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Abstract

The HADES detector is located in Darmstadt, Germany, at the GSI Helmholtzzentrum
für Schwerionenforschung. It is a fixed target experiment, which was designed to measure
rare dielectron e+e−-pairs stemming from decays of light vector mesons inside a strongly
interacting medium at beam energies of 1− 2AGeV. Several experimental runs were per-
formed e.g. C+C, Ar+KCl or p+Nb reactions to study particle spectra and characteristics
of different systems.
Despite the fact that the experiment was constructed for dilepton measurements it is also
possible to identify hadrons with the spectrometer. This offers the additional possibility to
investigate in-medium modifications of hadrons when they interact with a medium.
In this thesis we focus on the reconstruction of the strange Λ(1116) baryon in the p+Nb
system with a proton kinetic beam energy of 3.5 GeV. Because the Λ hyperon decays with
a branching ratio of ∼ 64% in the charged particle pπ−-pair it is possible to measure it with
the energy loss in the Multi-Wire-Drift Chambers. We analyze ∼ 3.1 · 109 (downscaled)
events from which we extract about 1M Λs. This large statistic allows us to perform a double
differential analysis in two independent kinematic variables: the transverse momentum pt
and the rapidity of the particle yCM in the nucleon-nucleon center of mass frame. The data
measured with the HADES detector has to be corrected for acceptance and efficiency. We
explain in detail how to correct for acceptance and efficiency effects and perform a so called
self-consistency check to be sure that our correction is model independent.
To extract physical information from the experimental spectra we compare them to predic-
tions of transport models, with which we simulate the p+Nb reaction. We have chosen two
different models and present their structure to understand their similarities and differences
and compare their predictions with the efficiency corrected two dimensional Λ phase space.
In the second part of the thesis we investigate the effect of particle correlations after they
are emitted from a source, which is commonly known as final state interactions. This effect
is based on the intensity interferometry technique, which compares a coincidence yield
between the emitted particles to the product of their single-particle detection probabilities.
Originally developed in radio astronomy to measure (angular) source sizes of astronomical
objects it found its way to particle and nuclear physics, where it is used to gain information
about the particle emitting source. We concentrate on the specific case of two-particle
correlations between protons and describe how one determines the correlation function
experimentally and introduce the theoretical Koonin-Pratt formalism which is used to
extract the source size from the experimental signal.





Zusammenfassung

Der HADES Detektor befindet sich in Darmstadt an der Gesellschaft für Schwerionen-
forschung (GSI). Es ist ein Fixed-Target-Experiment, und wurde entwickelt um seltene
Zerfälle von leichten Vektormesonen in einem stark wechselwirkenden Medium in Dielektro-
nenpaare e+e− zu detektieren. Es wurden verschiedene Reaktionen wie z.B. C+C, Ar+KCl,
oder p+Nb untersucht, um Teilchenspektren und Eigenschaften verschiedener Systemen zu
studieren.
Ursprünglich wurde das Experiment zur Dileptonenidentifikation entworfen, jedoch ist es
auch möglich Hadronen mit dem Spektrometer zu identifizieren. Dies ermöglicht beispiel-
sweise auch die Untersuchung von Hadronmodifikationen, wenn diese in ein stark wechsel-
wirkendes Medium eingebettet sind.
In dieser Arbeit konzentrieren wir uns auf die Rekonstruktion des Λ Hyperons, welches in
p+Nb Reaktionen bei einer kinetischen Protonenergie von 3.5 GeV erzeugt wird. Das Λ
Teilchen hat eine Zerfallsbreite von 64% in den pπ− Kanal. Die geladenen Zerfallsteilchen
können mit Hilfe der Energieverlustmethode in den Vieldraht-Driftkammern identifiziert
werden, und dies ermöglicht die Rekonstruktion des Λ Mutterteilchens. Wir analysieren
etwa ∼ 3.1 · 109 Events, und erhalten dadurch ca. 1M Λs als Ausbeute. Diese große
Anzahl an Teilchen erlaubt es uns, eine doppelt differentielle Analyse in zwei unabhängigen
Variablen, nämlich dem Transversalimpuls pt und der Rapidität yCM (im Nukleon-Nukleon
Schwerpunktsystem) des Λ Teilchens, durchzuführen. Um die Daten mit theoretischen Mod-
ellen vergleichen zu können, muss eine Effizienzkorrektur durchgeführt werden. Wir werden
die genauen Schritte der Korrektur erklären, und einen Selbstkonsistenztest vorstellen, mit
dessen Hilfe wir sicher gehen können, dass die Effizienzkorrektur modellunabhängig ist.
Um physikalische Aussagen über unsere Spektren zu treffen, vergleichen wir diese mit
Vorhersagen von Transportrechnungen. Wir haben uns für zwei verschiedene Modelle
entschieden, und stellen deren Arbeitsweise vor, ihre Gemeinsamkeiten, und ihre Unter-
schiede.
Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Effekten von Korrelationen zwis-
chen Teilchen, nachdem diese eine Emissionsquelle verlassen haben. Teilchenkorrelationen
basieren auf der Methode der Intensitätsinterferometrie, die ursprünglich in der Radioas-
tronomie verwendet wurde um Quellradien von astronomischen Objekten zu bestimmen.
Unabhängig davon fand die Technik auch Einzug in die Teilchen- bzw. Kernphysik, und
wird dort verwendet um Informationen über Teilchenemissionsquellen zu gewinnen. Wir
fokussieren uns speziell auf die Untersuchung von Zweiteilchenkorrelationen zwischen iden-
tischen Protonen. Wir zeigen sowohl wie man die experimentelle Korrelationsfunktion aus
den Daten gewinnt, als auch den theoretischen Koonin-Pratt Formalismus mit dessen Hilfe
wir Quellradien aus dem experimentellen Korrelationssignal gewinnen können.
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1 Introduction

In the 20th century, one of the major problems of nuclear physics was the construction of
a theory describing the forces between nucleons. The first attempt building a model for
the nucleon-nucleon (NN) interaction was made by Yukawa [Yuk35] introducing the pion
being exchanged between the nucleons, which was the starting point of the pion-theories.
Yukawa’s idea of one pion exchange was very successful describing NN scattering data
[Mac11].
With the discovery of quantum chromodynamics (QCD), a new progress was made to
understand the nature of strong interaction. QCD is a field-theory constructed on the basis
of the gauge-principle using a local non-abelian SU(3)C color symmetry. Its ingredients
are fermions, called quarks, and bosons, called gluons, arising automatically from the local
gauge symmetry and acting as the force carrier between the quarks. Because the color
symmetry is of non-abelian nature, it is the root of a rich class of new phenomena in
comparison to abelian local gauge theories like quantum electrodynamics (QED). The main
two features are known as asymptotic freedom, stating that the coupling between quarks
and gluons becomes weaker at small distances, and the second one is confinement, according
to which quarks and gluons are bound to colorless objects called hadrons (color singlets
under SU(3)C) in nature. Confinement leads to a constraint of possible groups of observable
hadrons, yet experimentally confirmed were baryons containing three quarks and mesons
containing a quark- anti-quark pair.
Theoretically confinement is described by the running coupling αS of QCD, which is small
for high energies and becomes larger for decreasing energies. Whereas in the high energy
regime QCD can be treated perturbatively, at low energies the relevant degrees of freedom
describing the dynamics of strongly interacting physical systems have to be exchanged,
namely quarks and gluons for colorless objects of baryons and mesons. This is done by
introducing the concept of effective field theory to low-energy QCD. Another important
underlying global symmetry of QCD is used to connect both concepts, the chiral symmetry
(SU(2)L × SU(2)R). Chiral symmetry is based on the fact that the masses of "up"- and
"down" quarks (also the "strange" quark concerning three flavors) are relatively small (5-
10 MeV/c2) compared to the intrinsic scale of QCD ΛQCD ∼ 350 MeV, and it can be
understood as the handedness also called chirality of the particles in the massless limit.
Chiral symmetry is explicitly broken because of the finite quark masses, but also broken
spontaneously to its vector subgroup SU(2)V . The spontaneous symmetry breakdown to
the QCD ground-state is associated with the appearance of massless pseudoscalar particles
according to Goldstone’s theorem - the pions (and kaons and the eta meson for three quark
flavors). In this way we retrieve a theory with the structure of Yukawa’s discovery, however
constructed and constrained by symmetries of QCD. The force between hadrons can now
be understood as a residual color interaction similar to the van der Waals force between
neutral molecules [Mac11].
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2 1 Introduction

Figure 1.1: The phase diagram of QCD from [Fuk11].

1.1 Equation of state (EoS) of QCD matter
The fundamental behavior of QCD is that at high energies the coupling between quarks
and gluons becomes weak, which is known as asymptotic freedom. It is therefore expected
that QCD matter at high energy densities undergoes a phase transition from a state
with confined hadrons into a new state of matter with quarks and gluons [Fuk11]. Such
theoretical statements can be tested with heavy-ion colliders like the Relativistic Heavy-Ion
Collider RHIC at Brookhaven National Laboratory or the Large Hadron Collider LHC at
CERN. In general, QCD at finite density and temperature is described by the nuclear EoS,
which defines a relation between state variables in thermal equilibrium. The complex phase
diagram of QCD governed by its symmetries is shown in Figure 1.1. Besides the transition
to a quark-gluon plasma (QGP), QCD predicts the condensation of quark Cooper pairs
leading to the effect of color superconductivity (CSC) in the region of asymptotically high
baryon density (µB � ΛQCD). In recent years continuous efforts have been made to explore
the dense and cold region of QCD matter in the phase diagram realized in astrophysical
objects like neutron stars. With the recent finding of a two solar mass neutron star [Dem10]
new constraints for theoretical nuclear EoS for dense nuclear matter and their underlying
microscopic models are available. The influence of the particle content of massive stars and
the particle interactions on the stiffness of the EoS will be discussed in the next section.

1.2 The Λ(1116) hyperon and its possible role in neutron stars
Hyperons (Y) are baryons containing at least one strange quark. The Λ(1116) hyperon is
part of the baryon octet and built of an up- down- and strange-quark. Hyperons may play
an important role in dense systems like in the core of neutron stars. Calculated properties
of a free gas of hadrons and leptons in β-equilibrium are showing that Λ hyperons appear
at around 8n0 [Amb60], where n0 is the nuclear saturation density. Including nuclear forces
reduces the critical density to about 2n0 [Sah63]. Figure 1.2 illustrates a possible particle
content for dense systems [Sch08a].
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Figure 1.2: Baryon fraction as a function of density calculated with a relativistic mean-field
model (RMF) according to [Sch08a]. Λ hyperons appear in this model at about 2.3n0.

Therefore, it is crucial to include the strong interaction among nucleons but also between nu-
cleons and hyperons. To study the YN interaction in particular, one defines mathematically
a single-particle potential UΛ as the difference between the dispersion relation in-medium
and the free one (UY = ω∗ − ω) [Wan99a]. Physically, this potential describes the average
field created by the other baryons and felt by the Λ. Different theoretical single-particle
potentials for Λ hyperons as a function of density for symmetric nuclear matter [Dja10]
are displayed in Figure 1.3. The black square represents the experimental value extracted
from hypernuclei data UΛ(n = n0)p=0 ≈ −30 MeV. Most curves coincide with experiment
at saturation density, but differ at higher densities.

Figure 1.3: The Λ hyperon single-particle potential for symmetric matter, calculated for
different models from [Dja10].



4 1 Introduction

In general hyperons appear in dense matter if their in-medium energy is equal to their
chemical potential µ(Y ) = ω(Y ) = m(Y ) + UY (ρ) [Sch08a]. It is then energetically favored
that hyperons are produced via the weak decay of neutrons. Additional fermionic degrees
of freedom, in this case hyperons, start then to populate new Fermi levels lower the overall
Fermi energy and momentum of baryons and leptons, which leads to a reduced pressure of
the system. This implies a softening of the EoS, compared to the pure nucleonic case. In a
descriptive picture, high energetic nucleons are replaced by slowly moving more massive
hyperons [Cha13].
The EoS is an ingredient of the Tolman-Oppenheimer-Volkoff (TOV) equations [Tol39]
[Opp39], which are based on principles of general relativity and used to determine the
maximum mass of a compact physical object. The TOV equation for a static spherical
symmetric star in hydrostatic equilibrium is given by:

dP
dr = −GρM

r2

(
1 + P

ρc2

)(
1 + 4πPr3

Mc2

)(
1− 2GM

rc2

)−1

. (1.1)

The maximum mass calculated with help of Equation (1.1) must be in agreement with
the discovery of a rather heavy neutron star PSR J1614-2230 with a measured mass of
1.97± 0.04M� [Dem10].
Most models containing hyperons predict too low star masses. Sophisticated Brueckner-
Hartree-Fock calculations generally give not larger masses than 1.6M�. Also estimations of
the maximum mass by the inclusion of three-body forces in such calculations (by introducing
density-dependent contact terms) do not help to overcome the threshold of two solar masses
[Vid11] as seen in Figure 1.5 (the authors point out that studies for more realistic three-body
forces are needed). This strong softening of the EoS leads to a "hyperon puzzle" [Cha13],
as hyperons appear in a "natural way" in dense systems, but are not able to produce large
star masses.
Relativistic mean field (RMF) models also have problems describing such heavy stars and
obtain masses in the range of 1.4− 1.8M� (see [Wei12c] and included references). Some
models obtain stiffer EoS by pushing the threshold density for the appearance of hyperons
to larger values or using density dependent couplings (references are in [Wei12c]).
Another attempt is to insert the φ-meson into RMF models mediating the repulsive part of
the YY-interaction and leading to stiffer EoS as suggested in [Wei12b]. In a recent study
of the parameter space of a RMF model including the φ-meson, the authors question the
underlying SU(6) symmetry (a composite symmetry of flavor and spin of the quarks) which
relates the couplings of hyperons to nucleons [Wei12c]. This also allows the possibility of
N-φ interaction and results in stiffer EoS shown in Figure 1.4. The maximum mass of the
star for different EoS is plotted versus the strangeness fraction (the number of strange
quarks divided by the total number of quarks). By varying model parameters (and violating
SU(6)) one decreases the strangeness fraction and enlarges the maximum mass.
In conclusion one can say, that the particle content in dense systems and the interactions
among them is still a controversial topic. The finding of PSR J1614-2230 puts a tight
constraint on possible EoS and most models with hyperon content struggle to reproduce
such a large mass. The introduction of three-body forces does not help yet to reach large
mass limits. There is also a discussion going on that even a heavier neutron star exists
with a mass of about 2.4M� [van11] putting additional focus on the "hyperon puzzle" and
aggravates it. An even stiffer EoS would then be needed, which means that already pure
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Figure 1.4: Maximum mass of a neutron star as a function of the strangeness fraction from
[Wei12b]. Different curves are for different EoS. The violation of SU(6) symmetry by varying
the parameter sets (αV , z) leads to different strangeness fractions. A decreasing strangeness
fraction results in stiffer EoS and higher masses.

nucleonic models would have problems reproducing such a large mass.

Figure 1.5: Different equations of state of nuclear matter and the connection to the mass
of the object, according to [Vid11]. Calculations are based on Brueckner-Hartree-Fock theory
including three-body forces. Curves 1 and 2 correspond to purely nucleonic stars, whereas 3
and 4 include hyperons. The inclusion of hyperons clearly softens the EoS and leads to lower
neutron star masses.
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1.3 Motivation of this work
As discussed in the preceding section, strangeness physics could have a large impact on
physical, especially on global astrophysical observables like masses of heavy stars which act
as huge laboratories where theoretical assumptions of nuclear EoS can be tested. Studying
the dense EoS in terrestrial laboratories is done with heavy-ion experiments where two
nuclei are collided to create highly excited nuclear matter reaching a few times saturation
density. Because of their production threshold it is more probable that strange particles
are produced in the early collision stage, thus carrying information of the system where
the matter was in a compressed state. Especially kaons arouse interest, because of their
long mean free path they pass relatively undistorted the medium and deal therefore as a
probe of the dense region. Additionally it was shown on theory side that kaon production is
sensitive to the EoS of nuclear matter [Aic85]. Experimental investigations of the stiffness
of dense matter by measuring K+ multiplicities in heavy-ion collisions followed [Stu01],
which could explain their data with a soft EoS.
Apart from studying properties of the colliding medium with strange particles the particles
behavior itself by embedding them in a strongly interacting environment became the focus
of attention, measured with mean-field potentials which express the differences of particles
to their vacuum characteristics. In heavy-ion runs a repulsive potential strength for neutral
kaons was measured UKN ≈ 38 MeV [Aga10]. A different study of pion induced reactions
on different targets reported a repulsive potential for K0 of UKN ≈ 20 MeV [Ben09]. This
discrepancy triggered further investigations of neutral kaons in p+p and p+A reactions
measured with the HADES detector.
The production of kaons is closely connected to the production of Λs because of conserv-
ing strangeness in strong interaction processes. For this reason it was only natural that
heavy-ion experiments were searching for modifications of Λ hyperons and an expected
attractive potential by looking at flow observables [Li,98] [Li,96] [Wan99a]. The spectral
shape of simulations showed a better agreement with the experimental results when an
attractive mean-field was included as illustrated in Figure 1.6.

Figure 1.6: Study of the effect of a mean-field potential on Λ flow from [Wan99a].
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As we have seen, most studies were performed with heavy-ion reactions where one has to
deal with complex situations like evolving systems which implies a variation of the cross
sections with density and particle propagation in very dense regions. One can reduce the
complexity and also uncertainties with studying p+A reactions. They act as a link between
elementary reactions and heavy-ion collisions. The target nucleus represents a well defined
fixed environment with an average constant density n0. This advantage is the starting point
of our work. We analyze the inclusive Λ production in proton niobium (p+Nb) reactions
with a proton kinetic energy of 3.5 GeV measured with the HADES detector. Besides the
advantage of a fixed target density the experiment provides also a high statistic Λ sample
which allows us to study hyperons in specific kinematic configurations to make precise
statements about possibly particle modifications.

In the first part of this thesis we compare the experimental results with theoretical transport
predictions. In the second part we employ a different study based on the so called intensity
interferometry. If particles are emitted from a source there is a possibility that they get
correlated due to final state interactions (FSI), measurable in the relative three-velocity of
both particles in the center of mass frame of the pair.
Correlation measurements are on the one hand used to gain information about the particle
emitting source and on the other hand they offer the possibility to learn more about the
interaction between the emitted particles. For example the STAR collaboration could
extract constrains on the scattering length about the very unknown interaction of Λ̄p and
Λp̄ by looking at final state interactions [Ada06].
We want to use this method to study in future the interaction of Λs with protons by
measuring their correlations and obtain also with this method information about the p+Nb
particle emitting system. This would be a first measurement of Λp correlations in p+A reac-
tions. However, in an intermediate step we have to develop all necessary tools to construct
correlation functions which we tested in the construction of proton-proton correlations.
This work will in detail be presented in Chapter 5.



2 The HADES Experiment

2.1 The HADES experiment and the aimed measurements

Figure 2.1: Setup of the HADES detector.

According to theoretical models, hadrons change their properties if embedded in a strongly
interacting matter environment. To test such effects it is useful to measure particles which
have a short lifetime, to enlarge the probability that they decay inside the medium. The
light vector mesons ω, ρ and φ provide such properties. An additional advantage of these
mesons is that they have electromagnetic decay channels into e+e− pairs, which are not
subject to strong interactions and deliver a nearly undistorted signal of the matter phase
[Aga09].
The High Acceptance Di-Electron Spectrometer (HADES) was designed to measure such
rare decays in fixed target reactions. It is located in Darmstadt, Germany, at the GSI
Helmholtzzentrum für Schwerionenforschung. The HADES heavy ion program is focused
on beam energies of 1-2 AGeV achieved with the heavy-ion synchrotron SIS18. At these
energies the compression duration of colliding nuclei in heavy ion reactions is comparable to
the lifetime of light vector mesons. Primarily designed for measuring electron pairs, it is also
possible to measure hadrons with the detector setup. This allows one to investigate an even
broader field of physics like the properties of strange hadrons [Sch08b], their production
mechanisms in elementary reactions and their modifications in a cold nuclear environment.
In the following sections all parts of the detector and their tasks are presented.

8
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2.2 Experimental setup
2.2.1 Basic design
An expanded view of the HADES detector system is shown in Figure 2.1. It consists of six
identical sectors defined by the superconducting coils arranged symmetrically around the
beam axis optimized for dielectron measurements. It has an almost full azimuthal coverage
of about 85% and covers the polar angle from Θ = 15◦ to Θ = 85◦. Figure 2.2 illustrates
the schematic layout of the detector system and all the important detector parts.

Figure 2.2: Side view of the HADES detector system and its detector components.

2.2.2 The target
The fixed target is located in front of the RICH detector. Elementary reactions are studied
with a liquid hydrogen target, whereas for heavy-ion collisions or p+A reactions a segmented
solid state target was used [Sie13]. A start detector delivers the starting time for the reaction
time measurement (in the p+Nb run no start detector was used).

2.2.3 The RICH detector
The RICH (Ring Imaging Cherenkov) detector is used to identify electrons and positrons in
the momentum range 0.1 GeV/c ≤ p ≤ 1.5 GeV/c. The detector contains as radiator gas
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perfluorobutane (C4F10) with a Cherenkov threshold of γthresh = 18. Because of this large
threshold the RICH detector is hadron blind in the SIS18 energy regime. The Cherenkov
light generated by electrons and positrons while passing the radiator gas is reflected by
a low mass carbon shell spherical mirror and finally hits the photosensitive CsI cathodes
of six Multi-Wire Proportional Chambers (MWPC). Finally, the light is focused to rings
because of the detector geometry in a way that the ring radius stays nearly constant. The
information of the ring position together with a reconstructed particle track is used to
identify electrons and positrons. A schematic layout of the RICH detector is given in Figure
2.3.

Figure 2.3: Schematic layout of the RICH detector. The Cherenkov light of the positron is
reflected at the mirror and focused to a ring on the readout pads.

2.2.4 The Multi-Wire-Drift Chambers
The HADES program aims to measure in-medium modifications of particles. To reach this
goal a good momentum reconstruction, which means a good spatial resolution of the tracked
particles together with a large detector acceptance is needed. Therefore, 24 trapezoidal
planar Mulitwire Drift Chambers MDC are placed symmetrically around the beam axis
in six identical sectors. Each sector contains four tracking planes (I-IV), two planes in
front (I-II) of the magnet and two behind (III-IV) as illustrated in Figure 2.2. The place
between the planes II-III defines the active area of the chambers, where charged particles
are deflected thanks to the magnetic field. Each of the 24 MDCs are divided into six
anode wire frames (about 1100 tungsten wires per frame) oriented in six different angles
(±0◦,±20◦,±40◦) as displayed in Figure 2.4. This setup enlarges the spatial resolution in
polar direction.
The chambers are flushed with a counting gas. A charged particle traversing the gas is
ionizing it along the particle trajectory forming so called clusters. The produced electrons
in the gas are accelerated towards the wires because of an active electric field. The amount
of electrons is multiplied during the acceleration by the avalanche effect and finally the
cloud of electrons reaches the wires and introduces an electric signal, which can be read out.
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Figure 2.4: Schematic view of the drift chambers oriented at ±0◦,±20◦,±40◦.

With this principle hit positions in the MDC layers (I-IV) are determined. The hit points
in MDC I and II are grouped together to an inner track segment and from MDC III and
IV to an outer one. The points in the inner and outer segment are connected with the
assumption of straight tracks, because they are in an almost free magnetic field region. In
the active area the particles are deflected and the momentum is determined solving its
equation of motion in the field region in a recursive way with the Runge-Kutta method
using the hit points as initial conditions.

2.2.5 The Magnet
A charged particle entering a magnetic field region is deflected according to the Lorentz
force, whereas the total momentum stays constant. By measuring the deflection one is
able to obtain the momentum of the particle. To make use of this principle, the HADES
detector contains six superconducting magnets placed around the beam axis among the
drift chambers. The magnets create a strong inhomogeneous toroidal magnetic field with
field strengths ranging from B = 0.9 T up to B = 3.6 T at the sector edge. The magnet
was built in such a way that the target region and the active volume of the RICH detector
is free of any magnetic field to not influence the particle reactions and identification of
electrons and positrons.

2.2.6 The Time-of-flight detectors
The three time of flight detectors are part of the Multiplicity Electron Trigger Array META
system. Particles traversing the META system give an additional hit point which is used
for momentum reconstruction. The detector subsystems are in detail:

• TOF detector
The TOF detector covers a polar acceptance of 44◦ < Θ < 88◦ and follows the
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azimuthal six-fold symmetry of the whole HADES setup. Each one of the six detectors
consists of eight modules, and each module is subdivided into eight scintillator rods.
A charged particle induces a photon emission in the scintillators measured with Photo-
Multiplier-Tubes PMT’s, which deliver the arrival time and also a signal height. The
signal height is related to an energy loss, which can be used for particle identification.
The time resolution of the TOF detector was obtained by using dileptons from C+C
reactions and is of the order σTOF ≈ 150 ps.

• TOFINO
The TOFINO detector has a polar acceptance of 18◦ < Θ < 45◦. It is a low granularity
system divided into six sectors each containing 4 scintillator paddles with a trapezoidal
form. The lower granularity increases the probability of double hits. Its time resolution
is worse than those of the TOF of about σTOFINO ≈ 420 ps.

• Pre-Shower
The Pre-Shower is located just behind the TOFINO detector. It is used for dilep-
ton identification and based on the fact that electrons and posistrons induce an
electromagnetic shower in the converter made out of lead.

• Resisitve Plate Chambers (RPC)
To achieve better time resolutions of about σRPC ≈ 100 ps, which leads to an improved
particle identification and to be able to work at SIS intensities of 2 · 107 Hz, expected
in Au+Au collisions at 1.5 GeV/A [Alv04], the new RPC wall ESTRELA (Electrically
Shielded Timing RPC Ensemble for Low Angles) was developed and exchanged for
the TOFINO detector [Gil07] in an upgrade which started in 2009. It covers the low
polar angle acceptance region 18◦ < Θ < 45◦ with 2π azimuthal coverage.

2.2.7 The Forward Wall
HADES started in 2007 to investigate proton deuteron reactions. A characteristic feature
of these reactions is that spectator nucleons move in forward direction at small polar angles.
The HADES spectrometer covers polar angles from 15◦ < Θ < 85◦, not able to register
these spectators. For this purpose, a forward wall scintillator hodoscope was built. It
consists of about 300 scintillating cells having a thickness of 2.54 cm each and are read out
by photomultipliers [Lap09]. It was placed 7 m downstream the target and covers a polar
acceptance of 0.33◦ < Θ < 7.17◦.
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3.1 The p+Nb experiment
The experiment was performed in September 2008. Protons with a kinetic energy of
Tp = 3.5 GeV were incident on a 12-fold segmented niobium target. The niobium target
was chosen because it is a good compromise of maximizing the number of in medium decays
of ρ and ω mesons and keeping the γ conversion probability low since the main aim of the
experiment was to study the virtual photons stemming from the ω and ρ mesons produced
in cold nuclear matter [Tec06]. The target was also used in other experiments e.g. JLAB,
which offers the possibility of consistency checks with additional data. Details of the run
are listed in Table 3.1 [Lor12].

Beam energy Tp 3.5 GeV
Average beam intensity 2 · 106 particles/s
Target 93

41Nb
Target diameter d = 2.5 mm
Number of segments 12
Distance between
segments

∆z = 4.5 mm

Thickness of segment t = 0.45 mm
Interaction probability 2.8%
Downscaled Events 3.15 · 109

Table 3.1: Information about the p+Nb run performed in September 2008.

This run allows the study of different particle species. We are interested in the search of
strange Λ hyperons, inclusively. Inclusive in this sense means that we only identify the Λ
and do not study additionally produced particles in the event like protons, pions, or even
other strange particles.

p+Nb→ Λ+X

13
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The production threshold for a Λ in elementary collisions is closely connected to the
threshold of Kaons in particular K+ and K0 because of strangeness conservation. The
simplest channels to produce Λs are:

p+ p→ p+K+ + Λ

p+ n→ p+K0 + Λ

The threshold kinetic energy of protons to produce these three particles is 1.58 GeV
or in units of the invariant collision energy

√
s0 = mK + mΛ + mp = 2.55 GeV. At our

energies we reach
√
s = 3.18 GeV which means we are above the threshold and can produce

additional particles in the channels stated above like additional π±π∓-pairs (excess energy
ε =
√
s−
√
s0 ≈ 0.63 GeV).

3.2 Particle identification
The HADES framework was mainly built to identify dileptons with the RICH detector which
is hadron blind. The MDCs provide besides the momentum determination the information
of the energy loss of a particle with the measured time over threshold (ToT), which is the
time that an electronic signal exceeds an adjusted threshold. The time over threshold is
related to the energy loss of the particle ToT = f(dE/dx).
The principle of energy loss is that a charged particle which crosses a medium scatters
inelastically with electrons bound in atoms in the medium. This causes an energy loss of
the traversing particle. At each collision process n the particle loses the energy En−E0 and
it collides with a rate (per unit length) of Nσ where σ is the cross section. This motivates
the ansatz for the energy loss [Sak94]:

dE
dx = N

∑
n

(En − E0)
∫ dσ

dΩ dq. (3.1)

A full relativistic treatment was given by Bethe and Bloch in the famous Bethe-Bloch
formula [Bet30]:

−
〈

dE
dx

〉
= 4πNAr

2
emec

2z2Z

A

1
β2

[
ln
(

2mec
2β2γ2Tmax
I2

)
− β2 − δ

2

]
. (3.2)

The factors in detail are:

z : charge of the incident particle
Z,A : atomic and mass number of the traversed medium
me : rest mass of the electron
re : Bohr electron radius
NA : Avogadro number
I : mean excitation potential of the material
δ : density correction
Tmax : maximum kinetic energy which can be transferred
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Equation (3.2) depends on the charge (z · e) and on the momentum (p/m = γβ) of the
particles. Through the dependence of the momentum on the mass we expect different curves
for different particle species and this separation allows one to identify them.
We want to use this basic principle to reconstruct the unstable and charge neutral Λ
hyperon which has a mass of mΛ = 1115.683 ± 0.006 MeV/c 2 and a mean lifetime of
τΛ = (2.632± 0.020) · 10−10 s [Gro08]. Thanks to the short lifetime the Λ decays already
inside the HADES detector which makes it possible to identify it via its decay products.
The decay modes are listed in Table 3.2 extracted from [Gro08].

Decay Mode: Fraction Γi/Γtot

Γ1 pπ− 63.9 ± 0.5%
Γ2 nπ0 35.8 ± 0.5%
Γ3 nγ (1.75 ± 0.15) · 10−3

Γ4 pπ−γ (8.4 ± 1.4) · 10−4

Γ5 pe−ν̄e (8.32 ± 0.14) · 10−4

Γ6 pµ−ν̄µ (1.57 ± 0.35) · 10−4

Table 3.2: Listing of Λ decay modes.

The decay modes Γi, i > 2 can be neglected because they are very improbable to occur.
Due to the lack of a calorimeter in the HADES setup it is also not possible to detect any of
the neutral particles in the second decay channel, e.g. with the identification of π0 → γγ.
The channel pπ− is the dominant one and the energy loss of the charged decay products
can be measured in the MDCs.
Figure 3.1 shows the energy loss as a function of momentum and polarity of all charged
particles in the p+Nb experiment registered and measured in the MDCs. The identification
of protons and negative pions is made with graphical cuts around the theoretically predicted
Bethe-Bloch curves according to Equation (3.2). Because the energy loss and momentum
are smeared by finite resolution effects of the detector, we always have to choose broader
cuts than the optimal theoretical curves.
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Figure 3.1: Energy loss as a function of momentum and charge obtained from measurements
in the MDCs. Solid lines are theoretical Bethe-Bloch curves for protons and negative pions.
Dashed lines are graphical cuts used in this analysis for particle identification.

The reconstruction of the Λs is done with the invariant mass technique. The HADES
detector measures the 3-momentum and the energy loss of the particle. The latter is used
for identification which provides us with the full 4-vector information after knowing the
particle and its corresponding mass. Constructing the invariant mass of a proton-pion pair
should result in a mass of about 1116 MeV/c2 if the mother particle was a Λ.

pµp
µ = m2

Λ = (1116 MeV/c2)2 = E2
Λ − ~p2

Λ = (Ep + Eπ−)2 − (~pp + ~pπ−)2. (3.3)

This variable is the cornerstone of the analysis. It is Lorentz invariant by construction and
can easily be investigated with several auxiliary conditions which will be explained in detail
in further sections.

3.2.1 Trigger conditions
As already mentioned, the HADES detector aims for detecting rare e+e− pairs stemming
from decays of light vector mesons. To suppress purely hadronic channels, an event filtering
procedure (trigger system) is included in the setup. It also helps to avoid overloading of
the data acquisition system and of the front-end electronics. The trigger system consists of
two different trigger conditions:

• LVL1 Trigger :
The TOF and TOFINO detectors (building the META system) determine the mul-
tiplicity M of an event. The first level trigger (LVL1) rejects events that do not
exceed an predefined multiplicity condition. In the p+Nb run a M3 trigger was used
registering only events with at least three hits in the META system. The effect of
this operation is twofold. Firstly, from all occurred minimum biased events only a



3.2 Particle identification 17

subclass is selected which are called LVL1 events. Secondly, this selected subclass
contains events coming from more central regions of the nucleus as can be seen in
the impact parameter distribution shown in Figure 3.2. Indeed, the probability to
produce M3 events is larger for more central events due to the fact that the particles
have a higher chance to produce secondary particles in the nucleus. The selection of
more central events has an influence on the multiplicity of the Λ hyperon, also shown
in Figure 3.2 where in the right panel the Λ multiplicity as a function of the trigger
condition is displayed. By modifying the trigger condition by raising the necessary
hits in the META system the Λ multiplicity increases.
The trigger factor associated with M0 and M3 trigger events is calculated with help
of simulations (UrQMD and GiBUU). It is defined as the ratio of multiplicities for
the desired particle (in this case hyperons) inside the HADES acceptance determined
with the M3 and with the M0 trigger decisions (M0 is the trigger logic to collect
minimum biased events which are events with hypothetical multiplicity MLV L1 = 0):

F = Nacc
Λ /NLV L1(M3)

Nacc
Λ /NLV L1(M0) . (3.4)

This quantity slightly depends on the particle under investigation. The Λ provides
with its decay products already two particles (pπ−) and only one additional META-hit
is needed to obtain a positive LVL1 trigger signal whereas e.g. for K+ two more hits
are needed.

• LVL2 Trigger :
The second level trigger (LVL2) is important for lepton analysis. During a run,
data samples recorded by the corresponding detector parts are evaluated by Image
Processing Units (IPU) for possible lepton signatures like RICH-rings. The Matching
Unit (MU) connected to all IPUs correlates the signatures and provides a trigger
decision (e.g. at least one ring is needed to give a positive trigger decision).

• Downscaled Events
We are only interested in hadronic reactions and do not consider the LVL2 trigger
decision. To not introduce any trigger bias into the data sample the term downscaled
event was invented. In the data acquisition process the LVL2 trigger gives a positive
signal if there is a sign for a leptonic event. Only events with a positively LVL1 and
LVL2 decisions are recorded except for a fixed fraction of events independent of the
second level trigger decision. These events are called downscaled events. The amount
of LVL1 events recorded without paying attention to the LVL2 trigger output is fixed
by the downscaling factor DS. In the p+Nb run DS was set to three which means
that every third event was written to tape. Downscaled events become denoted by a
DS1 flag which can afterwards be used to distinguish them from other events in the
hadron analysis. For more details we refer to [HAD05].
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Figure 3.2: Left: Effect of the LVL1 trigger determined with UrQMD simulations. By
switching the M3 trigger on, the total amount of events is reduced but also more central events
are selected.
Right: Multiplicity dependence of Λ hyperons on the selected trigger condition. The multiplicity
increases with the trigger condition. The trigger factor is explained in the text.

3.2.2 Topological Cuts - Primary Vertex
As mentioned before, the niobium target is a 12-segmented solid state target. The reaction
takes place in the niobium discs. Each particle registered by HADES is tracked and the
tracking information can be read out. To suppress background contamination from other
sources like secondary particles produced not in the niobium discs we employ a primary
vertex cut to analyze only events where the particles come from the target region.
Technically, one uses the track information of each particle and calculates the primary
vertex. This is done by obtaining the intersection points of all tracks with each other
or the points of closest approach if the tracks do not intersect. The mean value of all
calculated points is the primary vertex position. If the primary vertex does not lie inside
the target region the event is rejected. The resolution of the vertex reconstruction is not
sufficient to distinguish the individual target discs. For this reason we apply the weaker cut
condition that the primary vertex lies inside a cylinder spanned by the discs illustrated in
Figure 3.3. A larger radius of the cylinder is chosen in comparison to the disc radius of the
target to consider finite vertex resolution effects. Its dimensions are r = 5 mm radius, and
L = 60 mm length.

Figure 3.3: Target cylinder with embedded niobium discs. If the primary vertex lies inside
the cylinder the event is analyzed further otherwise it gets rejected.
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Projections of the cylinder in the x-y and x-z direction prepared with experimental events
can be seen in Figure 3.4. The target cylinder is shifted in x direction by a mean value of
∆x̄ = 2 mm, to match the shift of the beam position of 2 mm.

Figure 3.4: Projections of the target cylinder on the x-y and x-z plane. The resolution of the
primary vertex does not allow to resolve the 12 niobium discs.

3.2.3 Topological Cuts - Secondary Vertex
The primary vertex cut was used to constrain an event by the requirement that the primary
vertex should lie inside the target region. If an event passes this cut it is analyzed further.
In our particular case the remaining events are scanned for Λ hyperons. This is done by
combining protons and negative pions to pairs with the invariant mass technique. Fre-
quently in Λ events other protons and pions are produced or other particles are accidentally
identified as protons and pions. The combination of them gives us a non-Λ background
signal. To reduce this background source one applies secondary off-vertex cuts. This is
mainly possible due to fact that the Λ has a finite lifetime, which is translated into a
"distance" cτ = 3 · 108 m

s × 2.6 · 10−10 s ≈ 7.8 cm in the center of mass frame of the Λ.
Transforming this value to the laboratory frame gives us a rough estimation how far the
produced Λs are flying at SIS energies (we call this distance ∆s):(

ct
∆s

)
=
(
γ γβ
γβ β

)(
ct′

∆s′

)
CMS=

(
γ γβ
γβ β

)(
cτ
0

)
(3.5)

The relation ∆s = γβcτ = p
mcτ follows from Equation (3.5). With a mean Λ momentum at

our energies of about 700 MeV/c we obtain a distance ∆s ≈ 4.8 cm that a Λ flies before it
decays. This circumstance allows us to introduce four secondary off-vertex cuts shown in
Figure 3.5. The procedure is the following. With the proton and pion track one calculates
the secondary decay vertex (which is usually the point of closest approach), evaluates a
hypothetical Λ track and calculates the primary vertex with all other particles in the event.
Together with the decay vertex information one extracts the distance between the primary
vertex and secondary vertex ∆s, which is then used as a cut parameter.
The distance between the decay product tracks can also be used to suppress background
contamination. If the mother particle was a Λ both tracks should not be far apart denoted
by MinTrackDist (standing for minimum track distance).
The last two off-vertex cuts are the distances of closest approach (V erDist(p), V erDist(π−))
between the proton and pion track to the primary vertex. Tracks stemming from a Λ
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Figure 3.5: Illustration of secondary vertex cuts.

decay usually have a minimum distance to the primary vertex, displayed in Figure 3.5.
This circumstance allows us to distinguish better between e.g. protons from Λs and other
protons.
We have now four parameters whereby ∆s should lie in a region indicated by the estimated
value which we calculated above. One has to find a good combination of all four parame-
ters to suppress the background and enlarge the Λ signal. This is done with maximizing
two variables the signal to background ratio S/B which selects configurations where the
background contamination is low and the ratio of S2/B to enlarge the signal. In doing so,
one chooses proper start values (the very first parameter values are simply guesses and
from the best obtained parameter set one starts the study again), and varies one cut value
whereby the other three are kept fixed obtains S/B and S2/B and takes the next cut value
to start the two ratio calculations of the signal and background again. In the analysis a
good cut combination was found to be the one which is listed in Table 3.3:

Cut parameter Value [mm]

MinTrackDist < 10
VerDist(p) > 4
VerDist(π−) > 10
∆s > 43

Table 3.3: Set of parameters chosen in the analysis to enlarge the Λ signal and suppress
background contamination.

3.3 Performing the Λ(1116) analysis
In the last section we explained all important tools to search for Λ hyperons in the HADES
data sample. In this section we will apply them. We have to find a proper phase space
region for the study, this means we have to find the region of the phase space which is
mainly populated by hyperons. Later we will see that the Λ statistic is large enough to
perform a double differential analysis in two independent variables. Another effect we have
to consider is the finite acceptance of the HADES detector. Mainly because of its geometry,



3.4 Primary vertex of Λ hyperons 21

the detector covers only a certain part of the full particle phase space and measures the
particles with a finite efficiency mainly due to geometrical cuts we perform in the analysis.
The data can be corrected for such effects with help of simulations. This will also be
presented in the next sections.

3.4 Primary vertex of Λ hyperons
As shown in section 3.2.2 the production vertex should lie inside the target cylinder to
reduce background sources. We discussed this issue for all experimental events, but now we
want to concentrate especially on the vertex position of the Λ. To study this, we divide the
cylinder in position bins and obtain the invariant mass spectra in these bins. Subsequently,
we fit the spectra, subtract the background and obtain the signal. The dimensions of the
target cylinder −3 < x < 7 mm −5 < y < 5 mm and −60 < z < 0 mm was divided in 40
position bins, respectively. The results are shown in Figure 3.6, where the Λ distribution as
a function of the three primary vertex positions is plotted. The black points illustrate the
experimental data points and red are simulation predictions.
For efficiency correction, which we will explain later, we have to select a simulation model.
The model output should be close to the experimental observables to deliver a reasonable
efficiency correction. For this reason we compare the experimental data with the chosen
UrQMD simulation [Bas98].

Figure 3.6: Primary vertex positions for experimental Λs (black) in comparison with the
UrQMD transport model (red).

Figure 3.6 shows that the x and y components are well described by simulations. Most Λs
are produced in the center of the target as we would expect. In the z component we have
some discrepancies noticeable in an unsteady behaviour of the experimental curve. In the
simulation framework we also included the 12 niobium discs geometry perfectly aligned,
which results in a smooth simulation curve. Because of the unsteady experimental curve
the conjecture appeared that some target discs were fallen out from their target position
and were not hit by the beam. This hypothesis was excluded after the target was X-Rayed
as shown in Figure 3.7 [Web11]. All 12 discs were inside of the carbon tube, however, they
showed some misalignment and individual discs were slightly tilted and shifted from their
designated position which explains the irregular behaviour in the z-vertex distribution.
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Figure 3.7: X-Ray capture of the target taken from [Web11]. The 12 niobium discs are
depicted in blue color. The dashed lines show the deviation from a linear alignment. Some
discs were slightly tilted.

3.5 Secondary off-vertex position for Λ hyperons
The same strategy of section 3.4 was applied to the four secondary vertices, which are
presented in Figure 3.8 together with the cuts we use to enlarge the Λ signal. The
experimental Λ distribution as a function of the secondary vertices is again plotted in black
and UrQMD predictions in red. The UrQMD model is able to describe the shape of the
vertex distributions. It is therefore reasonable to use this model for efficiency corrections.

Figure 3.8: Secondary vertices compared to the UrQMD transport model. The simulation
spectra describes the experimental data points.

3.6 Λ analysis
The application of all discussed vertex cuts results in an global invariant pπ− mass spectrum
illustrated in Figure 3.9. The red curve is a fit of the signal together with the background
distribution and the blue curve is the raw experimental Λ yield after background subtraction.
A signal peak in correspondence with the nominal Λ mass is visible. This distribution
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was fitted with a sum of two Gaussians, a Landau function and a polynomial of fourth
order. The Landau and the polynomial function were used to describe the background
of the distribution besides and under the peak region. Because the Λ produces a narrow
peak we are allowed to extrapolate into the peak region with the fit function to model the
background beneath the peak and can trust the function that it reproduces the shape of
the background in this region.
The sum of two Gaussians is used to reconstruct the peak originated from the Λ decay. Two
Gaussian are needed to describe the full peak structure. On the one hand we use one Gauss
to describe the finite width of the Λ peak and the broadening caused by finite resolution
effects. On the other hand the second Gauss is needed to describe an additional broadening
caused by multiple scattering of the Λ in the detector. To have only one peak width we
average the two widths of the Gaussians according to formula (3.6) to the area ∼ Aiσi
enclosed by each Gaussian, where Ai and σi are the amplitude and width of Gauss i:

σ̄ = A1σ
2
1 +A2σ

2
2

A1σ1 +A2σ2
. (3.6)

Figure 3.9: Invariant mass spectrum of pπ− pairs measured with HADES after applying
all secondary vertex cuts. The curve was fitted with a sum of a polynomial and a Landau
function for the background distribution plus two Gaussians for the peak region. The blue
curve illustrates the raw Λ yield after background subtraction.

We end up with a sample of about 1M Λs, with a signal to background ratio of S/B = 0.85.
The large statistic allows us to perform a double differential analysis in two independent
variables, which offers us the possibility to study the particles in particular kinematic con-
figurations and is also important for efficiency corrections explained later. Because we have
to deal with relativistic energies the variables should be Lorentz invariant or have simple
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transformation properties. This makes it also much easier to discuss the data in different
moving systems. Two variables providing such features are the transverse momentum pt
and the rapidity y of the particles. If we align the z-axis with the beam direction (as in
HADES), then the variables are defined as follows (in natural units "c = 1"):

Rapidity of a particle:

y = 1
2 ln

(
E + pL
E − pL

)
= 1

2 ln
(

1 + β cos(Θ)
1− β cos(Θ)

)
, (3.7)

where pL denotes the momentum of the particle along the beam axis, which is in our case
pz, and E is its energy. One can think of rapidity as an abstract measurement of the
longitudinal velocity β cos(Θ) of the particle.
A brief remark on terminology: y = 0 is called mid-rapidity, and according to the previous
Equation (3.7), at mid-rapidity the particles are emitted at Θ = 90◦ (or have no longitudinal
velocity).

The transverse momentum is defined perpendicular to the beam axis, which excludes
the dominating beam component pz:

pt =
√
p2
x + p2

y. (3.8)

One can think of pt as a variable carrying the information from the interaction process.
In the limit where a particle interacts only very weakly or even misses its target it flies
only further in forward direction which means zero pt. Whereas in a hard reaction process
a bunch of additional particles are produced flying in different space directions and the
magnitude of the reaction process is reflected in the magnitude of pt.

The Lorentz transformations under (longitudinal) boosts read:

pt → p′t = pt, (3.9)

y → y′ = y + y0, (3.10)

where y0 is only a constant offset resulting from transforming from one frame to another.

We found proper variables for displaying the phase space. We now have to find ap-
propriate ranges for them. This we can do by filling the phase space with the application of
the optimized secondary vertex cuts and a cut on the invariant mass of the Λ in a 2σ̄ region.
This sample contains only Λ candidates because it is still not completely background free,
but it is a good starting point to find the required ranges. We have chosen for the phase
space representation the nucleon-nucleon (NN) center of mass frame (CM). This choice only
influences the Λ rapidity variable according to equation (3.10) by a constant shift, which is
in the NN case y0 = 1.118 (ylab = yCM + y0).
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Figure 3.10: Phase space of Λ candidates. It was filled with applying secondary off-vertex
cuts and a cut on the invariant mass of the Λ in a 2σ̄ range. The red dashed square represents
the chosen analysis region.

Figure 3.10 shows the measured two-dimensional (pt,yCM ) phase space for Λ candi-
dates. Additionally, the center of mass variables for constant pCM (500,1000) MeV/c
and ΘCM (15◦,45◦,85◦) are plotted in black dashed lines. The phase space is mainly popu-
lated between yCM ≈ −1.1→ 0.2 and pt ≈ 0→ 1000 MeV/c. The population dies at low
transverse momentum. This is an artefact of the limited acceptance of HADES, where the
polar coverage starts at about Θ ∼ 15◦ and Λs produced in very forward direction, more
specifically, the decay products in forward direction (which is mainly the proton because of
its mass) are not registered by the detector. For transport model studies it is important to
collect as much statistic as possible at small pt, because there the models are more sensitive
to in-medium modifications of particles (slower particles stay longer in the medium).
We have chosen the following binning of the experimental data: −1 < yCM < 0.2 in 6 Bins
(∆yCM = 0.2) and 0 < pt < 975 MeV/c in 13 Bins (∆pt = 75 MeV/c). Another advantage
of this binning is that there exists already data of analyzed K0

S mesons in p+p as well as
p+Nb reactions, performed also in the HADES collaboration, which use the same widths of
the bins and thus offers us the possibility to compare them with the Λ results quite easily.
With finding suitable phase space limits for the analysis, we can now extract the pure Λ
signal via subtraction of the background which was still inside in Figure 3.10. For this
purpose, we fill the invariant mass spectra with kinematic constraints given by the phase
space binning. An example is shown in Figure 3.11 where the invariant pπ− mass is plotted
in the phase space region −0.2 < yCM < 0, 375 < pt < 450 MeV/c. We repeat this for
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all phase space bins which results in Figure 3.12 displaying the full phase space of raw
background subtracted experimental hyperons in the HADES acceptance. This sample we
have to treat further.

Figure 3.11: Invariant mass spectrum within a specific phase space region.

Figure 3.12: Phase space population of background free Λ hyperons in the HADES acceptance.

3.7 Efficiency correction
At this point of the analysis we have a Λ data sample of raw experimental data, which
is free of combinatorial background. In a final step we want to compare the results with
theoretical transport predictions. For this purpose, we correct the raw data for acceptance
and efficiency effects of the detector to obtain an undistorted physical signal. Usually a
finite acceptance in position space is reflected in a finite coverage in momentum space (pt,
yCM ), where only a fraction of the possible available phase space is measured. Events where
the decay particles do not fly into the detector system are lost. The decay particles which
were measured, are influenced by intrinsic detector properties like tracking efficiencies and
resolution effects.
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3.7.1 Strategy
Calculations of efficiency effects can be done with simulations. We have chosen the UrQMD
transport model, as already mentioned. The simulation output has to be analyzed in the
same way as experimental data (so called full-scale analysis). The analyzed data are then
used to extract a correction matrix, which is applied to experimental data. The steps are
in detail:

• Simulation input
At the beginning one has to choose a model to simulate the phase space distribution.
In p+A reactions one usually uses transport codes which offer the possibility to define
different targets and projectiles and simulate the p+Nb reaction at 3.5 GeV in a
realistic way. About every 1000 event is an event containing a Λ produced together
with a bunch of other particles. We select only events with Λs and obtain a realistic
phase space population in 4π without any detector effects.

• HGEANT
HGEANT [HGe08] is a tool based on the Fortran package Geant [Gea95]. It contains
the full HADES setup and simulates particle interactions with the detector material
like secondary collisions and scatterings but also energy loss and bending in the
magnetic field. As an input it uses tracks from another simulation in our case the
particles produced by UrQMD.

• SimDST
The output from HGEANT is in a specific form and has to be converted into a
digitized format which is done in SimDST simulations. This simulated signal has
exactly the same format like experimental DST files. Additionally, SimDST also takes
into account detector response efficiencies like noise, finite resolution effects etc. by
e.g. calculating particle momenta from the MDC hit position information with the
Runge Kutta algorithm. On SimDST level it is also possible to switch on the LVL1
trigger which was used in the p+Nb run to incorporate the multiplicity threshold of
three. In the end the SimDST files can be treated like real experimental data and
additionally the HGEANT information is stored.

• Analysis
In the last step of the full scale analysis, we analyze the simulated DSTs like experi-
mental data. We identify the proton and negative pions with graphical cuts in the
energy loss vs. momentum distribution, apply cuts on the primary and the secondary
vertices with the same values taken as in the experimental case and finally construct
the invariant mass to obtain the hyperon signal.

A sketch of the full scale analysis procedure is depicted in Figure 3.13.
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Figure 3.13: Steps of the full scale analysis. With the reconstructed Λs from simulations one
is able to determine a correction matrix for acceptance and efficiency effects.

To perform an efficiency correction one needs a large statistic Λ sample. We simulated with
UrQMD ∼ 1.78 · 109 events which results in ∼ 27 · 106 Λs. After the full scale analysis only
about 3.67 · 105 Λs were left which is ∼ 1.4% of the input.
Figure 3.14 displays an example of finite resolution effects of the detector. In UrQMD the Λ
mass is fixed to a sharp value of mΛ = 1115.68 MeV/c2 (left plot). After full scale analysis
the mass is visibly smeared with a finite width of σ = 3.3 MeV/c2 (right plot).

Figure 3.14: Effect of the full scale analysis. Left: Λs used as an input of the analysis chain,
simulated with UrQMD.
Right: Λs after full scale analysis. The mass is clearly smeared due to finite resolution effects.

3.7.2 Determination of a correction matrix
In section 3.7.1 we explained the steps of the full scale analysis. After processing the
simulated spectra through all steps it is convoluted with the efficiency of the HADES
detector. But we also have the undistorted simulation input and this allows us to correct
for the efficiency effect. The efficiency depends on the kinematics of the particles. For this
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reason it is useful to do the correction as a function of two independent kinematic variables.
We already have chosen the representation (pt, yCM ) which we use now for the correction
with the same binning as in the experimental case.

Let us define the Λ input from simulations for every phase space bin as

N in(pt,yCM )ij . (3.11)

The number of reconstructed particles after full scale analysis we define as

Nout(pt,yCM )ij , (3.12)

where i,j number the phase space elements.

With the two definitions we can determine a matrix to correct experimental data for
efficiency and acceptance. It is defined as

ε(pt,yCM )ij ≡
(
Nout(pt,yCM )
N in(pt,yCM )

)
ij

. (3.13)

Figure 3.15 illustrates the behaviour of the simulated phase space after full scale analysis.
In the left plot the simulated UrQMD input is shown. Most of the Λs in the reaction are
produced at small rapidities in forward direction (small pt). After full scale analysis the
peak is shifted to larger rapidities and transverse momenta due to detector effects. At very
low transverse momentum we are not even able to reconstruct Λs anymore explainable
with the finite polar coverage of the HADES detector. Most Λs produced in very forward
direction fly into the hole of HADES where we have no possibility to reconstruct them.
Figure 3.16 shows the correction matrix according to Equation (3.13). From this plot
one can see immediately that it is important to perform the efficiency correction in two
dimensions. The efficiency depends clearly on the Λ kinematics thus on the region where it
flies into the detector. Λs with lower transverse momenta obtain a larger correction than
Λs with larger pt.

Figure 3.15: Left: UrQMD phase space used as input for full scale analysis
Right: UrQMD phase space after full scale analysis. The phase space is clearly modified due to
the finite acceptance and efficiency.



30 3 Inclusive Λ(1116) analysis

Figure 3.16: Efficiency matrix for Λ hyperons. Λs with lower transverse momenta obtain a
larger correction in comparison to high pt hyperons.

3.8 Λ hyperons corrected for acceptance and efficiency
In section 3.7.2 we obtained the necessary matrix to perform the efficiency correction. Let
us define the raw experimental Λ signal as:

N raw(pt,yCM )ij . (3.14)

With help of Equation (3.13) we can calculate the undistorted experimental signal:

N corr(pt,yCM )ij =
(
N raw(pt,yCM )
ε(pt,yCM )

)
ij

. (3.15)

The efficiency corrected phase space is illustrated in Figure 3.17. We are now allowed
to compare the experimental results with theoretical calculations or transport model
predictions. In principle, if one performs the correction in two dimensions with independent
variables the correction matrix should be model independent. If we for example scale one
specific phase space region by some factor also the output is scaled and the ratio stays the
same which is the efficiency. This leads to the so called self-consistency check. We present
this check in full detail in section 3.9.2.
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Figure 3.17: Experimental hyperons corrected for acceptance and efficiency of the HADES
detector.

For the data representation we have to choose a proper normalization scheme. Especially
in point of view for comparing the data with transport models it is important to have an
appropriate representation to judge, if the model is able to describe the experimental data.
For this reason, we have chosen an absolute normalization scheme to the total cross section
of the p+Nb reaction which is σpNb = 848± 126 mb [Aga13] [Tlu10]. It was determined
with a comparison of π− multiplicities measured with HADES to a systematic study of
pion production in p+A reactions by the HARP-CDP collaboration.
For cross section normalization we further need the total number of events Ntot. To
determine this number we extracted from Figure 3.2 the fraction of all minimum biased
events which passes the LVL1 trigger by integrating the area beneath the M3 and M0
event curve over all impact parameters b and calculate the ratio. We obtain:

C(M3→M0) ≡ NLV L1(M3)
NLV L1(M0) = 0.58 . (3.16)

We also have to take into account the number of "empty events" in the experimental data
where no reaction took place, which are ∼ 17% of all measured events. The total number
of events used to normalize the spectra are finally:

Ntot = 0.83 · NLV L1(M0)
C(M3→M0) = 0.83 · 3.1533 · 109

0.58 = 4.512 · 109 . (3.17)

The experimental corrected data absolutely normalized to cross sections is shown in Figure
3.18 together with a fit of a Boltzmann-like function (see further text).
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Figure 3.18: Detailed representation of the experimental data with absolute normalization
to the total cross section of the p+Nb reaction. The solid black lines are fits based on a
Boltzmann-like function.

Another important quantity is the rapidity-density distribution. It is obtained by integrating
the two-dimensional phase space over pt. The problem is, we do not have data points at
low transverse momenta and also at very high momenta. To overcome this problem we
extrapolate into this regions with a Boltzmann-like function by fitting it to the experimental
data points. Whenever we have data points we sum them up and in regions where we have
no yield we integrate the fit function.
A brief remark on the fit function. Lets imagine we would have a (classical) thermal source
emitting particles isotropically. In the rest frame of the source the particles’ momenta are
distributed according to (kB = 1) [Leo97]:

dN
d3p

= V

(2π)3 exp
(
− p0

T

)
, (3.18)

where p0 =
√
m2 + ~p2 is the energy of the emitted particle, V the spatial volume of

the thermal system (at freeze-out) and T the freeze-out temperature. To discuss the
experimental results, we have to transform to the chosen variables pt and y, with a new
4-vector:

pµ =


mt cosh(y)
pt sin(φ)
pt cos(φ)
mt sinh(y)

 , (3.19)

where we have introduced the transverse mass mt =
√
p2
t +m2. After calculating the

Jacobian determinant for the new variables we obtain for the particle distribution:

dN
dydp2

tdφ
= V

2(2π)3mt cosh(y) exp
(
− mt cosh(y)

T

)
. (3.20)
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We have an azimuthal symmetric system which allows us to integrate over φ. After
introducing an inverse slope parameter TB(y) = T/ cosh(y) and rewriting Equation (3.20)
to the representation of pt, we obtain the desired fit function:

dN
dydpt

= A(y)pt
√
p2
t +m2 exp

(
−

√
p2
t +m2

t

TB(y)

)
, (3.21)

where we have introduced a rapidity dependent fit parameter A(y) in addition to the inverse
slope parameter TB(y) which are both free parameters and fixed by fitting them to the
experimental points. The fit function (3.21) is evaluated separately in every rapidity bin
shown in Figure 3.18.
The concept of a thermal source is a helpful tool which leads to a smooth function following
the trend of the data and it is only used for the purpose to extrapolate in regions where we
have no data points.
We also see immediately from the fit function the advantage of choosing proper coordinates
for the phase space representation. Imagine we would have chosen (p,Θ) as coordinates.
Formula (3.18) would be still valid, but to calculate the fit function we would have to boost
into a moving system with an unknown velocity ~βS of the source which one has to determine
first with some uncertainty before fitting the other two parameters.
After performing the integrations over pt (

∫
dpt dN/dptdyCM ) in the two-dimensional phase

space we obtain the one-dimensional rapidity-density distribution shown in Figure 3.19,
which we also normalized to the total cross section.

Figure 3.19: Rapidity-density distribution normalized to the cross section of the p+Nb
reaction.
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The rapidity-density distribution increases going from large rapidities to target rapidities
(yCM = −1.18). In a symmetric collision system (like p+p or A+A) the rapidity distribu-
tion would be symmetric around its maximum located at the center of mass rapidity zero
(yCM = 0) in the nucleon-nucleon system [Aga11b] [Bar01]. The asymmetric behaviour
in our case is based on the fact that we have a highly asymmetric collision system p+Nb.
Most produced Λs are rescattered and stopped by the target nucleus which explains the
larger yield in direction of target rapidity and the asymmetric shape of the distribution.
We checked with simulations (GiBUU) that if we switch off any YN-interaction we get
a nearly symmetric distribution because also the system becomes then nearly symmetric
(p+p or p+n). In the region of target rapidity we do not have data points anymore, which
is directly related to the upper polar acceptance of Θ = 85◦. This region we can only study
with help of simulations, which we will do in the next chapter.

In a last step we determine a distribution of the inverse slope parameter TB(yCM ) obtained
from fitting the data as displayed in Figure 3.21 with the Boltzmann-like function. Accord-
ing to the thermal model the transformation of Equation (3.18) to Equation (3.21) leads to
a relation of the freeze-out temperature Teff to the inverse slope parameter:

TB(yCM ) = Teff
cosh(yCM − Y0) , (3.22)

where Y0 was introduced as an additional fit parameter. This curve is symmetric around
Y0. For a better illustration we plotted an example of Equation (3.22) in Figure 3.20
(Teff = 80 MeV, Y0 = 3).

Figure 3.20: Inverse slope parameter TB(y) as a function of rapidity according to Equation
(3.22).

By fitting the inverse slope spectra, we obtain the red dashed line in Figure 3.21. Y0 is
fixed to the rapidity where we have the maximum inverse slope value of the p+Nb system
TB(Y0 = −0.1) = 89.03 MeV. In this plot the effective temperature Teff was treated as a
free fit parameter, which was set to the value Teff = 84.14 MeV by the fit procedure. The
function follows the trend of the data points, but we cannot claim that it is reproducing the
data. Unfortunately, at higher rapidities we do not have data points which would reveal
information on the symmetry of the experimental curve around Y0 = −0.1 to confirm the
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validity of Equation (3.22). The last bin in the region 0 < yCM < 0.2 seems to contradict a
mirror symmetry around Y0 = −0.1.
If we set the effective temperature in the fit function of Equation (3.22) to the maximal
inverse slope value Teff = TB(Y0 = −0.1) = 89.03 MeV (assuming we reach the maximal
freeze-out temperature in this rapidity region, which is a reasonable assumption because
at larger rapidities the inverse slope parameter decreases) we see that the data points lie
below the curve and do not fulfill the assumption of a thermal model.
In simulations we checked (see next chapter) that the first chance production of Λs influences
mainly the region of large rapidities (yCM > −0.4). The number of YN collisions in this
range are smaller which means that the produced hyperons are nearly undistorted after
production. At least in this range the assumption of a isotropic thermal source becomes
doubtful because of a lack of any thermalisation processes. In general one has to check
carefully the applicability of statistical thermodynamics in A+A and in particular in p+A
reactions. We only deal with a small amount of matter in tiny volumes, on time scales of
the order of 10−23 s over space dimensions of a few fermi.

Figure 3.21: Plot of inverse slope parameters extracted from the Boltzmann fit function
(dots). The red dashed line illustrates the fit function of the thermal model with the freeze-out
temperature treated as a free fit parameter.
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Figure 3.22: The parameters of the thermal fit function were set to the maximal reachable
freeze-out temperature Teff = 89.03 MeV. The experimental data points lie below the dashed
curve of the thermal model.

3.9 Efficiency correction - Consistency checks
The efficiency correction is an important step in the analysis because afterwards we compare
the experimental data to theoretical models. To check the reliability of the efficiency
correction we performed two different checks. In the first check we used only one model
(UrQMD) and this test deals with the chosen phase space parametrization and bin sizes of
the correction matrix. In a second check we perform corrections using the information from
an additional model (GiBUU). This test address the problem of the model independence
in the efficiency correction process. If the analysis passes both checks we can trust the
correction and can be sure that the corrected data are based on solid ground.

3.9.1 Check within one model
The principle of doing a consistency check within one model (UrQMD) is the following. We
are free to choose two different independent variables to perform the correction. Instead
of (pt,yCM ) we could have also chosen (p,Θ) and determine the efficiency matrix in this
representation. Eventually, we use this matrix to correct the experimental data which is
given the (pt,yCM )-space. This tags mainly the problem of binning effects as we will see in
a moment.
At first we have to select again a proper range for the variables in the (p,Θ)-space. Figure
3.23 shows the population of Λ candidates together with the selected analysis region (red
dashed lines).
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Figure 3.23: Phase space population of Λ candidates in the (p,Θ) representation. The red
dashed line illustrates the chosen analysis range.

We have chosen for the analysis in (p,Θ)-space the following binning:

0 < p < 1800 MeV/c in 12 Bins
15◦ < Θ < 75◦ in 6 Bins

The steps are the same as in section 3.7.2. We fit the experimental data and subtract the
background to determine the raw experimental phase space for Λs. We calculate the effi-
ciency matrix in the (p,Θ)-space by performing a full-scale analysis with the simulation data
and divide the outcome by the simulation input. The efficiency matrix for (p,Θ)-coordinates
has the shape as illustrated in Figure 3.24.
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Figure 3.24: Efficiency matrix in the (p,Θ)-space obtained with the UrQMD model.

We want to use this matrix to correct the data in the (pt,yCM )-space. This procedure is not
straightforward, because both representations are connected with non-linear transformations
as illustrated in Figure 3.25 where we plotted the two-dimensional phase space (pt,y). The
black dashed lines are lines of constant linear momentum p and polar angle Θ. One can
immediately see that the Cartesian matrix elements of Figure 3.24 become curved in the
(pt,y)-space (for better illustration we plotted black dots in every matrix element which
should represent a constant efficiency in the (p,Θ)-space). Loosely spoken we cannot simply
reshuffle all matrix elements of Figure 3.24 to obtain the correction matrix in the (pt,yCM )
representation.

Figure 3.25: Transformation (p,Θ)→ (pt,y). The dashed lines illustrate the lines of constant
momenta p and angle Θ.



3.9 Efficiency correction - Consistency checks 39

To solve the problem, we define the mean value of every matrix element of the correction
matrix in Figure 3.24 as a grid point. Subsequently, all points define a grid which is used
for an interpolation technique. After interpolation we are able to calculate the efficiency
at any point in the selected (p,Θ) range. Interpolation is possible because the efficiency
varies only slowly as a function of the particles momentum p and angle Θ. We end up with
a smooth efficiency surface, displayed in Figure 3.26.

Figure 3.26: Smooth efficiency matrix surface in (p,Θ)-space determined with an interpolation
technique.

Now we are able to calculate the efficiency at every coordinate (p,Θ). Both phase space
representations are connected with the Equations:

p =

√
p2
t +m2 tanh2(y)
1− tanh2(y)

, (3.23)

Θ = arcsin
(pt
p

)
. (3.24)

We plug in the (pt,yCM ) values in the Equations (3.23) and (3.24) to calculate the corre-
sponding (p,Θ) coordinates. Knowing them, we determine the efficiency ε(p,Θ) for these
points from the two dimensional interpolation function of Figure 3.26.
Let us compare the two different methods of efficiency corrections, which are shown in
Figure 3.27. Red data points represent the direct way via the efficiency matrix evaluated in
section 3.7.2, whereas black points were corrected in the indirect way as just presented.
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Figure 3.27: Comparison of both efficiency correction methods. Red dots were obtained by
using the direct method, whereas black dots represent the method over a different phase space
representation.

In some regions we had no interpolation value and an extrapolation method was used.
This clearly fails which explains that some data points at low transverse momentum are
completely off. In the last rapidity bin interpolation was not possible, which is the reason
why there are no (indirect) points plotted. In all other bins the method worked quite well.
We learn from this consistency check two things:

• The analysis of the data does not depend on the chosen phase space parametrization
as long as we use two independent variables. In this particular case (pt,yCM ) and
(p,Θ) give equivalent results.

• When we subdivide the phase space into bins with constant size we correct them with
the efficiency value for these bins. In the indirect correction procedure the bin size
varied and the difference to the fixed bin size is not large. As long as we choose the
dimension of the correction matrix large enough, which means a sufficient number of
correction matrix elements, the correction works well.

3.9.2 Check using an additional model
Comparing efficiency corrections within one model showed that the data does not depend
on the chosen phase space parametrization and also not on the binning, if the dimension of
the correction matrix is large enough. To check especially the model independence of the
efficiency correction process, one has to use the information from an additional model.
Imagine we have two completely different simulation models 1 and 2. With both models we
perform a full scale analysis to have their data in the HADES acceptance folded with the
detector efficiency. The strategy is now to calculate with one of the two models, lets say
model 2, a correction matrix. This matrix is used to correct data in the HADES acceptance
of model 1. The corrected yield of model 1 can now be compared to the original input
of model 1 and both curves should match each other, if the correction process is model
independent. The whole process is often called self-consistency check. Figure 3.28 illustrates
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the strategy of the self-consistency check in a flow diagram, where we assumed that the
correction matrix is calculated with model 2 (also the other way round is possible).

Figure 3.28: The strategy of the self consistency check in a flow diagram. With both models
a full scale analysis is performed. Model 2 is used to calculate a correction matrix with the
aim to correct the output of model 1 data in the HADES acceptance. The corrected output of
model 1 is finally compared to the original input of model 1.

For the self-consistency check we use the data from UrQMD as model 1. As a second
model we have chosen GiBUU, with which we simulated an input sample containing about
6M Λs (could be raised in future and is only limited due to computation time) and calculated
a correction matrix. In a first step we compare the correction matrices of both models for
the two dimensional phase space (pt,yCM ) in Figure 3.29.

Figure 3.29: Correction matrices from UrQMD (left) and GiBUU (right). The shape looks
quite similar. Because of the lower simulated statistic of GiBUU we have no correction factor
in some bins of very low transverse momenta.

The shape of the two matrices look quite similar. Both models predict the same kinematic
dependency of the efficiency, for example a larger correction for lower transverse momenta.
To examine the model independence and validate the efficiency correction, we have to
compare the corrected UrQMD data with its input, which is shown in Figure 3.30 for the
whole two-dimensional phase space.
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Figure 3.30: Comparison of the original UrQMD input (blue) with corrected UrQMD data
(black) using the correction matrix calculated with GiBUU.

We see that the yield and trend of the black points, which are UrQMD data corrected
with GiBUU and the blue points from the original UrQMD input is nearly the same. This
was already indicated by the similar shape of the correction matrices in Figure 3.29. At
lower transverse momenta some bins exhibit larger deviations, which is based on the fact
that we have a lower statistic in the simulation input of the GiBUU model. Nevertheless,
the curves show a nice agreement, which is a clear signal that the performed efficiency
correction process is model independent for the inclusive Λ analysis, as long as we use two
independent kinematic variables for the phase space representation.



4 Comparison with transport models

Experimentally accessible spectra of final-state particles contain information integrated over
the whole time of the collision process. To learn something about the reaction dynamics
transport models are commonly used. They are based on microscopic models having the
fundamental degrees of freedom for the actual energy scale and their interactions inside
and solve the corresponding equations of motion numerically.
Their main application is in the field of heavy ion physics. For instance, the prediction of
QCD of a phase transition to a quark gluon plasma indicated by J/Ψ modification can be
studied within transport models. But there is no restriction to study also other hadronic
reactions.
They offer a full time dependency and are based on experimental ingredients like cross
sections or decay widths. Their goal is to simulate the reactions with a realistic input to
learn something about particle production, scattering or absorption to finally reproduce the
experimental spectra. A big advantage of transport models is that they are valid at every
time step of a physical reaction from the initial defined state (e.g. the start of an A+A
collision) to the final particle outcome because they are not based on a particular physical
assumption. Statistical models, or models based on thermodynamical principles in general,
have to assume some specific configuration (equilibrium state) and this is achieved only at
a certain time during the process or even never, what is illustrated in Figure 4.1.

Figure 4.1: The advantage of transport in comparison to thermal models. One is able to
simulate the whole reaction process because the model does not depend on a specific physical
configuration. For example thermal models have to assume an equilibrium state, which is
reached at a later time in the whole reaction process (or even never).

43
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We use for the study of the p+Nb reaction two different transport models, UrQMD
(v3.3p1) [Bas98] [Ble99] and GiBUU(v1.5.0) [Bus12]. Both models and their underlying
structure are presented to get a feeling how they work, what they have in common and
where they differ. But in general they solve with the Monte Carlo technique a large set
of coupled partial integro-differential equations for the one particle phase space densities
fi(x,p), where i denotes the particle species. In the non-relativistic limit they assume the
Boltzmann form [Ble99]:

dfi
dt ≡

∂p

∂t

∂fi(x,p)
∂p

+ ∂x

∂t

∂fi(x,p)
∂x

+ ∂fi(x,t)
∂t

= Stfi(x,p), (4.1)

where x and p are the position and momentum of the particle and Stfi(x,p) is the collision
term.

4.1 Ultrarelativistic Quantum Molecular Dynamics - UrQMD
UrQMD is based on the Quantum Molecular Dynamics (QMD) approach [Bas98]:

4.1.1 Equations of motion
In general, in a QMD model each nucleon is represented by a coherent state which is
parametrized using Gaussian wave packets:

φi(x; qi,pi; t) =
(

2
Lπ

)3/4

exp
(
− 2
L

(x− qi(t))2 + ipi(t)x
)
, (4.2)

and the total n-body wavefunction is assumed to be a direct product of coherent states (no
anti-symmetrization for fermions):

Φ =
∏
i

φi(x; qi,pi; t). (4.3)

The dynamics is governed by the equations of motion for each nucleon i. The starting point
is the action S, which is defined as the integral over the Lagrangian functional depending
on the wave function Φ:

S =
t2∫
t1

dtL[Φ,Φ∗]. (4.4)

If one assumes a Hamiltonian of the form "kinetic plus potential energy" (H = ∑
i Ti +∑

i,j Vij) and requires that the action S, defined in Equation (4.4), stays stationary under
the variation of the coherent states, one obtains the equations of motion for each particle:

q̇i = ∂ 〈H〉
∂ṗi

, (4.5)

ṗi = −∂ 〈H〉
∂q̇i

. (4.6)



4.1 Ultrarelativistic Quantum Molecular Dynamics - UrQMD 45

These equations have the same structure as derived from Hamilton’s principle in classical
mechanics and are solved numerically for various kinds of interactions.

4.1.2 Collisions
The particle trajectories are determined by their equations of motion including also interac-
tions Vij . One can explicitly include collisions between particles with the condition that
two particles collide, if their minimum distance d in the CM frame fulfills:

d ≤ d0 =
√
σtot
π
, (4.7)

where σtot is the total cross section for the collision. The cross sections are a priori not
known and if available fitted to experimental data. For resonance excitation an effective
parametrization based on phase space considerations is exploited. Also time reversibility or
isospin symmetry is employed. Total elastic and inelastic cross sections for proton-proton
and proton-neutron collisions are well known and incorporated in the model. Because the
functional shape for these cross sections show a non-trivial behavior at small

√
s, UrQMD

uses a look-up table.
The mostly unknown cross sections like hyperon-baryon resonance scattering are parametrized
with help of the additive quark model, where the cross section depends only on the quark-
content of the colliding hadrons:

σtot = 40 ·
(

2
3

)nM
· (1− 0.4xs1) · (1− 0.4xs2), (4.8)

σel = 0.039 · σ2/3
tot , (4.9)

where nM = m1 +m2 and mi = 1(0) for particle i being a meson (a baryon) [Ble99]. The
xi = si/(3−mi) (si is the number of strange quarks in hadron i) contain the fraction of
strange quarks to non-strange quarks in the hadron i. It contains no explicit energy- or
momentum dependence, which is valid at high energies, but maybe breaks down for cross
sections close to threshold.

4.1.3 Ur + QMD
Up to now this was a description of the QMD model. The new feature of UrQMD is that it
uses a covariant formalism i.e. the model is also valid at larger relativistic energies.
Its main improvements to the standard QMD model are [Bas98]:

• covariant dynamics

• an improved and extended collision term containing heavy baryon-resonances, strange
particles and string excitation for high energy hadron-hadron interactions

String fragmentation becomes important at high energies, where we have a large momentum
transfer Q2. The running coupling of QCD becomes small and the excitation of color strings
and their fragmentation to hadrons plays a role, whereas at lower energies the relevant
degrees of freedom are hadrons and their resonances. In total, UrQMD contains 55 different
baryon species like delta-resonances, hyperon-resonances etc. with masses up to 2.25 GeV/c2

and 32 different meson species. For fulfilling baryon symmetry also their antiparticles are
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included. All these particles can be produced and propagated explicitly in the model.
Below

√
s = 5 GeV for baryon-baryon collisions and

√
s = 3 GeV for meson-baryon and

meson-meson collisions the hadronic reactions are modeled with interactions of hadrons
and their resonances [Ble99].

4.1.4 Initialization of the nucleus
We are interested in the specific case of pA simulations. UrQMD defines the nucleus
according to the Fermi-gas ansatz.
Each nucleon is described by a Gaussian wave function defined in Equation (4.2) and the
initialization must meet the requirement:

• ∑
i vi = 0, the nucleus is at rest,

• ∑
i qi = 0, the nucleus is centered at 0 in configuration space.

Additionally, the binding energy E/A matches the value predicted by the Weizsäcker mass
formula and the density at the nucleus center is adjusted to nuclear saturation density.
The nucleons at the beginning of the simulation are distributed within a sphere with radius:

R(A) = r0

(
1
2

[
A+ (A1/3 − 1)3

])1/3

, (4.10)

where the parameter r0 depends on the saturation density ρ0 and is defined as:

r0 =
(

3
4πρ0

)1/3

. (4.11)

The nucleon’s momentum is chosen randomly between 0 and the Fermi momentum pmaxF =
(3π2ρ)1/3. A potential problem is that the small number of nucleons distributed in the
sphere introduce fluctuations in the mean density of the nucleus. To avoid this, after
a nucleon placement the phase-space density is checked and if it is too high (e.g. the
phase-space is already occupied by another nucleon) the location of the nucleon is rejected
and a new location is chosen randomly.

4.2 Giessen Boltzmann-Uehling-Uhlenbeck model - GiBUU
The GiBUU model solves a generalized BUU equation numerically. Its main ingredients
are:

4.2.1 Test particles
We have seen that in a QMD model the nucleons are parametrized by Gaussian wave
packets φi. The GiBUU model uses a different approach to solve the BUU equation. The
dynamical quantity studied is the phase space density F (x,p). This phase space density
represents the particles e.g. nucleons and are represented by so called test particles, which
are commonly chosen as δ-functions in momentum- and coordinate space. The test particle
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ansatz reads:

F (x,p) = lim
n(t)→∞

(2π)4

N

n(t)∑
j=1

δ(r− rj)δ(p− pj)δ(p0 − p0
j (t)), (4.12)

where n(t) denotes the number of test particles. As initial condition (t = 0) the number of
test particles is set to n(0) = N ·A, where A is the number of real (physical) particles and
N the number of ensembles (test particles per physical particles, usually set to N ∼ 1000).
To obtain the equations of motion for the test particles one starts from the generalized
BUU equation and neglects the off-shell and collision term [Wei08] (usually called Vlasov
equation):

[p0 −H,F ] = 0, (4.13)

which describes a system with stable particles propagating through a mean-field. The used
Poisson brackets are defined as follows (using Einstein convention of an implicit sum):

[A,B] ≡ ∂A

∂pµ

∂B

∂xµ
− ∂A

∂xµ

∂B

∂pµ
. (4.14)

From Equation (4.13) one can calculate a time derivative for the one particle phase space
density F :

Ḟ = 1
1− ∂H

∂p0

[
∂H

∂x
∂F

∂p −
∂H

∂p
∂F

∂x −
∂H

∂t

∂F

∂p0

]
. (4.15)

Using the test particle ansatz from Equation (4.12) in combination with the Vlasov Equation
(4.13) one obtains another expression for the time derivative of F :

Ḟ = −∂F
∂p ṗi −

∂F

∂r ṙi −
∂F

∂p0 ṗ
0
i . (4.16)

A comparison of Equation (4.15) and (4.16) gives the equations of motion for the test
particles:

drj
dt =

(
1− ∂H

∂p0

)−1∂H

∂p , (4.17)

dpj
dt = −

(
1− ∂H

∂p0

)−1∂H

∂r , (4.18)

dp0
j

dt =
(
1− ∂H

∂p0

)−1∂H

∂t
. (4.19)

The term ∂H/∂p0 appears for "off-shell potentials" and vanishes in most cases [Wei08]. If
it is zero we obtain the ordinary Hamiltonian equations of motion as already seen in the
UrQMD section.

4.2.2 Particle production and collisions
In the GiBUU model particle production in the strangeness sector for elementary collisions
is based on cross sections determined from the Tsushima resonance model [Tsu99]. The
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Tsushima model uses an effective Lagrangian with the mesons π,η,ρ,K, where the first
three are treated as exchange bosons, and baryons + baryon-resonances N , Y , N(1650),
N(1710), N(1720), ∆(1920) for which it was experimentally observed that they decay to
kaons and hyperons. In the model it is assumed that every hyperon-kaon pair stems from a
resonance decay R→ Y +K. The illustration is given in Figure 4.2 showing the Feynman
diagrams used for calculations where B = N,∆. The energy dependence of the calculated

Figure 4.2: Feynman diagrams used in the Tsushima model for cross section calculations
[Tsu99].

cross sections is parametrized in the form:

σ(B1B2 → B3Y K) = a
( s
s0
− 1

)b( s
s0

)c
, (4.20)

where s is the invariant collision energy for the reaction, s0 for the threshold, and a,b,c are
parameters fixed in a way that the calculated cross section is reproduced.
GiBUU incorporates the parametrized cross section from Equation (4.20). The interme-
diate resonances are not explicitly produced in the transport simulations for strangeness
production. Their influence is only indirectly included via the cross section calculations.
For higher energies GiBUU uses the string model PYTHIA [Sjö07] to describe two-body
collisions. The default transition takes place at

√
s = 2.6 GeV for baryon-baryon collisions

and
√
s = 2.2 GeV for meson-baryon collisions (valid for the version 1.5.0).

Elastic and inelastic YN-scattering is included with analytic functions obtained from fits to
experimental data.

4.2.3 Nuclear ground state
The coordinates of neutrons and protons are chosen according to empirical density profiles
of Woods-Saxon or harmonic oscillator type. The initial particle momenta are distributed
to a local Thomas-Fermi approximation,

fn,p(r,p) = Θ
[
pF,n,p(r)− |p|

]
, (4.21)
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where pF ist the Fermi momentum

pF,n,p(r) = (3π2ρ(r))1/3. (4.22)

Proton and neutron matter densities serve as an input. The phase space densities are
normalized to them:

ρn,p(r) = g

∫
fn,p(r,p) d3p

(2π)3 . (4.23)

At this point the single-particle phase-space densities f are fully determined. One defines
the momentum density as:

nn,p(p) = g

∫
fn,p(r,p) d3r

(2π)3 , (4.24)

which is normalized to
∫
d3p np(p) = Z,

∫
d3p nn(p) = A−Z. By using ∼ 103 test particles

smooth distributions in momentum and coordinate space are achieved and one can start
with the propagation according to the Hamiltonian equations of motion for the test particles.

4.2.4 Real and perturbative mode
Because transport simulations are very time consuming, especially due to the collision of
test particles, the model includes two different simulation realizations. The idea behind this
is that for low energetic reactions only a small part of the nucleons takes part in the process,
whereas the rest stays close to the ground-state. One can then numerically assume that
there is a group of active test particles involved in the process whereas the rest only acts
as a background for the propagation of the active test particles. This leads to a definition
of two types of test particles: active one which are called perturbative t and the remnant
nucleus test particles which are called real r .
The restrictions for perturbative test particles are:

• perturbative test particles are not allowed to collide with each other: t+ t9,

• the product of a perturbative and real test particle collision is again a perturbative
test particle: t+ r → t,

• perturbative test particles are neglected in the calculation of the actual density.

These constraints for perturbative test particles allows a clear separation between real and
perturbative test particles. Because of this concept one can split a perturbative particle into
n realizations during a run which enlarges the statistic significantly. However, one should
keep in mind that this is only an approximation to save computation time. To be really
sure that the applicability of perturbative simulations is fulfilled one has to investigate the
difference of the real and perturbative simulation mode in detail for a specific reaction.
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4.3 Short summary

Category UrQMD (3.3p1) [Bas98]
[Ble99]

GiBUU (1.5.0) [Bus12]

Degrees of freedom Smooth Gaussian wave pack-
ages. One packet represents
one particle.

Test particles parametrized as
sharp δ functions. One phys-
ical particle is represented by
∼ 103 test particles.

Production of Strangeness Includes 55 and 32 meson
species which all can be explic-
itly produced and propagated.
Strange particles are either
produced directly or can stem
from decaying resonances.

Based on Tsushima model
[Tsu99]. Only the final state
particles are produced, but not
the intermediate resonances.

Scattering Uses an effective cross sec-
tion parametrization fitted to
experimental data. Addi-
tive quark model for hyperon-
baryon resonance scattering.

YN-scattering is parametrized
with analytic functions fitted
to available experimental scat-
tering data.

4.4 UrQMD predictions
4.4.1 Normalization
In the last chapter we presented the normalization of the experimental data to the total
cross section of the p+Nb reaction, which was σpNb = 848 ± 126 mb [Aga13] [Tlu10].
UrQMD calculates the total cross section according to a simple geometrical model treating
the nucleus as a disc σp+A ∼ πb2, where b is the impact parameter. This parametrization
is much too simple, because it depends on the chosen impact parameter b and does not
incorporate any effects from the nucleus surface. It is also not used in the model internally
to calculate any quantities. To make a connection to the model and average over the
nucleus surface we performed a simulation for the p+Nb reaction with the largest possible
impact parameter, which is b = 8.15 mb. The geometrical cross section for this reaction is
calculated by UrQMD to σgeo = 2087.82 mb, which overestimates the experimental value
already by ∼ 2.5 σexp. We simulated 1M events with UrQMD. In only 52.67% of the events
a collision took place (the rest are empty events where the proton misses the nucleus).
We use this information together with the geometrical calculated cross section to define a
surface averaged cross section, which has a connection to the Niobium nucleus used in the
simulation:

σpNb,UrQMD = σgeo ×
Number of events where a reaction took place

Number of total events . (4.25)

This results in a surface averaged cross section of σpNb,UrQMD = 1099.82 mb. We also
checked other impact parameters, but the influence on the result is very small. We take this
value of the surface averaged cross section to absolutely normalize the UrQMD simulation
spectra.
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4.4.2 UrQMD comparison and Σ0 contribution
We compare now the efficiency corrected two-dimensional (pt,yCM ) spectra with UrQMD
predictions. The UrQMD data is normalized according to Equation 4.25. The solid lines
from the fit with a Boltzmann-like function from the last chapter are plotted to illustrate the
trend of the experimental data at low transverse momenta, where we have no experimental
data points. Figure 4.3 shows the UrQMD simulation of "direct" Λs for the two dimensional
phase space (pt,yCM ) in comparison to the efficiency corrected experimental Λ yield. "Direct"
in this context means that the simulation sample does not include Λs from decays of long
lived resonances which are dominantly Σ0s. Black are (also for the further plots) the
experimental points whereas the cyan points are predictions of the simulation model. The
"direct" yield does not reproduce the experimental data perfectly. Especially at lower
transverse momenta pt . 450 MeV/c simulation and experimental data are no longer in
agreement (in the last rapidity bin also for larger momenta).

Figure 4.3: Comparison of the efficiency corrected experimental data (black) with UrQMD
simulations (cyan) of "direct" Λs.

Additionally, the plotted simulation Λ yield is at this stage incomplete because we also
have to take into account the contribution of "indirect" Λs stemming from Σ0 decays. At
the end of the transport calculation most of the Σ0s did not decay. Experimentally it is
observed that the Σ0 decays almost exclusively into a Λγ pair. The HADES setup does not
contain a calorimeter which would be necessary to distinguish Λs from Σ0s by the detection
of an additional γ. Therefore, in this inclusive analysis Λs and Σ0s are indistinguishable
and the spectra are a sum of "direct" and "indirect" Λs, which we have to consider also in
the simulation. We estimated the contributions of "direct" Λs and "indirect" Λs from Σ0s
with UrQMD simulations. The model predicts a ratio of Λ/(Λ+Σ0) = 0.70. We see that
about 30% of the Λs are coming from long lived resonances.
There are two ways to add the Σ0 contribution to the "direct" simulation output. The first
one is to treat Σ0s simply as Λs (Σ0 ≡ Λ) and copy their kinematics. This is to a certain
extent reasonable because in the Σ0 decay to a Λγ (Eγ ∼ 80 MeV) pair the photon changes
only slightly the kinematics of the Λ at SIS energies and the Σ0 4-vector stays nearly the
same pµΣ0 ≈ pµΛ ((mΣ0 −mΛ)/mΛ ≈ 6.9%). The second way is to simulate the decay of
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the Σ0 and incorporate the correct Λ kinematics. We investigated the second way in more
details by taking a Σ0 sample, simulating the decay with help of the GEANT package and
comparing it to the case where the Σ0s are treated as Λs. The result for the whole phase
space is displayed in Figure 4.4.

Figure 4.4: Comparison of two methods of adding the Σ0 contribution to the "direct" Λ yield.
The red points illustrate Λs from a Σ0 decay whereby the blue points are Σ0s treated as Λs.
The decay shifts the yield to lower transverse momenta.

The red points illustrate Λs from the decay Σ0 → Λγ whereas the blue points represent
Σ0s which were treated as Λs. As we expected, the difference is small due to the fact that
the photon changes only slightly the original Σ0 kinematics. The transverse momenta of
the Λs stemming from decays are shifted to lower values because of transfered momentum
to the photon.
We want to include the correct Λ kinematics after the transport simulation. For this purpose
we define a decay matrix in the following way (with the information obtained with the
GEANT simulation presented in Figure 4.4):

λ(pt,yCM )ij ≡
(Σ0 treated as a Λ
Λ from Σ0 decay

)
ij
, (4.26)

for every phase space bin labeled by i,j. The matrix is illustrated in Figure 4.5. It was
determined with a Σ0 sample from UrQMD and should in general be universal, which
means model independent. This will be tested in future with a different model.
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Figure 4.5: Decay Matrix to correct the Σ0 simulation and to obtain the correct Λ kinematics.

The correction works as follows: after transport calculations we identify the "direct" Λs
as usual and additionally the Σ0s. These Σ0s are corrected with the matrix λij of Equation
(4.26) in the same way we correct raw experimental data for efficiency to transform the Σ0s
into Λs, which have then the correct kinematics:

Λ(from Σ0)(pt,yCM )ij =
(
Σ0(pt,yCM )
λ(pt,yCM )

)
ij

, (4.27)

where i,j label the phase space region as usual. In a last step we add this "indirect"
contribution to the "direct" Λ production output to obtain the whole Λ yield. The total
("direct"+"indirect") Λ UrQMD signal is shown in the the plot in Figure 4.6 again for the
whole (pt,yCM ) phase space.

Figure 4.6: UrQMD predictions (cyan) compared to the experimental data (black). The
UrQMD output contains the full yield of Λs directly produced and from Σ0 decays with the
correct kinematics.
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The UrQMD model is able to describe the trend of the experimental data. However, the
yield is too high in the whole rapidity range especially at the edges of the experimental phase
space (−1 < yCM < −0.8 and 0 < yCM < 0.2). Nevertheless, UrQMD gives promising
results for a model "out of the box" without any tuning.
Before checking sophisticated mechanisms of the model like scattering or potential effects
one should check first the production of particles. We simulated for this reason p+p
reactions with a proton energy of 3.5 GeV and extracted the cross sections for several
strangeness channels containing Λ or Σ0 hyperons. The results are listed in Table 4.1. For
p+p reactions at 3.5 GeV UrQMD uses a total cross section of 41.83 mb. The experimental
values in Table 4.1 labeled with a ∗ were measured by an exclusive analysis [Ber13] in the
HADES collaboration and the other values were obtained by a fit to the world data with a
phase space parametrization already presented in Equation (4.20).

Channel UrQMD, σ [µb] Exp, σ [µb]
ΛpK+ 176.7 45.0
Σ0pK+ 41.9 15.5
Λpπ+K0 29.0 44.46∗
Λnπ+K+ 5.02 24.3
Λpπ0K+ 7.63 18.9
Σ0pπ+K0 3.00 12.25∗

Table 4.1: Production cross sections for p+p reactions at a proton kinetic energy of 3.5 GeV.
Channels labeled with a ∗ were measured by the HADES collaboration [Ber13]. All other
experimental values were extracted by a phase space fit to existing world data.

In general, the cross sections do not match very well. It seems that especially the two
simplest 3-body channels Λ/Σ0pK+ are overestimated by the model. This could be a
reasonable explanation why the UrQMD yield was too large in Figure 4.6. Fortunately,
the HADES experiment measured also p+p reactions and a Λ analysis is ongoing [Lal13].
With experimental data we can better constrain the production channels and test UrQMD
production mechanisms for Λs. Also the role of producing intermediate resonances pp→ N∗p
and the corresponding angular distributions has to be investigated. There exits also the
possibility that these resonances interfere with each other what could change the spectra
dramatically in comparison to an incoherent adding of different resonance contributions.
Such effects can be studied with a partial wave analysis (PWA) [Ani12]. All this different
possibilities have to be checked in detail for pp reactions and later also the influence on the
p+Nb spectra has to be tested.
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4.5 GiBUU predictions
4.5.1 Normalization
From the GiBUU output one can extract the cross section which the model uses for the
simulation of the reaction. The normalization procedure depends on the chosen simulation
mode:

• Perturbative simulations:

dσ = Weight factor
Number of xml files , (4.28)

where the Weight factor is calculated by the model and xml files are the output files
of GiBUU if running in perturbative mode.

• Real simulations:

dσ = 2πbdb · c−1, (4.29)

where the factor c is the product of the number of used ensembles, number of runs at
same energy and number of independent simulations where the first two numbers are
fixed at the beginning of the transport simulation.

4.5.2 Comparison of GiBUU predictions with experimental data
As stated in section 4.2.4, GiBUU offers the possibility for two different simulation concepts
to save computation time. To check the qualitative behaviour of the model we used
perturbative simulations. This gave us the opportunity to study changes in the model quite
fast. For the first studies we also shifted the transition to the PYTHIA model to larger
energies to be sure that all particles are produced according to the Tsushima resonance
model. The authors of [Tsu99] claim that the Tsushima resonance model is applicable to
invariant collision energies of

√
s = 3.6 GeV, which is larger than the experimental NN

collision energy √sNN = 3.18 GeV. From GiBUU developers itself it is proposed that
HADES data should be described within one model consistently and the transition region
was pushed by them to larger values [Wei12a] (in the new GiBUU version 1.6.0 which was
not available as this work was written, the transition energy for baryon-baryon collisions will
be set to √sNN = 3.4 GeV [Wei13]). In all following spectras we added the Σ0 contribution
with the correct kinematics.
Figure 4.7 compares GiBUU predictions with the experimental data, again for the whole
two-dimensional Λ phase space.
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Figure 4.7: GiBUU predictions (cyan) based on resonance model calculations in perturbative
mode compared to the experimental data (black).

We immediately see that the model underestimates the experimental data at lower
rapidities, whereas at larger rapidities it overestimates it. We want to understand in detail
which regions of the spectra are influenced by which mechanism. In an ongoing K0 analysis
in the HADES collaboration it was shown that it is necessary to scale production cross
sections down, otherwise the yield of K0s is too high [Lap13]. The scaling of neutral kaon
cross sections will also influence the Λ production because of strangeness conservation.
Table 4.2 shows the original production cross sections in the Tsushima resonance model
and the applied scaling factor in brackets (obtained in the K0 analysis).

Channel, p+ p→ Tsushima model, σ [µb] Exp, σ [µb]
ΛpK+ 35.7 45.0
Σ0pK+ 17.5 15.5
Λpπ+K0 75.9 (0.42) 44.46∗
Λnπ+K+ 25.3 24.3
Λpπ0K+ 25.3 18.9
Σ0pπ+K0 24.6 (0.72) 12.25∗

Table 4.2: Production cross sections for p+p reactions at a proton kinetic energy of 3.5 GeV
implemented in the GiBUU model. The channels labeled by a star are measurements performed
in the HADES collaboration [Ber13]. All other values were obtained by a fit using a phase
space parametrization to world data. The numbers in brackets are the applied scaling factors
to reproduce K0 data [Lap13].

If we apply the scaling of the production cross section used in the K0 analysis we obtain
the results displayed in Figure 4.8.
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Figure 4.8: GiBUU model with scaled production cross sections compared to experimental
data.

In comparison to Figure 4.7 we see that the production of Λs influences mainly large
rapidities (yCM > −0.4). In this region the Λ is produced and leaves the nucleus relatively
undistorted. After the production scaling the yield is more in agreement with the experi-
mental data.
This finding also implies that a different mechanism is present at lower rapidities. What we
would expect is that lower rapidities are mainly populated by slower which means scattered
or stopped Λs. To test this hypothesis and additionally find out if the scattering is primary
elastic or inelastic we switched off the elastic Λ-nucleon scattering channel. The result is
shown in Figure 4.9.

Figure 4.9: GiBUU model with scaled production cross sections and elastic Λ-nucleon
scattering switched off.

The plot illustrates that the lower rapidities are only slightly influenced by elastic
scattering as implemented in the model. Theoretical calculations predict that through
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in-medium modifications the elastic Λp cross section decreases (see for example Figure
4.13 in the summary). This could be a hint that the region of target rapidity is mainly
populated by Λs produced through inelastic channels. To investigate this and increase the
absorption of Λs in the model we set the transition energy from the Tsushima resonance
model to the PYTHIA model back to its default value, which is for baryon-baryon collisions√
s = 2.6 GeV. With a proton kinetic energy of 3.5 GeV we reach a nucleon-nucleon collision

energy of √sNN = 3.18 GeV. Therefore, the first collision is for sure calculated within
PYTHIA, but also secondary collisions could have enough energy to be over the threshold.
The result is displayed in Figure 4.10.

Figure 4.10: GiBUU model with the PYTHIA threshold set to its default value.

The simulation yield at lower rapidity is enhanced in comparison to simulations without
using PYTHIA and is in better agreement with experimental data. This confirms the
assumption that Λs in this region are mainly coming from additional inelastic channels.
But additionally, also the yield at large rapidities is dramatically increased. This is an
indication that it is not reasonable to use PYTHIA for strangeness production at SIS18
energies, at least for Λs. PYTHIA is in general designed on the "parton level" (quarks,
gluons) with interactions using e.g. "hard processes" and has its strength in the energy
region of tens to hundreds GeV (and is tuned to fit LHC data).
In a last step we simulated the p+Nb reaction with the real mode approach without using
PYTHIA but including the scaling of production cross sections, which can be seen in Figure
4.11.
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Figure 4.11: GiBUU model simulated in real mode. See text for further details.

We find no dramatic change in comparison to perturbative simulations based on the
resonance model only. This we would expect because the number of participants in a
p+Nb reaction at 3.5 GeV energies is about ∼ 2.7 [Elg13], which is an indication that the
requirements for a perturbative simulation are fulfilled. We can exclude the option that
the data was not described by GiBUU because of using the wrong simulation mode. In
conclusion, for fast checks of parameter changes it is reasonable to use the perturbative mode,
for a more detailed investigation it is necessary to switch to the real mode. Especially for
exploring in-medium modifications of hadrons it is mandatory to use real mode simulations.

4.5.3 Summary
We saw that UrQMD describes reasonably well the trend of the experimental distributions
but fails to reproduce the yields. Especially, the "difficult" region of lower rapidities is
populated by Λs. This could be a hint that in this range the mechanism of resonance decay
becomes important. For instance the reaction:

NN → N∗N → NYK

where the resonance is explicitly produced and can scatter in the nucleus with other
nuclei. Therefore, the angular distribution of Λs is influenced by its decaying mother
resonance which could be an explanation why UrQMD describes better the stopping of
Λs in the nucleus. An indication for resonance production was found in an experimental
investigation of the two hyperon production channels pp→ Σ0pK+ and pp→ ΛpK+ for
three different beam momenta (pbeam = 2950, 3059, 3200 MeV/c) performed by the COSY-
TOF collaboration [Abd10]. For the pp → ΛpK+ they found a strong evidence for an
intermediate resonance production pp→ N∗p with the resonances N(1650)S11, N(1710)P11,
and N(1720)P13 by studying the differential cross section in the CM, Jackson, and helicity
frames. This finding supports the argument that UrQMD describes the data better at low
rapidities because it uses intermediate resonances for particle production.
A study of the global yield of the UrQMD output reveals a general overestimation especially
at the HADES experimental accessible phase space edges. Fortunately, we have data
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of a Λ analysis in p+p reactions where we are able to better constrain the production
mechanism of Λs including angular distributions, branching ratios and production cross
sections of the decaying resonances. The global behaviour of UrQMD can be best seen
in the rapidity-density distribution in Figure 4.12. The shape of simulation data is in
agreement with experimental data points but the yield is too high.

Figure 4.12: Rapidity-density of Λ hyperons (black) in comparison with UrQMD data (cyan).
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The GiBUU model delivers a worse agreement. The overall yield of the original model
shows some imbalance with an overestimation at larger rapidities and underestimation of
experimental data in the region of target rapidity. At large values of rapidity GiBUU is
mainly sensitive to the tuning of production cross sections. If we scale down the cross
sections for elementary production the data gets in better agreement with experimental
points. At lower rapidities the shape is completely off, which we account for some missing
inelastic mechanism which causes that the absorption of Λs is not correctly implemented in
the model.
In GiBUU, hyperons are produced directly in elementary reactions e.g. NN → NYK
without any intermediate resonances. This could explain the large difference to the UrQMD
model that a produced resonance which decays to a kaon hyperon pair plays an important
role in the stopping kinematics of hyperons and their angular distributions.
Also the modifications of cross sections due to in-medium effects is presently not incorporated
in the model, which are mainly changed due to Pauli blocking. The dependency of the cross
sections on the surrounding medium is illustrated in Figure 4.13 which shows the total cross
section as a function of the Λ energy. The green line corresponds to the experimental case
of ground state density in the Niobium nucleus. However, the authors of this calculations
point out that the incorporation of cross section modifications to the GiBUU model is in
progress [Gai13]. The effect of including the correct cross section will be tested in future.

Figure 4.13: In-medium modifications of YN cross sections with increasing density according
to [Gai13]. The green line corresponds to the case of saturation density in the Niobium nucleus.

The global behaviour of the simulation model can be also studied by looking at the
rapidity distribution shown in Figure 4.14 (with production scaling). At large rapidities
GiBUU is able to reproduce the experimental yield and the trend of the data. In this
region the model is mainly sensitive to the tuning of Λ production channels. At around
yCM < −0.4 the distribution is no longer in agreement with experimental data. GiBUU
predicts a more or less flat integral yield, whereas the experimental data is still rising
going from large to low rapidities. We trace this effect for missing or wrong parametrized
(inelastic) scattering channels.
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Figure 4.14: Rapidity-density distribution of experimental data in comparison with the
GiBUU model (with scaled production cross sections).



5 Intensity Interferometry - proton-proton
correlations

5.1 From heaven to earth
In the 50s, R. Hanbury Brown and R. Q. Twiss (HBT) developed a method called intensity
interferometry to measure correlations between beams of light [Han56b]. If we think about
interferometry then mostly about the case of amplitude interferometry. One of the most
famous experiments of amplitude interferometry is the Young’s experiment commonly known
as the double-slit experiment, which became famous by revealing the mysterious properties
of quantum mechanics. This kind of experiment is based on measuring a single-particle
detection probability, whereas the HBT method is footed on determining the two-particle
probability [Lis93]. A schematic view of both interference types is shown in Figure 5.1.

Figure 5.1: Schematic comparison of intensity (left panel) and amplitude interferometry (right
panel) according to [Lis93]. In the intensity interferometry case the emitted quanta can travel
two different paths respectively, which leads to interference effects.

The method of intensity interferometry consists of the measurement of the two-particle
coincidence yield n12 and of the single particle yield n1 and n2. Out of these quantities the
following correlation function is built:

C(p1,p2) = 〈n12〉
〈n1〉 〈n2〉

. (5.1)

The correlations are included in the coincidence yield and can be used to extract information
about the source size of the light emitting system (we will present an example in the next
section). Hanbury Brown and Twiss developed the formalism and applied it to radio-
astronomy to measure (angular) source sizes of astronomical objects (e.g. they measured
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the apparent angular source size of Sirius [Han56a]).
Independently in the 60s, Goldhaber et al. [Gol60] observed in an experiment of proton
anti-proton annihilation an angular correlation among like sign pion pairs π±π±. The
experiment originally aimed for finding the ρ0 resonance with its decay into a π−π+ pair.
They realized that this correlation was explainable with using Bose-Einstein statistic that
governs the interaction between identical bosons due to wavefunction symmetrization. This
was the starting point of using the HBT interferometry in high energy particle physics
(called there the GGLP effect, but usually also in particle physics very often the term HBT
is used).
Later in the year 1977, Koonin developed a model for two-particle correlations using protons
to probe the reaction dynamics of a system at intermediate energies [Koo77]. If two protons
are emitted from the same source, they interact via Coulomb and strong interactions.
Additionally, the total wavefunction must be anti-symmetrized to obey the Fermi-Dirac
statistic. For small source sizes the positive correlation due to the nuclear interaction
dominates over the anti-correlation induced by the electromagnetic interaction between
both protons and fermionic quantum statistic.
The discovery of the HBT effect in particle and nuclear physics opened a new field of
research, which is nowadays called femtoscopy, because with such interference experiments
one can resolve space-time characteristics of evolving systems at the fermi scale (∼ 10−15 m).
This became very important in analyses of heavy-ion reactions to gain information about
the highly excited matter formed in the collision region of the two overlapping nuclei by
studying correlations of the emitted particles. Modern analyses are able to extract extent,
shape, orientation, and dynamical characteristics of the emission zone [Lis10].

5.2 Theoretical basics
5.2.1 The origin of the HBT effect
The correlation function is an abstract object. We want to give an illustrative description
of HBT physics in a classical picture, which is based on considerations extracted from
[Bay98]. One can think of two sources a and b separated by a distance R emitting spherical
waves α exp(ik|~r−~ra|+ iφa)/|~r−~ra| and β exp(ik|~r−~rb|+ iφb)/|~r−~rb|, where α, β are the
amplitudes of the waves and the φi are random phases. The waves are measured with two
detectors at a distance L, which are separated by a distance d as illustrated in Figure 5.2.

Figure 5.2: Two sources a and b emitting spherical waves, which are measured by the detectors
1 and 2.
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With all this information one can calculate all relevant quantities, for example the total
amplitude of both waves at the position of detector 1:

A1 = 1
L

(
α exp(ikr1a + iφa) + β exp(ikr1b + iφb)

)
, (5.2)

where rij is the distance from source j to detector i. The observables used for light
interferometry are the averaged (over the random phases φ) intensities derived from the
squared amplitudes. The uncorrelated reference probability is simply the product of the
single particle intensities 〈I1〉 · 〈I2〉. First multiplying and then averaging gives the potential
coincidence yield 〈I1I2〉. To extract the correlation signal we divide both signals. If no
correlation would be present the ratio would be exactly one. For large separations of
detectors and sources L� R we obtain:

C(~d) = 〈I1I2〉
〈I1〉 〈I2〉

= 1 + 2
〈
|α|2

〉 〈
|β|2

〉
(〈|α|2〉+ 〈|β|2〉)2 cos(~R · (~k2 − ~k1)), (5.3)

where ~ki = kr̂i is the wavevector of the light seen in detector i. A correlation signal remains,
which is induced by interference effects between both light waves and is interpreted on a
quantum mechanical level as the influence of Bose-Einstein statistic acting between the
identical photons. The latter correlation term in Equation (5.3) varies on a length scale
d = λ/Θ, where λ is the wavelength of the light and Θ = R/L the angular size of the
source. By changing the separation d of the two detectors one can gain information about
the extent of the light emitting system.

5.2.2 The Koonin-Pratt formalism
As we have seen, the HBT effect (in astronomy) can be interpreted as the interference
between identical light-particles (photons). The mathematical framework in particle physics
to calculate correlations between two particles which incorporates all the interactions
between them is the Koonin-Pratt formalism [Koo77, Pra84, Pra87]. A central ingredient
is the emission function also often called source function g(p,x), which is a measure of
the probability that a particle with momentum p is emitted at a space-time point x. The
relation of the coincidence yield to microscopic quantities is given in the equation:

C(P,q) = P (p1,p2)
P (p1)P (p2) =

∫
d4x1d

4x2g(x1,p/2)g(x2,p/2)|φ(q,r1 − r2 − t1−t2
2m ·P)|2∫

d4x1g(x1,p/2)
∫
d4x2g(x2,p/2) (5.4)

where q is the relative momentum between the two particles in the pair rest frame and P
is the total momentum of the pair. The correlations which means all interactions of both
particles are included in the relative wavefunction φ(q,r1−r2− t1−t2

2m ·P). The proton-proton
correlation function includes three interactions (Strong, Coulomb, Pauli). For this reason
it is necessary to solve the corresponding equations for the wavefunction and correlation
function numerically (no explicit analytical form exists).
Two main assumptions are needed to construct Equation (5.4) [Lis93]. The first one is that
both particles are emitted independently. The second particle never knew that the first
particle left the source. This means, there are no additional correlations within the source
and the correlations between both particles are only due to final state interactions. The
second assumption is that the particles only interact with each other and not with the
residue nucleus (or other fragments). The physical picture is that two particles are emitted
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by the source and then the interaction is switched on, which is the reason why the final
probabilities are correlated P (p1,p2) 6= P (p1)P (p2) [Lis93].
We want to study correlations between protons produced in the p+Nb reaction. We do this
as a function of the relative momentum in the CM system of both protons:

k = 1
2 |p
∗
1 − p∗2|, p∗1 + p∗2 = 0 (5.5)

This definition of the relative momentum k is equivalent to the also often used Lorentz-
invariant "q-vector":

q ≡ 1
2
√
−qµqµ = 1

2

√
(p1 − p2)2 − (E1 − E2)2 CMS= 1

2

√
(p∗1 − p∗2)2 = |p∗1| = |p∗2| = k (5.6)

where the ∗ labels 3-vectors in the CM system. The source is often parametrized a priori
in a Gaussian way neglecting any time dependence (which implies also no momentum
dependence) with only one free parameter left, the source size Rg:

g(x,p) ∼ δ(t) exp−(|r|/Rg)2 (5.7)

With this assumption of the source size together with the interactions between the particles
the correlation function can be calculated with the Koonin-Pratt formalism. In Figure 5.3
an example of two proton-proton correlation functions C(k) is plotted using two different
Gaussian sources (Rg = 2,3 fm).

Figure 5.3: Proton-proton correlation function C(k) calculated for two different source sizes
according to the Koonin formalism.

It shows some anti-correlation behaviour in the momentum range 0 < k < 10 MeV/c.
This is induced by Pauli blocking and Coulomb repulsion acting between identical and
charged fermions. The electromagnetic repulsion is a long range interaction and prevents the
particles from ever having precisely equal finite momenta, which implies C(k = 0) = 0, ∀Rg.
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The peak at k ≈ 20 MeV/c is a characteristic feature of the attractive S-wave nuclear
interaction between both protons (the magnitude of the S-wave scattering length is quite
large of about 20 fm [Led01]). Its contribution to the (positive) correlation signal scales
as (a/r)3 [Koo77], where a is the range of the nuclear force. This explains the inverse
behaviour of the attractive part in the correlation function, namely the larger the source
the lower is the peak height, which is also illustrated in Figure 5.3, where the positive
correlation dip decreases when going from a source size of Rg = 2 fm to Rg = 3 fm.

5.3 Experimental correlation function
The experimental correlation function is constructed as follows:

C(k) = P (p1,p2)
P (p1)P (p2) = N N(k)real

N(k)mixed
·
(
ξ(k)

)
. (5.8)

The ingredients are N(k)real which denotes the momentum distribution (in the proton-
proton CM system) of protons taken from the same event. N(k)mixed is the distribution of
momenta using protons that belong to different events. By construction these protons could
not be correlated. The event mixing technique is based on the principle that the mixed event
"background" distribution has every physical property, i.e. the particle kinematics, correctly
inside and is identical to the signal in all respects except of femtoscopic correlations. After
calculating the ratio of both distributions the correlations between particles should remain.
The function ξ(k) normally plays a minor role and is used to parametrize possible long-
range correlations (we do not consider long-range correlations in the analysis because they
play a minor role and make itself felt by a raising of the correlation function for momenta
k > 100 MeV/c). The normalization factor N is an important quantity, because it influences
the peak height of the proton proton correlation (which means the extracted source size).
It is chosen in a way that the correlation function is equal to one, where no correlations
between the particles are expected (C(k & 100 MeV/c) = 1).

5.3.1 Construction of the correlation function
In the inclusive Λ analysis we identified protons and negative pions with the information
of their energy loss in the MDCs. Our analysis in this case was not very sensitive to
misidentification because fake pπ−-pairs gave only contributions to the combinatorial
background in the invariant mass distribution, which was subtracted afterwards.
When we construct the correlation function, we immediately check the identified protons for
correlations without the intermediate step of subtracting misidentified particles. To reduce
wrong correlation signals caused by misidentification, we improve the particle identification
procedure. First, we use tighter graphical cuts in the energy loss vs. momentum plot and
second, we use an additional particle information provided by the META system, namely
the relation of the particle velocity β = v/c to the momentum p. The relation reads as
follows:

β(p) = p

E
=
√

p2

p2 +m2 . (5.9)

We see that Equation (5.9) has the particle mass m as free parameter inside. Different
particle masses lead to different curves β(p). This can be used to introduce additional
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graphical cuts in the β vs. momentum distribution. A particle is only identified as a proton
if it fulfills the dE/dx as well as the β graphical cut as a function of momentum. Figure 5.4
displays the dE/dx and β distributions for all charged particles separately together with
the chosen graphical cut conditions, which are plotted as red dashed lines. In the right
panel it is nicely shown that different particle species lead to separate curves in the β vs.
momentum plot and we have nearly no overlap with contributions from other particles.

Figure 5.4: Protons are identified with the information from the energy loss and β vs.
momentum distribution. We use graphical cuts illustrated by red dashed lines. If the particle
passes both cut conditions it is identified as a proton.

With the identified protons we can start the correlation analysis. We expect correlations
only between primary protons. To select primary protons we employ again the condition
that the primary vertex calculated with all tracks from the event must lie inside the target
cylinder, exactly as in the inclusive Λ analysis. Proton pairs identified as primary particles
are treated further with determining the relative momentum (in the pair rest frame), which
gives us in the end the momentum distribution for real events.
The relative momentum distribution for mixed events is more complicated to calculate.
The procedure is to take a proton from event x and "correlate" it with a proton from event
y, where x 6= y. To not introduce some additional (fake) correlations (i.e. long-range
correlations appear due to the violation of energy and momentum conservation for mixed
events) we try to stay as close as possible to the real event case. For this reason we applied
two selection criteria. The first selection criteria is that the protons should stem from the
same multiplicity class, which ensures that both protons have similar kinematics due to
comparable impact parameters. In addition we use a second criteria that the protons should
come from the same target region of the reaction. Both selections guarantee that the events
which should be mixed have a very similar structure. To satisfy both requirements, we
define multiplicity classes and target classes to classify the events. The size of this classes is
a compromise between accuracy and enough statistic for the mixed event construction. We
used the following values for multiplicity classes listed in Table 5.1 and for target classes
listed in Table 5.2:
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Multiplicity
class

Multiplicity
(Charged parti-
cles)

1 1-2
2 3-4
3 5-6
4 7-8
5 >8

Table 5.1: Definition of multiplicity classes used for the mixed event calculation.

Target class Target region
(z-component)
[mm]

1 0-5
2 5-10
3 10-15
4 15-20
5 20-25
6 25-30
7 30-35
8 35-40
9 40-45
10 45-50
11 50-55
12 55-60

Table 5.2: Used target classes for the mixed event calculation.

We use the number of tracks in an event as multiplicity definition and the z-component
of the primary vertex calculated with all tracks of an event as the target position of the
particles. The events first have to pass the primary vertex selection and are then sorted by
using their multiplicity information according to the defined multiplicity classes to be filled
in multiplicity pools. If one pool is full the events are mixed, but only events which lie in
the same target region. We have five multiplicity pools due to five multiplicity classes and
in every pool 12 vertex classes respectively, which give 5× 12 = 60 possible combinations of
mixing. A short example: lets imagine we would have two events 1, 2 and event 1 would
have five tracks inside and event 2 six. According to the prior multiplicity definition they
are shifted to the multiplicity pool 3. If they would also lie in the same target class they
are mixed after the multiplicity pool is filled with a certain number of events. The number
of events which are necessary to fill one multiplicity pool is completely arbitrary and we
have chosen 50 events (the chosen value should be not too large because the events should
be measured close in time to have similar "environment" e.g. beam characteristics). With
this procedure we can produce large statistic mixed event samples, normally one order of
magnitude larger than the samples of real events. This means that the statistical errors in
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the correlation function are governed only by the real event statistical errors. In Figure
5.5 we have plotted the proton pair distribution for real events (black) and mixed events
(red) as a function of their relative momenta. Both distributions look quite similar, which
indicates that the mixing method works reasonable.

Figure 5.5: Comparison of the relative momentum distribution for real (black) and mixed
(red) events. Both curves look very similar which illustrates that the event mixing method
works reasonable.

With both distributions we can determine the correlation function by simply calculating
the ratio of both distributions of Figure 5.5 (with a higher statistic for mixed events). This
is illustrated in Figure 5.6 as a function of the relative momentum.

Figure 5.6: Correlation function for proton pairs determined with the methods explained in
the text.

The experimental curve shows the expected behaviour with a suppression at small relative
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momenta and a positive correlation due to S-wave nuclear interactions at k ≈ 20 MeV/c.
The real and mixed event distribution were both measured within the HADES acceptance.
For this reason we have to take into account several efficiency effects, which we will explain
in the next section.

5.3.2 Corrections
As discussed above, particle correlations become visible at small relative momenta in the
CM frame of the two protons. Using the Heisenbergs uncertainty relation one can estimate
the angle e.g. of the effect of wavefunction anti-symmetrization [Koo77] in the laboratory
frame. The quantum statistic effect induces an anti-correlation over a range of relative
momenta ∆p ≈ ~/r, which is translated to an angular anti-correlation ∆φ = ∆p/p ≈ ~/rp.
For r = 3 fm and p = 531 MeV/c the estimation leads to ∆φ = 7.1◦.
This illustrates, that the correlated pairs have a small opening angle in the laboratory frame.
For close pairs the detector could have problems to distinguish both particle tracks. This
effect is called track merging, because it could happen that two distinct tracks are merged
together to one track. In the mixed event procedure we use always two different tracks
by construction. If in the real event sample tracks are merged than they are missing and
fake anti-correlations are introduced to the correlation function. To correct for this effect
we use simulations and created a sample of protons with help of the UrQMD transport
model and process it through the whole analysis chain (full scale analysis). After full scale
analysis we calculate the correlation function as the ratio of real and mixed events exactly
in the same way as in the experimental case. UrQMD calculates single-particle phase space
distributions until their last collision (freeze-out). However, final state interactions are
defined as interactions which happen after particles are emitted from a source, which means
after freeze-out. For this reason, in UrQMD no final state interactions are included, which
should result in a flat curve over all relative momenta (we present a method to calculate
correlation functions from semi-classical transport theories in section 5.4). Deviations from
a flat function have their origin in detector effects. The resulting correlation function
obtained from UrQMD is plotted in Figure 5.7.

Figure 5.7: Correlation function determined with the UrQMD model. At small relative
momenta the correlation function deviates from its expected flat behaviour, which can be
accounted to track merging. The red dashed line is the correction function used to get rid of
close track efficiency effects.
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The correlation function shows some suppression at low relative momenta (also no nuclear
S-wave peak is seen, which is a clear hint of missing final state interactions in the UrQMD
model). We attribute the shown anti-correlation at small relative momenta in simulations
to track merging during the tracking process. In future, we will simulate more statistic to
better clarify the trend of the suppression at very small relative momenta k < 20 MeV/c.
We can parametrize this effect with a correction function of the form:

facc(x) = 1− exp(−a · x/b), (5.10)

where the chosen function automatically converges to the flat behaviour of the correlation
function at large k. The corrected correlation function is calculated as follows:

C(k)corr = C(k)measured/facc(k). (5.11)

Figure 5.8: Effect of close track efficiency correction. The black curve illustrates the uncor-
rected curve, whereas the blue one shows the correlation function after correction using the red
dashed correction function.

We see in Figure 5.8 that the peak height of the correlation function after the correction
with the red dashed function increases, which results in a smaller Gaussian source size of
the p+Nb system (which was suppressed due to track merging). The correction for very
small relative momenta k seems not reasonable, because the data point after correction
shows not the expected trend anymore.
Another efficiency effect we have to take into account is the finite momentum resolution of
the detector. To check the influence of the finite resolution in the momentum reconstruction
we used the event generator UrQMD to generate a proton phase space and extracted an
ideal (no resolution effects) correlation function (how it is done is explained in the next
section). Then we smeared the momenta of UrQMD with a resolution of ∆p/p ≈ 1− 2%
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and calculated the correlation function again. The result is plotted in Figure 5.9 where the
black correlation function corresponds to the ideal case of no smearing and the red curve is
obtained after momentum smearing.

Figure 5.9: The effect of finite momentum resolution. The black curve shows the ideal case
whereas red is obtained by phase-space points with smeared momenta ∆p/p ≈ 1− 2%.

This indicates that the finite momentum resolution plays a minor role in constructing
the correlation function. That the influence of momentum resolution is a small effect was
also reported by other collaborations e.g. by STAR, which constructed a Λp correlation
function [Ada06].

5.3.3 Determination of the source size
The Koonin-Pratt equation delivers different correlation functions for different Gaussian
source sizes Rg. To determine the source size of the p+Nb system at a proton energy
of 3.5 GeV, we compare theoretical curves with the experimental data. The important
quantity for the comparison of the correlation function with theory is the peak height.
With a Gaussian source size of Rg = 2.2 fm we can reproduce the peak height of the
system displayed in Figure 5.10. The grey band shows the systematic errors from the
uncertainty in the close track correction by a variation of the parameters in a 20% range.
This gives us an systematic error in the source size of Rg = 2.2+0.23

−0.22 fm. What attracts the
attention is that the width of the experimental curve is not reproduced by the theoretical
model. This seems to be a hint that the source of the particle emitting system is of non
Gaussian form, which was the assumption of the model. Such results were also found in
other measurements of proton-proton correlations e.g. in Ar+KCl reactions in a similar
energy range √sNN = 2.61 GeV [Aga11a] or in Ca+Ca reactions at different projectile
energies [Kot04].
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Figure 5.10: Experimental correlation function compared to the Koonin model with a source
size of Rg = 2.2 fm (blue solid line). The grey band shows the uncertainty from the close track
correction by varying the parameters by 20%.

The issue of using Gaussian sources was discussed in more detail by the authors of [Ver02].
They point out that most correlation functions in experiment can only reproduce the height,
but not the width and want to understand if the non Gaussian dependency has its origin
in the way the protons are emitted. Their main assumption is, that the proton emission
has two components involving completely different time scales: a fast component and a
much slower component that might originate from long time secondary decays, which give
different contributions to the two-proton source. They define a simple two-component
model (STCM) based on following assumptions of the emission process:

• an instantaneous fast component (τ1 = 0)

• a slow component with a sufficiently long decay time scale such that its correlation
function is negligible (τ2 ≈ ∞)

Lets define P1 as single particle probability and R(k) the correlation part in the correlation
function C(k) = 1+R(k). One can subdivide with the above assumptions the single particle
probabilities into a fast emission component P1,fast = fP1 and the remaining slow part
P1,slow = (1− f)P1 (P1 = P1,fast + P1,slow), where f is the fraction of fast emitted protons.
The resulting correlation part will only reflect the fast component R(k) = f2Rfast(k). With
the STCM model they could describe the large momentum component of the correlation
function (840 < p < 1230 MeV/c) rather good, which is displayed in the left panel of Figure
5.11 and was according to [Ver02] virtually identical to the imaging curve (imaging is a
technique to obtain the source size from a measured correlation function by numerically
inverting the Koonin-Pratt equation). However, the STCM model was also not able to
describe the slow correlation part (270 < p < 390 MeV/c) as seen in Figure 5.11 in the
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right plot (the dot dashed line is the correlation function using a Gaussian source whereas
the solid line represents the STCM model). In this range the correlation function includes
significant contributions from long lived proton sources.

Figure 5.11: Comparison of measurements of experimental correlation functions obtained
from 14N+197Au collisions at E/A = 75 MeV extracted from [Ver02]. The Gaussian source
parametrization fails in all cases to describe the data. The right plot shows results from the
STCM model, which is in better agreement with the data.

We can also apply the STCM model to our measured proton-proton correlation signal.
For this purpose we weight the correlated part R(k) with a fraction of fast protons R(k)→
f2R(k) in the Koonin model. We have chosen f2 = 0.7 and Rg = 1.6 fm to reproduce the
peak height. For this parameter set the correlation function is more in agreement with
the long tail k > 20 MeV/c, but there is still room for improvement especially at very low
momenta shown in Figure 5.12.

Figure 5.12: Applying the STCM model to the measured correlation function. The tail of the
function is in better agreement, but the model fails to describe the part of low momenta.
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The conclusion of [Ver02] is, that accurate information from correlation functions, when
there are contributions from long lived sources, could be best obtained without making
a priori assumptions about the emitting source. As stated above, there exist possibilities to
extract the source size from a measured correlation function by a numerical inversions of
the Koonin-Pratt equation (by discretizing it). A result of applying the inversion technique
on the three measured correlation functions (given in three different momentum intervals)
displayed in the left panel of Figure 5.11 is shown in Figure 5.13 (everything calculated by
[Ver02]). The correlation functions a),b),c) of Figure 5.11 correspond to the sources a),b),c)
in Figure 5.13.

Figure 5.13: Inversion technique applied to the three measured correlation curves from [Ver02].
One can see the deviations from the Gaussian assumption of the emitting source and the source
obtained by the inversion technique.

The Gaussian source assumption deviates clearly from the sources obtained by numerical
inversion. This is a strong hint that the measured correlation functions in Figure 5.11 consist
of contributions of protons of two different time scales. To come back to the measured
correlation function in Figure 5.10, we saw that also in this case the assumption of a purely
Gaussian source was not able to describe the data. This may also be an indication that
we have to consider two different emission time scales and this will be checked in further
investigations by calculating the experimental correlation function in different momentum
intervals.

5.4 Comparison with simulations
Normally transport models are compared to experimental data using kinematic variables
like pt distributions. But there are also studies using correlation functions for comparison
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with experimental measurements e.g. testing the influence of the asymmetry energy on the
particle correlation [Kil11] in heavy ion collisions. With the just presented experimental
proton-proton correlation function we can investigate the implementation of proton emissions
in microscopic models in the p+Nb system.

5.5 Final state interactions in transport and source size of p+Nb
As discussed, correlations are induced by final state interactions after the particles leave the
source. Transport theoretical models are based on classical Monte Carlo simulations and for
this reason they cannot incorporate wavefunction (anti-)symmetrization between particles,
which is of quantum statistical origin [Bys04]. But there are two methods to include this
correlations afterwards. One method is to weight the particles e.g. identical bosons with a
two-boson weight:

wij = 1 + cos((pi − pj) · (xi − xj)), (5.12)

using particle momenta and coordinates at freeze-out. The second method which we will
apply is to use so called afterburner codes in particular the "Correlation After Burner"
(CRAB) from Scott Pratt [CRA00]. It uses single-particle phase space points at freeze-out
generated with semi-classical transport codes. CRAB will calculate correlation functions
with this particle information together with the knowledge of the impact parameter. Unfor-
tunately, GiBUU does not provide the information of the freeze-out coordinates, so we were
only able to test UrQMD. In GiBUU one would also be able to test the indirect influence
of a kaon-nucleon potential (which should influence also the Λ because of strangeness
conservation) or the influence of the Λ-nucleon force on a correlation function.
In the hybrid model of UrQMD+CRAB we can switch on the forces separately which are
included in the proton-proton correlation function. To visualize their contributions we
made on the one hand simulations, which contained only the electromagnetic and Pauli
force, which are responsible for the suppression and on the other hand simulations with the
strong force only which is responsible for the positive correlation signal. Both results are
displayed in Figure 5.14.

Figure 5.14: Contributions of the three forces to the correlation function. Left: Suppression
due to Pauli blocking and the Coulomb force. Right: Positive signal induced by the strong
S-wave nuclear interaction.

We see that the positive correlation signal, which is caused by the nuclear S-wave interac-
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tion, would be still present and large at very low relative momenta k if electromagnetic and
Pauli forces would be absent, which is a typical feature of an attractive strong interaction.
The force due to the proton spin together with the Coulomb repulsion gives a suppression
which starts already at k < 100 MeV/c. The overall proton-proton correlation function is a
convolution of both effects, which explains its characteristic shape.

We can now compare the full correlation function generated with CRAB from UrQMD
phase space points with the experimental results, which is done in Figure 5.15.

Figure 5.15: Comparison of the experimental curve with predictions from UrQMD (red).

The hybrid model of UrQMD+CRAB is also able to reproduce the height of the correlation
function, which is the Gaussian source size of the p+Nb system. But also in this case the
width is not in agreement with the theoretical model and needs a more detailed investigation.

5.5.1 Time dependence of the source
We have seen that UrQMD reproduces the height of the correlation function, which is the
time-integrated function of all pairs emitted during the whole reaction. In simulations we
are able to ask for protons which are emitted at a certain time from the source. This gives us
the possibility to study a time dependent correlation function and extract a time dependent
Gaussian radius R(t). Figure 5.16 shows the freeze-out time for protons according to
UrQMD simulations for the p+Nb system. Most protons stop to interact and are emitted
from the source at t ≈ 13 fm/c.
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Figure 5.16: Freeze-out time distribution for protons in the p+Nb system. Most protons
leave the source at t ≈ 13 fm/c.

We can also plot the proton distribution in the laboratory frame for the whole freeze-out
time evolution to see how protons are distributed in the coordinate space. This is done in
Figure 5.17 (for very central events b = 0− 1 fm).

Figure 5.17: Distribution of UrQMD simulated protons in the coordinate space at different
time intervals. The proton cloud expands during the time and dissolves in the last time bin.
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The protons are very localized at the beginning of the reaction. Then the proton cloud
starts to expand and dissolves at a time of about t > 25 fm/c. For this reason we would
expect that also the source size increases with time. To investigate this hypothesis we can
determine the correlation function from UrQMD simulations with CRAB at every time step
and calculate the Gaussian source radius by comparing it to predictions from the Koonin
model. In doing so we get the plot shown in Figure 5.18.

Figure 5.18: Gaussian source size as a function of the freeze-out time for protons simulated
with UrQMD. The source size increases with the freeze-out time (almost linearly indicated by
the blue dashed line).

The source size increases as expected in an almost linear behaviour. We fitted the trend
of the data points with a straight line assuming that we do not have a source at zero
freeze-out time. The slope of the line gives us a rough estimation of the velocity:

Rg(t) = v · t, v ≈ 0.11c (5.13)

which is about 11% of the speed of light. This means that during the reaction the length
at which the protons are influenced by each other due to final state interactions grows
with time. If protons are emitted later from the source it is more probable that they are
correlated.
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We discussed in the first part of this thesis the production of Λ hyperons in p+Nb reactions
at a kinetic proton energy of 3.5 GeV. After processing ∼ 3.15 · 109 downscaled events we
extracted about 1M Λ hyperons. This allowed us, to carry out a double differential analysis
of the Λ phase space (pt ∈ [0,975] MeV/c, yCM ∈ [−1,0.2]), which was on the one hand
important to perform a reliable efficiency correction and on the other hand we were able to
investigate the predictions of transport models in a very detailed way.
We compared two different transport models with experimental data, the UrQMD and
GiBUU model. UrQMD gave reasonable results and described the trend of the experimental
data over the whole two-dimensional phase space dN/dptdyCM . However, the production
of Λ hyperons was overestimated by the model in p+p reactions (too large cross sections)
as well as in p+Nb, which became clearly visible at the edges of the experimental Λ phase
space. In future investigations of the UrQMD model one has to check the influence of the
resonance widths and their production cross sections by comparing it with measured p+p
data. Only if the production in nucleon-nucleon collisions is described by the model, it
makes sense to look at secondary processes. Nevertheless, it seems that the Λ absorption
is better implemented in UrQMD because the model also populates the Λ phase space
at lower rapidities. The big difference to the GiBUU model is that UrQMD produces
explicitly resonances e.g. N∗s which can interact with other nucleons in the nucleus. The
decaying resonance produces then the Λ hyperon. This effect might be the big advantage
of the UrQMD model in comparison to the GiBUU model, which produces the particles
from a phase-space parametrization of cross sections and has not the intermediate stage of
resonance production inside (for strangeness). Also a work by the COSY-TOF collaboration
[Abd10] showed that in the pp → ΛpK+ channel it is favored to produce intermediate
resonances pp → NN∗. An additional effect we have to take into account is that there
exists the possibility that intermediate produced resonances can interfere with each other,
which can be investigated with a partial wave analysis [Ani12]. This can be checked in p+p
reactions in future and may also have an effect on the p+Nb spectra.
The GiBUU model delivered a worse agreement with the experimental data. The tuning of
the production cross sections influenced only large rapidities and in this region it seems
possible that the model can be tuned to the experimental data with a proper production
scaling. This strengthens again the need of p+p data to perform this tuning. The next
step after this production tuning is, to implement the absorption of Λs correctly with
investigating in more detail the implemented scattering channels. If in the end GiBUU
would be able to describe the data in a good way we could investigate in-medium Λ
modifications.
To illustrate what is meant with this strategy, we display a work of an inclusive neutral
kaon analysis also done in the p+Nb system at the same proton kinetic beam energy of
3.5 GeV, where the production and scattering implementations of GiBUU was tuned to
describe the inclusive K0 yield for the whole two-dimensional phase space (pt,y) [Lap13]
[Ber13].
For the kaon-nucleon interaction theoretical predictions exist that claim that neutral kaons
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should feel a repulsive potential of UKN (ρ = ρ0)k=0 ≈ 35 MeV if embedded in a medium
[Pra07]. The interaction for kaons with a medium is displayed in Figure 6.1, showing the
in-medium dispersion relation calculated with a relativistic mean-field and a chiral model
as a function of the system density [Pra07].

Figure 6.1: Repulsive neutral kaon potential calculated with a relativistic mean field and a
chiral model. The repulsive potential value for kaons at rest is about 35 MeV at saturation
density according to [Pra07].

The kaon-nucleon interaction is implemented with the chiral realization in the GiBUU
model. It is possible to test the effect of the repulsive potential with simulations, where the
interaction is switched on, and compared to a reference simulation without the potential.
The results for the experimental two dimensional (pt,yCM ) K0 phase space (black dots)
compared to a GiBUU model with the two different above mentioned simulation runs are
presented in Figure 6.2.

Figure 6.2: Two-dimensional phase space of an inclusive K0 analysis performed in the HADES
collaboration in the p+Nb system at a proton kinetic energy of 3.5 GeV [Lap13] [Ber13]. A
comparison with GiBUU data shows that the model with a kaon-nucleon potential (cyan)
included is more in agreement with experimental measurements.

The GiBUU model with a kaon-nucleon interaction (cyan) in Figure 6.2 is more in
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agreement with the experimental data. This shows the principle, how potential effects are
studied.
Even if the model is not able to describe the Λ data we can ask the question, if potential
effects would be generally visible. In GiBUU, baryons interact with a Skyrme type potential.
For protons and neutrons the single-particle potential reads (i = n,p) [Bus12]:

Ui(x,p) = UN (x,p) + dsymm
ρp(x)− ρn(x)

ρ0
τ3
i , (6.1)

where τ3
p = 1, τ3

n = −1 and dsymm is the potential symmetry energy coefficient which is
chosen to reproduce the symmetry energy in the Bethe-Weizsäcker-mass formula (leads to
dsymm ' 30 MeV) [Bus12]. The potential UN is the isospin averaged nucleon potential:

UN (x,p) = Un + Up
2 = A

ρ(x)
ρ0

+B
(ρ(x)
ρ0

)γ
+ 2C
ρ0

∑
i=n,p

∫
gd3p′

(2π)3
fi(x,p′)

1 + (p− p′)2/Λ2 . (6.2)

The six free parameters A,B,C, γ, Λ, dsymm are fixed to fulfill several conditions (e.g. the
condition that we stated above for dsymm). For particles with strangeness content the model
uses a quark scaling assumption, namely, that strange baryons mainly interact with their
non-strange quark content, which means the single-particle potential is scaled by a factor
2/3 (for one strange quark) UY = 2UN/3. We can set this scaling to zero, which means that
Λ hyperons stop interacting with the other nucleons via a Skyrme force (scattering is for
sure still present). The result of this effect for the whole phase space is displayed in Figure
6.3, where the green curve corresponds to a simulation run with a Λ-nucleon interaction,
whereas in the red curve the interaction was switched off.

Figure 6.3: GiBUU simulations for Λ hyperons with Λ-nucleon interaction (green) compared
to the case where the Skyrme interaction is switched off (red).

The curves in Figure 6.3 for the two different simulations are in principle distinguishable.
This is a promising result, because it means that potential effects could also be extracted
from the inclusive Λ analysis after the tuning is done.
If all this work will be done, we have tuned the production mechanism of Λs in p+A
reactions where the environment is well known. We are then equipped to apply the models
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to the more complex reactions of heavy ion collisions (e.g. Au+Au collisions measured with
HADES), where we have to deal with evolving systems.

In the second part of this thesis we presented results of two-particle correlations be-
tween protons. We explained the mechanisms which are responsible for particle correlations
and compared the experimental proton-proton correlation results to the theoretical Koonin
model as well as to the microscopic UrQMD transport code. The height of the correlation
function was reproduced by the model using a Gaussian source size of Rg = 2.2+0.23

−0.22 fm,
which was the outcome of UrQMD simulations. However, a conjecture of a Gaussian source
seems to be a not fully realized approximation indicated by the width of the experimental
correlation function. We discussed the problem of non-Gaussian sources with arguments
taken from [Ver02], which constructed a model with the assumption that the shape of
the proton source is different for protons that are emitted at completely different time
scales. They developed a simple two component model (STCM), which fitted better to
experimental data. We applied this model also to our measured proton-proton correlation
function and also there the model showed slightly a better agreement.
The determination of the proton-proton correlation function was a first step in the analysis.
We have now all tools ready which are necessary to calculate correlation functions especially
to calculate the mixed event background. The next step would be to construct the more
elaborate Λp correlation function in the p+Nb system. We have seen in simulations in
chapter 5 that the strong interaction induces a large positive correlation contribution, if the
repulsive Coulomb and Pauli interaction would be absent. A correlation function where the
latter two are absent and which is only based on strong interactions is the Λ-proton function.
A theoretical calculation of the Λp correlation function was performed by [Wan99b]. Their
results are displayed in Figure 6.4, which shows in the upper panel the correlations obtained
for a Λp pair and for comparison in the lower panel the pp case (as a function of the relative
momentum k = 1

2 |p1 − p2| in the pair rest frame).

Figure 6.4: Calculation of the Λp (upper panel) and pp (lower panel) correlation function
for three different source sizes Rg = 4 fm (squares), Rg = 6 fm (triangles) and 10 fm (circles)
extracted from [Wan99b].
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One can see in Figure 6.4 the advantage of the Λp correlation function. At larger source
sizes Rg > 6 fm it is still possible to distinguish between different sources, while in the pp
case the curves coincide because the anti-correlation dominates. We want to extract the
cleaner Λp correlation function from Λs produced in the p+Nb system in future. It is then
possible to study effects purely based on strong interactions without the suppressions as in
the proton-proton case.
We calculated already the Λp correlation function with UrQMD simulations and the CRAB
model for the p+Nb system. The result is displayed in Figure 6.5. The correlation function
shows the expected behaviour of a positive correlation signal due to the strong nuclear
interaction at low relative momenta.

Figure 6.5: Λp correlation function obtained from UrQMD+CRAB for the p+Nb reaction,
which shows the expected behaviour of a positive correlation signal at small relative momenta
k.



Bibliography

[Abd10] M. Abdel-Bary.
Production of Λ and Σ0 hyperons in proton-proton collisions.
Eur. Phys. J., A 46:27–44, 2010.

[Ada06] J. Adams et al.
Proton-lambda correlations in central Au+Au collisions at √sNN = 200 GeV.
Phys. Rev., C 74:064906, 2006.

[Aga09] G. Agakishiev et al.
The high-acceptance dielectron spectrometer HADES.
Eur. Phys. J., A 41:243–277, 2009.

[Aga10] G. Agakishiev et al.
In-medium effects on K0 mesons in relativistic heavy-ion collisions.
Phys. Rev., C 82:044907, 2010.

[Aga11a] G. Agakishiev.
pp and ππ intensity interferometry in collisions of Ar+KCl at 1.76 AGeV.
Eur. Phys. J., A 47:63, 2011.

[Aga11b] G. Agakishiev et al.
Hyperon production in Ar+KCl collisions at 1.76A GeV.
Eur. Phys. J., A 47:21, 2011.

[Aga13] G. Agakishiev et al.
Inclusive pion and eta production in p+Nb collisions at 3.5 GeV beam energy.
Phys. Rev., C 88:024904, 2013.

[Aic85] J. Aichelin and Che Ming Ko.
Subthreshold kaon production as a probe of the nuclear equation of state.
Phys. Rev. Lett., 55:2661, 1985.

[Alv04] H. Alvarez Pol et al.
A large area timing RPC prototype for ion collisions in the HADES spectrometer.
Nucl. Intrum. Meth., A 535:277–282, 2004.

[Amb60] V. A. Ambartsumyan and G. S. Saakyan.
The degenerate superdense gas of elementary particles.
Sov. Astron., 4:187–201, 1960.

[Ani12] A. V. Anisovich.
Properties of baryon resonances from a multichannel partial wave analysis.
Eur. Phys. J., A 48:5, 2012.

[Bar01] J. Barrette et al.
Lambda Production and flow in Au+Au collisions at 11.5A GeV/c.
Phys. Rev., C 63:014902, 2001.

86



Bibliography 87

[Bas98] S. A. Bass et al.
Microscopic models for ultrarelativistic heavy ion collisions.
Prog.Part.Nucl.Phys, 41:255–369, 1998.

[Bay98] G. Baym.
The physics of Hanbury Brown-Twiss intensity interferometry: From stars to

nuclear collisions.
Acta Physica Polonica, B 29:1839–1884, 1998.

[Ben09] M. L. Benabderrahmane et al.
Measurement of the in-medium K0 inclusive cross section in π−-induced reactions

at 1.15 GeV/c.
Phys. Rev. Lett., 102:182501, 2009.

[Ber13] J. C. Berger-Chen.
private communication, 2013.

[Bet30] H. Bethe.
Theory of the passage of fast corpuscular rays through matter.
Annalen Phys, 5:325–400, 1930.

[Ble99] M. Bleicher et al.
Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular

dynamics model.
J. Phys. G: Nucl. Part. Phys., 25:1859–1896, 1999.

[Bus12] O. Buss et al.
Transport-theoretical description of nuclear reactions.
Phys. Rept., 512:1–124, 2012.

[Bys04] Modeling Bose-Einstein correlations in heavy ion collisions at RHIC, 2004.
[Cha13] N. Chamel, P. Haensel, J. L. Zdunik, and F. Fantina.

On the maximum mass of neutron stars.
Int. J. Mod. Phys., E 22:1330018, 2013.

[CRA00] CRAB.
http://www.pa.msu.edu/∼pratts/freecodes/crab/home.html.
2000.

[Dem10] P. Demorest et al.
Shapiro delay measurement of a two solar mass neutron star.
Nature, 467:1081–1083, 2010.

[Dja10] H. Djapo and B.-J. Schaefer and J. Wambach.
Appearance of hyperons in neutron stars.
Phys. Rev., C 81:035803(11), 2010.

[Elg13] J. Elgeti.
http://web-docs.gsi.de/∼misko/overlap/interface.html.
2013.

[Fuk11] K. Fukushima and T. Hatsuda.
The phase diagram of dense QCD.
Rept. Prog. Phys., 74:014001, 2011.

[Gai13] In-medium effects on hypernuclear formation, 2013.



88 Bibliography

[Gea95] Geant.
http://www.asdoc.web.cern.ch/wwwasdoc/geant_html3/geantall.html.
1995.

[Gil07] A. Gil et al.
Front-end electronics development for the new resistive plate chamber detector

of HADES.
JINST, 2:T11001, 2007.

[Gol60] G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais.
Influence of Bose-Einstein statistics on the antiproton-proton annihilation process.
Phys. Rev., 120:300, 1960.

[Gro08] Particle Data Group.
Particle Physics Booklet.
Elsevier, 2008.

[HAD05] HADES Wiki/SimAna.
Normalization with LVL2 Trigger.
2005.

[Han56a] R. Hanbury Brown, and R. Q. Twiss.
A test of a new type of stellar interferometer on sirius.
Nature, 178:1046, 1956.

[Han56b] R. Hanbury Brown, and R. Q. Twiss.
Correlation between photons in two coherent beams of light.
Nature, 177:27–29, 1956.

[HGe08] HGeant.
http://www-hades.gsi.de.
2008.

[Kil11] M. A. Kilburn.
Proton-proton correlation functions as a probe to reaction dynamics.
PhD thesis, Michigan State University, 2011.

[Koo77] S. E. Koonin.
Proton pictures of high-energy nuclear collisions.
Phys. Lett., 70 B:43, 1977.

[Kot04] R. Kotte et al.
Two-proton small-angle correlations in central heavy-ion collisions: A Beam-

energy and system-size dependent study.
Eur. Phys. J., A 23:271–278, 2004.

[Lal13] R. Lalik.
private communication, 2013.

[Lap09] K. Lapidus et al.
Dielectron production in pp and dp collisions at 1.25 GeV/u with HADES.
arXiv:nucl-ex/0904.1128, 2009.

[Lap13] K. Lapidus.
private communication, 2013.

[Led01] Femtoscopy with unlike particles, 2001.



Bibliography 89

[Leo97] A. Leonidov, M. Nardi, and H. Satz.
Hadron spectra from nuclear collisions.
Z. Phys., C 74:535–540, 1997.

[Li,96] G. Q. Li, and C. M. Ko.
Λ flow in heavy-ion collisions: The role of final-state interactions.
Phys. Rev., C 54:1897–1902, 1996.

[Li,98] G.Q. Li, and G.E. Brown.
K+ versus Λ flow.
Eur. Phys., A 636:487–506, 1998.

[Lis93] M. Lisa.
Impact parameter-gated two-proton intensity interferometry in intermediate en-

ergy heavy ion collisions.
PhD thesis, Michigan State University, 1993.

[Lis10] M. Lisa, and S. Pratt.
Femtoscopically probing the freeze-out configuration in heavy ion collisions.
arXiv:0811.1352, 2010.

[Lor12] M. Lorenz.
Vector meson production in p+Nb reactions and statistical particle production in

Ar+KCl collisions.
PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt, 2012.

[Mac11] R. Machleidt and D.R. Entem.
Chiral effective field theory and nuclear forces.
Phys. Rept., 503:1–75, 2011.

[Opp39] J. R. Oppenheimer and G.M. Volkoff.
On massive neutron cores.
Phys. Rev., 55:374–381, 1939.

[Pra84] S. Pratt.
Pion interferometry for exploding sources.
Phys. Rev. Lett., 53:1219–1221, 1984.

[Pra87] S. Pratt, M. B. Tsang.
Viewing the liquid-gas phase transition by measuring proton correlations.
Phys. Rev., C 36:2390–2395, 1987.

[Pra07] V. Prassa et al.
In-medium effects on particle production in heavy ion collisions.
Nucl. Phys., A 789:311–333, 2007.

[Sah63] G. S. Sahakian and Yu. L. Vartanian.
On the possible phase states of matter at extremely high densities.
Il Nuovo Cimento, 30:82–104, 1963.

[Sak94] J. J. Sakurai.
Modern quantum mechanics.
Addison-Wesley, 1994.

[Sch08a] J. Schaffner-Bielich.
Hypernuclear physics for neutron stars.
Nucl. Phys., A 804:309–321, 2008.



90 Bibliography

[Sch08b] A. Schmah.
Produktion von Seltsamkeit in Ar+KCl Reaktionen bei 1.756 AGeV mit HADES.
PhD thesis, Technische Universität Darmstadt, 2008.

[Sie13] J. Siebenson.
Strange baryonic resonances below the K̄N threshold - Results from p + p

reactions at the HADES experiment.
PhD thesis, Technische Universität München, 2013.

[Sjö07] T. Sjörstrand, S. Mrenna, and P. Skands.
A brief introduction to PYTHIA 8.1.
arXiv:hep-ph/0710.3820, 2007.

[Stu01] C. Sturm et al.
Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion

collisions.
Phys. Rev. Lett., 86:39, 2001.

[Tec06] Vector meson production in pA and πA collisions.
Technical Report, 2006.

[Tlu10] P. Tlusty, M. Weber, P. Salabura et al.
Production of charged pions in reaction p+Nb at 3.5 GeV.
Technical report, 2010.

[Tol39] R. G. Tolman.
Static solutions of Einstein’s field equations for spheres of fluid.
Phys. Rev., 55:364–373, 1939.

[Tsu99] K. Tsushima, A. Sibirtsev, A. W. Thomas, and G. Q. Li.
Resonance model study of kaon production in baryon baryon reactions for heavy

ion collisions.
Phys. Rev., C 59:369–387, 1999.

[van11] M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni.
Evidence for a massive neutron star from a radial-velocity study of the companion

to the black widow pulsar B1957+20.
Astrophys. J., 728:95, 2011.

[Ver02] G. Verde et al.
Imaging sources with fast and slow emission components.
Phys. Rev., C 65:054609, 2002.

[Vid11] I. Vidaña, D. Logoteta, C. Providência, A. Polls, and I. Bombaci.
Estimation of the effect of hyperonic three-body forces.
Europhys. Lett., 94:1102, 2011.

[Wan99a] Z. S. Wang, Amand Faessler and C. Fuchs and T. Waindzoch.
Lambda collective flow in heavy ion reactions.
Nucl.Phys., A 645:177–188, 1999.

[Wan99b] F. Wang, and S. Pratt.
Lambda-proton correlations in relativistic heavy ion collisions.
Phys. Rev. Lett., 83:3138–3141, 1999.

[Web11] M. Weber.
Dielektronen Spektroskopie in kalter Kernmaterie.



Bibliography 91

PhD thesis, Technische Universität München, 2011.
[Wei08] J. Weil.

Dilepton production in elementary nuclear reactions within a BUU transport
model.

Master’s thesis, Justus-Liebig-Universität Giessen, 2008.
[Wei12a] J. Weil, H. van Hees, and U. Mosel.

Dilepton production in proton-induced reactions at SIS energies with the GiBUU
transport model.

Eur. Phys. J., A 48:111, 2012.
[Wei12b] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich.

Hyperons and massive neutron stars: the role of hyperon potentials.
Nucl. Phys., A 881:62–77, 2012.

[Wei12c] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich.
Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry.
Phys. Rev., C 85:065802, 2012.

[Wei13] J. Weil.
private communication, 2013.

[Yuk35] H. Yukawa.
On the Interaction of Elementary Particles.
Proc. Phys.-Math. Soc. Jpn., 17:48, 1935.


