.1346
http://dx.doi.org/https://doi.org/10.1016/0370-1573(74)90014-3
https://www.sciencedirect.com/science/article/pii/0370157374900143
http://dx.doi.org/10.1142/s0218301310014728
http://dx.doi.org/10.1142/s0218301310014728
http://dx.doi.org/10.1142/S0218301310014728
http://dx.doi.org/https://doi.org/10.1016/0370-2693(90)91003-T
https://www.sciencedirect.com/science/article/pii/037026939091003T


BIBLIOGRAPHY 109

[20] N. Itoh, “Hydrostatic Equilibrium of Hypothetical Quark Stars,” Prog. Theor.
Phys. 44 (1970) 291.
Cited on page 4.

[21] D. M. Lee, “Probing the Big Bang at the Relativistic Heavy Ion Collider (RHIC)
(or Probing the Big Bang 13.7 billion years later),” Journal of Physics: Conference
Series 213 (Mar, 2010) 012012.
https://doi.org/10.1088/1742-6596/213/1/012012.
Cited on page 4.

[22] S. M. Sanches, D. A. Fogaça, and F. S. Navarra, “The time evolution of the quark
gluon plasma in the early Universe,” Journal of Physics: Conference Series 630
(Jul, 2015) 012028. https://doi.org/10.1088/1742-6596/630/1/012028.
Cited on page 4.

[23] E. Shuryak, “Strongly coupled quark-gluon plasma in heavy ion collisions,” Rev.
Mod. Phys. 89 (Jul, 2017) 035001.
https://link.aps.org/doi/10.1103/RevModPhys.89.035001.
Cited on pages 4 and 7.

[24] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New
extended model of hadrons,” Phys. Rev. D 9 (Jun, 1974) 3471–3495.
https://link.aps.org/doi/10.1103/PhysRevD.9.3471.
Cited on page 4.

[25] W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. 3, 2010.
Cited on page 4.

[26] HotQCD Collaboration, A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar,
H.-T. Ding, S. Gottlieb, R. Gupta, P. Hegde, U. M. Heller, F. Karsch,
E. Laermann, L. Levkova, S. Mukherjee, P. Petreczky, C. Schmidt, R. A. Soltz,
W. Soeldner, R. Sugar, D. Toussaint, W. Unger, and P. Vranas, “Chiral and
deconfinement aspects of the QCD transition,” Phys. Rev. D 85 (Mar, 2012)
054503. https://link.aps.org/doi/10.1103/PhysRevD.85.054503.
Cited on page 4.

[27] ALICE Collaboration, “Direct photon production in Pb–Pb collisions at√
sNN=2.76 TeV,” Physics Letters B 754 (2016) 235–248.

https://www.sciencedirect.com/science/article/pii/S0370269316000320.
Cited on pages 4 and 5.

[28] P. K. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in Strongly Interacting
Quantum Field Theories from Black Hole Physics,” Physical Review Letters 94
no. 11, (Mar, 2005) . http://dx.doi.org/10.1103/PhysRevLett.94.111601.
Cited on page 4.

[29] Cindy Mordasini, PhD Thesis, Generalistation of the Cumulants of Flow
Amplitudes to the higher orders. Technische Universität München, 2021.
Cited on pages 5, 39, 49, 50, and 58.

[30] STAR Collaboration, G. Odyniec, “Beam Energy Scan Program at RHIC (BES I
and BES II) – Probing QCD Phase Diagram with Heavy-Ion Collisions,” PoS
CORFU2018 (2019) 151.
Cited on page 4.

http://dx.doi.org/10.1143/PTP.44.291
http://dx.doi.org/10.1143/PTP.44.291
http://dx.doi.org/10.1088/1742-6596/213/1/012012
http://dx.doi.org/10.1088/1742-6596/213/1/012012
https://doi.org/10.1088/1742-6596/213/1/012012
http://dx.doi.org/10.1088/1742-6596/630/1/012028
http://dx.doi.org/10.1088/1742-6596/630/1/012028
https://doi.org/10.1088/1742-6596/630/1/012028
http://dx.doi.org/10.1103/RevModPhys.89.035001
http://dx.doi.org/10.1103/RevModPhys.89.035001
https://link.aps.org/doi/10.1103/RevModPhys.89.035001
http://dx.doi.org/10.1103/PhysRevD.9.3471
https://link.aps.org/doi/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.85.054503
http://dx.doi.org/10.1103/PhysRevD.85.054503
https://link.aps.org/doi/10.1103/PhysRevD.85.054503
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2016.01.020
https://www.sciencedirect.com/science/article/pii/S0370269316000320
http://dx.doi.org/10.1103/physrevlett.94.111601
http://dx.doi.org/10.1103/physrevlett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.22323/1.347.0151
http://dx.doi.org/10.22323/1.347.0151


110 BIBLIOGRAPHY

[31] D. Tlusty, “The RHIC Beam Energy Scan Phase II: Physics and Upgrades,” 2018.
Cited on page 4.

[32] J. Brewer, A. Mazeliauskas, and W. van der Schee, “Opportunities of OO and pO
collisions at the LHC,” 2021.
Cited on page 4.

[33] R. S. Bhalerao, “Collectivity in large and small systems formed in ultrarelativistic
collisions,” The European Physical Journal Special Topics 230 no. 3, (Apr, 2021)
635–654. http://dx.doi.org/10.1140/epjs/s11734-021-00019-x.
Cited on pages 5, 6, and 73.

[34] W. Broniowski and W. Florkowski, “Geometric relation between centrality and the
impact parameter in relativistic heavy-ion collisions,” Physical Review C 65 no. 2,
(Jan, 2002) . http://dx.doi.org/10.1103/PhysRevC.65.024905.
Cited on page 6.

[35] Sourav Sarkar, Helmut Satz, Bikash Sinha, The Physics of the Quark-Gluon
Plasma, vol. 785. Springer-Verlag Berlin Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-02286-9.
Cited on page 7.

[36] M. Luzum, “Flow fluctuations and long-range correlations: elliptic flow and
beyond,” Journal of Physics G: Nuclear and Particle Physics 38 no. 12, (Nov,
2011) 124026. http://dx.doi.org/10.1088/0954-3899/38/12/124026.
Cited on page 7.

[37] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber Modeling in
High-Energy Nuclear Collisions,” Annual Review of Nuclear and Particle Science
57 no. 1, (Nov, 2007) 205–243.
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020.
Cited on pages 7 and 21.

[38] E. Iancu, “QCD in heavy ion collisions,” 2012.
Cited on pages 7, 8, and 52.

[39] P. Braun-Munzinger and B. Dönigus, “Loosely-bound objects produced in nuclear
collisions at the LHC,” Nuclear Physics A 987 (Jul, 2019) 144–201.
http://dx.doi.org/10.1016/j.nuclphysa.2019.02.006.
Cited on pages 7 and 8.

[40] U. W. Heinz, “The Strongly coupled quark-gluon plasma created at RHIC,” J.
Phys. A 42 (2009) 214003, arXiv:0810.5529 [nucl-th].
Cited on page 7.

[41] A. Majumder and M. van Leeuwen, “The theory and phenomenology of
perturbative QCD based jet quenching,” Progress in Particle and Nuclear Physics
66 no. 1, (2011) 41–92.
https://www.sciencedirect.com/science/article/pii/S0146641010000542.
Cited on page 9.

[42] JET Collaboration, K. M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy,
U. Heinz, S. Jeon, A. Majumder, B. Müller, G.-Y. Qin, B. Schenke, C. Shen, X.-N.
Wang, J. Xu, C. Young, and H. Zhang, “Extracting the jet transport coefficient

http://dx.doi.org/10.1140/epjs/s11734-021-00019-x
http://dx.doi.org/10.1140/epjs/s11734-021-00019-x
http://dx.doi.org/10.1140/epjs/s11734-021-00019-x
http://dx.doi.org/10.1103/physrevc.65.024905
http://dx.doi.org/10.1103/physrevc.65.024905
http://dx.doi.org/10.1103/PhysRevC.65.024905
http://dx.doi.org/10.1007/978-3-642-02286-9
http://dx.doi.org/10.1007/978-3-642-02286-9
https://doi.org/10.1007/978-3-642-02286-9
http://dx.doi.org/10.1088/0954-3899/38/12/124026
http://dx.doi.org/10.1088/0954-3899/38/12/124026
http://dx.doi.org/10.1088/0954-3899/38/12/124026
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://dx.doi.org/10.1016/j.nuclphysa.2019.02.006
http://dx.doi.org/10.1016/j.nuclphysa.2019.02.006
http://dx.doi.org/10.1088/1751-8113/42/21/214003
http://dx.doi.org/10.1088/1751-8113/42/21/214003
http://arxiv.org/abs/0810.5529
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2010.09.001
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2010.09.001
https://www.sciencedirect.com/science/article/pii/S0146641010000542


BIBLIOGRAPHY 111

from jet quenching in high-energy heavy-ion collisions,” Phys. Rev. C 90 (Jul,
2014) 014909. https://link.aps.org/doi/10.1103/PhysRevC.90.014909.
Cited on page 9.

[43] J. Rafelski and B. Müller, “Strangeness Production in the Quark-Gluon Plasma,”
Phys. Rev. Lett. 48 (Apr, 1982) 1066–1069.
https://link.aps.org/doi/10.1103/PhysRevLett.48.1066.
Cited on page 9.

[44] L. Yan, “A flow paradigm in heavy-ion collisions,” Chinese Physics C 42 no. 4,
(Apr, 2018) 042001. http://dx.doi.org/10.1088/1674-1137/42/4/042001.
Cited on pages 9 and 12.

[45] D. Teaney and L. Yan, “Triangularity and dipole asymmetry in relativistic heavy
ion collisions,” Physical Review C 83 no. 6, (Jun, 2011) .
http://dx.doi.org/10.1103/PhysRevC.83.064904.
Cited on page 10.

[46] D. Teaney and L. Yan, “Event-plane correlations and hydrodynamic simulations of
heavy ion collisions,” Physical Review C 90 no. 2, (Aug, 2014) .
http://dx.doi.org/10.1103/PhysRevC.90.024902.
Cited on page 10.

[47] D. Teaney and L. Yan, “Nonlinearities in the harmonic spectrum of heavy ion
collisions with ideal and viscous hydrodynamics,” Physical Review C 86 no. 4,
(Oct, 2012) . http://dx.doi.org/10.1103/PhysRevC.86.044908.
Cited on page 10.

[48] S. Taghavi, “A Fourier-cumulant analysis for multiharmonic flow fluctuation,” Eur.
Phys. J. C 81, 652 (July, 2021) .
https://doi.org/10.1140/epjc/s10052-021-09413-0.
Cited on pages 10 and 12.

[49] A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in
relativistic nuclear collisions,” Physical Review C 58 no. 3, (Sep, 1998) 1671–1678.
http://dx.doi.org/10.1103/PhysRevC.58.1671.
Cited on pages 11 and 13.

[50] B.-A. Li and A. T. Sustich, “Differential Flow in Heavy-Ion Collisions at Balance
Energies,” Physical Review Letters 82 no. 25, (Jun, 1999) 5004–5007.
http://dx.doi.org/10.1103/PhysRevLett.82.5004.
Cited on page 11.

[51] K. Aamodt, B. Abelev, A. Abrahantes Quintana, D. Adamová, A. M. Adare,
M. M. Aggarwal, G. Aglieri Rinella, A. G. Agocs, S. Aguilar Salazar,
Z. Ahammed, and et al. (ALICE Collaboration), “Elliptic Flow of Charged
Particles in Pb-Pb Collisions at

√
sNN=2.76 TeV,” Physical Review Letters 105

no. 25, (Dec, 2010) . http://dx.doi.org/10.1103/PhysRevLett.105.252302.
Cited on pages 11, 18, and 56.

[52] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Flow analysis from multiparticle
azimuthal correlations,” Physical Review C 64 no. 5, (Sep, 2001) .
http://dx.doi.org/10.1103/PhysRevC.64.054901.
Cited on pages 11, 16, 19, and 41.

http://dx.doi.org/10.1103/PhysRevC.90.014909
http://dx.doi.org/10.1103/PhysRevC.90.014909
https://link.aps.org/doi/10.1103/PhysRevC.90.014909
http://dx.doi.org/10.1103/PhysRevLett.48.1066
https://link.aps.org/doi/10.1103/PhysRevLett.48.1066
http://dx.doi.org/10.1088/1674-1137/42/4/042001
http://dx.doi.org/10.1088/1674-1137/42/4/042001
http://dx.doi.org/10.1088/1674-1137/42/4/042001
http://dx.doi.org/10.1103/physrevc.83.064904
http://dx.doi.org/10.1103/PhysRevC.83.064904
http://dx.doi.org/10.1103/physrevc.90.024902
http://dx.doi.org/10.1103/PhysRevC.90.024902
http://dx.doi.org/10.1103/physrevc.86.044908
http://dx.doi.org/10.1103/physrevc.86.044908
http://dx.doi.org/10.1103/PhysRevC.86.044908
http://dx.doi.org/10.1140/epjc/s10052-021-09413-0
http://dx.doi.org/10.1140/epjc/s10052-021-09413-0
https://doi.org/10.1140/epjc/s10052-021-09413-0
http://dx.doi.org/10.1103/physrevc.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/physrevlett.82.5004
http://dx.doi.org/10.1103/PhysRevLett.82.5004
http://dx.doi.org/10.1103/physrevlett.105.252302
http://dx.doi.org/10.1103/physrevlett.105.252302
http://dx.doi.org/10.1103/PhysRevLett.105.252302
http://dx.doi.org/10.1103/physrevc.64.054901
http://dx.doi.org/10.1103/PhysRevC.64.054901


112 BIBLIOGRAPHY

[53] M. Luzum and J.-Y. Ollitrault, “Eliminating experimental bias in anisotropic-flow
measurements of high-energy nuclear collisions,” Physical Review C 87 no. 4,
(Apr, 2013) . http://dx.doi.org/10.1103/PhysRevC.87.044907.
Cited on page 13.

[54] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, “Determining initial-state
fluctuations from flow measurements in heavy-ion collisions,” Physical Review C
84 no. 3, (Sep, 2011) . http://dx.doi.org/10.1103/PhysRevC.84.034910.
Cited on pages 13 and 14.

[55] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou,
“Generic framework for anisotropic flow analyses with multiparticle azimuthal
correlations,” Physical Review C 89 no. 6, (Jun, 2014) .
http://dx.doi.org/10.1103/PhysRevC.89.064904.
Cited on pages 15, 16, 19, and 41.

[56] P. Danielewicz and G. Odyniec, “Transverse Momentum Analysis of Collective
Motion in Relativistic Nuclear Collisions,” Phys. Lett. B 157 (1985) 146,
arXiv:2109.05308 [nucl-th].
Cited on page 16.

[57] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier
expansion of Azimuthal particle distributions,” Z. Phys. C 70 (1996) 665–672,
arXiv:hep-ph/9407282.
Cited on page 16.

[58] C. Mordasini, A. Bilandzic, D. Karakoç, and S. F. Taghavi, “Higher order
symmetric cumulants,” Physical Review C 102 no. 2, (Aug, 2020) .
http://dx.doi.org/10.1103/PhysRevC.102.024907.
Cited on pages 17, 19, and 41.

[59] A. Bilandzic, R. Snellings, and S. Voloshin, “Flow analysis with cumulants: Direct
calculations,” Physical Review C 83 no. 4, (Apr, 2011) .
http://dx.doi.org/10.1103/PhysRevC.83.044913.
Cited on pages 17, 19, and 41.

[60] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “New method for measuring
azimuthal distributions in nucleus-nucleus collisions,” Physical Review C 63 no. 5,
(Apr, 2001) . http://dx.doi.org/10.1103/PhysRevC.63.054906.
Cited on pages 17, 19, and 41.

[61] Adam, J. et al. (ALICE Collaboration), “Correlated Event-by-Event Fluctuations
of Flow Harmonics in Pb-Pb Collisions at

√
sNN=2.76 TeV,” Physical Review

Letters 117 no. 18, (Oct, 2016) .
http://dx.doi.org/10.1103/PhysRevLett.117.182301.
Cited on pages 19, 56, 57, and 66.

[62] Acharya, S. et al. (ALICE Collaboration), “Multiharmonic Correlations of
Different Flow Amplitudes in Pb-Pb Collisions at

√
sNN=2.76 TeV,” Physical

Review Letters 127 no. 9, (Aug, 2021) .
http://dx.doi.org/10.1103/PhysRevLett.127.092302.
Cited on pages 19 and 41.

http://dx.doi.org/10.1103/physrevc.87.044907
http://dx.doi.org/10.1103/physrevc.87.044907
http://dx.doi.org/10.1103/PhysRevC.87.044907
http://dx.doi.org/10.1103/physrevc.84.034910
http://dx.doi.org/10.1103/physrevc.84.034910
http://dx.doi.org/10.1103/PhysRevC.84.034910
http://dx.doi.org/10.1103/physrevc.89.064904
http://dx.doi.org/10.1103/PhysRevC.89.064904
http://dx.doi.org/10.1016/0370-2693(85)91535-7
http://arxiv.org/abs/2109.05308
http://dx.doi.org/10.1007/s002880050141
http://arxiv.org/abs/hep-ph/9407282
http://dx.doi.org/10.1103/physrevc.102.024907
http://dx.doi.org/10.1103/PhysRevC.102.024907
http://dx.doi.org/10.1103/physrevc.83.044913
http://dx.doi.org/10.1103/PhysRevC.83.044913
http://dx.doi.org/10.1103/physrevc.63.054906
http://dx.doi.org/10.1103/physrevc.63.054906
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1103/physrevlett.117.182301
http://dx.doi.org/10.1103/physrevlett.117.182301
http://dx.doi.org/10.1103/PhysRevLett.117.182301
http://dx.doi.org/10.1103/physrevlett.127.092302
http://dx.doi.org/10.1103/physrevlett.127.092302
http://dx.doi.org/10.1103/PhysRevLett.127.092302


BIBLIOGRAPHY 113

[63] E877 Collaboration, J. e. a. Barrette, “Energy and charged particle flow in 10.8A
GeV/c Au+Au collisions,” Phys. Rev. C 55 (Mar, 1997) 1420–1430.
https://link.aps.org/doi/10.1103/PhysRevC.55.1420.
Cited on page 19.

[64] PHENIX Collaboration, S. e. a. Afanasiev, “Systematic studies of elliptic flow
measurements in Au + Au collisions at

√
sNN = 200 GeV,” Phys. Rev. C 80 (Aug,

2009) 024909. https://link.aps.org/doi/10.1103/PhysRevC.80.024909.
Cited on page 20.

[65] PHENIX Collaboration, A. e. a. Adare, “Measurements of Higher Order Flow
Harmonics in Au + Au Collisions at

√
sNN = 200 GeV,” Phys. Rev. Lett. 107

(Dec, 2011) 252301.
https://link.aps.org/doi/10.1103/PhysRevLett.107.252301.
Cited on page 20.

[66] ALICE Collaboration, K. e. a. Aamodt, “Higher Harmonic Anisotropic Flow
Measurements of Charged Particles in Pb-Pb Collisions at

√
sNN = 2.76 TeV,”

Phys. Rev. Lett. 107 (Jul, 2011) 032301.
https://link.aps.org/doi/10.1103/PhysRevLett.107.032301.
Cited on page 20.

[67] ATLAS Collaboration, G. e. a. Aad, “Measurement of event-plane correlations in√
sNN = 2.76 TeV lead-lead collisions with the ATLAS detector,” Phys. Rev. C 90

(Aug, 2014) 024905. https://link.aps.org/doi/10.1103/PhysRevC.90.024905.
Cited on pages 20, 34, 63, 103, 104, 105, and 106.

[68] J. Jia, “Measurement of Event Plane Correlations in Pb–Pb Collisions at√
sNN=2.76TeV with the ATLAS Detector,” Nuclear Physics A 910-911 (2013)

276–280.
https://www.sciencedirect.com/science/article/pii/S0375947412003661.
Hard Probes 2012.
Cited on page 20.

[69] S. Mohapatra, “Measurement of vn coefficients and event plane correlations in 2.76
TeV Pb–Pb collisions with ATLAS,” Nuclear Physics A 910-911 (2013) 75–82.
https://www.sciencedirect.com/science/article/pii/S0375947412003879.
Hard Probes 2012.
Cited on page 20.

[70] Adler, C. et al. (STAR Collaboration), “Elliptic flow from two- and four-particle
correlations in Au+Au collisions at

√
sNN = 130GeV,” Phys. Rev. C 66 (Sep,

2002) 034904. https://link.aps.org/doi/10.1103/PhysRevC.66.034904.
Cited on pages 20 and 34.

[71] R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, “Event-plane correlators,” Phys. Rev.
C 88 (Aug, 2013) 024909.
https://link.aps.org/doi/10.1103/PhysRevC.88.024909.
Cited on pages 20 and 34.

[72] A. Bilandzic, M. Lesch, and S. F. Taghavi, “New estimator for symmetry plane
correlations in anisotropic flow analyses,” Physical Review C 102 no. 2, (Aug,
2020) . http://dx.doi.org/10.1103/PhysRevC.102.024910.
Cited on pages 20, 25, 33, 34, 38, 71, and 77.

http://dx.doi.org/10.1103/PhysRevC.55.1420
https://link.aps.org/doi/10.1103/PhysRevC.55.1420
http://dx.doi.org/10.1103/PhysRevC.80.024909
http://dx.doi.org/10.1103/PhysRevC.80.024909
https://link.aps.org/doi/10.1103/PhysRevC.80.024909
http://dx.doi.org/10.1103/PhysRevLett.107.252301
http://dx.doi.org/10.1103/PhysRevLett.107.252301
https://link.aps.org/doi/10.1103/PhysRevLett.107.252301
http://dx.doi.org/10.1103/PhysRevLett.107.032301
https://link.aps.org/doi/10.1103/PhysRevLett.107.032301
http://dx.doi.org/10.1103/PhysRevC.90.024905
http://dx.doi.org/10.1103/PhysRevC.90.024905
https://link.aps.org/doi/10.1103/PhysRevC.90.024905
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2012.12.043
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2012.12.043
https://www.sciencedirect.com/science/article/pii/S0375947412003661
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2012.12.064
https://www.sciencedirect.com/science/article/pii/S0375947412003879
http://dx.doi.org/10.1103/PhysRevC.66.034904
http://dx.doi.org/10.1103/PhysRevC.66.034904
https://link.aps.org/doi/10.1103/PhysRevC.66.034904
http://dx.doi.org/10.1103/PhysRevC.88.024909
http://dx.doi.org/10.1103/PhysRevC.88.024909
https://link.aps.org/doi/10.1103/PhysRevC.88.024909
http://dx.doi.org/10.1103/physrevc.102.024910
http://dx.doi.org/10.1103/physrevc.102.024910
http://dx.doi.org/10.1103/PhysRevC.102.024910


114 BIBLIOGRAPHY

[73] S. Acharya et al. (ALICE Collaboration), “Linear and non-linear flow mode in
Pb–Pb collisions at

√
sNN=2.76 TeV,” Physics Letters B 773 (2017) 68–80.

https://www.sciencedirect.com/science/article/pii/S0370269317306160.
Cited on page 20.

[74] H. Petersen, G.-Y. Qin, S. A. Bass, and B. Müller, “Triangular flow in
event-by-event ideal hydrodynamics in Au+Au collisions at

√
sNN=200AGeV,”

Physical Review C 82 no. 4, (Oct, 2010) .
http://dx.doi.org/10.1103/PhysRevC.82.041901.
Cited on page 22.

[75] M. Lesch, “Symmetry-Planes Correlations in Flow Analyses,” 2019.
https://www.das.ktas.ph.tum.de/DasDocs/Public/Bachelor_Theses/
MarcelLesch_bachelor.pdf. Bachelor thesis.
Cited on pages 22, 33, 34, and 38.

[76] ALICE Collaboration, “Centrality determination in heavy ion collisions,”.
http://cds.cern.ch/record/2636623.
Cited on pages 22, 23, and 24.

[77] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, “The
iEBE-VISHNU code package for relativistic heavy-ion collisions,” 2015.
Cited on pages 22 and 24.

[78] J. S. Moreland, J. E. Bernhard, and S. A. Bass, “Alternative ansatz to wounded
nucleon and binary collision scaling in high-energy nuclear collisions,” Physical
Review C 92 no. 1, (Jul, 2015) .
http://dx.doi.org/10.1103/PhysRevC.92.011901.
Cited on page 23.

[79] P. Huovinen and P. Petreczky, “QCD equation of state and hadron resonance gas,”
Nuclear Physics A 837 no. 1-2, (Jun, 2010) 26–53.
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.015.
Cited on page 24.

[80] F. Cooper and G. Frye, “Single-particle distribution in the hydrodynamic and
statistical thermodynamic models of multiparticle production,” Phys. Rev. D 10
(Jul, 1974) 186–189. https://link.aps.org/doi/10.1103/PhysRevD.10.186.
Cited on page 24.

[81] S. Bass, “Microscopic models for ultrarelativistic heavy ion collisions,” Progress in
Particle and Nuclear Physics 41 (1998) 255–369.
http://dx.doi.org/10.1016/S0146-6410(98)00058-1.
Cited on page 24.

[82] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina,
M. Belkacem, H. Weber, H. Stöcker, and et al., “Relativistic hadron-hadron
collisions in the ultra-relativistic quantum molecular dynamics model,” Journal of
Physics G: Nuclear and Particle Physics 25 no. 9, (Sep, 1999) 1859–1896.
http://dx.doi.org/10.1088/0954-3899/25/9/308.
Cited on page 24.

http://dx.doi.org/https://doi.org/10.1016/j.physletb.2017.07.060
https://www.sciencedirect.com/science/article/pii/S0370269317306160
http://dx.doi.org/10.1103/physrevc.82.041901
http://dx.doi.org/10.1103/PhysRevC.82.041901
https://www.das.ktas.ph.tum.de/DasDocs/Public/Bachelor_Theses/MarcelLesch_bachelor.pdf
https://www.das.ktas.ph.tum.de/DasDocs/Public/Bachelor_Theses/MarcelLesch_bachelor.pdf
http://cds.cern.ch/record/2636623
http://dx.doi.org/10.1103/physrevc.92.011901
http://dx.doi.org/10.1103/physrevc.92.011901
http://dx.doi.org/10.1103/PhysRevC.92.011901
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.015
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.015
http://dx.doi.org/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1103/PhysRevD.10.186
https://link.aps.org/doi/10.1103/PhysRevD.10.186
http://dx.doi.org/10.1016/s0146-6410(98)00058-1
http://dx.doi.org/10.1016/s0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1088/0954-3899/25/9/308


BIBLIOGRAPHY 115

[83] J. E. Bernhard, J. S. Moreland, and S. A. Bass, “Bayesian estimation of the
specific shear and bulk viscosity of quark–gluon plasma,” Nature Phys. 15 no. 11,
(2019) 1113–1117.
Cited on page 25.

[84] X.-N. Wang and M. Gyulassy, “hijing: A Monte Carlo model for multiple jet
production in pp, pA, and AA collisions,” Phys. Rev. D 44 (Dec, 1991) 3501–3516.
https://link.aps.org/doi/10.1103/PhysRevD.44.3501.
Cited on page 25.

[85] M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program for parton
and particle production in high energy hadronic and nuclear collisions,” Computer
Physics Communications 83 no. 2-3, (Dec, 1994) 307–331.
http://dx.doi.org/10.1016/0010-4655(94)90057-4.
Cited on page 25.

[86] CERN Press Office, “CERN Accelerating science,” 2017.
https://home.cern/resources/brochure/cern/lhc-guide.
Cited on page 27.

[87] R. Aßmann, M. Lamont, and S. Myers, “A brief history of the LEP collider,”
Nuclear Physics B - Proceedings Supplements 109 no. 2, (2002) 17–31.
https://www.sciencedirect.com/science/article/pii/S0920563202900058.
Proceedings of the 7th Topical Seminar.
Cited on page 27.

[88] ALICE Collaboration, P. Cortese et al., “ALICE: Physics performance report,
volume I,” J. Phys. G 30 (2004) 1517–1763.
Cited on pages 28, 30, and 31.

[89] ALICE Collaboration, C. W. Fabjan et al., “ALICE: Physics performance report,
volume II,” J. Phys. G 32 (2006) 1295–2040.
Cited on page 28.

[90] “3D ALICE Schematic RUN2 - with Description.”
https://alice-figure.web.cern.ch/.
Cited on page 29.

[91] ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner
Tracking System with cosmic-ray tracks,” JINST 5 (2010) P03003,
arXiv:1001.0502 [physics.ins-det].
Cited on page 30.

[92] ALICE TPC Collaboration, P. Gasik, “Development of GEM-based Read-Out
Chambers for the upgrade of the ALICE TPC,” JINST 9 (2014) C04035.
Cited on page 31.

[93] ALICE TPC Collaboration, M. Aggarwal et al., “Particle identification studies
with a full-size 4-GEM prototype for the ALICE TPC upgrade,” Nucl. Instrum.
Meth. A 903 (2018) 215–223, arXiv:1805.03234 [physics.ins-det].
Cited on page 31.

http://dx.doi.org/10.1038/s41567-019-0611-8
http://dx.doi.org/10.1038/s41567-019-0611-8
http://dx.doi.org/10.1103/PhysRevD.44.3501
https://link.aps.org/doi/10.1103/PhysRevD.44.3501
http://dx.doi.org/10.1016/0010-4655(94)90057-4
http://dx.doi.org/10.1016/0010-4655(94)90057-4
http://dx.doi.org/10.1016/0010-4655(94)90057-4
https://home.cern/resources/brochure/cern/lhc-guide
http://dx.doi.org/https://doi.org/10.1016/S0920-5632(02)90005-8
https://www.sciencedirect.com/science/article/pii/S0920563202900058
http://dx.doi.org/10.1088/0954-3899/30/11/001
http://dx.doi.org/10.1088/0954-3899/32/10/001
https://alice-figure.web.cern.ch/
http://dx.doi.org/10.1088/1748-0221/5/03/P03003
http://arxiv.org/abs/1001.0502
http://dx.doi.org/10.1088/1748-0221/9/04/C04035
http://dx.doi.org/10.1016/j.nima.2018.06.084
http://dx.doi.org/10.1016/j.nima.2018.06.084
http://arxiv.org/abs/1805.03234


116 BIBLIOGRAPHY

[94] E877 Collaboration, J. Barrette et al., “Observation of anisotropic event shapes
and transverse flow in Au + Au collisions at AGS energy,” Phys. Rev. Lett. 73
(1994) 2532–2535, arXiv:hep-ex/9405003.
Cited on page 34.

[95] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, “Elliptic flow in the
Gaussian model of eccentricity fluctuations,” Phys. Lett. B 659 (2008) 537–541,
arXiv:0708.0800 [nucl-th].
Cited on page 34.

[96] R. Kubo, “Generalized Cumulant Expansion Method,” Journal of the Physical
Society of Japan 17 no. 7, (1962) 1100–1120.
Cited on page 39.

[97] A. Bilandzic, M. Lesch, C. Mordasini, and S. F. Taghavi, “Multivariate cumulants
in flow analyses: The Next Generation,” 2021.
Cited on pages 39, 41, 42, 44, 45, and 79.

[98] P. Bonnier and H. Oberhauser, “Signature cumulants, ordered partitions, and
independence of stochastic processes,” Bernoulli 26 no. 4, (2020) 2727 – 2757.
https://doi.org/10.3150/20-BEJ1205.
Cited on page 40.

[99] Toia, Alberica (ALICE Collaboration), “Bulk properties of Pb–Pb collisions at√
sNN=2.76 TeV measured by ALICE,” Journal of Physics G: Nuclear and Particle

Physics 38 no. 12, (Nov, 2011) 124007.
http://dx.doi.org/10.1088/0954-3899/38/12/124007.
Cited on page 49.

[100] G. Cowan, Statistical Data Analysis. Clarendon (Oxford), Oxford, 1998 (ISBN:
0-19-850156-0 or 0-19-850155-2 in paperback).
Cited on pages 58, 60, 75, 85, and 87.

[101] R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical
Sciences (Manchester Physics Series). WileyBlackwell, reprint ed., 1989.
Cited on page 60.

[102] R. Barlow, “Systematic errors: Facts and fictions,” in Conference on Advanced
Statistical Techniques in Particle Physics, pp. 134–144. 2002.
arXiv:hep-ex/0207026.
Cited on page 60.

[103] Z. Qiu and U. Heinz, “Event-by-event shape and flow fluctuations of relativistic
heavy-ion collision fireballs,” Physical Review C 84 no. 2, (Aug, 2011) .
http://dx.doi.org/10.1103/PhysRevC.84.024911.
Cited on page 64.

[104] J. Jia and S. Mohapatra, “A method for studying initial geometry fluctuations via
event plane correlations in heavy ion collisions,” The European Physical Journal C
73 no. 7, (Jul, 2013) . http://dx.doi.org/10.1140/epjc/s10052-013-2510-y.
Cited on pages 64 and 65.

http://dx.doi.org/10.1103/PhysRevLett.73.2532
http://dx.doi.org/10.1103/PhysRevLett.73.2532
http://arxiv.org/abs/hep-ex/9405003
http://dx.doi.org/10.1016/j.physletb.2007.11.043
http://arxiv.org/abs/0708.0800
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.3150/20-BEJ1205
https://doi.org/10.3150/20-BEJ1205
http://dx.doi.org/10.1088/0954-3899/38/12/124007
http://dx.doi.org/10.1088/0954-3899/38/12/124007
http://dx.doi.org/10.1088/0954-3899/38/12/124007
http://arxiv.org/abs/hep-ex/0207026
http://dx.doi.org/10.1103/physrevc.84.024911
http://dx.doi.org/10.1103/PhysRevC.84.024911
http://dx.doi.org/10.1140/epjc/s10052-013-2510-y
http://dx.doi.org/10.1140/epjc/s10052-013-2510-y
http://dx.doi.org/10.1140/epjc/s10052-013-2510-y


Acknowledgements

Firstly, I would like to thank my supervisor and head of the “MuPa” group, Dr. Ante
Bilandzic. Four years ago, he introduced me to the world of heavy-ion collisions and flow.
It has been a long road, a lot to learn and there is still a lot ahead. But in this time, I got
the amazing chance to be part of two papers with the next one already in the pipeline.
For all of these great opportunities, the fruitful discussions, his help and all the great
advise (“Do your thing”, “Never seek perfection”, ... ), I want to greatly thank him.

Next, I would like to thank my “teammate”, Dr. Cindy Mordasini. It goes without
saying that the analysis wouldn’t have reached its current status without her hard earned
experience from her PhD that she shared with me. All the amazing discussions we had
and our great teamwork really deserve a big thanks.

Continuing this list, I want to thank Dr. Seyed Farid Taghavi for all the great discus-
sions and the work we did together on the Gaussian Estimator. And in particular for all
the model data he always provides to me. For all this help and everything I learned from
him also a big thanks.

I also would like to thank Dr. Dong Jo Kim for all his help in the analysis, in particular
with setting up the JCorran framework, the implementation of the corrections maps and
all the great discussions we had so far.

117


	Introduction
	The Standard Model 
	Quantum chromodynamics  
	Quark–gluon plasma  
	Heavy-ion collisions  

	Flow
	Anisotropic flow 
	Description of the initial state 
	Description of the final state
	From initial to final state: linear and non-linear response 

	From azimuthal angles to flow observables 
	Multiparticle correlation techniques 
	Single-event averages
	All-event averages

	Flow vs non-flow
	Summary of important experimental results in flow 

	Theoretical models 
	Glauber model
	MuPa Glauber model 
	Centrality determination

	TRENTo 
	iEBE-VISHNU 
	HIJING 

	Experimental setup
	LHC
	ALICE 
	ITS
	TPC
	V0


	New technical developments for  symmetry plane correlations
	New estimator for SPC 
	Ideal measurement of SPC
	Gaussian Estimator
	Validation of the Gaussian Estimator 

	Cumulants of SPC
	Conceptual introduction to cumulants
	Cumulant formalism according to Kubo
	New formalism for cumulants of SPC


	Experimental data analysis
	Event selection
	Primary vertex selection
	Triggering, centrality and multiplicity selection
	Removal of the high multiplicity outliers 

	Track selection 
	Reconstruction selection
	Kinematic cuts

	Weights 
	Final quality assurance
	Non-flow estimation
	Statistical errors 
	Systematic checks

	Experimental results and discussion
	Summary
	Basics of flow 
	Proof of "426830A exp[in(- n)] "526930B = vn  
	Importance of the isotropy condition 
	P.D.F. characteristics  

	Supplements for new formalisms for SPC
	Choice of correlators in the GE 
	Correlators between two symmetry planes 
	Correlators between three symmetry planes

	Cumulant properties of CSC 
	Statistical independence
	Reduction
	Semi-invariance
	Homogeneity
	Multilinearity


	Non-flow studies 
	Statistical error propagation 
	Errors of one-dimensional variables
	General error propagation
	SPC specific error propagation

	Supplements data analysis 
	Run-by-run trending 
	Comparison of statistical errors 
	Systematic Errors 

	Supplements experimental results
	Comparison between ALICE and ATLAS data 


