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Here, on the edge of what we know,
in contact with the ocean of the unknown,

shines the mystery and beauty of the world.
And it’s breathtaking.
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Abstract

The collective behaviour of the particles produced in ultra-relativistic heavy-ion collisions is
one of the probes used to study the properties of the created quark–gluon plasma (QGP), a state
of strongly interacting matter characterised by deconfined quarks and gluons. Studies on the
hydrodynamic response of the QGP to the initial state anisotropies, known as the anisotropic
flow phenomenon, have allowed the determination of some of its transport properties, like the
ratio of its shear viscosity over entropy density η/s. The observation that its value must be low
to explain the experimental results has shown that QGP is one of the most perfect liquids found
until now.

Anisotropic flow analyses have benefited from the development of the multiparticle cor-
relations techniques, followed by the introduction of the formalism of uni- and multivariate
cumulants. Extensive measurements for various centre of mass energies and collision systems
have shown the necessity to study not only the flow amplitudes and symmetry planes but also
the genuine correlations that may exist between different harmonics.

This work presents the mathematical formalism used in the generalisation of the Symmetric
Cumulants (SCs), observables initially developed to probe the genuine correlations between two
flow amplitudes vm and vn, to three and more flow amplitudes. This latter choice results in
the development of a new and alternative approach for flow analyses, where the flow amplitudes
squared are directly used as fundamental observables in cumulant expansion. This method is
qualified of “alternative” as the flow observables were previously defined using the azimuthal
angles and single-event averages in the cumulant expansions. The presented toy Monte Carlo
simulations check the different required properties of multivariate cumulants and ensure the
validity of this novel approach. The robustness of these observables to few-particle nonflow
correlations is furthermore verified with the help of the HIJING event generator.

These generalised SCs are then used to measure experimentally for the first time the event-
by-event genuine correlations between three distinct flow amplitudes in Pb–Pb collisions at√
sNN = 2.76 TeV with the ALICE data recorded in 2010. Comparisons with model predictions

show the development of genuine correlations between v2, v3 and v4 during the hydrodynamic
evolution of the QGP. The same phenomenon is also hinted with the measurements of such
correlations between v2, v3 and v5, with the additional potential to learn more about the non-
linear response of v5 from v2 and v3. The results for SC(2, 4, 6) and SC(3, 4, 5) indicate an absence
of genuine correlations between the concerned amplitudes. Besides, all these measurements carry
additional and independent constraints for the parametrization of the theoretical models.

Finally, the alternative approach developed for the higher order SCs is applied to the case of
the genuine correlations between distinct moments of the flow amplitudes. Toy Monte Carlo and
HIJING studies are used to control the validity of this extension to the Asymmetric Cumulants
(ACs). First predictions at the initial and final states for different combinations of the proposed
two-harmonic ACs are also presented.
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Zusammenfassung

Das kollektive Verhalten von Teilchen, die in ultrarelativistischen Schwerionen-Kollisionen
erzeugt werden, ist eine der Sonden, die verwendet wird, um die Eigenschaften des erzeugten
Quark-Gluon-Plasmas (QGP) zu untersuchen, einem Zustand stark wechselwirkender Materie,
der durch freie Quarks und Gluonen gekennzeichnet ist. Studien über die hydrodynamische
Reaktion des QGP auf Anfangszustandsanisotropien, bekannt als das Phänomen des anisotropen
Flusses, haben die Bestimmung einiger seiner Transporteigenschaften ermöglicht, wie das Ver-
hältnis seiner Scherviskosität zur Entropiedichte η/s. Die Beobachtung, dass sein Wert niedrig
sein muss, um die experimentellen Ergebnisse zu erklären, hat gezeigt, dass QGP eine der per-
fektesten Flüssigkeiten ist, die bis jetzt gefunden wurden.

Anisotrope Flussanalysen haben von der Entwicklung der Mehrteilchen-Korrelations-Techni-
ken profitiert, sowie von der Einführung des Formalismus der uni- und multivariaten Kumu-
lanten. Umfangreiche Messungen bei verschiedenen Schwerpunktsenergien und in verschiedenen
Kollisionssystemen haben die Notwendigkeit gezeigt, nicht nur die Flussamplituden und Symme-
trieebenen zu untersuchen, sondern auch die echten Korrelationen, die zwischen verschiedenen
Harmonischen bestehen können.

Diese Arbeit stellt den mathematischen Formalismus vor, der bei der Verallgemeinerung
der Symmetrischen Kumulanten (SCs) verwendet wird, Observablen, die ursprünglich entwick-
elt wurden, um die echten Korrelationen zwischen zwei Flussamplituden vm und vn auf drei
und mehr Flussamplituden zu untersuchen. Diese letztere Wahl führt zur Entwicklung eines
neuen und alternativen Ansatzes für Flussanalysen, bei dem die quadrierten Flussamplituden
direkt als fundamentale Observablen in der Kumulantenexpansion verwendet werden. Diese
Methode ist als “alternativ” zu bezeichnen, da die Flussobservablen zuvor über die azimu-
talen Winkel und Einzelereignis-Mittelwerte in den Kumulantenexpansionen definiert wurden.
Die vorgestellten vereinfachte Monte-Carlo-Simulationen überprüfen die verschiedenen erforder-
lichen Eigenschaften der multivariaten Kumulanten und gewährleisten die Gültigkeit dieses
neuartigen Ansatzes. Die Robustheit dieser Observablen gegenüber Wenig-Teilchen-Nichtfluss-
Korrelationen wird darüber hinaus mit Hilfe des HIJING-Ereignisgenerators verifiziert.

Diese verallgemeinerten SCs werden dann verwendet, um zum ersten Mal die echten Korrela-
tionen zwischen drei verschiedenen Flussamplituden in Pb–Pb Kollisionen bei √sNN = 2.76 TeV
mit den ALICE-Daten aus dem Jahr 2010 experimentell zu messen. Vergleiche mit Modell-
vorhersagen zeigen die Entwicklung von echten Korrelationen zwischen v2, v3 und v4 während
der hydrodynamischen Entwicklung des QGP. Das gleiche Phänomen wird auch bei den Messun-
gen solcher Korrelationen zwischen v2, v3 und v5 angedeutet, mit dem zusätzlichen Potenzial,
mehr über die nicht-lineare Reaktion von v5 aus v2 und v3 zu erfahren. Die Ergebnisse für
SC(2, 4, 6) und SC(3, 4, 5) zeigen, dass es keine echten Korrelationen zwischen den betroffenen
Amplituden gibt. Außerdem bringen alle diese Messungen zusätzliche und voneinander unab-
hängige Einschränkungen für die Parametrisierung der theoretischen Modelle.

Schließlich wird der alternative Ansatz, der für die SCs höhere Ordnung entwickelt wurde,
auf den Fall der echten Korrelationen zwischen verschiedenen Momenten der Flussamplituden
angewendet. Mit Hilfe von Monte-Carlo- und HIJING-Studien wird die Gültigkeit dieser Er-
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weiterung auf die Asymmetrischen Kumulanten (ACs) überprüft. Erste Vorhersagen für die
Anfangs- und Endzustände für verschiedene Kombinationen der vorgeschlagenen zweiharmonis-
chen ACs werden ebenfalls vorgestellt.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) is a theoretical model used to describe the
properties of elementary particles and their interactions. Since its formulation in the 1970s, it is
still successful as it can explain with a great precision numerous observables. It also allows the
predictions of many particles and phenomena. However, the SM is not complete. As a start, it
does not contain gravity — one of the four fundamental forces. Recent discoveries also indicate
that the SM needs to be extended. For example, the observations of neutrino oscillations show
that neutrinos must be massive particles, while SM neutrinos are massless. The Dark Matter
and Dark Energy needed to explain the respectively 26% and 69% unknown parts of the Universe
are also absent from the SM. All the theories trying to explain these phenomena are gathered
under the name of Physics beyond the Standard Model. The SM is a minimal model, meaning
it contains only the particles needed for its consistency [1]. Figure 1.1 presents an overview of
this particle content. This includes twelve fermions (and their corresponding antifermions), four
gauge bosons, and the Higgs boson [2–4]. The latter is a spin 0 particle and one of the essential
elements of the SM. It was introduced to explain the origin of the mass of all particles. Its first
experimental observation by ATLAS and CMS in 2012 [5, 6] contributed further to the success
of the SM.

The fermions of spin 1/2 are classified into two groups: the quarks and the leptons. Quarks
can have one of the six following flavours: up (u), charm (c), top (t), down (d), strange (s) and
bottom (b). The first three have a positive electric charge of 2/3 of the elementary charge, while
the last three have a negative charge of −1/3 of the elementary charge. For the leptons, three
flavours with an electric charge of −1 can be distinguished: the electron (e), the muon (µ) and
the tau (τ). Each one of them has an associated chargeless and massless neutrino. Additionally,
the fermions are divided into three generations, also called families, formed with two quarks (a
positive one and a negative one), one charged lepton and its corresponding neutrino.

The SM is a local quantum field theory (QFT). It has the gauge symmetry SU(3)C ⊗
SU(2)L ⊗ U(1)Y [1]. SU(3)C corresponds to the group associated with the strong interaction
with the colour charge. SU(2)L⊗U(1)Y represents the reunion of the electromagnetic and weak
forces, where the index L stands for the participation of the left-handed fermions in the weak
interaction and Y for the hypercharge. These three fundamental forces — strong, weak and
electromagnetic — are all mediated with spin 1 bosons. In QFT, these bosons can be identified
with the generators of the corresponding groups. Therefore, for each interaction, their number is
equal to the number of generators. The weak interaction acts on all fermions with the exchange
of the W± and Z0 bosons. Because of the masses of the carriers, the weak force is short-ranged
and act only at distances smaller than the size of the nucleons. Electrically charged particles
can interact through electromagnetism. Its neutral mediator, the photon γ, has no rest mass.
This implies that the electromagnetic force is long-ranged. The third fundamental interaction
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Figure 1.1: Fundamental particles of the Standard Model [7]. The fermions are the constituents
of matter, while the gauge bosons describe the interactions.

included in the SM is the strong force. Its exchange particles are the gluons g, which can act
between the quarks, but also between other gluons. In opposition to electromagnetism and
gravity, which become weaker when the distance increases, the strong interaction presents a
peculiar behaviour. At short ranges, the coupling constant of the force becomes small, and the
interactions of quarks and gluons can be treated perturbatively [8]. However, at wavelengths
of the order of 1 fm, the interacting partons appear as tightly bound composite particles, the
hadrons. This phenomenon, known as colour confinement, will be discussed in more details in
Section 1.1.

This chapter is organised as follows. The theory of the strong interaction, the quantum
chromodynamics (QCD), is presented in Section 1.1. The properties and formation of the
quark–gluon plasma (QGP) are described in Section 1.2. Relativistic heavy-ion collisions and
their physics are treated in Section 1.3. Section 1.4 introduces the concept of the anisotropic
flow phenomenon. A selection of previous flow measurements and their physics messages are
shown in Section 1.5.

1.1 Quantum chromodynamics

The strong interaction between the quarks and gluons is described with a non-Abelian
SU(3)C gauge theory called QCD [8, 9]. The name chromodynamics comes from its associated
charge, the colour. There are three values of colour, named in analogy with the three primary
colours: red, blue and green. Independently of their flavour, quarks carry one value of colour,
while antiquarks have one anticolour (antired, antiblue or antigreen). The mediators of QCD
are the colour-charged gluons. In opposition to quantum electrodynamics (QED), where the
photon is the single, neutral vector boson of the interaction, there are eight different gluons,
which can be related to the eight 3 × 3 Gell-Mann matrices of SU(3). For example, a gluon
changing a blue quark into a green one is “green–antiblue”. One consequence of this non-zero
charge is that the gluons can interact with each other.
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1.1. Quantum chromodynamics

Hadrons are composite bound states of quarks and gluons. They are categorised into dif-
ferent families, the two main ones being the mesons and the baryons. Mesons result from a
quark-antiquark pair, while baryons are formed from the binding of three quarks. As no sin-
gle quark has been seen, hadrons must be colourless particles. A meson is composed of a pair
of quarks of one colour and its corresponding anticolour, while each quark in a baryon has a
different colour. Recently, exotic states with over three valence quarks have been observed in
experiments. An exotic meson, the tetraquark Z±(4430), has been found in 2007 by the Belle
experiment [10]. Concerning the exotic baryons, the LHCb Collaboration discovered in 2015 the
two pentaquarks P+

c (4380) and P+
c (4450) [11].

The interactions between quarks and gluons are described in the QCD Lagrangian den-
sity [12], given by

LQCD =
∑
q

q(x) (iγµDµ −mq) q(x)− 1
4g2 trGµν(x)Gµν(x), (1.1)

where q(x) is the local quark field, mq the quark mass, γµ the Dirac matrices, g the coupling
constant, tr the trace and Dµ the covariant derivative,

Dµ = ∂µ − iAaµta, (1.2)

with Aaµ the gauge field and ta the generators of SU(3). Equation (1.1) can be divided into two
contributions. The first term represents the interaction dynamics between the quarks and the
gluons. Gluon field dynamics is described by the second term, with

Gµν(x) ≡ i [Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x)i [Aµ(x), Aν(x)] (1.3)

the gluon field strength tensor.
The strength of an interaction is characterised by its corresponding coupling constant. For

example, in QED, the difficulty to separate two electric charges lessens the further they are
from each other. This implies that the corresponding coupling constant, αQED, is strong at
short scales and decreases with the distance. The opposite behaviour is observed in QCD. At
large energies or small distances, the coupling constant is weak. When the energy decreases or
the distance increases, it becomes stronger, hence the name strong interaction [9, 12]. In QFT,
the beta function expresses the dependence of the strong interaction coupling constant αS as a
function of the energy scale Q [8], with the following relation

Q2 ∂αS
∂Q2 = ∂αS

∂ lnQ2 = β(αS). (1.4)

In the case of QCD, this beta function is written as the series

β(αS) = −
(
b0α

2
S + b1α

3
S + b2α

4
S + . . .

)
(1.5)

with bi the (i+1)-loop β-function coefficient [13]. One has to stress the importance of the minus
sign in Eq. (1.5). From the proof that b0 > 0 [8], the overall signature expresses the decrease of
the coupling constant with the energy. At particularly high energies, the force is so small that
the quarks become free particles. This phenomenon, known as asymptotic freedom, is a property
of non-Abelian gauge theories [14–16]. Figure 1.2 shows the running of the coupling constant
with the energy scale. Some theoretical models predict that the decrease of αS with the energy
will eventually make its value comparable to the coupling constants of the electromagnetic and
the weak forces, for energies of the order of 1015–1017 GeV [8]. As the three forces would then
merge into a single interaction, these models are collectively known under the name of Grand
Unified Theories or Grand Unification.
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Figure 1.2: Running of the coupling constant αS as a function of the energy scale Q determined
using different physical processes [13].

As mentioned above, hadrons are colourless objects. It is then not possible to observe
directly colour-charged particles. This confinement [17] can be understood with the following
illustration (Fig. 1.3): for a pair of colour charges, the gluon field forms a tube, also called string,
between them. Energy is provided to the quarks to separate them. Due to the behaviour of αS ,
the length of the string increases until it reaches the point where it becomes energetically more
favourable to create a new pair of quark-antiquark than further elongating the tube. Therefore,
instead of detecting single quarks, new mesons are produced from the gain of energy. In collisions
in particle accelerators, the available energy is high enough that this process can happen multiple
times, creating objects called jets.

The running of αS has not only implications on the phenomena related to the strong force

Figure 1.3: Illustration of the colour confinement for a pair of colour charges. The black arrows
symbolise the energy given to the pair to separate it. Inspired from [17].
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itself. It also prevents solving the QCD Lagrangian density with a unique approach. Two main
regimes can therefore be identified. For small αS , perturbation theory can be applied [9,15,18].
In this regime, the combination of short distances and small size of the coupling constant allows a
good approximation of the infinite number of interaction terms by a finite sum. Many important
measurements have been tested using perturbative QCD (pQCD), like the ratio of the production
rate of e+e− −→ hadrons and e+e− −→ µ+µ−.

For the range where the coupling constant is larger, non-perturbative techniques have to
be used to solve the Lagrangian. An example is lattice QCD. This numerical approach is based
on a four-dimensional space–time grid, also called the lattice [19, 20]. Its size is N3

σ × Nτ and
the lattice spacing — i.e. the distance between the nodes — is generally denoted with a. Fields
representing the quarks are placed on the nodes of the lattice, while the connections between
them stand for the gluon fields. All physical quantities are then expressed in terms of the spacing,
even if the latter is not used as a parameter in the discretized QCD partition function [19]. The
spacing a can be changed by changing the coupling appearing in the QCD Lagrangian. Finally,
continuum QCD is retrieved when the lattice spacing tends to zero.

1.2 Quark–gluon plasma

The running of αS has important consequences on the behaviour of quark matter. It can
be therefore of interest to study its thermodynamic properties as a function of the temperature
T and the baryon chemical potential µB. The phase diagram of QCD matter is represented in
Fig. 1.4. At low T and µB, the quarks and gluons are confined inside the hadrons. The ground
state of this nuclear matter is the nucleus, at the conditions of T ∼ 0 and µB = 938 MeV [21].
For lower baryonic densities1, the matter exists in a hadronic gas state. Further, for chemical

Te
m

p
er

at
u

re
 [

M
eV

]

Baryon Chemical Potential [GeV]

Nuclei

Quark-Gluon Plasma

Colour Superconductor?Hadron Gas

Early Universe
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Figure 1.4: Schematic of the QCD phase diagram showing the different phases of quark matter
as a function of the temperature and baryon chemical potential. The dashed line indicates the
crossover phase transition. The interrogation marks indicate some remaining open questions.
Inspired from [22].

potentials between µB = 938 MeV and µB ≥ 1 GeV, the nuclei form tightly bound solids or
Fermi liquids [21].

1It is possible to describe the thermodynamic properties of quark matter using its baryonic density instead of
its baryon chemical potential. The phase diagram obtained this way is similar to the one presented in Fig. 1.4.
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The question of the composition of the ultra-dense cosmological objects like neutron stars
and black holes attracted the interest of the physics community at the end of the 1930s. There-
upon, understanding the properties of QCD matter at densities larger than the normal matter
density became necessary [18, 23, 24]. At T ≈ 0 MeV and µ ≥ 1 GeV, calculations predict the
existence of a degenerate liquid and Cooper pairing of the quarks near the Fermi surface [21,25].
In this state, the quarks create bosonic pairs forming a condensate. Because of its similari-
ties with the superconductors made from electrons in a metal and the local colour symmetry
breaking, this phase is dubbed the colour superconductor phase [26,27].

With the introduction of the quark model in 1964 by Gell-Mann [28] and Zweig [29, 30],
hadrons could be explained as bound states of quarks and gluons. The possibility of the existence
of deconfined quarks was considered and in 1970, Itoh suggested their presence inside the neutron
stars [31]. A few years later, the idea of a new state of matter composed only of unbound quarks
appears as well [23, 32, 33]. This state was first dubbed hadronic plasma, in analogy with its
electrodynamic counterpart where the electrons of a neutral gas become mobile charges for high
enough temperatures [21,33]. It has since then been renamed quark–gluon plasma [34].

For µ ∼ 0, calculations done with lattice QCD have predicted a crossover transition at
T < 200 MeV [35] between the hadronic gas and the QGP. One of its interesting features is the
restoration of chiral symmetry. In QFT, the left- and right-handed components of a massless
fermion are independent [20, 36, 37]. Furthermore, confined quarks are massive particles. As a
result, the chiral symmetry is spontaneously broken. In the transition from normal matter to
QGP, the quarks deconfine and their masses go from the large values to nearly zero, hence the
restoration of the symmetry.

As an expected solution of pQCD at high temperatures, the QGP was first thought to behave
like a weakly interacting gas [12, 23, 38], based on asymptotic freedom and Debye screening
of the colour charge. While QGP has been experimentally observed in 2000 at the Super
Proton Synchrotron (SPS) at CERN [39], this idea held until the first high energy heavy-ion
collisions at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory
in 2004 [37, 40–42]. With the measurements of various effects like the collective flow or the
jet quenching, it has been found with great surprise that the QGP behaves like a strongly
interacting liquid. This explains why QGP is often called sQGP, from strongly coupled quark–
gluon plasma. Furthermore, the comparison of the predictions from relativistic hydrodynamics
with the data has shown that the ratio of the shear viscosity over entropy density η/s must be
close to the lowest bound of 1/4π [43]. This makes the QGP the most perfect fluid known up
to now [21,40,41].

Even though a certain number of predictions have already been confirmed or proven incor-
rect by measurements of nuclear collisions, many open questions remain about the phases of the
QCD matter and their transitions. For example, in the case of high baryon density, lattice QCD
cannot be used anymore. Computations made with diverse methods for two light quark flavours
hint at the existence of a critical point followed by a first order phase transition between the
hadronic and QGP phases [12, 21, 44–46]. However, the existence of this critical point is only
theoretical and its exact position uncertain. Experimental searches are therefore done for this
purpose at RHIC using the beam energy scan [35, 47–49]. In this experimental program, the
available phase space is studied using heavy-ion collisions at different centre of mass energies,
starting at √sNN = 7.7 GeV up to √sNN = 200 GeV, the largest energy reachable at RHIC [21].

Figure 1.4 also shows in green the direction of the evolution of the Early Universe and
the conditions inside the neutron stars cores. QCD predicts that a high temperature QGP
filled the Universe in the first few microseconds after the Big Bang [38, 50]. This state was
present until the Universe cooled enough for the gluons and quarks to recombine into hadrons.
Furthermore, while the outer crust of neutron stars is known to be made of electron gas, ions
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and neutrons, the composition of the inner part is still an open question. Quark matter as QGP
is one of the possibility investigated by theoreticians and experimentalists, alongside hyperons
and neutrons [51]. Investigating the QGP is therefore fundamental to get a clearer picture of
the phase diagram of the QCD matter, but also a better understanding of the evolution of the
Universe itself for the key role it has in its description.

1.3 Physics of relativistic heavy-ion collisions

QGP can be produced experimentally through ultra-relativistic collisions of heavy ions.
Since its discovery in 2000, it has been observed and studied for different nuclei and centre of
mass energies √sNN, each accelerator having its particularities. For instance, collisions produced
at the Large Hadron Collider (LHC) at CERN are usually done with lead ions at energies of
the order of the TeV (√sNN = 2.76 TeV in 2010–2011, 5.02 TeV in 2015 and 2018). Xenon at√
sNN = 5.44 TeV has also been used in 2017 [52]. Oxygen collisions are planned for the future

Run 3 [53]. RHIC collided gold and other species like uranium at various energies between GeV
and TeV. Some motivations for the use of various energies are the study of the onset of QGP
formation or the influence of the ion shape on the QGP properties. The QGP produced in these
relativistic heavy-ion collisions undergo a time evolution as illustrated in Fig. 1.5. Before the
collision, the nuclei are stripped of the totality of their electrons and accelerated to velocities
close to the speed of light. Relativistic Lorentz contraction becomes non-negligible at these
energies and the collision of the two ions can be seen in the laboratory frame as the collision
of two thin disks or two “pancakes” (see the two left panels in Fig. 1.5). This extreme Lorentz
contraction has two major consequences on the system. First, the density of quarks and gluons
is higher in the disks than in the initial ions at rest. Second, the collision time has a well-defined
value, identical for all the nucleons [37].

Figure 1.5: Simulation of the time evolution of a relativistic heavy-ion collision. Taken from [54],
based on [55,56].

As the geometry of the collision influences the evolution of the produced matter and the
signatures one can extract from them, some technical concepts have to be introduced. Figure 1.6
shows the main keywords used to define the ideal geometry. The overlap of the ions at the time
of the collision is characterised with the impact parameter b, defined as the distance between
the centres of the two nuclei. Collisions with b = 0 are called head-on or central collisions,
while peripheral collisions correspond to an impact parameter closer to the sum of the radii
of the two ions. The reaction plane, or collision plane, is the plane spanned by the direction
of the impact parameter vector b and the beam axis z [57]. Its angle with respect to the
x-axis is denoted by ΨRP . Furthermore, the nucleons in the colliding ions can be divided
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Beam direction
y

x
b

Figure 1.6: Ideal geometry of the collision between two heavy ions. The bold arrow indicates
the impact parameter vector b. The reaction plane of angle ΨRP is denoted with the dashed
line. Based on [57].

into two main groups. The ones which take part in the reaction are called the participants
and they belong to the pink overlap region. The nucleons without any contribution in the
collision are the spectators, indicated in yellow and orange in the figure. While both the impact
parameter and the reaction plane can be used to make theoretical predictions, they are not
directly measurable in experiments. However, it is possible to measure the number of produced
particles, the energy released in the collision and the number of spectators [12]. Both the released
energy, and the produced particle multiplicity are proportional to the number of participants,
and their respective distributions can be used to categorise the events into centrality classes. The
distribution of produced particles, for instance, is divided into consecutive steps in such a way
that the 5% highest multiplicities events can be related to the 5% most central collisions [12,58].
In relativistic collisions, the centrality c is linked to the impact parameter b using the relation

c ' πb2

σinel
, (1.6)

where σinel is the total inelastic nucleus-nucleus cross section [58]. Figure 1.7 illustrates the
centrality classification and its connection to the impact parameter and shape of the overlap
region of the collision.

For an event with a given impact parameter, the experimental multiplicity or number of
participants can be related to the theoretical quantities like the number of wounded nucleons
— nucleons who interacted at least once — and of binary collisions — collisions between two
nucleons. This is done with the help of models like the Glauber model [12,59–62]. The nuclear
density profile used in the Glauber model is given by the Woods–Saxon distribution [12] and
the description of an inelastic collision of two nuclei is approximated as the superposition of
successive independent interactions of the nucleons. Furthermore, two types of calculations can
be found, leading to slightly different results. The first one is known as the optical Glauber
model [60]. In this approach, the nucleon density is assumed to be continuous, meaning the
nucleons do not have specific spatial coordinates. The second method is the Monte Carlo
Glauber (MC-Glauber) [60]. Here, the two nuclei are built with the nucleons according to their
corresponding density distributions. The collision for a random b is then described as this
sequence of binary nucleon–nucleon collisions, where it is assumed that the nucleons have a
straight path between the interactions [60,62]. Moreover, MC-Glauber takes as one of its inputs
the nucleon-nucleon cross-sections obtained from pp collisions at various energies and assumes
they remain constant after each collision.
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1.3. Physics of relativistic heavy-ion collisions

Figure 1.7: Sketch of the centrality definition based on the multiplicity produced in the colli-
sion [12]. The corresponding impact parameter b and number of participants Npart are shown.

Once the ions collide, the interactions can develop under different forms. Hard processes2

with large transferred momenta Q & 10 GeV [63] are the first processes to happen, due to the
uncertainty principle. These so-called “hard” particles are at the origin of phenomena like jets,
direct photons, pairs of dileptons and can be traced back to this pre-equilibrium phase. The bulk
of the initial quarks and gluons liberated by the collision produces a volume of matter that evolves
until a thermal equilibrium is reached. In this pre-equilibrium state, the hydrodynamics theory,
used to describe successfully the QGP phase, cannot be applied and other models have been
developed. Examples are the MC-Glauber introduced above, or the Colour Glass Condensate
(CGC) approach. The latter is based on a different ordering of the time scales in the collision,
characteristic of glass-like matter [20, 63–65]. As the accelerated ions are extremely Lorentz-
contracted, their collision time becomes infinitely short, τ0 ∼ 1/

√
s, where

√
s is the centre of

mass energy. Moreover, for a soft gluon with momentum k, the time scale of its evolution is
τg ∼ 1/k, with as a consequence τg � τ0 [20]. If the energy is sufficient, the density of partons
becomes saturated and the partons are no longer independent. They start to act coherently,
leading to a description with classical colour fields in the same plane as the colliding ions. In the
CGC approach, when the two ions collide, their classical colour fields combine. As the disks go
through each other, the hadrons separate, forming new longitudinal colour fields. The medium
takes the form of a cylinder composed of three-dimensional classical colour fields as shown in
Fig. 1.8. This short-lived pre-equilibrium state is the so-called glasma [20] (see third panel in
Fig. 1.5).

2More energetic particles are called “hard” particles, while particles with less kinetic energy are the “soft”
particles.
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Figure 1.8: Longitudinal colour flux tubes developing between the two colliding ions in the CGC
approach [63].

As the pre-equilibrium state continues to develop, the partons interact with each other
and the volume of produced matter quickly reaches a local thermal equilibrium. It has to
be noted that these interactions are not negligible. The thermalization time is about 1 fm/c
although the medium is fast expanding, meaning the distances the partons have to cover increase
continuously [63]. The phase after this thermalization is known as QGP, where relativistic
viscous hydrodynamics can be applied. It is visible in the fourth panel in Fig. 1.5. The QGP
continues to expand and the local thermal equilibrium disappears. The density and temperatures
decrease until they reach the point where the gluons and quarks can recombine into hadrons.
This corresponds to the crossover phase transition at TC in the QCD phase diagram in Fig. 1.4.
This phase, simply called hadronisation, happens between τ ' 10–20 fm/c and leads to the
formation of a hot hadronic gas [63]. The energy density of the system continues to decrease as
the gas expands. Its hadronic content is constantly changing due to inelastic interactions until
the so-called chemical freeze-out [37,66]. At this point, the particle numbers and species become
conserved, but the particle momenta can still be changed through elastic processes. The thermal
freeze-out stops all elastic scatterings and the final state particles will fly freely to the detectors,
with the only possible changes in the composition being due to particle decays and interactions
with the matter composing the detector itself.

Finally, as the collision between two heavy nuclei recreates the conditions which are pre-
dicted to be the ones of the Big Bang and the time evolution of the produced matter is similar
in the two cases, relativistic heavy-ion collisions are sometimes called Little Bang [40, 42,67].

1.4 Anisotropic flow phenomenon

The idea to describe the evolution of the system created in the collision of two ions with
hydrodynamics was first proposed in 1953 by Landau [68]. It was confirmed with the first
measurements at RHIC where the hydrodynamic predictions were found to be in good agreement
with the data. Ideal hydrodynamics is applicable only if the system is close to a local thermal
equilibrium. This comes from the fact that hydrodynamics laws are based on the thermodynamic
properties of the system, like its temperature, pressure and energy density, and these quantities
are well defined only close to the equilibrium [69]. As a result, the hydrodynamic description is
valid only from the thermalisation of the interacting matter to its freeze-out, and thus, initial
conditions need to be provided. Various approaches can be used to obtain these initial conditions.
Some examples are the MC-Glauber model which has already been discussed earlier, or the IP-
Glasma based on the CGC approach [70]. Alternatively, transport models can also be employed.
For instance, a multiphase transport model (AMPT) [71], which is based on different other
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1.4. Anisotropic flow phenomenon

models, namely a Heavy-Ion Jet INteraction Generator (HIJING) [72,73] and the Zhang’s parton
cascade model [74] for the generation of the partons and their evolution up to the hadronisation.
One common point of all these models is that one of their output is the initial transverse density
distribution of the matter formed in the early times of the collision. The HIJING model is
discussed in Section 6.1.

In semicentral and peripheral events, this transverse density, and the corresponding volume
of interacting matter in the overlap region of the two colliding nuclei, is at leading order elliptical
in the transverse plane, with the smaller axis of the ellipse parallel to the reaction plane [75] as
shown in Fig. 1.6. However, this geometric asymmetry cannot explain the results observed in
central events as the overlap region is mainly circular, and hence isotropic. This other source of
anisotropy in the system is found in the nature of the colliding ions. They are not ideal, smooth
spheres, but composite objects made of protons and neutrons. The positions of the nucleons
fluctuate event-by-event, which leads to deformations of the overlap region. These fluctuations
are present in all centralities, but they dominate in central events [75]. From these two sources
and their effects, two different regimes can be distinguished: the geometry-dominated regime in
non-central events and the fluctuation-dominated regime for the most head-on collisions [76,77].

One dimensionless quantity used to determine the size of the almond-shaped asymmetry is
the so-called ellipticity, which is defined with respect to the reaction plane as

εRP2 = {x
2 − y2}

{x2 + y2}
, (1.7)

where x and y are the coordinates of the participating nucleons projected on the transverse
plane and {. . .} represents the average over the initial energy density distribution e(x, y) [75],

{. . .} =
∫
dxdy e(x, y) . . .∫
dxdy e(x, y) . (1.8)

With this definition of the ellipticity, εRP2 can take any value between zero and one. In particular,
εRP2 = 0 means the system presents a perfectly symmetric energy density profile.

The deformations in the interacting volume shape due to the fluctuations lead to a gener-
alisation of the ellipticity to higher orders. Thereupon, the initial density distribution can be
described with the eccentricities En [75, 78,79] defined as

En ≡ εneinΦn ≡ −{r
neinφ}
{rn}

, n > 1, (1.9)

E1 ≡ ε1eiΦ1 ≡ −{r
3eiφ}
{r3}

. (1.10)

In Eqs. (1.9) and (1.10), r and φ are the transverse coordinates. εn represents the magnitude
of the n-th order asymmetry and Φn its orientation, also called the n-th order participant plane
of the initial state. As for the original ellipticity, the initial anisotropy is maximum when
|En| = εn = 1, and vanishing if εn = 0. In addition of the ellipticity for E2 = εRP2 , the first
orders are respectively named the triangularity for E3, the quadrangularity for E4 and so on.
The shapes of the initial volume of interacting matter for the first five orders of eccentricities
are illustrated in Fig. 1.9.

The hydrodynamic evolution of the volume of interacting matter is driven by its equation
of motion, namely the Navier-Stokes equation, its simplification in the limit of non-viscous fluid
the Euler equation, and their consecutive generalisations. Furthermore, the spatial asymmetry
is at the origin of pressure gradients inside the volume [21, 80]. The insertion of these pressure
gradients in the equations of motion shows then a transfer of the anisotropy in the coordinate
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Figure 1.9: Characteristic shapes of the initial interaction volume for the orders n = 1 to n = 5
with the corresponding eccentricities En [75].

space into an anisotropy in momentum space. This transfer, known as the anisotropic flow
phenomenon or simply the anisotropic flow, can therefore be interpreted as the medium response
to the initial geometry of the system [75,80]. Figure 1.10 summarises the full phenomenon.

Figure 1.10: Illustration of the anisotropic flow phenomenon [81]: the dominant elliptic shape of
the interaction volume in non-central collisions (a), the anisotropy in the coordinate space (b)
and in the momentum space (c).

Similarly, as for the initial anisotropy in the coordinate space, the deformations of the final
volume of interacting matter in the momentum space can be characterised with the complex
harmonic flow coefficients Vn. The n-th order coefficient is defined as [75]

Vn ≡ vneinΨn . (1.11)

The magnitude of the n-th order momentum asymmetry is given by the flow amplitude vn and
its direction by the corresponding symmetry plane Ψn. As for the eccentricities En, each flow
amplitude has its own name. For example, v1 is the directed flow, v2 the elliptic flow, v3 the
triangular flow, and so forth. Figure 1.11 shows the different orientations of the first three
symmetry planes Ψ1, Ψ2 and Ψ3. Furthermore, the fluctuations of εn and Φn imply that vn and
Ψn also vary event-by-event. It has to be noted that without these fluctuations, all Ψn would
be equal to the reaction plane of the collision ΨRP . Generally, Vn, and thus vn, depend on the
transverse momentum pT, the pseudorapidity η and the particle species, i.e. Vn(pT, η, species)
and vn(pT, η, species). They are then referred as differential flow. The corresponding integrated
flow can be obtained by averaging these quantities over the corresponding phase space, which
is generally the acceptance of the detector [83].
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1.4. Anisotropic flow phenomenon

Figure 1.11: Examples of different orientations of the symmetry planes in the transverse view
of the heavy-ion collision [82].

The initial eccentricities En and final flow coefficients Vn are not independent. More pre-
cisely, the flow coefficients are fully determined from the hydrodynamic equations of motion once
the initial conditions are set. This means Vn can be expressed as a function of the eccentricities,
i.e. Vn = Vn(E , α), with E a set of eccentricities and α the dynamical properties of the interact-
ing matter, for example, its transport coefficients or its equation of motion [75, 79]. Based on
hydrodynamic simulations, the complex flow coefficients can be expanded into [75]

Vn(E , α) = κ(α)E +O(E2) + δn. (1.12)

The variable δn is a complex residual introduced to take into account the effects from the
fluctuations, supposed to be uncorrelated with En. Furthermore, the expansion is possible only
if |En| < 1 for any n. In heavy-ion collisions, this is the case for n 6= 2, as these eccentricities
originate from fluctuations. However, in non-central collisions, E2 comes from the geometry of
the interacting volume and is the largest eccentricity. This implies that E2 dominates in the
expansion and most notably is involved in non-linear terms for the higher order coefficients [75].

From these assumptions, the key question is where to stop the expansion in order to have
a good approximation of the harmonic flow coefficients. The answer is based on the symmetry
properties of the system. For a given event, Vn is symmetric under rotation, i.e. it is invariant
under the transformation ϕ −→ ϕ + 2π/n. For a single order n, the resulting expansion can
then be divided into the linear part proportional to the corresponding En and the non-linear
part obtained from the symmetry constraints. The parameter κ(α) is also separated into its
corresponding linear and non-linear components. From the expansions of the first flow harmon-
ics3, it has been shown that V2 ∝ E2 and V3 ∝ E3 for a given centrality range. Figure 1.12
shows this linear dependence for different parametrisations of the same MC-Glauber model in
the case of identified pions with centrality in the range 20–30%. In the case of higher order
n ≥ 4, non-linear effects can be seen. A contribution from (V2)2 manifest itself in V4, while
mixing between V2 and V3 influences V5 [42, 87]. Terms involving the second, third and fourth
harmonics represent the non-linear parts of V6. Simulations for V4 are shown in Fig. 1.13.

The anisotropy in momentum space influences the emission of the final state particles which
are detected in the experiment. The observable of interest in flow analyses is the azimuthal
distribution of some physical quantity of the outgoing particles, where the quantity can be the
transverse momentum or the multiplicity in some rapidity or pseudorapidity η range [88], to cite
only a few examples. The most general distribution is thus the triple differential distribution
E d3N/d3p, where E is the energy (included to ensure the result is Lorentz invariant) and p the

3For the expansions themselves, see [75,84,85].
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Figure 1.12: v2 as a function of ε2 (top) and v3 as a function of ε3 (bottom) for different parametri-
sations of the MC-Glauber model, with identified pions in the 20–30% centrality range [86].

Figure 1.13: v4 as a function of ε4 for different parametrisations of the MC-Glauber model, with
identified pions in the 20–30% centrality range [86].

3-momentum. As this azimuthal distribution is a periodic function, it can be expressed with a
Fourier series. Originally given with the coefficients xn and yn in the transverse plane [88], the
Fourier expansion is now usually written as [89]

E
d3N

d3p = 1
2π

d2N

pTdpTdη

[
1 + 2

∞∑
n=1

vn cos (n(ϕ−Ψn))
]
, (1.13)

with the flow amplitudes vn and the symmetry planes Ψn being the two sets of Fourier coeffi-
cients of the series. Using the properties of Fourier series and trigonometric functions, the flow
amplitudes can be expressed exactly with4

vn = 〈cos [n (ϕ−Ψn)]〉 =
〈

ein(ϕ−Ψn)
〉
. (1.14)

In the above expression, 〈. . .〉 represents the average over all particles in an event, also called
single-event average. A second type of average is also introduced now: the all-event average
〈〈. . .〉〉 is the average over all particles in an event followed by the average over all events. These
two notations will be used in the rest of this thesis.

4See Appendix B.1 for the demonstration.
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Figure 1.14: Integrated elliptic flow v2 as a function of the centre of mass energy √sNN for
different heavy-ion experiments in the centrality range 20–30% [42].

1.5 Previous measurements in flow analyses

This section presents an overview of the most important heavy-ion results obtained in flow
analyses. Even before the first evidence of the creation of the predicted QGP in heavy-ion
collisions at the SPS collider [39] until now, extensive research has been made on the dynamical
properties of this extreme state of matter using anisotropic flow as a probe.

Flow coefficients

First experimental heavy-ion studies of directed and elliptic flow can be traced back in the
1990s with measurements of gold or lead collisions at centre of mass energies ranging from a
few hundreds of MeV to 200 GeV per nucleon [90–97]. The directed flow v1 shows a change of
sign around midpseudorapidity. For the elliptic flow, studies have found a sign transition with
the increase of collision energy. For energies in the 1–2 GeV range, v2 is negative, indicating
emission of the particles out of the reaction plane, called squeeze-out effect. The participant
nucleons interact and want to exit the fireball. As the spectators travel along the reaction plane,
the participants can only be emitted perpendicular to it [98]. For energies higher than 2 GeV,
an in-plane emission of the particles is observed, leading to positive values of the elliptic flow
coefficient. For √sNN < 1 GeV, the centre of mass energy of the two ions is not sufficient to
break them and they simply bounce off each other. The particles produced from the interactions
of the nucleons are then dragged by the recoiling nuclei, imitating an in-plane emission with
positive values of v2. Figure 1.14 shows the evolution of the elliptic flow in the centrality range
20–30% for different heavy-ion experiments as a function of the centre of mass energy.

At the beginning of the 2000s, systematic measurements of the QGP properties in Au–Au
collisions at √sNN = 130 GeV have been done by the experiments at RHIC. Among the different
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Figure 1.15: Differential elliptic flow v2 as a function of the transverse momentum pT for various
identified hadrons for Au–Au collisions at √sNN = 130 GeV at RHIC. The results from STAR
and PHENIX are shown with corresponding hydrodynamic simulations [41].

signatures that have been observed, the elliptic flow of various identified hadron species has
been measured as a function of the transverse momentum pT (see Fig. 1.15). The mass splitting
predicted by hydrodynamics has been shown to be well reproduced by the data for low transverse
momenta. Furthermore, it has been demonstrated that the data were in perfect agreement for
pT < 1.5–2 GeV/c with predictions from ideal hydrodynamics with an equation of state including
a transition from hadronic to quark matter. It has been concluded that the QGP created in the
heavy-ion collisions was a nearly perfect liquid with a very small shear viscosity over entropy
density.

Following the measurements at the SPS and RHIC accelerators, extensive studies have been
made in both the theoretical and experimental sides. One can cite, for example, the first looks
at higher order flow amplitudes. While they were known to be small, it was believed that the
statistics achieved at RHIC was already sufficient to measure quantities like the quadrangular
flow v4 [99, 100] or the triangular flow v3 [77]. The motivation behind these analyses is the
possibility to apply independent constraints on the initial conditions, the system properties and
the model calculations. Figure 1.16 shows the measurements of the integrated v2, v4 and v6 as a
function of the centrality by the STAR Collaboration in Au–Au collisions at √sNN = 200 GeV,
using different analysis techniques (see Chapter 2). The ordering of the flow amplitudes is clearly
visible, with v2 having a dominant effect and v6 compatible with zero for all centralities.

One interesting remark is, while the measurements of the even higher order harmonics
quickly followed after the first results of elliptic flow at RHIC, it took a few more years for the
same interest for the odd harmonics to develop as well. The first mention of the triangular
flow v3 and its corresponding triangularity in the initial state ε3 can be traced back to 2010 in
Ref. [77], with the first experimental measurements directly following. Figure 1.17 (a) shows
the integrated values for v2, v3 and v4 as a function of the centrality for Pb–Pb collisions at√
sNN = 2.76 TeV [101]. The same ordering of amplitudes as seen for the even harmonics

is also visible with v3. Furthermore, using the linear response assumption for v2 and v3, the
measurements of the ratio of v2/ε2 and v3/ε3, where the eccentricities are determined using
various models for the initial conditions, seem to indicate more important viscous corrections
for the third than thesecond order (see Fig. 1.17 (b)).
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Figure 1.16: Integrated elliptic flow v2, quadrangular flow v4 and 6th order flow amplitude v6 as a
function of the centrality in Au–Au collisions at√sNN = 200 GeV by the STAR experiment [100].

In parallel of the measurements of the higher order flow amplitudes, more studies are made
in the analysis techniques. One can cite, for instance, the introduction of observables based
on the mathematical formalism of cumulants. As it extracts the genuine correlations between
all the elements in it, the cumulant expansion is the most indicated method to remove the
correlations involving only a few particles, also called nonflow. Borghini et al. presented in 2001
the first methods based on cumulants in Refs. [83, 102, 103], which have been extensively used
in theoretical and experimental studies since then. Examples of observables, like v2{2} or v4{3}
— the measurement of v2 with a two-particle cumulant and of v4 with a three-particle cumulant
respectively — are visible in Figs. 1.16 and 1.17.

Correlations between symmetry planes

The flow amplitudes are not the only degrees of freedom of the Fourier series that have been
studied with heavy-ion collisions. The first results on the symmetry planes can be attributed
to the E877 Collaboration in 1997 [92]. Various measurements relative to Ψn have been done
by the experiments at RHIC and the LHC. While some analyses were conducted due to the
contribution of the symmetry planes in the evaluation of the amplitudes [100, 104], searches
have also been done on the planes themselves and their correlations. Results of the cosine of
the difference between two (or more) symmetry planes have hinted that the correlations in the
momentum space are due to both the fluctuations of the initial geometry and the non-linear
response of the flow harmonics themselves during the system evolution. Examples of results and
observables can be found in Refs. [105–107] (see Fig. 1.18 for results from ATLAS). Theoretical
developments taking into account correlations between the flow amplitudes have been published
recently in Ref. [108].
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Figure 1.17: (a) Integrated elliptic flow v2, triangular flow v3 and quadrangular flow v4 as a
function of the centrality. (b) v2 and v3 divided by the corresponding eccentricities obtained
with two different models for initial conditions. Both figures use data from Pb–Pb collisions at√
sNN = 2.76 TeV [101].

Correlations between flow amplitudes

The idea to measure the correlations between two different flow amplitudes vm and vn has
been first proposed by Niemi et al. in Ref. [86]. With the same linear correlator used to determine
the linear response between vn and εn, they concluded that the linear correlations between vn
and vm were not governed only by the initial conditions, but also by the shear viscosity over
entropy density of the QGP itself. Non-trivial, significant correlations between two different
eccentricities εn and εm have also been observed in Ref. [109]. At the same time, correlations
between flow amplitudes have been studied in Ref. [110] in the context of the newly developed
Generic Framework. In this paper, Bilandzic et al. introduced a set of new observables based

18



1.5. Previous measurements in flow analyses

Figure 1.18: Dependence of eight symmetry planes correlators with respect to the number of
participants Npart for Pb–Pb collisions at √sNN = 2.76 TeV by the ATLAS experiment [107].

on the cumulant expansion in terms of azimuthal angles for two different harmonics n and
m. Initially called Standard Candles, these Symmetric Cumulants (SCs) have quickly become
one of the most commonly used methods to measure the genuine correlations between vn and
vm, as all contributions from the symmetry planes are cancelled out by definition. Another
method is the Event Shape Engineering (ESE) first presented in Ref. [111]. Many analyses,
both theoretical and experimental, have been made with these two different sets of observables.
On the experimental side, measurements with the ESE techniques have first been reported in
Pb–Pb collisions at √sNN = 2.76 TeV by the ATLAS Collaboration [112, 113]. Furthermore,
ALICE announced similar measurements using the SCs for the same system and energies in
Refs. [114,115], quickly followed by systematic studies in Ref. [116]5.

The top panel of Fig. 1.19 represents the first results for the SCs as a function of the
centrality obtained by ALICE for Pb–Pb collisions at √sNN = 2.76 TeV. The experimental
measurements show that SC(4, 2) has positive values for all centralities, which means the fluc-
tuations between v2 and v4 are correlated event-by-event. More precisely, if the average of v4,
denoted by 〈v4〉, is smaller than v4 in one event, the probability to find 〈v2〉 smaller than v2 in
the same event is increased. Furthermore, the values of SC(3, 2) are all negative, suggesting that
v2 and v3 are anticorrelated. Here, the probability to find 〈v3〉 larger than v3 if 〈v2〉 is smaller
than v2 in a given event is enhanced. Nevertheless, the sign of the genuine correlations between
two flow amplitudes is not the only conclusion one can draw from the top figure in Fig. 1.19.
The results have been represented with the theoretical predictions for different parametrisations
of the temperature dependence of η/s, denoted η/s(T ). These parametrisations are illustrated
in the bottom left panel of Fig. 1.19 and they all have the same average 〈η/s(T )〉 = 0.20 [118].

5For a historical summary of the studies about SCs, see the end of the introduction in Ref. [117].
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Two conclusions can be drawn from the comparisons of the data to the theoretical predictions.
First, the SCs are sensitive to η/s(T ), while the measurements of vn{2} are sensitive only to
〈η/s(T )〉, meaning there is no distinction between the details of the temperature dependence
(see bottom right part of Fig. 1.19). Alternatively, there is then not a single parametrisation,
which can describe both SC(4, 2) and SC(3, 2) in all centralities at the same time. From all these
points, it is clear that the SCs give information that is not accessible from the measurements of
the single flow amplitudes, and they allow the application of new constraints on the theoretical
models used to describe the QGP evolution and properties.

Figure 1.19: (Top) Centrality dependence of the correlations between v4 and v2 (SC(4, 2)) in red
and v3 and v2 (SC(3, 2)) in blue from ALICE in Pb–Pb collisions at √sNN = 2.76 TeV [114]. The
results are compared to the theoretical predictions with the parametrisations shown in Bottom
left. (Bottom left) Various parametrisations of the temperature dependence of η/s, all with the
same average 〈η/s(T )〉 = 0.20 [118] (Bottom right) Centrality dependence of the two-particle
cumulants of various vn with the theoretical predictions corresponding to the parametrisations
from bottom left [118].

20



1.5. Previous measurements in flow analyses

From these conclusions, the next natural step is to probe the genuine correlations between
more than two flow amplitudes. Similarly to the SCs, these new observables would indeed be
sensitive to information that the previously used variables have no access to. Furthermore, as
odd flow amplitudes develop only in the presence of fluctuations and even flow amplitudes can
trivially be correlated from the presence of an elliptical geometry, measuring the correlations
between even and odd harmonics would have the potential to separate between the magnitude
and shape fluctuations of the initial geometry. From the measurements of genuine correlations
between higher and lower order flow amplitudes, these novel observables would then help in the
application of new and independent constraints on the non-linear response. An example of this
point is the case SC(2, 3, 5) which can help to probe the relation between v5 and ε2 and ε3 (as
v2 and v3 have a linear relation to ε2 and ε3 respectively).

The generalisation of the SCs to three and more flow amplitudes was first mentioned in
Table 1 in Ref. [119]. This thesis presents the theoretical framework for this generalisation
to any number of amplitudes. In a second step, this framework is extended to observables
quantifying the genuine correlations between two and three flow amplitudes risen to distinct
orders, the Asymmetric Cumulants (ACs). Finally, measurements of these generalised higher
order SCs in Pb–Pb collisions collected by the ALICE experiment are presented along with the
first predictions for the two-harmonic ACs.
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Chapter 2

Theoretical Framework on
Anisotropic Flow

As seen in Section 1.4, the quantification of the anisotropic flow in heavy-ion collisions
relies on the measurement of its two sets of Fourier coefficients: the flow amplitudes vn and
the symmetry planes Ψn. Equation (1.14) relates vn in an event with the azimuthal angles of
the outgoing particles ϕ and the corresponding Ψn. While ϕ can be measured directly in the
experiment, this is not the case for the symmetry planes. Many techniques have been designed
over the years to determine them. One method traditionally used is the event plane (EP)
method [89]. In this approach, the estimated symmetry plane ΨEP , also called the event plane,
is given by

Ψn ' ΨEP ≡
1
n

arctan
(∑

iwi sin(nϕi)∑
iwi cos(nϕi)

)
. (2.1)

The summation index i represents the particles taken into account to determine the event plane,
but not necessarily all the particles in the event itself. Moreover, as ΨEP is an approximation
of the real Ψn, the difference between the two values needs to be corrected. The weights wi
are therefore introduced to ensure that the resolution R = 〈cos (n(ΨEP −Ψn))〉 is as good
as possible. These weights can be optimised with a careful choice of the quantities used to
compute them. It has to be noted that the weights generally differ between the odd and even
harmonics [89]. The estimation of the anisotropic flow amplitude vn, denoted with vn{EP}, is
calculated with [89]

vn{EP} ≡
1
R
〈cos (n(ϕ−ΨEP ))〉 . (2.2)

This method is not without problems. First, the resolution of the event plane is limited,
because of the finite number of detected final state particles. It follows that the observed flow
amplitudes always show a bias. Furthermore, this method is valid only if the flow correlations
dominate the system. In reality, other sources of correlations involving only a few particles,
designed under the name of nonflow, are present as well in the system (see Section 2.1 for more
details). They add systematic errors that need to be corrected with other techniques [89,120].

However, the main issue with the event plane method is its inability to measure directly
and event-by-event the symmetry planes in the collision. Alternative methods, the multiparticle
azimuthal correlations techniques, have been developed to bypass this problem. They are pre-
sented in Section 2.1. Section 2.2 introduces the formalism of cumulants and its traditional use
in flow analyses. In Section 2.3, the correlations between different flow amplitudes are discussed.
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2.1 Multiparticle correlations techniques

The key idea behind the multiparticle correlations techniques is to determine the values
of the flow amplitudes using only the azimuthal angles, with no knowledge of the symmetry
planes. It is based on the assumption that the azimuthal correlations between two particles come
from the azimuthal correlations each particle has with the reaction plane itself [83, 102]. One
consequence of this assumption, known as flow correlations or flow principle in the literature, is
the independence of the tracks of the outgoing particles.

For a one-particle three-momentum distribution f(p) ≡ dN/d3p, Eq. (1.14) can be rewrit-
ten as

vn(D) ≡
〈

ein(ϕ−Ψn)
〉
D

=
∫
D ein(ϕ−Ψn)f(p)d3p∫

D f(p)d3p , (2.3)

where the brackets 〈. . .〉D represent the average over all particles in the event and D stands for
the phase-space region where flow is measured, generally the detector phase-space in the (pT, y)-
plane. Indicating the two-particle distribution with f(p1,p2) ≡ dN/d3p1d3p2, the two-particle
correlation is calculated as follows [102]

〈
ein(ϕ1−ϕ2)

〉
D1×D2

=
∫
D1×D2

ein(ϕ1−ϕ2)f(p1,p2)d3p1d3p2∫
D1×D2

f(p1,p2)d3p1d3p2

=
∫
D1×D2

ein(ϕ1−Ψn)e−in(ϕ2−Ψn)f(p1)f(p2)d3p1d3p2∫
D1×D2

f(p1)f(p2)d3p1d3p2

= vn(D1)vn(D2).

(2.4)

The assumption that only flow correlations are present in the system is used between the first
and second equalities, allowing the factorisation of the distribution function, i.e. f(p1,p2) =
f(p1)f(p2). Furthermore, the two particles have the same phase–space, D1 = D2, meaning that〈

ein(ϕ1−ϕ2)
〉

= v2
n. (2.5)

Equation (2.5) demonstrates that, in the case of a system with only flow correlations, the
correlations between two particles come solely from their respective correlations to a common
reaction plane. Moreover, the derivation in Eq. (2.4) can be easily extended to any even number
of particles. For example, with the four-particle correlation, the final result is given by〈

ein(ϕ1+ϕ2−ϕ3−ϕ4)
〉

= v4
n. (2.6)

Before going further, the following notation is introduced:

〈2〉n,−n ≡
〈

ein(ϕ1−ϕ2)
〉
, (2.7)

〈4〉n,n,−n,−n ≡
〈

ein(ϕ1+ϕ2−ϕ3−ϕ4)
〉
. (2.8)

These single-event averages can then be estimated with the sums over the azimuthal angles:

〈2〉n,−n = 1(M
2
)
2!

M∑
j,k=1
j 6=k

ein(ϕj−ϕk), (2.9)

〈4〉n,n,−n,−n = 1(M
4
)
4!

M∑
j,k,l,m=1
j 6=k 6=l 6=m

ein(ϕj+ϕk−ϕl−ϕm). (2.10)
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The condition that all indices in the sum must be taken different is of an extreme importance
in multiparticle correlations techniques. The case of the two-particle correlator 〈2〉n,−n will be
used here as an illustration, but the argumentation can easily be extended to any number of
particles in the correlator. If j 6= k is not applied in Eq. (2.9), the term where j = k will lead
to the addition of ein(ϕj−ϕj) = 1 into the average. As one is the maximum value ein(ϕj−ϕk) can
take, this term will have a dominant effect in the computation of v2

n. This severe systematic
bias, known as autocorrelations or self-correlations, needs therefore to be removed.

The most general form for a k-particle correlator with a set of k harmonics {n1, . . . , nk} is
defined as [110]

〈k〉n1,...,nk
≡

∑M
j1,...,jk=1
j1 6=... 6=jk

wj1 . . . wjkei(n1ϕj1+...+nkϕjk
)

∑M
j1,...,jk=1
j1 6=... 6=jk

wj1 . . . wjk
, (2.11)

withM being the multiplicity of the considered event. The k particle weights {wj1 , . . . , wjk} are
introduced to correct systematic biases from various detector inefficiencies. As such, they can be
a function of the transverse momenta, pseudorapidities, azimuthal angles or particle species for
example, i.e. w = w(pT, η, ϕ, PID, . . .). Examples of particle weights can be seen in Section 5.3.

One important remark is that the set of harmonics ni cannot be randomly chosen. In the
case of a detector with a uniform azimuthal acceptance, only the correlations that are isotropic
— for which n1+. . .+nk = 0 — are non-zero in the passage from the single-event to the all-event
average. All other combinations will cancel out due to the randomness of the reaction plane.
Finally, it has to be noted that vn is not directly accessible with this method. The correlations
between two particles return v2

n, between four particles v4
n, and more generally, the k-particle

correlations with a single harmonic n will give vkn.

This whole approach has recently been generalised to express both the flow amplitudes and
symmetry planes for a set of k harmonics {n1, . . . , nk} using the k-particle correlator [79]

〈k〉n1,...,nk
≡
〈

ei(n1ϕ1+...+nkϕk)
〉

= vn1 . . . vnk
ei(n1Ψn1+...+nkΨnk

). (2.12)

Equation (2.12) is one of the main equations in flow analyses, as a whole set of new observ-
ables can be obtained by choosing carefully the number and values of the harmonics ni. The
question resides then in how one can compute the left term, and therefore Eq. (2.11), as exactly
and as efficiently as possible. One naïve method is the use of nested loops with one loop per par-
ticle in the correlator 〈k〉n1,...,nk

, with the additional condition to prevent the autocorrelations.
However, this approach, while giving precise results, is not feasible in practice due to its large
CPU costs. Each one of the k nested loops goes over the full multiplicity of outgoing particles,
which can easily reach a few thousands in central heavy-ion collisions. Furthermore, vn varies
event-by-event and one generally looks at the all-event averages, meaning the k loops for the
particles are nested in the main loop over all the events in consideration.

More efficient methods to compute Eq. (2.11) rely on an object called the Q-vector, or flow
vector. For simplicity, the expressions and derivations shown now are done with the use of unit
particle weights. The general case with non-unit particle weights will be treated in the next
part.

For a harmonic n and a multiplicity M , the Q-vector Qn is a complex quantity defined as

Qn ≡
M∑
k=1

einϕk . (2.13)
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The k-particle correlators can then be rewritten in terms of Qn. For example, Eqs. (2.9)
and (2.10) become

〈2〉n,−n = 1(M
2
)
2!

[
|Qn|2 −M

]
, (2.14)

〈4〉n,n,−n,−n = 1(M
4
)
4!

[
|Qn|4 + |Q2n|2 − 2< [Q2nQ

∗
nQ
∗
n]

−4(M − 2)|Qn|2 + 2M(M − 3)
]
. (2.15)

The demonstration for the two-particle correlations is shown in Appendix B.2. From these last
expressions, two advantages of the Qn can be deduced. First, instead of the multiple sums over
the multiplicity of an event and nested loops, all the needed Q-vectors can be computed for
different harmonics in a single passage over the M particles and then arranged to get the final
correlators. Second, no additional condition to exclude the autocorrelations needs to be included
in the calculation, as they are naturally removed in the derivation.

While expressing multiparticle correlators in terms of Q-vectors is more efficient than using
nested loops, this method has also its drawbacks. One of them is its implementation. The
number of terms in the analysis expressions quickly explodes with the order of the correlator
and thus, their computation quickly becomes unfeasible. Furthermore, for a single multiparticle
correlator, different harmonics are involved in the last expression and all the corresponding Q-
vectors need to be calculated. For example, Qn and Q2n are needed to measure 〈4〉n,n,−n,−n in
Eq. (2.15). Recursive algorithms have then been developed to address these issues. They make
up the core of the so-called Generic Framework [110].

2.1.1 Generic Framework

The Generic Framework has been developed as an efficient way to compute exactly any
k-particle correlator involving any choice of flow harmonics. Its most general form allows the
use of non-unit particle weights to correct for detector effects. If not indicated otherwise, all
expressions and notations introduced in this subsection are taken from Ref. [110].

The definition of the Q-vector Qn from Eq. (2.13) can be generalised to include the set of
M particle weights wk using

Qn,p ≡
M∑
k=1

wpke
inϕk . (2.16)

As before, ϕk are their azimuthal angles with respect to the reaction plane andM is the number
of detected particles. The following property derives naturally from this definition of the weighted
Q-vector :

Q−n,p = Q∗n,p. (2.17)

The following shortcut notation is introduced for the numerator and denominator of Eq. (2.11):

N 〈k〉n1,...,nk
≡

M∑
j1,...,jk=1
j1 6=... 6=jk

wj1 . . . wjkei(n1ϕj1+...+nkϕjk
), (2.18)

D 〈k〉n1,...,nk
≡

M∑
j1,...,jk=1
j1 6=... 6=jk

wj1 . . . wjk . (2.19)
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2.1. Multiparticle correlations techniques

Moreover, the denominator D 〈k〉n1,...,nk
can easily be expressed as a function of the numerator

N 〈k〉n1,...,nk
by setting all harmonics ni to zero in the latter, i.e.

D 〈k〉n1,...,nk
= N 〈k〉0,...,0 . (2.20)

The numerators and denominators of the multiparticle correlators can then be rewritten in terms
of the weighted Q-vectors. The two- and three-particle correlators are given here as examples.
One has for the two-particle correlator

N 〈2〉n1,n2
= Qn1,1Qn2,1 −Qn1+n2,2, (2.21)

D 〈2〉n1,n2
= N 〈2〉0,0 = Q2

0,1 −Q0,2, (2.22)

and for the three-particle correlator

N 〈3〉n1,n2,n3
= Qn1,1Qn2,1Qn3,1 + 2Qn1+n2+n3,3

−Qn1+n2,2Qn3,1 −Qn1+n3,2Qn2,1 −Qn2+n3,2Qn1,1, (2.23)
D 〈3〉n1,n2,n3

= N 〈3〉0,0,0 = Q3
0,1 − 3Q0,2Q0,1 + 2Q0,3. (2.24)

Looking at the previous equations allows the design of two different recursive algorithms to
express the higher order correlators in terms of lower order ones. The first recursive algorithm
is based on the observation that

N 〈1〉n1
= Qn1,1, (2.25)

N 〈2〉n1,n2
= N 〈1〉n1

Qn2,1 −Qn1+n2,2, (2.26)
N 〈3〉n1,n2,n3

= N 〈2〉n1,n2
Qn3,1 + 2Qn1+n2+n3,3

−Qn1+n3,2N 〈1〉n2
−Qn2+n3,2N 〈1〉n1

. (2.27)

In this case, N 〈k〉n1,...,nk
can be found through the ordering of the partitions of the set {n1, . . . , nk}.

The second recursive algorithm is obtained from Eq. (2.18) for the numerator. After some rewrit-
ing of the sums, one can find that

N 〈k〉n1,...,nk
= Qnk,1N 〈k − 1〉n1,...,nk−1

−N 〈k − 1〉n1+nk,...,nk−1

−N 〈k − 1〉n1,n2+nk,...,nk−1
− . . .−N 〈k − 1〉n1,...,nk−1+nk

.
(2.28)

The pseudocodes for both algorithms can be found in Ref. [110]. The computation of the
multiparticle correlators used in this thesis uses an implementation of the second algorithm1.

2.1.2 Transition to all-event averages

All equations presented above are for single-event averages. However, as already mentioned,
the final quantities of interest must take into account all the events selected for the analysis.
The single-event observables must therefore be averaged over these events. For a k-particle
correlator, the all-event average is defined as [121]

〈〈k〉〉n1,...,nk
≡

∑Nevents
i=1

(
W〈k〉n1,...,nk

)
i

(
〈k〉n1,...,nk

)
i∑Nevents

i=1

(
W〈k〉n1,...,nk

)
i

, (2.29)

where Nevents is the number of analysed events,
(
〈k〉n1,...,nk

)
i
are the single-average k-particle

correlators for each one of these events and
(
W〈k〉n1,...,nk

)
i
the corresponding event weights.

1Credits to K. Gulbrandsen for the initial implementation of the C++ recursive algorithm used in this work.
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In heavy-ion collisions, the number of outgoing particles varies event-by-event. If a simple
averaging between the single-event correlator was done, the events with lower multiplicities
would count as much as the events with higher multiplicities, which may bias the final results.
Two techniques can then be used. The first one is to take the same number of particles in each
event. In this case, unit event weights can be used. The other method is to choose multiplicity-
dependent event weights. It has been shown that the choice of weights that minimise the
statistical spread corresponds to the number of combinations of k particles one can do in an
event with multiplicity M . It is possible to show that in the general case of non-unit particle
weights, the event weight corresponds to the denominator D 〈k〉n1,...,nk

. With unit particle
weights, the event weights for the two- and four-particle correlators are given respectively by

W〈2〉n1,n2
= M(M − 1), (2.30)

W〈4〉n1,n2,n3,n4
= M(M − 1)(M − 2)(M − 3), (2.31)

where it has been used that the sum of particle weights M ′ ≡ ∑M
j=1wj is equal to the usual

multiplicity for wj = 1.

2.1.3 Flow and nonflow

As seen in Section 2.1, the multiparticle correlations techniques rely on the flow principle.
This idea is for example used in the derivation of the two-particle correlator, where it allows
the factorisation of the two-particle probability density function (p.d.f.) into the product of two
identical univariate p.d.f. (Eq. (2.4)). However, this assumption completely neglects the other
sources of correlations that can exist between the azimuthal angles of two or more particles,
with no dependence on the reaction plane and its orientation. Examples of such effects are
the momentum conservation, resonances decays and jets, final states interactions, but also the
quantum correlations between identical particles also known as the Hanbury-Brown and Twiss
effects [122, 123]. As flow is related to the collective behaviour of all the outgoing particles and
all these sources generally involve only a few particles, they are gathered under the name of
nonflow. Figure 2.1 illustrates the flow collectivity (left) and an example of nonflow (right).

Figure 2.1: (Left) Illustration of the collective flow between all outgoing particles. (Right)
Example of nonflow with four directly correlated particles shown in blue.

In presence of nonflow, the factorisation of the multivariate p.d.f. breaks down, which
leads to a systematic bias in the evaluation of the flow amplitudes vn, i.e. f(p1, . . . ,pk) 6=
f(p1) · · · f(pk) for k particles. In terms of azimuthal angles, this can be written as f(ϕ1, . . . , ϕk) 6=
f(ϕ1) · · · f(ϕk).

For an event with multiplicity M , the nonflow contribution to a k-particle correlator δk is
expressed with the scaling [102,117]

δk ∼
1

Mk−1 . (2.32)

This behaviour can be understood with the following probability example based on the right
panel of Fig. 2.1. If one of the four “blue” particles is taken in the computation of the four-
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2.2. Formalism of cumulants

particle correlator for an event with M particles in total, the probability δ4 to exactly take the
three other “blue” particles goes as

δ4 ∼
3

M − 1
2

M − 2
1

M − 3 ≈
1
M3 , (2.33)

if M is large enough. This approximation can be made as correlators involve generally only a
few particles, while the multiplicities in heavy-ion collisions can easily reach a few hundred of
detected particles.

Based on the scaling in Eq. (2.32), it is visible that the contribution from nonflow in
the system decreases with the number of particles in the correlator. This conclusion is not
unexpected, as it is more probable for a particle to decay into or be reconstructed as two than
four or more particles. One could therefore use higher numbers of particles in the correlators to
compute the flow coefficients without nonflow bias. However, this method is not recommendable
in practise as it becomes quickly statistically demanding. The reason is that the higher order
correlators estimate smaller and smaller terms like v4, v6 and so on, using correlators with values
between 1 and −1. More effective techniques have therefore been developed to decrease, and
even remove, nonflow contributions. They are discussed in the next section.

2.2 Formalism of cumulants

While the use of higher order correlators decreases the influence of nonflow, it requires
previous knowledge of its sources. A new method based on the formalism of cumulants has then
been developed to help with this problem [83,102,103]. In order to give a general understanding
of the concept of cumulants, a simple step-by-step approach is first illustrated with the one-, two-
and three-particle cumulants. In the second part of this section, the mathematical formalism is
presented. Finally, it will be shown how these developments can be applied to flow analyses.

2.2.1 Conceptual approach

For any number of particles k, the particle distribution f (ϕ1, . . . , ϕk) can be divided into
the sum of its correlated and uncorrelated contributions. The division is trivial with one particle,
i.e. f (ϕ1) = fc (ϕ1), where fc indicates the particles in the term are correlated with each other.
In the case of two particles, the distribution becomes [83,102]

f (ϕ1, ϕ2) = fc (ϕ1) fc (ϕ2) + fc (ϕ1, ϕ2)
= f (ϕ1) f (ϕ2) + fc (ϕ1, ϕ2) ,

(2.34)

where the relation for one particle has been used in the second equality. The second term
fc (ϕ1, ϕ2) is the so-called cumulant, which represents the genuine correlation between all the
particles in the distribution. While it may seem more complicated at the first glance, the
decomposition of the three-particle distribution follows the same pattern, i.e.

f (ϕ1, ϕ2, ϕ3) = f (ϕ1) f (ϕ2) f (ϕ3) + fc (ϕ1, ϕ2) f (ϕ3)
+ fc (ϕ1, ϕ3) f (ϕ2) + fc (ϕ2, ϕ3) f (ϕ1)
+ fc (ϕ1, ϕ2, ϕ3) .

(2.35)

This decomposition, along with the one for the two-particle case, is illustrated in Fig. 2.2.
Inserting Eq. (2.34) allows the rewriting of Eq. (2.35) into
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= +

= + + + +

Figure 2.2: Decomposition of the two-particle distribution (top) and the three-particle distri-
bution (bottom) into their correlated and uncorrelated parts. The ellipses indicate the genuine
correlations between the particles inside. Inspired from [102].

fc (ϕ1, ϕ2, ϕ3) = f (ϕ1, ϕ2, ϕ3)− f (ϕ1, ϕ2) f (ϕ3)
− f (ϕ1, ϕ3) f (ϕ2)− f (ϕ2, ϕ3) f (ϕ1)
+ 2f (ϕ1) f (ϕ2) f (ϕ3) .

(2.36)

The term fc (ϕ1, ϕ2, ϕ3) is then the three-particle cumulant. The genuine k-particle correlations
can therefore be understood as what remains of the k-particle distribution once all the l-particle
correlations, l < k, have been subtracted.

2.2.2 Mathematical formalism

While the recursive procedure followed above could be generalised to express the higher
order genuine correlations, it becomes easier to get them using the mathematical formalism pre-
sented by Kubo in Ref. [124]. The following definitions and notations are taken from Refs. [124,
125]. For a set of N random variables X1, . . . , XN and multivariate p.d.f. f (X1, . . . , XN ), the
moments are defined with

µν1,...,νN ≡
∫
Xν1

1 · · ·X
νN
N f (X1, . . . , XN ) dX1 · · · dXN . (2.37)

Using the moment generating function M (ξ1, . . . , ξN ) ≡
〈

e
∑N

j=1 ξjXj

〉
, this definition can be

rewritten as
µν1,...,νN = ∂ν1

∂ξν1
1
· · · ∂

νN

∂ξνN
N

M (ξ1, . . . , ξN )
∣∣∣∣
ξ1=...=ξN =0

. (2.38)

The cumulant generating function K (ξ1, . . . , ξN ) is then defined in terms of the moment gener-
ating function with

K (ξ1, . . . , ξN ) ≡ lnM (ξ1, . . . , ξN ) = ln
〈

e
∑N

j=1 ξjXj

〉
. (2.39)

Similarly as for the moments µ, the cumulants are then obtained through

κν1,...,νN = ∂ν1

∂ξν1
1
· · · ∂

νN

∂ξνN
N

K (ξ1, . . . , ξN )
∣∣∣∣
ξ1=...=ξN =0

. (2.40)

The following notations will be used interchangeably through this thesis:

µν1,...,νN ≡ µ(Xν1
1 , . . . , XνN

N ) ≡ 〈Xν1
1 · · ·X

νN
N 〉 , (2.41)

κν1,...,νN ≡ κ(Xν1
1 , . . . , XνN

N ) ≡ 〈Xν1
1 · · ·X

νN
N 〉c . (2.42)
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The first cumulants expressed in terms of moments are given here as examples [125]:

κ1 = µ1,

κ2 = µ2 − µ1
2,

κ1,1 = µ1,1 − µ0,1µ1,0, (2.43)
κ2,1 = 2µ0,1µ1,0

2 − 2µ1,1µ1,0 − µ0,1µ2,0 + µ2,1,

κ1,2 = 2µ1,0µ0,1
2 − 2µ1,1µ0,1 − µ0,2µ1,0 + µ1,2,

κ1,1,1 = 2µ0,0,1µ0,1,0µ1,0,0 − µ0,1,1µ1,0,0 − µ0,1,0µ1,0,1 − µ0,0,1µ1,1,0 + µ1,1,1.

Furthermore, κ1,1 and κ1,1,1 can be identified with the expressions given by Eqs. (2.34) and (2.35)
respectively.

Mathematical properties of cumulants

Consider a variable made from a set of N stochastic observables X1, . . . , XN . In order to
be a valid multivariate cumulant, this candidate variable must check out the following list of
properties. It has to be noted that the demonstration of all these properties can be found in the
Appendix A of Ref. [125].

Statistical independence. The cumulant κν1,...,νN represents the genuine correlations between
all the elements X1, . . . , XN . Therefore, if the set of N observables can be divided into two or
more statistically independent subsets, the resulting cumulant must be zero. A consequence
of this is that κν1,...,νN = 0 if and only if at least one Xj is statistically independent from the
others.

Reduction. If some of the random observables X1, . . . , XN are set identical to each other,
the reduced cumulant corresponds to the expression of a lower order cumulant, i.e.

κν1,...,νN = 〈Xν1
1 · · ·X

νN
N 〉c =

〈
X ν̃1

1 · · ·X
ν̃M
M

〉
c

= κν̃1,...,ν̃M , (2.44)

with M < N and ν̃j being the sum of all exponents of Xj . Furthermore, if all observables are
set equal to X, the final result is a univariate cumulant of X of order ν1 + · · ·+ νN with

κν1,...,νN = 〈Xν1
1 · · ·X

νN
N 〉c =

〈
Xν1+···+νN

〉
c

= κν1+···+νN . (2.45)

Semi-invariance. Consider a cumulant κν1,...,νN with ∑N
i=1 νi ≥ 2, meaning either at least

one index νi ≥ 2, either at least two indices are equal to one. This cumulant is semi-invariant,
i.e.

κ ((X1 + c1)ν1 , . . . , (XN + cN )νN ) = κ (Xν1
1 , . . . , XνN

N ) , (2.46)
with c1, . . . , cN being a set of N constants. In the case where only one νi = 1 and all the others
νj = 0, this property becomes

κ(1, . . . , 1, Xi + ci, 1, . . . , 1) = ci + κ(1, . . . , 1, Xi, 1, . . . , 1). (2.47)

From this expression, the semi-invariance of a cumulant of a single variable is deduced to be

κ((X + c)ν) = κ(Xν), (2.48)

where ν ≥ 2 and c is a constant.
Homogeneity. Let c1, . . . , cN be a set of N constants. The homogeneity property is then

written as
κ((c1X1)ν1 , . . . , (cNXN )νN ) = cν1

1 · · · c
νN
N κ(Xν1

1 , . . . , XνN
N ). (2.49)
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In the case of a univariate cumulant, this property translates into

κ((cX)ν) = cνκ(Xν), (2.50)

with c a constant.
Multilinearity. For any linear variable, the multilinearity is satisfied if the cumulant of the

sum of this variable is equal to the sum of the cumulant of each term. For example, if the first
variable is linear (denoted by Xi) and the N − 1 are either linear (νi = 1) or non-linear (νi > 1)
(denoted by Zνj

j ), the property is given by

κ(
∑
i

Xi, Z
ν2
2 , ..., ZνN

N ) =
∑
i

κ(Xi, Z
ν2
2 , ..., ZνN

N ) . (2.51)

This property can easily be generalised to more linear variables.
Additivity. For a univariate cumulant, if all the Xi are statistically independent, it follows

that
κ((
∑
i

Xi)N ) =
∑
i

κ(XN
i ). (2.52)

This requirement generalises straightforwardly for two and more statistically independent stochas-
tic observables. In this case, the N -th order cumulant of the sum is again the sum of their N -th
order cumulants.

Change of basis. Let κν1,...,νN be a cumulant of the set of variables X1, . . . , XN . Consider
now these X1, . . . , XN to be themselves function of a set of N observables Y1, . . . , YN . It can be
then shown that κν1,...,νN is generally not a cumulant of this second basis, Y1, . . . , YN .

2.2.3 Application to flow analyses

Two of the most used observables in flow analyses are vn{2} and vn{4}. They correspond to
the estimations of the flow amplitude vn with two- and four-particle cumulants, respectively. As
the correlators used to calculate the cumulants are expressed in terms of Q-vectors, the method
is often referred to as the Q-cumulants. The starting point of vn{2} is κ1,1 with X1 = einϕ1 and
X2 = e−inϕ2 . This choice of sign is made to ensure the isotropy of the final correlator. Using
the notation introduced above, the single-event two-particle cumulant is given by〈

ein(ϕ1−ϕ2)
〉
c

=
〈

ein(ϕ1−ϕ2)
〉
−
〈

einϕ1
〉〈

e−inϕ2
〉
. (2.53)

Because of the randomness of the reaction plane, each half of the second term goes to zero in the
transition from the single- to the all-event average. The two-particle cumulant itself is therefore
expressed with

cn{2} ≡
〈〈

ein(ϕ1−ϕ2)
〉〉

c
=
〈〈

ein(ϕ1−ϕ2)
〉〉

=
〈
v2
n

〉
, (2.54)

where Eq. (2.12) has been used in the last equality. This relation means that

vn{2} =
√
cn{2}. (2.55)

The development of the four-particle cumulant follows the same strategy, starting from
κ1,1,1,1, i.e.

κ1,1,1,1 =− 6µ0,0,0,1µ0,0,1,0µ0,1,0,0µ1,0,0,0 + 2µ0,0,1,1µ0,1,0,0µ1,0,0,0 + 2µ0,0,1,0µ0,1,0,1µ1,0,0,0

+ 2µ0,0,0,1µ0,1,1,0µ1,0,0,0 − µ0,1,1,1µ1,0,0,0 + 2µ0,0,1,0µ0,1,0,0µ1,0,0,1 − µ0,1,1,0µ1,0,0,1

+ 2µ0,0,0,1µ0,1,0,0µ1,0,1,0 − µ0,1,0,1µ1,0,1,0 − µ0,1,0,0µ1,0,1,1 + 2µ0,0,0,1µ0,0,1,0µ1,1,0,0

− µ0,0,1,1µ1,1,0,0 − µ0,0,1,0µ1,1,0,1 − µ0,0,0,1µ1,1,1,0 + µ1,1,1,1.

(2.56)
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Using the identification X1 = einϕ1 , X2 = einϕ2 , X3 = e−inϕ3 and X4 = e−inϕ4 , all the terms
that are not isotropic cancel out when the all-event average is taken, resulting in a four-particle
cumulant given by

cn{4} ≡
(
〈〈4〉〉n,n,−n,−n

)
c

= 〈〈4〉〉n,n,−n,−n − 2
(
〈〈2〉〉n,−n

)2
,

=
〈
v4
n

〉
− 2

〈
v2
n

〉2
.

(2.57)

The flow amplitude vn estimated from cn{4} is then obtained with

vn{4} = 4
√
−cn{4}. (2.58)

Using the same procedure, one can obtain the estimations of vn using more particles. For
example, the six- and eight-particle estimations are defined as

vn{6} = 6
√
cn{6}/4, (2.59)

vn{8} = 8
√
−cn{8}/33, (2.60)

where the six-particle cumulant cn{6} is based on κ1,1,1,1,1,1 and the eight-particle cumulant
cn{8} on κ1,1,1,1,1,1,1,1.

The order of the cumulant in the notation of the estimate of the flow amplitude shows its
importance when considering the interacting system as a whole. In the ideal situation without
nonflow nor statistical fluctuations, it can be shown that all estimates are equal, i.e. vn =
vn{2} = vn{4} = vn{6} = vn{8} and so forth. In presence of nonflow and statistical fluctuations,
the estimates will show systematic biases. This effect is visible for example in Figs. 2 and 3 in
Ref. [126].

2.3 Symmetric Cumulants

While the cumulants have shown their usefulness in reducing the nonflow contribution in
the computation of the flow amplitudes, it is not their only strength. By nature, they probe the
genuine correlations between the elements involved. They can therefore analyse the relations
between two different flow amplitudes vm and vn. The observables designed for this purpose are
the SCs.

In the traditional approach based on azimuthal angles, the two-harmonic SC is constructed
from the fourth order cumulant κ1,1,1,1. The choice of variables made for vn{4} in Eq. (2.56) is
generalised for two different harmonics m and n into X1 = eimϕ1 , X2 = einϕ2 , X3 = e−imϕ3 and
X4 = e−inϕ4 . Following the same procedure as in the previous section, the remaining expression
is given by [114,116]

SC(m,n) ≡
(
〈〈4〉〉m,n,−m,−n

)
c

= 〈〈4〉〉m,n,−m,−n − 〈〈2〉〉m,−m 〈〈2〉〉n,−n . (2.61)

Using again Eq. (2.12), SCs can be expressed in terms of the flow amplitudes themselves with

SC(m,n) =
〈
v2
mv

2
n

〉
−
〈
v2
m

〉〈
v2
n

〉
. (2.62)

It has to be noted that, while SCs are built from a four-particle cumulant with the azimuthal
angles as fundamental observables, they can be interpreted as second order cumulants of the
flow amplitudes squared, i.e. v2

m and v2
n. As such, they present some interesting properties of

cumulants. For example, if flow fluctuations are absent or if their magnitudes are uncorrelated,
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the resulting SC will be zero by definition. Furthermore, as visible in Eq. (2.62), they do
not show any contribution from the symmetry planes Ψm and Ψn or any relation they may
have. Therefore, any measurement of a non-zero SC can be straightforwardly interpreted as the
existence of genuine correlations between the two flow amplitudes.

Equation (2.62) can easily be rewritten as

SC(m,n) =
〈(
v2
m −

〈
v2
m

〉) (
v2
n −

〈
v2
n

〉)〉
. (2.63)

Doing so allows an easier interpretation of the signature of the corresponding cumulant [110,114].
A positive SC(m,n) implies that the event-by-event fluctuations of vm and vn are correlated.
This means that if, in a given event, vm is found to be larger than its sample mean 〈vm〉, it is
then more probable to find equally vn larger than 〈vn〉 in the same event. This is, for example,
the case for SC(4, 2) as shown in the top panel in Fig. 1.19. On the other hand, a negative
value of SC(m,n) is a sign of anticorrelation between vm and vn, i.e. finding vm larger than
〈vm〉 increases the probability to have vn smaller than 〈vn〉 in the same event. SC(3, 2) is a good
example of such a signature.

The cumulant properties and signatures are not the only interesting elements about the
SCs. As they are initially constructed out of a four-particle cumulant, they are less sensitive to
nonflow effects than their individual two- and four-particle correlators taken individually. Using
the nonflow scaling of Eq. (2.32) explained in Section 2.1, one can express the nonflow scaling
of a two-harmonic SC, δSC

2 , as

δSC
2 ∼ δ4 + (δ2)2 = α

M3 + β

M2 , (2.64)

where δ4 and δ2 are the generic nonflow scalings of the four- and two-particle azimuthal corre-
lators, respectively.

In theoretical studies, the eccentricities εn in the initial state are accessible for each harmonic
n. It is, therefore, possible to obtain predictions of their genuine correlations with

SCε(m,n) ≡
〈
ε2mε

2
n

〉
−
〈
ε2m

〉〈
ε2n

〉
. (2.65)

However, the results obtained in the initial and in the final states cannot be straightforwardly
compared, as they present different scales. To solve this issue, the normalised SCs (NSCs),
defined as

NSC(m,n) ≡ SC(m,n)
〈v2
m〉 〈v2

n〉
, (2.66)

NSCε(m,n) ≡ SCε(m,n)
〈ε2m〉 〈ε2n〉

, (2.67)

are used. With the help of the NSCs, it becomes possible to study the effects of the collective
evolution in the genuine correlations present in the initial stages of the collision. For instance,
a superposition of the predictions for NSCε(m,n) and NSC(m,n) shows that the principal con-
tribution to the correlations comes from the initial state. Such results can then help to apply
constraints on the models used to describe the initial state. On the other hand, major differences
in the comparisons between the two sets of results show that the hydrodynamic evolution has
an impact on the interplay between the flow magnitudes.

Furthermore, the NSCs are not only useful to compare the correlations between the initial
and final states of the collisions. While the flow amplitudes, and consecutively the SCs, show a
dependence to the pT range used in the analysis, their ratio is completely insensitive to it. This
property allows the comparison of results obtained in different pT ranges, for instance, between
data from different experiments.
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Chapter 3

A Large Ion Collider Experiment

The experimental part of the present work is based on data collected with A Large Ion
Collider Experiment (ALICE) at the LHC. After an overview of CERN and the LHC itself in
Section 3.1, ALICE and the main detectors used in the analysis are reviewed in more details in
Section 3.2.

3.1 The Large Hadron Collider

Known under the names of “European Organisation for Nuclear Research” or “European
Laboratory for Particle Physics”, the CERN1 complex is an institution dedicated to the under-
standing of the most fundamental components of matter and their interactions [127–129]. The
main campus is near Geneva, on the border between Switzerland and France. It consists of a
full chain of accelerators (Fig. 3.1), designed to bring various species of particles to higher and
higher energies. These particles collide then at four specific Interaction Points (IPs) where the
major detectors are situated. The last accelerator of the chain and the one of interest here,
the LHC, can work with various nuclei, from the protons to the heavier ions like xenon or lead.
Depending on the species, the beams do not start at the same place.

The protons originate from the ionisation of hydrogen atoms from a gas bottle at the start of
the linear accelerator Linac2, where they are accelerated to 50 MeV. This beam of protons goes
then to the Proton Synchrotron Booster (PSB), formed of four superimposed synchrotron rings.
At their ejection from the PSB, the protons have an energy of 1.4 GeV and are grouped in large
bunches from the four rings [127]. The next element of the chain is the Proton Synchrotron (PS),
which serves multiple roles. Besides accelerating the proton beams to 25 GeV, it prepares the
bunches for the SPS and the LHC. These bunches received from the PSB are split consecutively
until 2808 of them, each containing about 1.15 × 1011 protons, are travelling in one of the two
rings of the LHC with a spacing of 25 ns. They are then injected into the SPS where they reach
an energy of 450 GeV before being used for physics studies or sent to the final accelerator of
the chain, the LHC, where they are brought to energies of the order of the TeV before being
collided.

Already in the early stages of the design of the LHC itself, plans have been made to allow
the collisions of heavy ions. Initially, only fully stripped lead ion beams were thought, but as
already mentioned, xenon has also been recently used. A purified lead sample is placed at the
beginning of another linear accelerator, the Linac3, and heated. This produces a gas, which
is ionised with the help of an electron current. The resulting lead ions Pb29+ are accelerated

1These letters stand for the French name “Centre Européen pour la Recherche Nucléaire”, a temporary
organisation created in 1952.
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Figure 3.1: Full chain of the accelerators used at CERN to bring the particles to energies of the
order of the TeV [130].

through the Linac3 to an energy per nucleon of 4.2 MeV/u. They are sent through a carbon foil
for a second ionisation, leading to a Pb54+ beam. The partially ionised atoms are accelerated
in the Low Energy Ion Ring (LEIR) up to 72 MeV/u, before following the same chain as the
proton beam. The PS brings them to an energy per nucleon of 5.9 GeV/u and the SPS to
177 GeV/u. Between these two steps, the beam passes through another carbon foil to be fully
ionised (Pb82+). Finally, the 592 bunches of lead ions are injected to the LHC where they are
accelerated to an energy of 2.56 TeV/u. It has to be noted that during the Run 2 data taking
period of the LHC (2015–2018), the centre of mass energies have been increased to

√
s = 13 TeV

for the collisions between proton beams, and √sNN = 5.02 TeV for the Pb–Pb collisions and√
sNN = 8.16 TeV for the p–Pb collisions.

The LHC is a synchrotron-type accelerator with a circumference of 26.7 km [127]. It has
been built in the tunnel of the former Large Electron Positron (LEP) machine, at the average
depth of 100 m. The setup is made of eight arcs and eight straight sections with a length of
about 528 m. Four of these sections, the IPs, are used for the collisions of the two beams.
Finally, eight arcs are inserted between these sections for the bending of the trajectories of the
two beams. This leads to a total of eight sectors for the full LHC, also called its eight octants.

As a collider, the LHC consists of two rings for the beams travelling with opposite direction.
Due to the lack of space in the tunnel, these two rings are not completely separated. This has
an impact on the design of the about 9600 superconducting magnets cooled at 1.9 K [129]. The
generated magnetic fields can reach 8.33 T from the choice of superfluid helium for the cooling
of the magnets and the technologies for the cables. Exactly 1232 of these magnets are the
main dipoles, which ensure the quasi-circular trajectory of the particles. The beams are focused
with the help of quadrupole and sextupole magnets. Radiofrequency cavities (eight per beam)
accelerate the particles and compensate the energy losses through synchrotron radiation.
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One of the most important concepts for an accelerator is its luminosity L [131] defined as

dR

dt
= Lσ, (3.1)

with dR
dt the event rate and σ the cross section of the collision. In the ideal case of a head-on

collision with two Gaussian beams, the luminosity is estimated with

L = N1N2fNb

4πσxσy
. (3.2)

In the formula above, N1,2 is the number of particles in each colliding bunch, f the revolution
frequency, Nb the number of bunches. The standard deviation along the x and y axis σx,y
corresponds to the dimensions of a bunch in the transverse plane. In practice, many parameters
have to be taken into account. The collision offset, the beam profiles, and the crossing effects
are examples of elements which can influence the final luminosity. For the LHC in Run 2, the
luminosity was about 1.2 × 1034 cm−2s−1 for the collisions between protons. In the case of
Pb–Pb collisions, the nominal luminosity has been designed to reach L = 1027 cm−2s−1.

The two beams can collide at four positions along the LHC, the IPs cited above, where the
main experiments of the LHC are situated. The two high luminosity detectors are A Toroidal
LHC ApparatuS (ATLAS) [132] and Compact Muon Solenoid (CMS) [133]. Respectively located
at Point 1 and Point 5, they are the two general-purpose experiments designed to study a broad
range of physics topics. They are also at the origin of the observation of the Higgs boson in 2012.
The LHC also has a dedicated heavy-ion detector, ALICE at Point 2, which will be discussed
in the next section. Finally, the Large Hadron Collider beauty (LHCb) experiment [134] studies
the differences between matter and antimatter at Point 8. As stated in the Chapter 1, LHCb
is the detector which discovered the first exotic hadrons. Three smaller experiments are also
placed along the LHC: the Large Hadron Collider forward (LHCf) [135] at Point 1, the TOTal
Elastic and diffractive cross section Measurement (TOTEM) [136] at Point 5 and the Monopole
and Exotics Detector at the LHC (MoEDAL) [137] at Point 8.

The LHC is currently in its second Long Shutdown (LS2) (2018–2021/2022) where the
accelerators and the experiments are upgrading their hardware and software. For the future
Run 3 data taking, the LHC is planned to be able to work with its nominal values for the
energies of

√
s = 14 TeV for the collisions between protons, and √sNN = 5.5 TeV for p–Pb and

Pb–Pb collisions, along with increased luminosity.

3.2 The ALICE detector

In opposition to RHIC, which is a fully dedicated heavy-ion accelerator, the LHC has only
one experiment specialised for such collisions, ALICE [138–141]. Its main physics goal is the
study of the properties of the interacting matter at extreme temperatures. Therefore, it has
been designed to measure in the same place a broad range of observables previously analysed
in different accelerators like RHIC or the SPS. Among the requirements were, for example, the
abilities to track and identify particles with transverse momenta as low as 100 MeV/c to as
high as around 100 GeV/c, and to reconstruct particles with a short lifetime, while taking into
account the large number of charged tracks produced in central and semicentral collisions. As
stated above, the nominal luminosity of the LHC in Pb–Pb collisions has been planned to reach
L = 1027 cm−2s−1. In the Run 2 data taking, about 1 nb−1 of integrated luminosity has been
taken with ALICE. This is about ten times more data than in Run 1, where the value was of
about 75 µb−1 [142].
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ALICE is a massive detector situated underground at Point 2. It measures 16× 16× 26 m3

and weights about 10000 t. The full detector (Fig. 3.2) can be divided into two main parts.
The first system, the central barrel, is placed in the solenoid magnet from the L3 experiment

Figure 3.2: Schematic view of the ALICE detector during Run 2 [143].

at the LEP which produces a nominal magnetic field of 0.5 T. The central part of ALICE
has a coverage in polar angles between 45 and 135◦, which corresponds to a pseudorapidity
range |η| ≤ 0.9 [138, 140]. This allows the detection of hadrons, electrons and photons. The
detector in the central barrel closest to the beam pipe is the Inner Tracking System (ITS),
followed by the Time Projection Chamber (TPC), the Transition Radiation Detector (TRD)
and the Time Of Flight (TOF). Situated between the space frame holding the previously cited
central detectors and the magnet are the Electromagnetic Calorimeter (EMCal) and the Dijet
Calorimeter (DCal), the latter being added during the Long Shutdown 1 (LS1) between Run 1
and Run 2. Besides these main systems are found two smaller detectors: the High Momentum
Particle Identification (HMPID) and the Photon Spectrometer (PHOS). It has to be noted that
only these four last detectors do not have a full 360◦ azimuthal coverage. The second part is the
forward muon spectrometer placed at large rapidities. It consists of its own dipole magnet, five
tracking chambers and an iron filter for the absorption of the remaining hadrons followed by two
trigger stations. This setup allows measurements between 2 and 9◦, or −4 ≤ η ≤ −2.4 [138].

Finally, several small detectors, generally situated close to the beam, complete the list.
These are the Zero Degree Calorimeter (ZDC) for the measurement of the impact parameters, the
Photon Multiplicity Detector (PMD) counting the number of photons, the Forward Multiplicity
Detector (FMD), and the T0 and the V0 detectors for fast triggers. Above the L3 magnet is the
ALICE Cosmic Ray Detector (ACORDE). This array of plastic scintillators serves as a trigger
for cosmic rays measurements.

The following subsections present in more details the subdetectors directly involved in this
analysis.
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3.2.1 The Inner Tracking System

The ITS is the first tracking detector, directly surrounding the beam pipe and the nominal
interaction point [138,140]. As such, its tasks are the reconstruction of the primary vertex with
a high resolution better than 100 µm and of the secondary vertices coming from the decays of
hyperons and heavy mesons like the D or B mesons. The ITS also deals with the tracking and
identification of the low-momentum particles and the improvement of the reconstruction of the
particles reaching the TPC through the resolution of their momentum and angle.

As all the main detectors in the central barrel, a pseudorapidity coverage of |η| ≤ 0.9 is
assured for all the vertices situated at most ±5.3 cm of the nominal interaction point, along
the beam pipe. The ITS is made of six layers of silicon detectors (Fig. 3.3), divided into three
groups of two layers, each with their own technology: the Silicon Pixel Detector (SPD), the
Silicon Drift Detector (SDD) and the Silicon Strip Detector (SSD). Several parameters have

Figure 3.3: (Left) Layout of the ITS and orientation of the ALICE global (middle) and the ITS
local (right) reference systems [144]. The origin of the global reference system is situated in the
middle of the ITS such that the z-direction is aligned with the beam line.

been taken into account in the design of the layers to ensure a good efficiency in the track
finding and a high resolution for the determination of the impact parameter. For instance, the
matching between the tracks in the ITS and the TPC affects the determination of the outer
radius of the former. For its inner radius, it is the dimensions of the beam pipe, which has a
diameter of 6 cm, that must be taken into consideration. Another element is the number of
tracks produced in a collision. The largest values are reached during head-on Pb–Pb collisions,
where an event can have more than 10000 detected tracks before the application of any analysis
selection. The granularity of the detector must then be able to deal with a track density of
maximum 8000 tracks per unit of rapidity [138]. Furthermore, this density varies severely with
the distance, meaning different technologies are needed depending on the position of the layers.

SPD layers

The SPD are the two innermost layers of the ITS, respectively placed at r = 3.9 cm and
r = 7.6 cm from the beam pipe. They play an extremely important role in the measurement
of the position of the primary vertex, as well as of the distance of closest approach (DCA) of
the secondary tracks from the weak decays of the heavier particles. Finally, the SPD can be
used as a centrality estimator (see Fig. 5.1) It has to be noted that its first layer has a larger
pseudorapidity coverage of |η| < 1.98 [138] for the measurements of the multiplicities of charged
particles, complementary to the FMD. There, the density of produced particles can reach up
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to 80 particles/cm−2 in a largely radiative environment, requiring detectors with both high
precision and high granularity. This leads to the choice of a hybrid pixel detector made out of
silicon. The most basic block of the SPD is a two-dimensional matrix or sensor ladder. This
matrix possesses 256×160 cells of 50 µm in the rϕ to 425 µm in the z-direction [138]. The
cells are divided into five sub-matrices of 256 (rϕ) × 32 (z) cells, each connected to a front-
end readout chip. Besides, longer cells are employed near the borders to ensure a full coverage
between the readout chips. The sensor ladders are then mounted two-by-two to create half-
staves, themselves mounted on a support sector which serves also for the cooling of the system.
As visible in Fig. 3.4, the sectors in the inner layer are composed of two staves, the ones in the
outer layer of four staves.

Figure 3.4: (Left) Layout of the SPD and (right) representation of a support sector made of
carbon fibres [144].

SDD layers

The SDD are the two middle layers of the ITS, designed to have good multitrack capabilities.
Moreover, half of the dE/dx samples (two out of four) are used for the particle identification
(PID) in the ITS are obtained with the SDD. They are situated at r = 15.0 cm and r = 23.9 cm
from the beamline. In this range, the charged particle density is supposed to be at maximum
7 cm−2. The SDD modules are separated into two drift regions. The application of a drift field of
about 500 V/cm allows the displacement of the electrons in opposite directions. These modules
are set up on linear supports, the ladders. The inner SDD layer consists of fourteen ladders of
six modules, while the outer layer has twenty-two ladders of eight modules. This sums up to
a total sensitive area larger than 580 µm in the rϕ- and z-directions, ensuring full coverage in
azimuthal angles for the central barrel pseudorapidity range.

SSD layers

The last two layers of the ITS are composed of the SSD, located at r = 38.0 cm and
r = 43.0 cm from the beam pipe. They are fundamental to help in the matching of the tracks
measured in the ITS and the ones in the TPC. The SSD module is made of a double-sided
strip detector. Each side has 768 strips with a pitch of 95 µm. To get the best resolution
possible in the rϕ-plane, the strips are set up nearly parallel to the beamline. The installation
of the modules on the ladders is similar to the one used for the SDD. Thirty-four ladders, each
with twenty-two modules in the beam direction, compose the inner layer. For the outer layer,
thirty-eight ladders with twenty-five modules are used.
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3.2.2 The Time Projection Chamber

The TPC [138] is the main tracking detector in ALICE, able to provide measurements of
the charged particles momentum and PID, and the determination of the primary vertex while
being a centrality estimator as well. It presents the same pseudorapidity range as the other
detectors in the central barrel (|η| < 0.9) over its full length. For shorter track length, this range
is even increased to |η| < 1.5. Furthermore, a full 2π coverage is ensured for the azimuthal
angles. These requirements give to the TPC the status of the main apparatus used in hadronic
measurements in any type of collision system. They aim at getting a better understanding of
the source from where the produced particles are emitted, as well as its space–time evolution
until freeze-out. These analyses rely on single- and two-particle spectra and correlations and
event-by-event fluctuations and therefore impose requirements on the TPC. Examples are the
need for a large acceptance and resolution in low and high momentum and pseudorapidity, the
complete azimuthal acceptance and good PID capabilities.

Lepton-related observables can also be studied with the help of the TPC. These include
the measurements of high-mass and high-pT electron pairs and the production of charm- and
beauty-flavoured particles. In this goal, the TPC must have a large acceptance for high-pT tracks
over his full length to ensure a good matching with the TRD. Furthermore, the PID capacities
of the TPC are essential to ensure the electrons whose impact parameters are determined by
the ITS can be used for separation of the primary J/ψ mesons to the ones coming from the
decays of B particles. The matching to the electron candidates identified in the TRD imposes
requirements on the rate capabilities of the TPC. This means maximum rates of 200 Hz must
be reached for central Pb–Pb collisions. Events from the collisions between protons set a trigger
limit to the rate of 1000 Hz as the total space charge is lower than for heavy-ion collisions.

Figure 3.5 shows the layout of the TPC. The dimensions of the cylinder are of about 85 cm
for the inner radius, about 250 cm for the outer radius and a total length of 500 cm along the
beamline, centred at the IP. The detector volume, about 88 m3, is filled with a gaseous mixture

Figure 3.5: Schematic layout of the TPC [145].

of Ne/CO2 with a ratio 90%/10%. A highly uniform electrostatic drift field is created by the

41



Chapter 3. A Large Ion Collider Experiment

combination of the central high voltage electrode dividing the active volume in two, and the inner
and outer field cages. Due to the choice of filling gas, high voltage gradients of approximately
400 V/cm must be obtained for the field cage, with a voltage of 100 kV at the central electrode.
This choice of design means that the primary electrons produced by the ionisation of the gas
have a drift distance of maximum 250 cm and a drift time of maximum 90 µs before reaching the
endplates containing the readout chambers. The position (x, y, z) — or (r, ϕ, z) in cylindrical
coordinates — of the drifting electron, which has been created through the ionisation of the gas,
can then be obtained from the readout chambers. The transverse coordinates x and y (i.e. r
and ϕ) correspond to the position of the pad where the electron arrived, while the longitudinal
information z is provided with the measurement of the time of flight.

These chambers consist of multi-wire proportional chambers, with a cathode pad readout.
They are divided azimuthally into thirty-six sectors, eighteen per side. Due to the radial depen-
dency of the track density, two regions are distinguished for each sector: the Inner Read Out
Chambers (IROCs) (from 84.1 cm to 132.1 cm) and the Outer Read Out Chambers (OROCs)
(134.6 cm to 246.6 cm). To get the resolution required for the PID and the determination of
the position, while ensuring the occupancy stays the lowest possible, about 560000 pads are
employed in total. Finally, a gating grid is added to the system. Upon reception of a triggered
system, the grids are open to let the electrons access the chambers from 6.5 µs after the colli-
sion for the duration of one drift-time interval, before closing again until the next collision and
trigger. The goal is here to prevent space charges from secondary ionisations in the gas or from
ion back flow to drift back into the active volume where they can introduce perturbation in the
homogeneous field. This phenomenon, known as the space charge distortion, introduces a bias
in the measured position of the track which needs to be corrected later on if not prevented. It
has to be noted that the multi-wire proportional chambers used during Run 1 and Run 2 are
currently replaced with the Gas Electron Multiplier (GEM) technology [146, 147]. This choice
is motivated by the capacity of the GEM to work in the continuous read-out mode required by
the increased event rate of Run 3.

3.2.3 The V0 detector

The V0 [138,148] is a small two-part detector, which fills several purposes in ALICE. First
of all, it helps in providing various triggers for the rest of the experiment: minimum bias for the
central barrel and validation signal for the muon trigger in pp events, but also two centrality
triggers for Pb–Pb collisions. Besides the trigger system, it serves as a control for the luminosity
in the experiment.

The two arrays, V0A and V0C, are situated at different distances of the IP, along the
beamline: V0A at 329 cm and V0C at 90 cm on the side of the muon spectrometer [148].
They cover the pseudorapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively, for a
collision happening exactly at the interaction point. Because of these positions, the background
can become non-negligible. Examples include the important production of secondary particles
because of the presence of a sizeable amount of detector material in front of the arrays, or the
interactions between the beam and the residual gas within the beamline [148]. These sources
can bias the multiplicity measurement or provide the wrong trigger, and therefore, they need to
be reduced.

The two arrays are made of four rings divided into eight sectors in the azimuthal direction.
Figure 3.6 shows a schematic of the layout of each array. The design of the V0C is influenced
by its position in front of the hadronic absorber: the sectors are separated to allow the passage
of the scintillating fibres while ensuring the largest azimuthal coverage possible. Because of its
further location, the V0A does not present such constraints. The scintillating fibres collect and
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Figure 3.6: Layout of the V0A and V0C arrays [148].

guide the produced light to photomultipliers set at 3–5 m from the V0 arrays. It has to be noted
that specific photomultipliers able to work in presence of a magnetic field need to be used, as
the V0 system is situated within the L3 solenoid.

Among the triggers provided by the V0 cited above, some are specific to Pb–Pb collisions.
One of the major criteria in the configuration of the triggers is the efficiency for hadronic inter-
action, which must be as high as possible. Therefore, two out of the three following conditions:
(1) hits are detected in two pixel chips in the outer layer of the SPD, (2) a signal is detected
in the V0A, (3) a signal is detected in the V0C. This list of requirements gives an estimation
of the deposited average energy of a minimum ionising particle. It has to be noted that this
minimum bias trigger was not constant during the full Pb–Pb data taking period in 2010. The
increase of beam luminosity near the end of said period forced the criteria for the trigger to
be reduced to the coincidence between SPD, V0A and V0C. The reason for this choice is that
the electromagnetic dissociation of the lead nuclei created background signals which should be
reduced as much as possible. Finally, this trigger implied an event rate of 50 Hz, divided as
follows: 4 Hz from nuclear interactions, 45 Hz from electromagnetic phenomena, and 1 Hz from
the beam background [149].

As stated above, the V0 detector can also be used for the centrality determination of the
events produced in Pb–Pb collisions [149,150]. To achieve this, the triggered events are further
selected using the information from another detector, the ZDC, to remove the beam background.
The obtained distribution of amplitudes in the V0 is shown in Fig. 3.7. This figure recalls Fig. 1.7.
The procedure using the Glauber fit can therefore be applied to define each centrality class of
events.

3.2.4 Online and offline data processing

As stated above in this chapter, the LHC performed collisions at various energies of the
order of TeV. Collisions between protons at

√
s = 8 TeV, protons and lead at √sNN = 5.02 TeV

and lead ions at √sNN = 2.76 TeV are examples taken by ALICE between 2009 and 2013.
During Run 2 (2015–2018), the energies have been increased to

√
s = 13 TeV for pp collisions,√

sNN = 8.16 TeV for p–Pb collisions and √sNN = 5.02 TeV for Pb–Pb collisions to cite only a
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Figure 3.7: Distribution of the summed amplitudes in the V0 [150]. The Glauber fit is shown
in red. Each segment indicates a different centrality class as described in Section 1.3.

few examples. The luminosity is therefore high enough that not all the produced events can be
recorded and stored on tape. This procedure can be divided into two major categories, both with
their requirements and specificities: the online and offline frameworks. This section describes
the steps used during data taking to select and reconstruct the events to be used in analyses.

The online framework intervenes during the data taking itself. As such, it must be fast and
efficient to select the events to keep for further treatment. The first step is the ALICE trigger
system. It aims at reducing the number of events to give the next steps in the chain, the Data
AcQuisition (DAQ) and the High Level Trigger (HLT), while ensuring the kept data are poten-
tially interesting for the analyses done in ALICE. The Central Trigger Processor (CTP) receives
the information for the various triggers from the different detectors. As these subsystems are not
busy for the same time periods, the CTP must be able to process all the triggers concurrently in
ways optimised for the different running modes of ALICE (pp, heavy ions,. . . ) [138]. To allow
the tracking detectors to deal with the large multiplicities generated in central Pb–Pb collisions,
the trigger has to be able to work on a short time scale, about less than 1.2 µs. However, not all
trigger inputs are already available, leading to a division of the trigger in two parts, the Level 0
(L0) signal which must work at 1.2 µs and the Level 1 (L1) signal at 6.5 µs which waits for the
remaining trigger inputs. Furthermore, due to these high multiplicities, it becomes impossible
to reconstruct the events containing more than one central collision. A “past-future protection”
with a Level 2 (L2) trigger at the end (∼ 88 µs) ensures that the event can be taken.

The variety of physics topics studied in ALICE for the different collision systems imposes
different requirements on the events to keep. At least fifty trigger classes were envisioned for the
Run 1 data taking period [138]. Examples are the minimum bias trigger already discussed above
and used in this work, the cosmic trigger or the beam gas trigger. It is important to notice that
the trigger classes do not have all the same frequency. Some of them (e.g. the minimum bias
trigger) are so common that the performance of the acquisition system is their major limitation.
As a result, they can potentially use a large fraction of the total bandwidth. On the other hand,
rarer trigger classes are limited by the luminosity of the run and the detector live time. As
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such, they would use a smaller fraction of the bandwidth. An equilibrium must then be found
between these types of classes. This is achieved by the trigger and the DAQ systems.

The HLT must fulfil three roles within the data processing. It must select the portions of
an event or the regions of interest which are relevant for the physics analyses. To achieve this,
it helps with the removal of the pile-up in pp collisions or the filtering of the low momentum
tracks, for instance. It also works on compressing the data as much as possible without losing
physics information. Finally, it tightens the momentum cut in the muon spectrometer, improves
the PID, the momentum resolution and IP determination of the TRD electrons in the TPC. This
analysis of physics observables aims at rejecting fake events. The events or regions of interest
accepted that the HTL are finally compressed and sent to the permanent storage.

The physics data resulting from the online system, as well as the ones from the various event
generators used in ALICE, are reconstructed and analysed with the ALICE offline framework
called AliRoot. In opposition to the other LHC experiments, which use two lines of software
for their physics analyses, ALICE decided to develop and maintain only one framework, fully
based on the ROOT framework. Some of the motivations behind this choice are the capacity
of ROOT to deal with large amounts of data in any step of the data analysis and its efficiency
as an object-oriented C++ language. It has to be noted that ALICE developed as well its own
environment, AliEn [151], on a Grid computing infrastructure to ease the access and analysis of
all the produced data. This procedure has even been facilitated further with the integration of
the LEGO train framework [152], which optimises the use of resources in the case of an analysis
over large samples of data, like a full period itself.

Figure 3.8: Data processing chain used to reconstruct both the simulated and real data [140].

Figure 3.8 shows the data processing framework for both the simulated and real data. In
the former case, the particles are first produced by a Monte Carlo (MC) generator, meaning all
their properties, like PID or momentum, are exactly known. This level of information represents
what would be ideally measured and is designated under the names of kinematics, generator or
MC truth level. Some generators and hydrodynamic models are presented in Section 6.1. These
data are sent in the simulation chain reproducing the detector response of ALICE. Examples
of programs used in this goal are GEANT3 [153] and its follow-up GEANT4 [154, 155]. They
reduce the particle information to what is actually measured in the experiment. It has to be
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noted that this step requires a full and exact simulation of each ALICE detector (dimensions,
material budget,. . .) within the program.

The “raw data”, simulated or real, are then processed by the reconstruction algorithms.
The first step is the local reconstruction for each detector, like the clusterisation. Afterwards,
the primary vertex is reconstructed, followed by the execution of the tracking and particle
identification operations. Finally, the secondary vertices are reconstructed. More information
about each of these steps can be found in Refs. [139,140].

The structure of the reconstructed real data is organised in the following scheme: year,
period, and runs. A run is defined as an uninterrupted data taking time interval where the
conditions within ALICE are stable and identical. It can range from few minutes to few hours
long, depending on the status of the detectors and the LHC itself. A new run is started if any
change is made on the configuration of the system. Runs sharing the same global conditions
(centre of mass energy, colliding system, . . .) are grouped into a period. For instance, the full
set of Pb–Pb collisions at √sNN = 2.76 TeV are gathered into the LHC10h period, where the
number indicates the year of data taking (here 2010) and the last letter the index of the period
in said year. MC simulations are stored into sets with identical conditions used for the detector
response and follow their own naming scheme. An example is the LHC11a10a_bis dataset,
which groups the HIJING simulations anchored to — i.e. obtained with the same conditions as
— the LHC10h dataset.

The first data sample (period, run, . . .) which is usable by the analysers is saved as Event
Summary Data (ESDs) files, which contain all reconstructed information. As these files have a
massive size, they are filtered into smaller samples, the Analysis Object Data (AODs) with only
the quantities needed for physics analyses. Depending on the set of criteria, different filtering
are present in a single AOD and are designated by a filterbit number. Examples used in this
work are the TPC-standalone (or TPC-only) tracks with a selection based only the information
from the TPC itself, or the hybrid tracks where the tracking information from the TPC and ITS
are combined to get the best resolution in transverse momentum and to correct the non-uniform
acceptance (NUA) in azimuthal angles coming from dead or malfunctioning regions of the SPD.
Their filterbits are the 128 and the 768, respectively.

The final output of this reconstruction level (or detector level), be it ESDs or AODs, can
then be used for physics analyses. It has to be noted that the comparison between the kinematics
and reconstruction levels in simulated data can be used to determine the detector and software
performances or to get the factors to correct for detector effects. Detailed explanation and
methodology of the latter are given in Section 5.3.

Moreover, all the processing steps described above have been used to reconstruct and analyse
the data taken during Run 1 and Run 2 at the LHC. However, due to the increase of the centre of
mass energy and luminosity and the upgrades of various detectors, a new programming system
will be required for Run 3. Called O2 for “online-offline” [156], it answers, for example, the need
of a fast trigger decision and the disappearance of the notion of “event” due to the planned high
rate and pile-up level in small and large colliding systems.
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Cumulants of Flow Amplitudes

This chapter presents the theoretical method introduced to generalise the two-harmonic
SCs to any number of harmonics. Section 4.1 highlights the details of this new mathematical
approach following Refs. [117, 125, 157]. Afterwards, this procedure is extended to the ACs.
These latter observables aim to probe the genuine correlations between various moments of
different flow amplitudes. This extension is explained similarly as for the SCs in Section 4.2.

4.1 Higher order Symmetric Cumulants

The lower order SCs (Eq. (2.62)) have been obtained with the traditional approach based
on cumulants in flow analyses. Like discussed in Section 2.2, the azimuthal angles of the mea-
sured particles are identified as the fundamental stochastic variables in the definition of κ1,1,1,1
(Eq. (2.56)). The expression resulting from this procedure is then interpreted in terms of the
flow degrees of freedom: the flow amplitudes and the symmetry planes. However, this method
presents a problem that should not be underestimated. The SC observables measure the gen-
uine correlations between flow amplitudes. By definition, they must then be cumulants of
these quantities. However, as seen in Section 2.2, a cumulant of the variables X1, . . . , XN with
X1(Y1, . . . , YN ), . . . , XN (Y1, . . . , YN ) is generally not a cumulant in the basis Y1, . . . , YN . This
means, for example, that the observation of a cumulant being zero would be misinterpreted as
the absence of correlations between its variables.

This observation shows the need for a clear guideline to generalise the SCs to three and
more flow harmonics while preserving their properties as cumulants. This leads thus to the first
requirement of the novel approach introduced in Ref. [117]: any expression used to define a
higher order SC must be a cumulant involving only the flow amplitudes, and not the azimuthal
angles or the symmetry planes. Furthermore, as their names indicate, the SCs must be identical
under the permutation of the concerned flow amplitudes. With two and three harmonics, this
translates into SC(m,n) = SC(n,m) and SC(k, l,m) = SC(k,m, l) = SC(l, k,m) = SC(l,m, k) =
SC(m, k, l) = SC(m, l, k). While this may seem a minor condition in appearance, it leads in fact
to major consequences in the expressions of the SCs themselves. A two-harmonic SC must
contain exactly two different flow amplitudes vm and vn, a three-harmonic SC three amplitudes,
and so forth. Besides, all the amplitudes must be raised to the same power. This latter point is
in fact good news, as it allows the direct use of Eq. (2.9) from Ref. [124].
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4.1.1 Main idea for the new generalisation approach

The starting point of the novel approach is the expression of SC(m,n). While obtained
with the traditional method, it happens to also be a cumulant of the flow amplitudes squared.
This can be shown straightforwardly. The identification X1 = v2

m and X2 = v2
n in the expansion

of κ1,1 (Eq. (2.43)) leads directly to Eq. (2.62). Despite being an accidental coincidence, this
characteristic of SC(m,n) is taken as the basis for the generalisation of the SCs to three and
more amplitudes through the following proposition: for a number of flow magnitudes j, the
corresponding SC(n1, . . . , nj) is calculated by identifying X1 = v2

n1 , X2 = v2
n2 , . . . , Xj = v2

nj
in

the expression of the j-th order cumulant κ1,...,1.
For simplicity, the demonstration of the validity of the proposed idea is provided here only

for the three-harmonic SC(k, l,m) as an example. Nevertheless, it can be easily extended to any
number of flow harmonics. The resulting expressions for the four- and five-harmonics SCs can
be found in Appendix B of Ref. [117]. Following the claim above, the definition of SC(k, l,m) is
determined by setting X1 = v2

k, X2 = v2
l and X3 = v2

m in κ1,1,1 (Eq. (2.43)):
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This expression is symmetric under any permutation of the different harmonics. However, this
quick check is not sufficient to prove that the novel approach leads to valid cumulants according to
the formalism of Kubo [124]. In the following demonstration, only the names of the requirements
are indicated. More details can be found in Section 2.2 and in Ref. [125].

Statistical independence. Without loss of generality, the fluctuations of v2
k and v2

l are
chosen correlated, while v2

m fluctuate independently of the other two. Equation (4.1) becomes
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Furthermore, if all three harmonics fluctuate independently, the derivation results again in
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This proves that the candidate equation does not contain any internal bias and that an absence
of genuine correlations between the three amplitudes can be safely deduced when the expression
is consistent with zero. This confirms Theorem 1 in Ref. [124].

Reduction. The three flow magnitudes are now set equal to each other v2
k = v2

l = v2
m ≡ v2,

leading to
SC(k, l,m) =

〈
v6
〉
− 3

〈
v4
〉〈
v2
〉

+ 2
〈
v2
〉3
. � (4.4)

This is the expression for the κ3 with v2 as fundamental stochastic variable and therefore a valid
cumulant.
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Homogeneity. Let ck, cl and cm be three constants. The homogeneity criterion goes as〈
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Multilinearity. Take v2
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n four different flow amplitudes. It follows
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The expression of SC(n1, . . . , nj) obtained through the alternative approach proposed above
passes all the requirements needed to be a valid multivariate cumulant of v2

n. This is the
essential key of this method: the cumulant formalism is applied directly on the v2

n and not on the
azimuthal correlators anymore. The azimuthal angles are now only a tool to get the experimental
estimators (see Section 4.1.2). Furthermore, the fact that the fundamental observables are
not the flow amplitudes vn but their square is an important nuance that needs to be stressed
out. It can be shown that, already with two harmonics, SC(m,n) cannot meet the criterion
about semi-invariance if applied with the flow amplitudes themselves as stochastic variables (see
Appendix B.3).

While this method is designed to generalise the concept of SCs of the flow amplitudes
to higher orders, it is not its only use. As with the two-harmonic SCs, it is possible to get
predictions of the genuine correlations between different eccentricities in theoretical models. The
corresponding formulas are determined by replacing the flow magnitudes v2

n by their counterparts
in the initial state ε2n. Equation (4.1), for example, becomes for three eccentricities
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Furthermore, these new SC observables can be normalised in order to compare initial and
final states or results that are not measured for the same kinematic ranges. This allows, for
instance, better quantification of the part of the correlations that developed only during the
collective evolution [117]. The normalised SCs are computed with

NSC(k, l,m) ≡ SC(k, l,m)〈
v2
k

〉 〈
v2
l

〉
〈v2
m〉
, (4.9)

NSCε(k, l,m) ≡ SCε(k, l,m)〈
ε2k
〉 〈
ε2l
〉
〈ε2m〉

. (4.10)

4.1.2 Determination of the experimental expression

The expressions in terms of the flow amplitudes presented above can be used directly in
theoretical studies, as the flow amplitudes can be estimated for each event as an output of the
hydrodynamic models. However, this is not the case for experimental analyses. There, the
azimuthal angles ϕ detected in an event are the only accessible variables which can be used
to compute the multiparticle correlators. The flow magnitudes and symmetry planes are then
estimated from the multiparticle azimuthal correlators and the analytic relation Eq. (2.12).
In order to compare the theoretical predictions with the experimental results, one needs to
ensure that the experimental expression in terms of azimuthal correlators is another form of
the theoretical definition with the flow amplitudes. The two-harmonic SCs have been calculated
with the traditional method, meaning their expression in terms of ϕ was determined at the same
time. Since the new approach focuses on the flow magnitudes in the cumulant expansion, the
next step in the generalisation is thus the determination of the experimental expression of the
higher order SCs. The procedure is done here with three different harmonics and can again be
easily generalised for more amplitudes.

Different definitions can be obtained from the insertion of Eq. (2.12) in the theoretical
expression of SC(k, l,m) (Eq. (4.1)). From now on, three candidates are investigated. They are
called here the usual, alternative and the mixed expressions of SC(k, l,m), respectively given by
the following combinations of azimuthal correlators:
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These three examples differ from the order of their multiparticle correlators. For instance,
the usual expression maximises the number of particles in the correlators for each term before
taking the all-event averages. The alternative formula involves only the product of single-event
two-particle azimuthal correlators in the estimation of the final all-event averages. As its name
indicates, the mixed expression is an example half-way between the usual and the alternative
relations. Furthermore, as seen in Chapter 2, in the case of a detector with uniform acceptance
like ALICE, only the azimuthal k-particle correlators that are isotropic do not cancel out in the
passage from the single-event to the all-event averages. It has to be noted that this is the case
for all the candidates presented above.

These three candidate expressions in Eqs. (4.11)–(4.13) yield to the same expression as
in Eq. (4.1). It becomes then necessary to check which one of them, if not all, presents the
needed cumulant properties and can be reliably used in flow analyses to measure the genuine
correlations between the magnitudes. The higher order SCs are a generalisation of the well-
known two-harmonic case. The latter can thus be used to establish a list of requirements that
the final experimental expression must follow, as shown in Ref. [117]. Some of them concern the
cumulant properties, while others can be related to the flow techniques used in the analysis, like
the choice of event weights.

The determination of the unique experimental expression through the mentioned require-
ments is established with the help of carefully thought toy MC (TMC) studies. The starting
point of the TMC setup is the implementation of the Fourier distribution given by Eq. (1.13) to
sample the azimuthal angles of each simulated particle. For simplicity, only three independent
free parameters v2, v3 and v4 are employed in the definition, i.e.

f (ϕ) = 1
2π [1 + 2v2 cos(2ϕ) + 2v3 cos(3ϕ) + 2v4 cos(4ϕ)] . (4.14)

This TMC setup is reduced to the most simple form needed to determine which expression
must be used to calculate the genuine correlations between three different flow harmonics in the
experiment. As all the azimuthal correlators in the three candidate definitions are isotropic, the
symmetry planes can be set to zero without ill effects. Other input parameters of the TMC setup
involve the event multiplicity M and the number of simulated events Nevents. While the latter
is straightforward, different options are available for M . The default setting is that all events
have the same number of particles as it allows the use of unit event weights. The alternative
configuration is an event-by-event multiplicity uniformly sampled in the range (Mmin,Mmax)
given by the user. This more realistic option is used to determine the correct event weights.

The execution of the TMC setup goes then as follows. For each event, M , v2, v3 and v4
are set according to the needs of the current check. The azimuthal angles are sampled from
the Fourier series of Eq. 4.14 and used to compute all the needed multiparticle correlators
with the Generic Framework described in Section 2.1. As already mentioned, the choice of the
event weights for the transition from the single-event to the all-event averages is left open as
an input. Equations (4.11)–(4.13) are subsequently computed from the retrieved multiparticle
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correlations and compared to the expected output of the TMC study. Figure 4.1 illustrates this
full setup. Each check used to determine the correct experimental expression is now presented
in the following sections.

Inputs: 

For one event:
• Fix in 

pdf
• Calculate 

Outputs: 

Loop over the 
events

Final: 

Figure 4.1: Illustration of the setup for the TMC studies used to check the properties of
SC(k, l,m).

Study of the cumulants properties

The observable SC(k, l,m) probes the genuine correlations between the fluctuations of the
three given flow amplitudes. Therefore, it must be zero in these different cases:

• case 1 where vk, vl, vm are constant amplitudes,

• case 2 where vk, vl, vm fluctuate independently, and

• case 3 where vk, vl fluctuate independently and vm is genuinely correlated to vk, for exam-
ple.

These properties are shown for SC(2, 3, 4) with the following configurations of the TMC setup.
For Nevents = 108 events in total and M = 100, 250, 500, 750, 1000 particles per event, the flow
amplitudes are set to

• v2, v3, v4 = 0: case 1 shown in Fig. 4.2 (top left),

• v2 = 0.15, v3 = 0.13, v4 = 0.1: case 1 shown in Fig. 4.2 (top right),

• v2, v3, v4 = (0.05, 0.09): case 2 shown in Fig. 4.2 (bottom left), and

• v2, v3 = (0.05, 0.09) and v4 = v2 − (0.005, 0.025): case 3 shown in Fig. 4.2 (bottom right).

The different panels in Fig. 4.2 show that SC(2, 3, 4) computed with the usual expression is in
agreement with zero for all multiplicities, while the alternative and mixed definitions present
a systematic bias as a function of M . This implies that only Eq. (4.11) does not contain any
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Figure 4.2: Multiplicity dependence of SC(2, 3, 4) for Eqs. (4.11)–(4.13) with different configu-
rations of the TMC setup: zero amplitudes (top left), constant non-zero amplitudes (top right),
independently fluctuating amplitudes (bottom left) and only two correlated amplitudes (bottom
right). The notation (Mmin,Mmax) indicates the range for the event-by-event uniform sam-
pling [117].

built-in correlations when the fluctuations of the harmonics are absent or fully independent, or
when only two of them are genuinely correlated.

The results obtained with the previous TMC study are confirmed by configuring the setup
such that the three flow magnitudes v2, v3 and v4 are now genuinely correlated. For the same
number of events N and sample of multiplicities, the harmonics are now set to v2 = (0.03, 0.1),
v3 = v2− (0, 0.02) and v4 = v2− (0.005, 0.025). The final SC(2, 3, 4) is compared to the expected
value analytically computed [158] using that

〈vm2 vn3 v
p
4〉 ≡

∫
vm2 v

n
3 v

p
4f(v2)f(v2 − v3)f(v2 − v4)dv2dv3dv4, (4.15)

with f(x) a piecewise-defined function. The final results are shown in the left panel of Fig. 4.3
for all three expressions and in the right panel for the usual expression only. As in Fig. 4.2,
the results with the usual expression are in agreement within the statistical errors with the
expected value. The alternative and mixed definitions show the same systematic bias already
seen above. All these checks lead to the conclusion that only the usual definition with the
maximisation of the number of particles in each azimuthal correlator preserves the cumulant
properties in all multiplicities. Therefore, from now on, the other requirements are checked only

53



Chapter 4. Cumulants of Flow Amplitudes

Multiplicity
0 200 400 600 800 1000

S
C

(2
,3

,4
)

4

6

8

10

12

14

16
9−10×

 - (0, 0.02)2 = v3v
 = (0.03, 0.1),2v

 - (0.005, 0.025)2 = v4v

Multiplicity
0 200 400 600 800 1000

S
C

(2
,3

,4
)

4.9

5

5.1

5.2

5.3

5.4

9−10×
8 = 10

events
Toy Monte Carlo, N

Usual
Alternative
Mixed
Theoretical value

Figure 4.3: Multiplicity dependence of SC(2, 3, 4) for Eqs. (4.11)–(4.13) (left) and for the usual
expression only (right) when the three flow amplitudes are genuinely correlated. The notation
(Mmin,Mmax) indicates the range for the uniform event-by-event sampling [117].

for Eq. (4.11). The definitions involving products of two- and four-particle correlations inside
the all-event averages show a strong deviation for low numbers of events. This divergence can
thus be explained mathematically, as presented in Section 4.1.3.

Choice of the event weights

All the multiparticle correlators involved in the evaluation of the SCs are in terms of all-
event averages. Moreover, the transition from the single-event to the all-event average depends
on the choice of event weights, which will impact both the statistical and systematic uncertainties
of the final SCs (Eq. (2.29)). The following setup is used to investigate the impact of the event
weights. The number of simulated events is kept to Nevents = 108. The flow amplitudes are
set to the constant values v2 = 0.09, v3 = 0.07, v4 = 0.05. As fluctuations are absent, the
final result for SC(2, 3, 4) must be zero. Finally, the multiplicity is uniformly sampled event-by-
event in the interval M = (50, 500), which is a good approximation of the number of particles
detected by ALICE in the Pb–Pb collisions at √sNN = 2.76 TeV. The different event weights
under consideration are the unit weight, the multiplicity of the current event and the number of
combinations [121] that can be obtained from k particles out of M . The final results for these
weights are presented in Fig. 4.4. The comparison between the three different event weights
shows that the “number of combinations” leads to the smallest statistical error in the final
SC, with a result compatible with the expected zero. The “multiplicity” weight still returns
SC(2, 3, 4) = 0, but the statistical spread is more important. Finally, the unit event weight
introduces the largest statistical error, but also a non-negligible bias in the obtained cumulant.
One additional remark is that this conclusion is in agreement with the standard choice of event
weights in flow analyses.

4.1.3 Explanation of the disagreement of the alternative expression

The comparison of the three expressions for the SC observable in the various TMC studies
above highlights an ambiguity in the alternative and mixed definitions (Eqs. (4.12) and (4.13)).
At first look, they both seem to be equal to Eq. (4.1) through the relation given in Eq. (2.12),
in the same way as Eq. (4.11). However, the results from the TMC simulations show a clear
disagreement at low multiplicities, while the usual expression always agrees with the predictions.
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Figure 4.4: Comparison of the values for SC(2, 3, 4) for three different event weights: the num-
ber of combinations, the event multiplicity and the unit weight. The multiplicity is sampled
uniformly event-by-event in the range (50, 500). The expected value is zero as the three flow
amplitudes are kept constant [117].

This deviation can be explained analytically. Due to the complexity and number of terms
involved, the derivation is not done for three different flow harmonics, but in the simpler case
of the well-known lower order SCs. Its conclusion is then illustrated with TMC studies based
on the setup described above.

For two harmonics m,n with m 6= n, the corresponding SC is defined in terms of flow
amplitudes in Eq. (2.62). Similarly as for SC(k, l,m), the usual expression of SC(m,n) is given
by Eq. (2.61) and recalled here,

SC(m,n)usual =
〈〈

ei(mϕ1+nϕ2−mϕ3−nϕ4)
〉〉
−
〈〈

ei(mϕ1−mϕ2)
〉〉〈〈

ei(nϕ1−nϕ2)
〉〉
. (4.16)

Taking into account the analytic relation between the azimuthal angles and the flow degrees
of freedom (Eq. (2.12)), Eq. (2.62) can be a priori expressed with another combination of
correlators,

SC(m,n)alternative =
〈〈

ei(mϕ1−mϕ2)
〉〈

ei(nϕ1−nϕ2)
〉〉
−
〈〈

ei(mϕ1−mϕ2)
〉〉〈〈

ei(nϕ1−nϕ2)
〉〉
.

(4.17)
Since the four-particle correlator in the first term of the usual expression is replaced with the
product of two two-particle correlators as in Eq. (4.12), Eq. (4.17) is called the alternative form
of SC(m,n). Furthermore, as Eqs. (4.16) and (4.17) only differ by their first term, it suffices to
show the inequality between these two averages to prove the one between the two expressions
themselves.

For an event with multiplicity M and three flow harmonics m,n and o with the unique
condition that m + n + o = 0, the single-event two-, three- and four-particle correlations are
respectively given by

〈
ei(mϕ1−mϕ2)

〉
=

∑M
h,j=1
h6=j

ei(mϕh−mϕj)

∑M
h,j=1
h6=j

1

= 1
M(M − 1)

M∑
h,j=1
h6=j

ei(mϕh−mϕj),

(4.18)
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〈
ei(mϕ1+nϕ2+oϕ3)

〉
=

∑M
h,j,k=1
h6=j 6=k

ei(mϕh+nϕj+oϕk)

∑M
h,j,k=1
h6=j 6=k

1

= 1
M(M − 1)(M − 2)

M∑
h,j,k=1
h6=j 6=k

ei(mϕh+nϕj+oϕk)

(4.19)

〈
ei(mϕ1+nϕ2−mϕ3−nϕ4)

〉
=

∑M
h,j,k,l=1
h6=j 6=k 6=l

ei(mϕh−mϕj+nϕk−nϕl)

∑M
h,j,k,l=1
h6=j 6=k 6=l

1

= 1
M(M − 1)(M − 2)(M − 3)

M∑
h,j,k,l=1
h6=j 6=k 6=l

ei(mϕh−mϕj+nϕk−nϕl).

(4.20)

Using Eq. (4.18), the product of two two-particle correlators for the harmonics m and n
goes as follows:

〈
ei(mϕ1−mϕ2)

〉〈
ei(nϕ1−nϕ2)

〉
= 1
M2(M − 1)2

 M∑
h,j=1
h6=j

ei(mϕh−mϕj)

 ·

 M∑
k,l=1
k 6=l

ei(nϕk−nϕl)



= 1
M2(M − 1)2


M∑

h,j,k,l=1
h6=j
k 6=l

ei(mϕh−mϕj+nϕk−nϕl)

 .
(4.21)

The conditions h 6= j and k 6= l on the sum∑M
h,j,k,l=1 mean that only the following combinations

of harmonics are possible:

• h 6= j 6= k 6= l,

• h 6= j, h = k and j = l,

• h 6= j, h = k but j 6= l,

• h 6= j, h 6= k and j = l,

• h 6= j, h = l and j = k,

• h 6= j, h = l but j 6= k, and

• h 6= j, h 6= l but j = k.
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This implies that Eq. (4.21) can be expressed with

〈
ei(mϕ1−mϕ2)

〉〈
ei(nϕ1−nϕ2)

〉
= 1
M2(M − 1)2

 M∑
h,j,k,l=1
h6=j 6=k 6=l

ei(mϕh−mϕj+nϕk−nϕl)

+
M∑

h,j,k,l=1
h=k
j=l
h6=j

ei(mϕh−mϕj+nϕh−nϕj) +
M∑

h,j,k,l=1
h=k
h6=j 6=l

ei(mϕh−mϕj+nϕh−nϕl)

+
M∑

h,j,k,l=1
j=l

h6=j 6=k

ei(mϕh−mϕj+nϕk−nϕj) +
M∑

h,j,k,l=1
h=l
j=k
h6=j

ei(mϕh−mϕj+nϕj−nϕh)

+
M∑

h,j,k,l=1
h=l

h6=j 6=k

ei(mϕh−mϕj+nϕk−nϕh) +
M∑

h,j,k,l=1
j=k
h6=j 6=l

ei(mϕh−mϕj+nϕj−nϕl)

 .

(4.22)

Equations (4.18)–(4.20) are inserted in Eq. (4.22), leading to〈
ei(mϕ1−mϕ2)

〉〈
ei(nϕ1−nϕ2)

〉
= 1
M2(M − 1)2

[
M(M − 1)(M − 2)(M − 3)

〈
ei(mϕ1+nϕ2−mϕ3−nϕ4)

〉
+M(M − 1)

{〈
ei((m+n)ϕ1−(m+n)ϕ2)

〉
+
〈

ei((m−n)ϕ1−(m−n)ϕ2)
〉}

+M(M − 1)(M − 2)
{〈

ei((m+n)ϕ1−mϕ2−nϕ3)
〉

+
〈

ei((m−n)ϕ1−mϕ2+nϕ3)
〉

+
〈

ei(mϕ1+(n−m)ϕ2−nϕ3)
〉

+
〈

ei(mϕ1−(m+n)ϕ2+nϕ3)
〉}]

.

(4.23)

Finally, the all-event average is given by〈〈
ei(mϕ1−mϕ2)

〉 〈
ei(nϕ1−nϕ2)

〉〉
= 1
M(M − 1)

[
(M − 2)(M − 3)

〈〈
ei(mϕ1+nϕ2−mϕ3−nϕ4)

〉〉
+
〈〈

ei((m+n)ϕ1−(m+n)2)
〉〉

+
〈〈

ei((m−n)ϕ1−(m−n)ϕ2)
〉〉

+ (M − 2)
{〈〈

ei((m+n)ϕ1−mϕ2−nϕ3)
〉〉

+
〈〈

ei((m−n)ϕ1−mϕ2+nϕ3)
〉〉

+
〈〈

ei(mϕ1+(n−m)ϕ2−nϕ3)
〉〉

+
〈〈

ei(mϕ1−(m+n)ϕ2+nϕ3)
〉〉}]

.

(4.24)

The first term is the four-particle correlators present in the usual expression in Eq. (4.16).
However, while the autocorrelations are removed in the expression of a single two-particle cor-
relator, it is not the case in their products. All the additional terms in Eq. (4.24) come from
the remaining self-correlations introduced by the product itself.

Using the TMC setup described in the previous subsection, simulated results are obtained to
illustrate the difference between the usual and alternative expressions of SC(m,n) and the impact
of the additional terms coming from the partial removal of the autocorrelations in the latter.
The flow magnitudes are set constant to v2 = 0.15 and v4 = 0.1 for each of the Nevents = 106

events. The results for the first term of the two expressions are shown in Fig. 4.5, along with
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their theoretical prediction. The four-particle correlator
〈〈

ei(mϕ1+nϕ2−mϕ3−nϕ4)
〉〉

is in good
agreement with the expected value, while the all-event average of the product of the two-particle
shows the same multiplicity dependence as observed before. Figure 4.5 shows with the open
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Figure 4.5: Comparison between the first terms of the usual and alternative expressions of
SC(m,n) as a function of the multiplicity. The addition of each successive term in Eq. (4.24)
tends to the results of

〈〈
ei(mϕ1−mϕ2)

〉〈
ei(nϕ1−nϕ2)

〉〉
.

markers also the convergence of the sum of terms from Eq. (4.24). The open red circles are
the sum of the two first terms of Eq. (4.24), the open black squares the sum of the three first
terms, and so on until the full sum represented with the closed black diamonds. As the latter is
is perfect agreement with

〈〈
ei(mϕ1−mϕ2)

〉〈
ei(nϕ1−nϕ2)

〉〉
, proving the mathematical derivation

made above.
A similar proof can be done to show this effect in the alternative and mixed expressions

of SC(k, l,m), their multiplicity dependence can still be explained by the introduction of self-
correlations from the product of single-event multiparticle correlations. Furthermore, as the
usual expression uses the largest multiparticle correlator for each event-by-event average, it
removes all autocorrelations by definition.

4.1.4 Comparison between the traditional and new approaches

The studies above have proved the validity of the new approach in the generalisation of
SC(m,n) to three and more harmonics. The genuine correlations between the j flow amplitudes
v2
n1 , v

2
n2 to v2

nj
can be estimated by identifying them in the expansion of the j-th order cumulant

κ1,...,1. Their experimental evaluation is obtained with the use of the analytical relation between
the azimuthal angles and the flow degrees of freedom (Eq. (2.12)). The necessity of introducing
a new approach is now analysed by looking at the application of the traditional approach to
generalise the SCs and the comparison of the results.

In the traditional approach, the expressions for a flow observable are obtained by performing
the cumulant expansion directly with the azimuthal angles as stochastic variables. In the case
of the 3-harmonic SCs, six particles are needed in the largest correlator and thus, the starting
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cumulant is κ1,1,1,1,1,1. Using the usual identification X1 = eikϕ1 , X2 = eilϕ2 , X3 = eimϕ3 ,
X4 = e−ikϕ4 , X5 = e−ilϕ5 and X6 = e−imϕ6 , the all-event average is given by

κ1,1,1,1,1,1 = −
〈〈

ei(lϕ2+mϕ3−kϕ4)
〉〉〈〈

ei(kϕ1−lϕ5−mϕ6)
〉〉

+ 2
〈〈

ei(mϕ3−mϕ6)
〉〉〈〈

ei(lϕ2−lϕ5)
〉〉〈〈

ei(kϕ1−kϕ4)
〉〉

−
〈〈

ei(lϕ2+mϕ3−lϕ5−mϕ6)
〉〉〈〈

ei(kϕ1−kϕ4)
〉〉

−
〈〈

ei(lϕ2−kϕ4−mϕ6)
〉〉〈〈

ei(kϕ1+mϕ3−lϕ5)
〉〉

−
〈〈

ei(lϕ2−lϕ5)
〉〉〈〈

ei(kϕ1+mϕ3−kϕ4−mϕ6)
〉〉

−
〈〈

ei(mϕ3−kϕ4−lϕ5)
〉〉〈〈

ei(kϕ1+lϕ2−mϕ6)
〉〉

−
〈〈

ei(mϕ3−mϕ6)
〉〉〈〈

ei(kϕ1+lϕ2−kϕ4−lϕ5)
〉〉

+
〈〈

ei(kϕ1+lϕ2+mϕ3−kϕ4−lϕ5−mϕ6)
〉〉
.

(4.25)

It has to be noted that all terms where isotropy could not be achieved with any combination of
harmonics have been removed in the expression above. Two different cases are now treated as
examples.

The first example is obtained by setting k = 4n, l = 3n and m = 2n, for any n a non-zero
harmonic, into Eq. (4.25). This leads to an expression of the corresponding “SC” observable in
the traditional approach:

SC(2n, 3n, 4n)old = 2
〈〈

e2in(ϕ3−ϕ6)
〉〉〈〈

e3in(ϕ2−ϕ5)
〉〉〈〈

e4in(ϕ1−ϕ4)
〉〉

−
〈〈

ein(3ϕ2+2ϕ3−3ϕ5−2ϕ6)
〉〉〈〈

e4in(ϕ1−ϕ4)
〉〉

−
〈〈

ein(4ϕ1+2ϕ3−4ϕ4−2ϕ6)
〉〉〈〈

e3in(ϕ2−ϕ5)
〉〉

−
〈〈

ein(4ϕ1+3ϕ2−4ϕ4−3ϕ5)
〉〉〈〈

e2in(ϕ3−ϕ6)
〉〉

+
〈〈

ein(4ϕ1+3ϕ2+2ϕ3−4ϕ4−3ϕ5−2ϕ6)
〉〉
,

(4.26)

where the isotropy condition has already been applied. Using Eq. (2.12) returns the following
equation in terms of the flow degrees of freedom:

SC(2n, 3n, 4n)old = 2
〈
v2

2n

〉〈
v2

3n

〉〈
v2

4n

〉
−
〈
v2

2nv
2
3n

〉〈
v2

4n

〉
−
〈
v2

2nv
2
4n

〉〈
v2

3n

〉
−
〈
v2

3nv
2
4n

〉〈
v2

2n

〉
+
〈
v2

2nv
2
3nv

2
4n

〉
.

(4.27)

This corresponds to the definition of SC(k, l,m) in terms of flow amplitudes presented in
Eq. (4.1). This means that both the new and the traditional approaches converge for this
specific choice of harmonics.

In the second example, the harmonics are set to k = 3n, l = 2n and m = n for any strictly

59



Chapter 4. Cumulants of Flow Amplitudes

positive integer n. Equation (4.25) transforms into

SC(n, 2n, 3n)old = −
〈〈

ein(2ϕ2+ϕ3−3ϕ4)
〉〉〈〈

ein(3ϕ1−2ϕ5−ϕ6)
〉〉

+ 2
〈〈

ein(ϕ3−ϕ6)
〉〉〈〈

e2in(ϕ2−ϕ5)
〉〉〈〈

e3in(ϕ1−ϕ4)
〉〉

−
〈〈

ein(2ϕ2+ϕ3−2ϕ5−ϕ6)
〉〉〈〈

e3in(ϕ1−ϕ4)
〉〉

−
〈〈

ein(3ϕ1+ϕ3−3ϕ4−ϕ6)
〉〉〈〈

e2in(ϕ2−ϕ5)
〉〉

−
〈〈

ein(3ϕ1+2ϕ2−3ϕ4−2ϕ5)
〉〉〈〈

ein(ϕ3−ϕ6)
〉〉

+
〈〈

ein(3ϕ1+2ϕ2+ϕ3−3ϕ4−2ϕ5−ϕ6)
〉〉
.

(4.28)

This becomes in terms of flow amplitudes and symmetry planes

SC(n, 2n, 3n)old = −〈vnv2nv3n cos [in(2Ψ2n + Ψn − 3Ψ3n)]〉2

+ 2
〈
v2
n

〉〈
v2

2n

〉〈
v2

3n

〉
−
〈
v2
nv

2
2n

〉〈
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(4.29)

In opposition to the previous example, this equation diverges with the expression obtained in
the new approach. Furthermore, this is not a valid cumulant of the flow amplitudes due to the
first term containing a contribution from the symmetry planes themselves. This, for example,
means that this equation does not return zero when the three flow magnitudes vn, v2n and v3n
are not all genuinely correlated.

Based on this observation, comparisons between the two approaches using MC studies are
now provided. The observable that is used as a concrete example is SC(1, 2, 3). Its expression
in the new formalism, denoted by SC(1, 2, 3)new, is given by Eq. (4.11) where k = 1, l = 2 and
m = 3. The traditional definition (SC(1, 2, 3)old) is obtained by setting n = 1 in Eq. (4.29) given
above.

The first study is done with another TMC setup than the one described in Section 4.1.2. Its
particularities are shown below. The total number of events is Nevents = 10000. The flow mag-
nitudes are uniformly and independently sampled event-by-event in the ranges v1 = (0.03, 0.1),
v2 = (0.04, 0.1) and v3 = (0.05, 0.1). Furthermore, their corresponding symmetry planes are
sampled for each event in the uniform ranges Ψ1,Ψ2 = (0, 2π) and Ψ3 = 1

3
(
π
4 + 2Ψ2 + Ψ1

)
.

The amplitudes and planes are then directly used to compute the terms of the two cumulant
expressions. The final observables are presented in Fig. 4.6. As the flow amplitudes are all
sampled independently event-by-event, the measure of their genuine correlations must be equal
to zero. This is the case for SC(1, 2, 3)new obtained with the new approach. However, due to
the presence of the term with symmetry planes in its expression, SC(1, 2, 3)old is non-zero. This
shows that only the new formalism presented above preserves the properties of the cumulants
for the flow amplitudes.

This influence of the symmetry planes is visible also in predictions from real MC models, for
example, iEBE-VISHNU (see Section 6.1.4 for a description of iEBE-VISHNU and its setup for
this work). Figure 4.7 shows in the left panel the centrality dependence of SC(1, 2, 3) obtained
through the two approaches using iEBE-VISHNU and in the right panel the centrality depen-
dence of their difference. The predicted results show clear differences in their trend for collisions
with a centrality percentile higher or equal to 25%. Furthermore, their difference presents a non-
negligible systematic bias, again due to the impact from the term with the symmetry planes in
the traditional formalism.
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Figure 4.6: (Left) All-event averages involved in the traditional (old) and new approaches of
SC(1, 2, 3) for the TMC described in the text and (right) final corresponding final expressions
for the traditional SC(1, 2, 3)old and new SC(1, 2, 3)new approaches. Results courtesy of A.
Bilandzic [117].
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Figure 4.7: Centrality dependence of SC(1, 2, 3) in the two different approaches (left) and of
their difference (right) in iEBE-VISHNU. Results courtesy of S.F. Taghavi [117].

4.1.5 Robustness against nonflow correlations

Another criterion for the generalisation of the SCs is their robustness against nonflow cor-
relations. Nonflow is not a collective effect and thus, it is a systematic bias in any flow analysis.
Two different studies are conducted to probe the nonflow effects in the proposed novel observ-
ables: the nonflow scaling through TMC simulations and their sensitivity to nonflow with the
realistic model HIJING [72,73].

Nonflow scaling with TMC studies

The nonflow scaling of a compound observable is based on the scaling of each one of its k-
particle correlators given by Eq. (2.32). From the number of particles in each term of Eq. (4.11),
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the final scaling of SC(k, l,m) is expressed as

δSC
3 ∼ δ6 + δ4 · δ2 + (δ2)3 = α

M5 + β

M4 + γ

M3 , (4.30)

where α, β and γ are three constants used to quantify the different sources that contribute to
nonflow. They are obtained by fitting the multiplicity dependence of a SC observable. This is
achieved with the following configuration of the TMC setup from Section 4.1.2. ForNevents = 108

events, all flow magnitudes are set to zero, removing all contributions from collective flow. Strong
two-particle correlations are introduced by first sampling the azimuthal angles over Minitial

before doubling all particles. The final multiplicity Mfinal is thus Mfinal = 2Minitial. This case
can be seen as an example of extreme track splitting where each particle is counted twice in
the detector. Finally, the multiplicity dependence of the obtained SC (Fig. 4.8) is fit with the
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Figure 4.8: Multiplicity dependence of SC(2, 3, 4) for strong two-particle correlations. The cyan
line shows the fit of the nonflow scaling expected for SC(k, l,m) [117].

scaling from Eq. (4.30). The fit parameters are found to be

α = 27.011± 9.787,
β = −0.0947± 0.1743,
γ = (−1.383± 5.876)× 10−4,

with a fit goodness χ2/ndf = 0.7. This means that the proposed fit is a good description of the
results. Furthermore, both β and γ are consistent with zero, which implies that the dominant
contribution to nonflow originates from the six-particle correlator.

Nonflow estimations in HIJING

Until now, the studies of the properties of the experimental expression of SC(k, l,m) have
been established either in a fully controlled environment or in a realistic model, iEBE-VISHNU.
While the TMC setup is a good and necessary passage to ensure everything goes as expected
— the output can be completely predicted from the input parameters — it is not a true repre-
sentation of the collisions between heavy ions. In addition, iEBE-VISHNU contains both flow
and nonflow, making it impossible to estimate reliably the influence of the latter in the SCs
measurements. In that context, the next natural step is to study the predictions of the SCs
observables with the help of realistic MC models containing only nonflow.
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HIJING is such a MC generator, which describes phenomena involving correlations between
few particles only, without any contribution from collective effects. Therefore, it is widely used
in flow analyses to test the sensitivity to nonflow of a multiparticle azimuthal correlator or a
compound observable like the SCs. If its predictions in HIJING are compatible with zero within
statistical uncertainties, the corresponding variable is a reliable estimator of the properties of
the anisotropic flow. A more complete discussion about HIJING is presented in Section 6.1.1.

The data sample used here corresponds to Pb–Pb collisions obtained at √sNN = 2.76 TeV
in the same conditions as the measurements done with the ALICE detector in 2010. The details
about the simulations and the selection criteria applied to the data can be found in Chapter 5. It
has to be noted that the analysed data have been obtained at reconstruction level and no particle
weight has been applied. The predictions from HIJING for various combinations of harmonics are
shown in Fig. 4.9 for SC(2, 3, 4), Fig. 4.10 for SC(2, 3, 5), Fig. 4.11 for SC(2, 4, 6) and Fig. 4.12
for SC(3, 4, 5). These combinations have been chosen as their experimental counterparts are
studied in Chapter 6. Moreover, all figures are organised as follows: the centrality dependence
of each term of the expression of SC(k, l,m) is presented in the left panel, while the right panel
demonstrates the centrality dependence of the SC itself.
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Figure 4.9: Centrality dependence of each individual term in the expression of SC(2, 3, 4) (left)
and of the final SC(2, 3, 4) itself (right) with the HIJING model.

In the left panels, the individual terms are not all in agreement with zero. They exhibit a
centrality dependence that the statistical fluctuations cannot explain. The figures in the right
panels present values that are compatible with zero for all centrality bins. This leads to the
conclusion that the presented combinations are not sensitive to nonflow correlations than each
of the correlators in their definition taken individually.

4.2 Asymmetric Cumulants

The alternative approach introduced for the generalisation of the two-harmonic SCs to three
and more flow amplitudes has been shown to lead to observables with all the properties needed
for flow analyses. Examples of such properties are the accurate evaluation of the correlations
both with the flow amplitudes and with the azimuthal angles, or their robustness against few-
particle nonflow correlations. Nevertheless, these SCs represent only a subset of the cumulants
of the flow amplitudes squared. To determine the full p.d.f., the information relative to distinct
orders and moments of the flow amplitudes are needed. The aim of this section is thus to expand
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Figure 4.10: Centrality dependence of each individual term in the expression of SC(2, 3, 5) (left)
and of the final SC(2, 3, 5) itself (right) with the HIJING model.
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Figure 4.11: Centrality dependence of each individual term in the expression of SC(2, 4, 6) (left)
and of the final SC(2, 4, 6) itself (right) with the HIJING model.

the new approach for cumulants to design observables, the ACs, that can be reliably used to
study the genuine correlations between these different moments of the flow magnitudes.

4.2.1 Lowest order Asymmetric Cumulant

The first combination of moments that will be investigated here is the two-harmonic AC
denoted by AC2,1(m,n). In opposition to the SCs where the order of the cumulant is identical
to its number of harmonics, the order of an AC is at least equal to the number of concerned
flow amplitudes plus one. This means that the lowest order AC which can be defined is of third
order, as it cannot involve less than two harmonics:

AC2,1(m,n) ≡
〈

(v2
m)2v2

n

〉
c
≡
〈
v4
mv

2
n

〉
c
. (4.31)

Before going further, a comment has to be made on the notation chosen for these novel ob-
servables. While it seems complicated, it allows knowing directly which flow amplitudes and
which moments are used in the cumulant expansion. Furthermore, it can easily be generalised
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to any number of amplitudes and any moment and thus, to any future new AC observable. As
for the higher order SCs, two expressions are needed for the ACs: the general one in terms of
the flow amplitudes which can be straightforwardly used to get theoretical predictions, and the
one with the azimuthal angles to analyse the experimental data. The observable AC2,1(m,n)
is based on the cumulant expansion of κ2,1 (Eq. (2.43)) as indicated by its indices. The new
approach states that the theoretical expression of any two-harmonic cumulant can be obtained
with the identification of X1 = v2

m and X2 = v2
n in its cumulant expansion. The expression for

AC2,1(m,n) is then

AC2,1(m,n) =
〈
v4
mv

2
n

〉
−
〈
v4
m

〉〈
v2
n

〉
− 2

〈
v2
mv

2
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〉〈
v2
m

〉
+ 2

〈
v2
m

〉2 〈
v2
n

〉
. (4.32)

In a way similar to what has been done in Section 4.1, the proof is now given that
AC2,1(m,n) is also a valid cumulant of the flow amplitudes squared and hence, that the new
method can be successfully extended to the measurements of the genuine correlations between
different moments of the flow amplitudes.

Statistical independence. The fluctuations of v2
m and v2

n are considered being completely
uncorrelated. Equation (4.32)) simplifies into
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〈
v4
m

〉〈
v2
n

〉
−
〈
v4
m

〉〈
v2
n

〉
− 2

〈
v2
m

〉〈
v2
n

〉〈
v2
m

〉
+ 2

〈
v2
m

〉2 〈
v2
n

〉
= 0, � (4.33)

as expected for a cumulant.

Reduction. The flow magnitudes are set equal, i.e. v2
m = v2

n ≡ v2, leading to

AC2,1(m,n) =
〈
v6
〉
−
〈
v4
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. �

(4.34)

Exactly as for SC(k, l,m), this is the expansion for κ3 with v2 as the fundamental stochastic
variable, and thus a cumulant.
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Semi-invariance. Let cm and cn be two constants. The semi-invariance requirement is
demonstrated with〈
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(4.35)

Homogeneity. Let cm and cn be two constants again. The proof goes as follows〈
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Multilinearity. Consider the three different flow amplitudes v2
m, v2

n and v2
k, then
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(4.37)

The definition of AC2,1(m,n) as given by Eq. (4.32) passed all the requirements for an
observable to be called a valid multivariate cumulant. Furthermore, as it was done for the SCs
themselves, it is possible to replace the flow amplitudes by the corresponding eccentricities and
measure the ACs in the initial state. This means that one can also define the normalised ACs
based on the standard method for normalisation (see Ref. [159]), i.e.

NAC2,1(m,n) ≡ AC2,1(m,n)
〈v2
m〉

2 〈v2
n〉

. (4.38)
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The next step is now to determine the combination of azimuthal multiparticle correlators
that represents AC2,1(m,n). Since the ACs share the same approach developed for the gen-
eralisation of the SCs to the higher orders, the knowledge obtained from the TMC studies in
Section 4.1.2 is employed here. The passage from the theoretical expression with the flow mag-
nitudes to a definition which can be used with experimental data is governed with the analytical
relation of Eq. (2.12). The ambiguity encountered for SC(k, l,m) (see Section 4.1.3) is avoided
by maximising in each term the number of particles needed for each azimuthal correlations,
while including the isotropy requirement for the concerned harmonics. Taking all these points
into account, this leads to the final azimuthal expression

AC2,1(m,n) =
〈〈

ei(mϕ1+mϕ2+nϕ3−mϕ4−mϕ5−nϕ6)
〉〉

−
〈〈
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〉〉

− 2
〈〈
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〉〉

+ 2
〈〈
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〉〉2 〈〈

ei(nϕ1−nϕ2)
〉〉
.

(4.39)

Correlations between different moments of the flow amplitudes have also been presented
with the traditional approach in Ref. [160]. Among the observables that are proposed, the
counterpart of AC2,1(m,n), namely MHC(v4

m, v
2
n), is presented. Its expression in terms of the

flow amplitudes vm and vn is given by
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. (4.40)

This equation is based on the same averages as the ones in Eq. (4.32). However, it has to be
noted that the two last terms differ by a factor two when compared to the result of the new
approach. This implies that Eq. (4.40) is not a valid cumulant of vn or v2

n and therefore, it
cannot be used to estimate reliably the genuine correlations between only the flow amplitudes.
Moreover, this difference of factors is not surprising as it is present also, for example, between
the known four-particle cumulant of vn, i.e. vn{4} ≡

〈
v4
n

〉
− 2

〈
v2
n

〉2 and the variance of v2
n

(
〈
v4
n

〉
−
〈
v2
n

〉2) which is obtained through the new method. One of the goals of the TMC studies
presented in Section 4.2.3 will be to compare the nonflow scaling of the two approaches in the
case of ACs.

4.2.2 Generalisation to higher order cumulant expansions

In a similar way as for the generalisation of SC(m,n) to more than two harmonics, AC2,1(m,n)
can be extended. Although, this generalisation cannot only be done on the number of harmon-
ics, but also on the order of the ACs for a fixed number of harmonics. Therefore, in addition to
AC2,1(m,n) presented above, three other ACs are investigated:
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〈
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2
l v

2
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c
.

Comparing the first two observables with the ones from AC2,1(m,n) allow to see how the genuine
correlations between two given flow amplitudes differ with the considered moments. The last
variable, AC2,1,1(k, l,m) can bring complementary information with respect to the usual three-
harmonic SCs in a way similar to the previous case.
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The technical expressions for these additional two-harmonic ACs are based on the cumulant
expansion of κ3,1 for AC3,1(m,n) and κ4,1 for AC4,1(m,n). These are given here for the sake of
completeness:

κ3,1 ≡ −6µ0,1µ1,0
3 + 6µ1,1µ1,0

2 + 6µ0,1µ2,0µ1,0

− 3µ2,1µ1,0 − 3µ1,1µ2,0 − µ0,1µ3,0 + µ3,1
(4.41)

and

κ4,1 ≡ 24µ0,1µ1,0
4 − 24µ1,1µ1,0

3 − 36µ0,1µ2,0µ1,0
2 + 12µ2,1µ1,0

2

+ 24µ1,1µ2,0µ1,0 + 8µ0,1µ3,0µ1,0 − 4µ3,1µ1,0 + 6µ0,1µ2,0
2

− 6µ2,0µ2,1 − 4µ1,1µ3,0 − µ0,1µ4,0 + µ4,1.

(4.42)

The substitution X1 = v2
m and X2 = v2

n used in the new cumulant approach gives the following
expressions:

AC3,1(m,n) =
〈
v6
mv

2
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(4.43)

and

AC4,1(m,n) =
〈
v8
mv
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(4.44)

In the case of the three-harmonic AC, the initial cumulant is the fourth-order three-variable
κ2,1,1 defined as

κ2,1,1 ≡ −6µ0,0,1µ0,1,0µ1,0,0
2 + 2µ0,1,1µ1,0,0

2 + 4µ0,1,0µ1,0,1µ1,0,0

+ 4µ0,0,1µ1,1,0µ1,0,0 − 2µ1,1,1µ1,0,0 − 2µ1,0,1µ1,1,0 + 2µ0,0,1µ0,1,0µ2,0,0

− µ0,1,1µ2,0,0 − µ0,1,0µ2,0,1 − µ0,0,1µ2,1,0 + µ2,1,1.

(4.45)

With the usual identification X1 = v2
k, X2 = v2

l and X3 = v2
m, this leads to an expression of

AC2,1,1(k, l,m) with
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(4.46)

All these observables are cumulants of the flow amplitudes squared. Their demonstrations
are similar to the ones done for AC2,1(m,n) and the SC observables. Furthermore, like these
latter variables, the dependence on the fluctuations of the flow amplitudes themselves and the
transverse momentum is removed by normalising these expressions. This leads to the following
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three new definitions:

NAC3,1(m,n) ≡ AC3,1(m,n)
〈v2
m〉

3 〈v2
n〉

(4.47)

NAC4,1(m,n) ≡ AC4,1(m,n)
〈v2
m〉

4 〈v2
n〉

(4.48)

NAC2,1,1(k, l,m) ≡ AC2,1,1(k, l,m)〈
v2
k

〉2 〈
v2
l

〉
〈v2
m〉

(4.49)

Moreover, the definitions of these ACs in the initial state are obtained by replacing the flow
amplitudes by the corresponding eccentricities. Finally, the equations in terms of the azimuthal
angles are then obtained following the same strategy as in Section 4.2.1, leading to

AC3,1(m,n) =
〈〈
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AC4,1(m,n) =
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(4.51)
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and finally,
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(4.52)

4.2.3 Cumulant properties with toy Monte Carlo studies

In the same fashion as for the SCs, TMC simulations are established to check the properties
of the expressions above. The setup used in this section is slightly modified with respect to the
one employed in Section 4.1.2. Non-zero symmetry planes are introduced in the implementation
of the Fourier series, leading to

f (ϕ) = 1
2π [1 + 2v1 cos(ϕ−Ψ1) + 2v2 cos(2(ϕ−Ψ2)) + 2v3 cos(3(ϕ−Ψ3))] . (4.53)

This equation has six independent parameters: the three flow amplitudes v1, v2 and v3 and the
three symmetry planes angles Ψ1, Ψ2 and Ψ3. The simulations are obtained for Nevents =
108 events in total, with Ψ1,Ψ2 and Ψ3 uniformly sampled event-by-event in the interval
(0, 2π). Unless stated otherwise, the multiplicities are kept constant to the initial values M =
50, 100, 250, 500 and 750. Ten particles per events (M = 10) has been considered to investigate
the results at low multiplicities. However, as the terms appearing in the ACs involve six-, eight-
and even ten-particle correlations, such results will show severe biases and errors, and therefore,
M = 10 has not been used.

The various checks studied with this TMC setup come from the ones realised for SC(k, l,m),
their differences will be discussed later. This section concerns the subject of the cumulant
properties, while a deeper look at the nonflow scaling using strong few-particle correlations is
given in Section 4.2.4. The analyses of the cumulant properties of the azimuthal expressions of
the ACs are made with four simulations: the amplitudes are kept constant or uncorrelated, only
two of them present genuine correlations, and the three magnitudes are genuinely correlated.
Moreover, all the results are organised in a similar way: the top left panel shows the results
for AC2,1(m,n), the top right panel for AC3,1(m,n), the bottom left panel for AC4,1(m,n) and
finally, the bottom right panel for AC2,1,1(k, l,m).

Figure 4.13 shows the results for three constant flow amplitudes set to v1 = 0.1, v2 = 0.08
and v3 = 0.06 respectively. In Fig. 4.14, the magnitudes are uncorrelated event-by-event and
fluctuate in the interval v1, v2, v3 = (0.05, 0.1). For multiplicities comparable to the ones

70



4.2. Asymmetric Cumulants

Multiplicity
0 200 400 600 800 1000

 (
1,

2)
2,

1
A

C

4−

3−

2−

1−

0

1

9−10×

 = 0.06
3

 = 0.08, v
2

 = 0.1, v1v

8 = 10
events

Toy Monte Carlo, N

Multiplicity
0 200 400 600 800 1000

 (
1,

2)
3,

1
A

C

0

0.1

0.2

0.3

0.4

0.5

9−10×

Multiplicity
0 200 400 600 800 1000

 (
1,

2)
4,

1
A

C

0

10

20

30

40

50

12−10×

Multiplicity
0 200 400 600 800 1000

 (
1,

2,
3)

2,
1,

1
A

C

0.2−

0.15−

0.1−

0.05−

0

0.05

9−10×

Figure 4.13: Multiplicity dependence for all the ACs for three constant flow amplitudes set to
v1 = 0.1, v2 = 0.08 and v3 = 0.06 respectively [157].

in central and mid-central heavy-ion collisions, the ACs are in agreement within statistical
uncertainties with zero as expected. Important variations are observed for M = 50 particles per
event. They are not surprising, since multiparticle correlations as used in the current studies
are precision techniques only in environments with large numbers of events and multiplicities
like the ones found in heavy-ion collisions.

The next test concerns the situation of two genuinely correlated harmonics. Therefore,
the flow amplitudes are fixed to v1, v3 = (0.05, 0.1), v2 = v1 − (0.005, 0.025). Like for the
SCs, the theoretical values expected for the final ACs are computed for a box p.d.f. using
Mathematica [158] and compared to the results from the simulations. Figure 4.15 presents
the comparisons for all observables. AC2,1,1(1, 2, 3) = 0 as only a subset of harmonics are
genuinely correlated. For the two-harmonic ACs, the simulations are in good agreement with
the predictions from Mathematica.

Finally, the three non-zero harmonics are all correlated with v1 = (0.05, 0.1), v2 = v1 −
(0., 0.02), v3 = v1 − (0.005, 0.025). In this case, ACa,1(1, 2), a = 2, 3, 4 are expected to be still in
good agreement with the predictions from Mathematica with the box distribution, but with val-
ues different to the previous test — the initial distribution has changed —, while AC2,1,1(1, 2, 3)
must agree to its own non-zero prediction. The results, visible in Fig. 4.16, confirm these ex-
pectations with a good compatibility between theory and TMC simulations.

From all these TMC studies, it can be deduced that the expressions proposed for all the
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Figure 4.14: Multiplicity dependence for all the ACs for three uncorrelated flow amplitudes
fluctuating in the interval v1, v2, v3 = (0.05, 0.1) [157].

ACs have all the properties to be called cumulants of the flow amplitudes squared: they are
non-zero if and only if the number of flow magnitudes that are genuinely correlated is equal to
the number of harmonics involved in a considered AC.

In addition to the checks of the cumulant properties and the nonflow scaling (see next
section), several additional checks have been done for the SCs but they are deemed unnecessary
this time based on the knowledge collected previously. These include the following list:

Flow harmonics set to zero. The output of this check is redundant with the one for
non-zero constant harmonics, as they both need to return null ACs. This simulation would
have been done only if the latter had returned non-zero ACs, to ensure the absence of built-in
correlations which may have biased the final results.

Uniqueness of the experimental expression. As discussed above, this study in the
context of SC(m,n) and SC(k, l,m) has shown that it is not possible to use the all-event av-
erage of the product of two-particle correlators and that each correlation must be defined with
the higher number of involved particles, e.g. v4

2v
2
l v

2
m must be a six-particle correlator. This

conclusion has already been used to derive the expressions of the ACs in terms of multiparticle
azimuthal angles.

Choice of the event weight. The analyses for SC(k, l) demonstrated that the event
weights to use is the “number of combinations” and this was confirmed with the TMC done
for SC(k, l,m). As the ACs are an extension of the SC observables and also use the Generic
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Figure 4.15: Multiplicity dependence for all the ACs in the case of two genuinely correlated flow
amplitudes with v1, v3 = (0.05, 0.1), v2 = v1 − (0.005, 0.025) [157].

Framework [110], their event weights must also be the number of combinations.

4.2.4 Robustness against nonflow correlations

Nonflow scaling with strong multiparticle correlations

The same configuration as in Section 4.1.2 is now implemented for the TMC setup described
in Section 4.2.3. All contributions from collective flow are removed by setting the magnitudes
to v1, v2, v3 = 0, while the corresponding symmetry planes are still uniformly sampled in (0, 2π).
It has to be noted that setting the planes to zero change nothing in the definition of the Fourier
series given by Eq.(4.53). The nonflow scaling of each order of ACs is again determined by using
the scaling for a single multiparticle azimuthal correlator given by Eq. (2.32). This leads to

AC2,1(m,n) ' α

M5 + β

M4 + γ

M3 , (4.54)

AC3,1(m,n) ' α

M7 + β

M6 + γ

M5 + δ

M4 , (4.55)

AC4,1(m,n) ' α

M9 + β

M8 + γ

M7 + δ

M6 + ε

M5 , (4.56)

AC2,1,1(k, l,m) ' α

M7 + β

M6 + γ

M5 + δ

M4 , (4.57)
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Figure 4.16: Multiplicity dependence for all the ACs for three genuinely correlated flow ampli-
tudes with v1 = (0.05, 0.1), v2 = v1 − (0., 0.02), v3 = v1 − (0.005, 0.025) [157].

with α, β, γ, δ, ε the fit parameters.
Strong multiparticle correlations are introduced by taking multiple times the same set of

azimuthal angles, reproducing the effect that all tracks are split in the detector. Three different
cases of track splitting are going to be investigated here: two, three and four particles. The
tested multiplicities in every case are set initially to

Minitial,2p = 10, 18, 25, 38, 50, 75, 100, 150, 200, 250, 500,
Minitial,3p = 7, 12, 15, 25, 33, 50, 66, 100, 133, 166, 333,
Minitial,4p = 5, 9, 12, 20, 25, 40, 50, 75, 100, 125, 250

and the final multiplicities are respectively Mfinal,2p = 2Minitial,2p, Mfinal,3p = 3Minitial,3p and
Mfinal,3p = 3Minitial,3p. Figure 4.17 presents the results for all track splitting for each AC up
to Mfinal = 120 for clarity purposes. A version going to Mfinal = 550 is visible in Appendix C.
The obtained fit parameters are gathered in Tables 4.1 for AC2,1(1, 2), 4.2 for AC3,1(1, 2), 4.3 for
AC4,1(1, 2) and 4.4 for AC2,1,1(1, 2, 3). Figure 4.17 shows that the results of the TMC simulations
converge to zero with the multiplicity for the three cases of strong few-particle correlations. This
convergence gets faster with the order of the observable. Furthermore, all observables follow with
a good agreement their corresponding nonflow scaling (Eqs. (4.54)–(4.57)).
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Figure 4.17: Multiplicity dependence of the various ACs for strong few-particle correlations with
the fit of the corresponding nonflow scaling [157].

Table 4.1: Fit parameters for AC2,1(1, 2) for the strong two-, three- and four-particle scaling
illustrated in Fig. 4.17.

2-particle 3-particle 4-particle
α 101.82± 2.45 198.41± 10.60 533.48± 25.96
β (33.00± 1.16)× 10−1 19.75± 0.49 72.41± 1.18
γ (12.24± 7.30)× 10−4 (3.44± 2.99)× 10−3 (−17.54± 8.45)× 10−3

χ2/NDF 1.13 1.06 2.90

The cumulant AC2,1(m,n) is compared with its counterpart in the traditional approach
MHC(v4

m, v
2
n) given by Eq. (4.40), but also with the alternative expressions Alt1(m,n) and

Alt3(m,n), where

Altj(m,n) ≡
〈
v4
mv

2
n

〉
−
〈
v4
m

〉〈
v2
n

〉
− j

〈
v2
mv

2
n

〉〈
v2
m

〉
+ j

〈
v2
m

〉2 〈
v2
n

〉
. (4.58)

In this notation, AC2,1(m,n) corresponds to Alt2(m,n) and MHC(v4
m, v

2
n) to Alt4(m,n). Thus,

all these definitions share the same combinations of all-event averages of flow amplitudes squared.
Figure 4.18 presents the nonflow scaling of these observables for m = 1 and n = 2 and the strong
two-, three- and four-particle correlations. For multiplicities comparable to the ones measured
in heavy-ion collisions (M > 150), all tested expressions present no sensitivity to nonflow.
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Table 4.2: Fit parameters for AC3,1(1, 2) for the strong two-, three- and four-particle scaling
illustrated in Fig. 4.17.

2-particle 3-particle 4-particle
α (9.11± 2.49)× 103 (3.19± 1.36)× 104 (9.70± 4.00)× 104

β 329.45± 179.71 1217.08± 929.56 (11.27± 2.87)× 103

γ 10.63± 3.06 159.76± 15.49 998.01± 49.34
δ (4.02± 9.22)× 10−3 (6.83± 46.98)× 10−3 (−2.56± 1.79)× 10−1

χ2/NDF 0.80 1.22 3.60

Table 4.3: Fit parameters for AC4,1(1, 2) for the strong two-, three- and four-particle scaling
illustrated in Fig. 4.17.

2-particle 3-particle 4-particle
α (3.00± 3.18)× 106 (8.89± 4.42)× 107 (136.32± 5.96)× 106

β (−5.01± 28.16)× 104 (−6.66± 3.81)× 106 (−119.54± 3.49)× 105

γ (4.30± 7.49)× 103 (19.41± 9.83)× 104 (77.28± 1.73)× 104

δ 25.78± 68.13 355.05± 846.48 (111.48± 4.38)× 102

ε (1.73± 1.42)× 10−2 1.29± 1.86 5.06± 3.15
χ2/NDF 1.04 0.39 3.50

Table 4.4: Fit parameters for AC2,1,1(1, 2, 3) for the strong two-, three- and four-particle scaling
illustrated in Fig. 4.17.

2-particle 3-particle 4-particle
α 2377.30± 530.95 (10.30± 3.54)× 103 (11.85± 1.28)× 104

β 49.59± 36.84 559.63± 248.22 (21.20± 9.12)× 102

γ −1.37± 0.60 12.44± 4.44 243.71± 15.83
δ (7.64± 2.05)× 10−3 (3.52± 15.94)× 10−3 (−7.97± 5.47)× 10−2

χ2/NDF 1.11 0.11 1.02

Therefore, the new approach developed with SCs is as valid as the traditional approach to
design observables robust against few-particle correlations.

Sensitivity to nonflow with HIJING

Now that it is ensured that the ACs behave as expected, their sensitivity to nonflow cor-
relations is estimated with the HIJING generator. The characteristics of the data sample are
the same as for the SCs studied above. This means the data correspond to Pb–Pb events at√
sNN = 2.76 TeV, taken with the same detector configuration as in the measurements of 2010

with ALICE.
Figures 4.19 and 4.20 show the predictions in HIJING as a function of the centrality for

the two-harmonic ACa,1(2, 3) and ACa,1(2, 4), with a = 2, 3, 4 respectively. The top left panel
of each figure shows that each term taken individually presents a centrality dependence due to
nonflow. However, when combined according to the expressions for the various two-harmonic
ACs, the final results are in agreement with zero, meaning the proposed observables are robust
against nonflow correlations. In the case of the third order two-harmonic AC, AC2,1(m,n), the
comparison with its counterpart in the traditional azimuthal approach, MHC(v4

m, v
2
n), shows that

both methods lead to similar sensitivity to few-particle nonflow correlations. Finally, Fig. 4.21
illustrates the case of AC2,1,1(2, 3, 4). This observable is also compatible with zero as a function
of the centrality, meaning it is robust against nonflow as well. Furthermore, AC2,1,1(k, l,m) is
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Figure 4.18: Multiplicity dependence of different combinations of correlators with strong two-
(top left), three- (top right) and four-particle (bottom) nonflow correlations [157].

symmetric under the permutation l↔ m, i.e. AC2,1,1(k, l,m) = AC2,1,1(k,m, l).
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Figure 4.19: Centrality dependence of the terms in AC2,1(2, 3) (top left), AC2,1(2, 3) (top right),
AC3,1(2, 3) (bottom left) and AC4,1(2, 3) (bottom right) in HIJING [157].
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Figure 4.20: Centrality dependence of the terms in AC2,1(2, 4) (top left), AC2,1(2, 4) (top right),
AC3,1(2, 4) (bottom left) and AC4,1(2, 4) (bottom right) in HIJING [125].
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Chapter 5

Data Analysis

This chapter presents the details for the experimental analysis of the higher order SCs.
The distinct steps required to select the final data sample are described in Sections 5.1 and 5.2.
Section 5.3 explains the procedure to obtain the particle weights needed to correct for various
detector inefficiencies. Once the tracks are selected and the corrections applied, the quality of
the final data sample must be ensured at different levels, as illustrated in Section 5.4. Finally,
the methods employed to calculate the statistical and systematic uncertainties are explained in
Sections 5.5 and 5.6 respectively.

The analysis is carried on the Pb–Pb sample at √sNN = 2.76 TeV collected by ALICE in
2010 during the LHC Run 1. The work uses AOD files, as a large quantity of events and tracks
deemed not usable for physics analyses are removed with the filtering from ESD samples (see
Section 3.2.4). Technical details about the software and runs can be found in Appendix D.

5.1 Event selection

While the applied filtering of the data is a prerequisite to remove bad events, several ad-
ditional criteria must be introduced to guarantee that the selected tracks are suitable for flow
analyses. The experimental results presented in Chapter 6 are the generalisation of the formal-
ism of the SCs. This means that the event and track selections are based on the ones established
in the studies of the lower order observables, also with the 2010 Pb–Pb data from ALICE and
published in Refs. [114,116]. The main points in the default event selection are listed in Table 5.1.

Table 5.1: Summary of the default event selection criteria employed in this analysis. MTPC

(Mgl) stands for the multiplicity of TPC-standalone (global hybrid) tracks after the selection of
the primary vertices.

Selection criterion Value
Trigger Minimum bias (kMB)
Centrality estimator SPD clusters (CL1)
Primary vertex along the beam axis (PVz) < |10| cm
Minimum boundary for the high multiplicity outliers MTPC > 1.54Mgl − 65.00
Maximum boundary for the high multiplicity outliers MTPC < 2.30Mgl + 90.00
Minimum event multiplicity ≥ 6

81



Chapter 5. Data Analysis

The initial data sample has been collected with the minimum bias interaction trigger kMB.
An event is accepted if hits have been seen simultaneously in both the V0A and the V0C (Sec-
tion 3.2.3). The centrality of the triggered events must then be estimated. Many detectors in
ALICE can be employed for this task, using different working principles and measured quanti-
ties [161, 162]. The resolution of the most commonly used estimators is showed in the perfor-
mance figure in Fig. 5.1. The V0M estimator comes from the combination of the A and C sides

Figure 5.1: Centrality resolutions of the main estimators in ALICE. Performance figure
from [161,162].

of the V0 detector itself. It is the main centrality estimator for ALICE analyses as it presents
the best resolution of all estimators due to its wide pseudorapidity acceptance. However, be-
cause of issues with high multiplicity outliers (HMOs), the default estimator for this study uses
the clusters found in the SPD (CL1), while V0M is kept as a trial for the determination of the
systematic uncertainties (Section 5.6.2). From Fig. 5.1, the resolution of the SPD goes from 1%
to 3% with the centrality. This is slightly worse than for V0M, which is in the 0.5–2% range, but
still perfectly acceptable. More information about the HMOs is provided later in this section.

The last criterion in this list, the minimum multiplicity of an event, is applied after the
track selection itself, i.e. at the end of the full selection and before the computation of the
averages appearing in the expression of SC(k, l,m). In opposition to the other criteria whose
applications have physics origins, the requirement that an event must have at least six tracks to
be taken into account in the final sample is introduced to prevent problems in the calculations
of the multiparticle correlators themselves. In the case of the three-harmonic SCs, six particles
are involved in the computation of the largest correlator. As these particles must be distinct to
avoid autocorrelations, an event with five or fewer tracks cannot be kept for the analysis.

5.1.1 Primary vertex

The position of the primary vertex of an event is reconstructed with the information from
the ITS (Section 3.2.1). As previously seen, it is possible to relate the multiplicity of an event
to its centrality. For example, a head-on collision will have a higher number of participating
nucleons and therefore, the number of produced particles that are detected must increase as well.
However, if such a collision happens too far from the nominal interaction point, the probability
that a large number of these particles escape the central barrel of ALICE without being detected
becomes non-negligible. This leads to a lower multiplicity of the event and consecutively, its
misidentification as a peripheral event.
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In order to prevent this scenario, the condition that the primary vertex in the z-direction
(PVz) must be at most at±10 cm from the nominal interaction point is imposed. This guarantees
a full geometrical acceptance in the ITS and a complete acceptance in the pseudorapidity range
|η| < 0.9 in the TPC. Figure 5.2 shows the distribution of the primary vertex along the three
Cartesian coordinates. It has to be noted that no selection needs to be imposed on the position
of the primary vertex in the transverse plane xy.
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Figure 5.2: Position of the primary vertex along the x- (top left), the y- (top right) and the
z-direction (bottom) for the centrality range 10–20% before and after the application of the
physics event selection.

5.1.2 High multiplicity outliers

Another set of requirements concerns the removal of the HMOs. For a given centrality
range and centre of mass energy, the number of produced tracks per event is expected to be
in a certain interval. Furthermore, the more central the collision is, the higher the multiplicity
must be. Figure 5.3 is provided as an example for the Run 1 energies. The distribution of the
number of tracks after the full selection without the rejection of the HMOs is shown for the
centrality range 10–20% in the left panel and for 40–50% in the right panel. Some events show a
final multiplicity above 1000 in the range 40–50%. This is about one order of magnitude higher
than the expected number of tracks for this centrality, as the peak lies between 200 and 700
tracks per event. These unphysical events are present at the per mille level. However, their
contribution is dominant in the computation of the multiparticle correlators, and more so for
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Figure 5.3: Final distribution of the number of tracks for the centrality ranges 10–20% (left) and
40–50% (right) after application of the default selection without the requirement on the HMOs.

the higher order correlators. This is due to the fact that the weight of an event is proportional
to the multiplicity of said event raised to the number of particles involved in the correlator. This
effect results in a bias in the final SCs, as it can be seen in Fig. 5.4. The comparison between
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Figure 5.4: Centrality dependence of SC(4, 2) (left) and SC(3, 2) (right) in presence of the HMOs,
compared to the results published in Ref. [114]. The effects of the HMOs become dominant as
the collisions get more peripheral.

the published measurements for SC(4, 2) and SC(3, 2) [114] and the results obtained with the
default selection without the removal of the HMOs, shows that the contribution of the HMOs
become non-negligible for the semicentral and peripheral collisions.

The determination of the criteria to remove these HMOs is done with the help of a two-
dimensional correlation histogram between the multiplicities of two different filterbits. Figure 5.5
shows the correlations between the multiplicity of TPC-only tracks and global hybrid tracks after
the application of the selection on the primary vertices for the full centrality range 0–80%. These
correspond respectively to the filterbit 128 and 256 for the AOD160 filtering of the LHC10h
dataset. This correlation histogram can be decomposed into two main components: the central
triangle containing the “healthy” events and the HMOs outside of it, along the y-axis. These
outliers can be removed by parametrising the sides of the main triangle, as shown in the right

84



5.1. Event selection

Figure 5.5: Correlation histogram for the multiplicity of TPC-only tracks (filterbit 128, MTPC)
and global hybrid tracks (filterbit 256, Mgl) for the full centrality range 0–80% before (left) and
after (right) the rejection of the HMOs with the parametrised criteria shown in red.

panel.
However, these criteria on the two-dimensional correlation histogram are not sufficient.

Figure 5.6 shows the correlation histogram after removal of the HMOs in the case of hybrid
tracks with the filterbit 7681 and the global hybrid tracks already mentioned above, for the
centrality 40–50% estimated with SPD clusters (left panel) and V0M (right panel). While all

Figure 5.6: Correlation histogram for the multiplicity of the hybrid tracks (filterbit 768, Mhyb)
and global hybrid tracks (filterbit 256, Mgl) after the selection on PVz for the centrality range
40–50% estimated with the SPD clusters (left) and with the V0M (right). The red line indicates
the parametrisations used to remove the HMOs.

outliers for the SPD clusters are removed with the introduced criteria, this is not the case for the
V0M estimator. Some points can still be seen inside the range allowed by the HMOs selection.
They cannot be removed with the method described above, as they lie inside the main triangle
for the full range 0–80%. This leads to the SPD clusters being used as the default centrality
estimator in the analysis.

1The criteria to remove the HMOs depend on the main filterbit used in the analysis. The ones for hybrid
tracks 768 are given in Section 5.6.
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Figure 5.7 shows the final multiplicity distribution in the ranges 10–20% (left) and 40–50%
(right) after application of the full event and track selection with the removal of the HMOs. All
outliers are removed with the application of the parametrised lines from Table 5.1.
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Figure 5.7: Final distribution of the number of tracks for the ranges 10–20% (left) and 40–50%
(right) in the case where the requirements on the HMOs are applied.

5.2 Track selection

The experimental results obtained in this work are for all included charged particles. There-
fore, the goal of this second part of the selection is to remove poorly reconstructed or misrecon-
structed tracks from the final data sample. The default track selection is listed in Table 5.2.
While TPC-only tracks have been obtained by the application of requirements on some of these

Table 5.2: Summary of the default track selection criteria employed in this analysis.

Selection criterion Value
Type of tracks (Filterbit) TPC-only (128)
Transverse momentum (pT) [0.2, 5.0] GeV/c
Pseudorapidity (η) [−0.8, 0.8]
Number of TPC clusters (NTPC) > 70
χ2 per TPC cluster [0.1, 4.0]
Distance of closest approach in xy-plane (DCAxy) < 2.4 cm
Distance of closest approach in z-direction (DCAz) < 3.2 cm
Non-uniform efficiency (NUE) corrections pT-weights from HIJING
Non-uniform acceptance (NUA) corrections None

quantities in the passage from ESD to AOD files, these criteria are applied nonetheless to ensure
the proper application of the filtering or to tighten it.

Figure 5.8 shows the distribution of the transverse momentum (pT) of the tracks directly
after the application of the selection on PVz and on the HMOs. The reconstruction of the
transverse momentum and its quality depend on the combination of the information from the
various tracking detectors, according to the type of tracks used in the analysis. This means, for
example, that if a charged particle has a too low momentum, it will not reach the TPC due to
its bending in the magnetic field. This efficiency of the reconstruction depends on the transverse
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Figure 5.8: Transverse momentum spectrum of the TPC-only tracks for the centrality range
10–20% before and after the application of the full track selection.

momentum itself and is smaller at lower pT. To remove the bias these tracks would have brought
in the analysis, a minimum requirement of pT > 0.2 GeV is made. Furthermore, jets are more
predominant at higher momenta. A jet can be classified as a phenomenon that correlates only
some of the produced particles. Therefore, they represent a bias in flow analyses and need to be
removed. This is achieved by the maximum criterion pT < 5.0 GeV introduced in the selection.

As seen in Section 3.2, the central barrel has a pseudorapidity coverage of |η| < 0.9. The
requirement is set to |η| < 0.8 to reject edge effect (Fig. 5.9).
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Figure 5.9: Pseudorapidity distribution of the TPC-only tracks for the centrality range 10–20%
before and after the application of the full track selection.

The TPC is the main tracking detector in ALICE and this analysis used TPC-only tracks.
The 2010 Pb–Pb dataset is known for its particularly good detector conditions. The space-
charge distortions (deformations of the drift electric field due to accumulation of ions from the
passage of the produced particles) and the pile-up were negligible. No requirements are added
to the selection with respect to these points.

To ensure the quality of the tracks, two criteria concerning the TPC clusters are included in
the track selection: the number of TPC clusters and the goodness of fit χ2/ndf per TPC cluster.
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Their distributions are shown in Fig. 5.10. A track passing through the TPC can have up to
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Figure 5.10: Distributions of the number of TPC clusters (left) and χ2 per TPC cluster(right)
of the TPC-only tracks for the centrality range 10–20% before and after the application of the
full track selection.

159 space points (or TPC clusters) usable for its reconstruction. The number depends on the
physics properties of the track, like its momentum, and of the conditions inside the detector, like
the drift field. For example, a high-momentum track will have a straight trajectory inside the
chamber and thus a higher number of space points. Furthermore, tracks with higher numbers of
space points are generally better reconstructed. In this analysis, the selected tracks need to be
reconstructed with at least 70 space points. Concerning the χ2/ndf , the value of a given track
is required to be in the range [0.1, 4.0].

The DCA measures the distance between the position of the track closest to the primary
vertex and the vertex itself (see Fig. 5.11). Cosmic tracks and secondary particles originating
from weak decays of long-lived primaries or from conversion in the material of the detector
are characterised by large values of the DCA. The contribution from these particles is then
reduced by introducing criteria on the DCA in the transverse plane (DCAxy) and along the
beam direction (DCAz). Figure 5.12 shows the distribution of DCAxy in the left panel and
DCAz in the right panel. These distributions are quite wide, reaching the centimetre level.
This comes from the fact that the only used information is from the TPC, which is not the
detector closest to the primary vertex. As a consequence, the criteria related to the DCA added
to the track selection are |DCAxy| < 2.4 cm and |DCAz| < 3.2 cm. These are directly inherited
from the values used in the filtering for TPC-only tracks.

5.3 Particle weights

Amongst the systematic biases present in analyses, some originate from the presence of
detector inefficiencies. An example of such effects is the presence of dead or defective sectors in a
detector. In these regions, some, if not all, particles would not be detected and the corresponding
distributions would be biased. These inefficiencies can further be divided into two main types,
the NUA and NUE, which need to be corrected with the use of particle weights. In this section,
the effects of two different corrections are investigated: the NUE of the transverse momentum
and the NUA of the azimuthal angles.

The procedure to get the particle weights is established with the help of realistic MC sim-
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Figure 5.11: Definition of the DCA and principle of the reconstruction of secondary vertex
using K0 and ξ as examples [163]. The reconstructed tracks are shown with the solid lines, the
extrapolation to the primary vertex with the dashed ones.
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Figure 5.12: Distance of closest approach in the transverse plane (left) and along the beam
(right) of the TPC-only tracks for the centrality range 10–20% before and after the application
of the full track selection.

ulations anchored to experimental data. Simulated events are used since they contain both the
descriptions of the particles at the kinematics and the reconstruction levels (see Section 3.2.4).
The comparison between what would be measured in the ideal case (kinematics) and what is
measured in reality with ALICE (reconstruction) allows to get good estimations of the detector
effects like the particle absorption or the smearing of the transverse momentum in the detector.
The corrections of these effects are done in this work with the use of particle weights. In the
rest of this section, the kinematics and reconstruction levels will be respectively abbreviated as
kine and reco.

For a given MC production, in this case the HIJING simulations anchored to the 2010
Pb–Pb dataset, the starting point to obtain the corrections for the data is the measurement of
the distributions of the transverse momenta and azimuthal angles at the kine and reco levels.
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Two major points need to be stressed out concerning this step. First, the selection criteria
applied to the reconstructed MC events and tracks must be identical as the one used for the
counterpart experimental analysis. For the kine information, only the kinetic criteria (pT and
η) and global event observables (PVz in this case) must be applied. Secondly, the distributions
must be obtained for each run in the data period individually. This comes from the presence of
run-by-run variations in the detector conditions. The final pT- and ϕ-weights are then obtained
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Figure 5.13: Distribution of the transverse momentum (top left) and the azimuthal angles (bot-
tom left) in HIJING for the run 138275 in the centrality range 10–20% and corresponding
pT-weights (top right) and ϕ-weights (bottom right).

by taking the ratio of the concerned distribution at kine level over the same distribution at reco
level. An example of distributions and corresponding particle weights for the run 138275 in the
centrality range 10–20% is presented in Fig. 5.13. Finally, once the particle weights are obtained
for each run and centrality, they can easily be applied to the experimental data. As seen in
Section 2.1, the Q-vectors can be expressed in terms of the azimuthal angles and the particle
weights themselves (Eq. (2.16)). Furthermore, if the corrections come from different sources
(e.g. pT- and ϕ-weights together), the resulting weight is the product of the individual weights.

In order to determine the necessity to include particle weights in the default track selection
or as part of the systematic trials, the previously published SC(4, 2) and SC(3, 2) are measured
without any correction applied, with pT-weights for NUE effects, and with ϕ-weights for NUA
effects (Fig. 5.14). The comparison of the results without particle weights to the results with
the correction from ϕ-weights show that the latter have no effect on the final SCs. This outcome
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Figure 5.14: Centrality dependence of SC(4, 2) (left) and SC(3, 2) (right) measured without
particle weights, with pT-weights and with ϕ-weights, compared with the results from Ref. [114].

is expected as the 2010 Pb–Pb data period is known to have a particularly flat distribution
of the azimuthal angles for the TPC-only tracks (see for example Fig. 5.16 (right)). However,
one has to be careful with the interpretation of the results without and with the pT-weights.
The published results shown with the blue circles have been obtained without the use of any
weight (they have been included in the systematic uncertainties). This explains why the current
results without weights are in good agreement with the published ones. However, the presence
of detector effects is known, as well as the technology to correct for them. The decision is thus
made to include the NUE corrections in the default track selection (Table 5.2).

5.4 Final quality assurance of the data

The data selection summarised in Tables 5.1 and 5.2 is introduced to reject bad events
and tracks. However, the variables and values are based on the characteristics of the various
detectors in ALICE and the knowledge from previous studies (physics analyses, but also studies
about the quality of the data themselves). It is thus needed to ensure that the selected tracks
have the quality required for the analysis.

The first step is the comparison of the runs with each other (Section 5.4.1). Runs with
values that are systematically off are excluded from such final data sample. After the run-
by-run trending, the quality of the resulting dataset is checked as well (Section 5.4.2). This
is established with the help of some known distributions, e.g. the pseudorapidity (Fig. 5.9)
or the azimuthal angles, and with the comparisons to some previous results from the ALICE
Collaboration.

5.4.1 Run-by-run trending

The values for a set of quantities are extracted for each run and compared between each
other. While some fluctuations are tolerated for a given observable (for example due to fewer
events recorded in a run), a run that is systematically off in multiple observables is a clear
indication of an underlying problem. In this case, the corresponding run needs to be excluded
from the final data sample. Figure 5.15 shows the spread of the average multiplicity 〈M〉 and
of two two-particle correlators, 〈2〉1,−1 and 〈2〉2,−2 for the centrality range 10–20%. As all the
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Figure 5.15: Spread as a function of the runs of the average multiplicity 〈M〉 (left top), the
two-particle correlator 〈2〉1,−1 (top right) and the two-particle correlator 〈2〉2,−2 (bottom) for the
centrality range 10–20%.

runs are consistent with the others, all 88 of them are included in the final analysis. The gap
in the numbering of the runs comes from the way they are defined by the electronic system in
ALICE and correspond to non-physics runs.

5.4.2 Quality assurance of the full dataset

The final sample of data obtained from all the runs that passed the trending is controlled
as well. The aim is to confirm that the applied selection does not include poorly reconstructed
events due to detector issues or HMOs for instance. Figure 5.16 (left) shows the number of
events after the full default selection per centrality bin defined in the analysis. This distribution
is flat per bin of 10% as needed for the analysis. A non-flat distribution would indicate the
presence of misreconstructed or undetected escaping particles leading to a misidentification of
the centrality of these events. Another histogram used to check the quality of the dataset is
the distribution of the azimuthal angles (right panel in Fig. 5.16). This distribution is known
to be perfectly uniform for TPC-only tracks in LHC10h. If an issue arises during the selection
of the data, this will have an impact of this distribution, with the apparition of holes or peaks.
The two distributions correspond to their expected profiles, meaning that both the dataset and
selection can be used for analysis.
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Figure 5.16: (Left) Number of events per centrality bin for the full LHC10h data sample and
(right) distribution of the azimuthal angles for the centrality range 10–20%, both after the
default selection.

The last checks to perform are the comparisons to previously published flow observables
with similar selections and energies, with the same results obtained with the current work. For
this, two sets of measurements are reproduced: the two-harmonic SCs, SC(4, 2) and SC(3, 2),
published in Ref. [114], and the elliptic flow amplitudes measured with the two- and a four-
particle cumulants (v2{2} and v2{4} respectively) published in Ref. [126]. The comparisons for
the SCs can be seen in Fig. 5.14. Figure 5.17 presents the measurements of the elliptic flow
coefficient. In all cases, the results obtained with the default selection described in Sections 5.1
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Figure 5.17: Centrality dependence of v2{2} (left) and v2{4} (right) for the results published in
Ref. [126] and the selection used in this work.

to 5.3 are in good agreement with the published ones. Furthermore, it has to be noted that the
previous analyses have been conducted without pT-weights in the default selection, but added
them as a systematic effect in the overall uncertainties. This explains why the results without
particle weights or with ϕ-weights are generally closer to the published measurements. For the
2010 measurements of v2{2} and v2{4}, the published analysis was performed on only 45× 103

events, which corresponds to only a small part of the full dataset. As a comparison, the LHC10h
data sample used here contains about 10.9×106 events after full selection in the same centrality
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range 0–70%.

5.5 Statistical uncertainties

The SCs as defined as in Eq. (4.1) in terms of the flow amplitudes or Eq. (4.11) for the
azimuthal angles are compound observables. This means that the statistical errors cannot be
trivially obtained from the profiles filled with the values of each correlator. Furthermore, due
to the complexity of its expression and the number of covariance terms involved, the error
propagation like it was done for SC(m,n) in Ref. [114] is not feasible in practice. The technique
used in this work is the bootstrap method or bootstrapping.

The idea behind the bootstrap method is the following. The initial sample, here the LHC10h
dataset, is divided into S subsamples with approximately the same statistics Navg,

Navg ≡
NTotal
S

, (5.1)

with NTotal the total statistics of a given quantity in the initial sample. In the rest of this
chapter, the term “statistics” is chosen to refer to the number of events in the centrality range
10–20% after the application of all the selection criteria given in Tables 5.1 and 5.2. Moreover, it
can be shown with the help of the central limit theorem that a good estimation of the statistical
errors can be achieved with already ten subsamples. Therefore, this number is set to S = 10 in
the analysis.

Conditions on the minimum and maximum numbers of events are then applied such that
each subset has a number of events in the range [Navg−x,Navg +x]. This additional requirement
ensures that all subsets have about the same size. The width of the acceptance band is chosen
depending on the statistics of the initial sample. As it is made out of indivisible datasets with
fixed sizes, the runs, the smaller the initial sample is, the larger the acceptance band must be.
In the case of LHC10h with the 88 runs listed in Appendix D, the half-width of the band is fixed
to x = 10% of Navg.

Once the subsamples are formed, the observable of interest xi is calculated for each subset
i = 1, . . . , S. If x denotes the compound observable estimated for the initial sample (x can
therefore be a SC(k, l,m) or a NSC(k, l,m) for example), the unbiased estimator for the variance
V can be computed with

V ≡ 1
S − 1

S∑
i=1

(x− xi)2. (5.2)

The final statistical error σx to attribute to the observable x is then calculated using

σx ≡
√
V/S. (5.3)

The validity of the bootstrapping is proved with its comparison to the traditional error
propagation used for the observables SC(3, 2) and SC(4, 2). The results obtained with the data
selection described above are presented with the ones from Ref. [114] in Fig. 5.18. The statistical
errors on the results obtained with the default selection and the bootstrap method (blue squares)
described above are of the same order of magnitude with the errors obtained with the usual error
propagation (red circles). It has to be noted that the differences between the values themselves
originate from the changes in their selection. The measurements published in Ref. [114] have
been obtained with ESD global tracks and tighter criteria on the DCA.

Figure 5.18 shows also the effects of the absence of the acceptance band in the bootstrap
method with the black cross markers. In this version of the bootstrap, said band is replaced with
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Figure 5.18: Centrality dependence of SC(4, 2) (left) and SC(3, 2) (right) for the LHC10h. The
first published results with error propagation [114] are shown with the red circles, the results
with the default selection and the bootstrap with the blue squares and the results with the
bootstrap without the acceptance band with the black crosses.

a condition on the minimum number of events a subset must have. However, no requirement is
made on their maximum, meaning it is possible — and even probable — to have one or many
subsamples with a size more important than the others. This leads to larger final statistical
errors than the ones from error propagation or bootstrap with the acceptance band and shows
the importance of imposing a limit on the maximal size of the samples. Furthermore, it has to
be noted that the difference between the black points and the others can again be explained
with variations in the default track selection. In this case, the measurements have been obtained
with the first version of the selection used for the preliminary results approved for the “Quark
Matter 2019” conference and “inverted” (wrong) pT corrections.

5.6 Systematic uncertainties

The systematic uncertainties are here estimated with the use of a Barlow test [164, 165].
The method employed in this analysis is presented in Section 5.6.1. The errors obtained for
SC(2, 3, 4) with the 2010 Pb–Pb data sample are listed as an example in Section 5.6.2. It has
to be noted that the conventions introduced below are specific to this section.

5.6.1 Explanations of the Barlow test

The value of one criterion in the default selection is slightly changed and the observables
of interest, in this case the SCs and NSCs, are measured with this new selection. From now on,
a criterion which is not set to its default value is called a trial, and the results obtained with
the default (varied) selection are indicated with the index def (var). Furthermore, the variable
“SC” represents any combination of SC(k, l,m), but also of NSC(k, l,m).

From the results measured with the default and the trial selection, their absolute variation
or difference is defined as

Diff ≡ SCvar − SCdef . (5.4)

Furthermore, the default and varied datasets are correlated. This means that if the selection for
the given trial is tightened, the resulting sample will contain less of the data from the default
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sample. On the other hand, if the selection is loosened, the inverse holds true and the final sample
will contain more data than the one for the default selection. This effect is acknowledged in the
computation of the error on the difference

Error ≡
√
|σ2
var − σ2

def |, (5.5)

where σx represents the statistical error on SCx obtained via the bootstrap method described in
Section 5.5, where x = def, var. It has to be noted that if the two initial data samples are fully
uncorrelated, the quadratic sum must be taken instead in the expression of the error (Eq. (5.5)).
This case is not present in the trials studied here.

The Barlow σ can then be used to estimate how statistically significant the observed devi-
ations are. It is defined as

σBarlow ≡
Diff

Error . (5.6)

A value of σBarlow larger than a certain chosen value is then interpreted as a sign of systematic
deviation and the corresponding trial is included in the calculation of the final systematic error.
In this analysis, the number of required σBarlow is set to one, which is the most commonly used
value in ALICE.

The error to attribute is obtained with this last variable, the relative variation between the
results with the default and the varied selections,

Relative Var ≡ Diff
SCdef

. (5.7)

This value can then be taken as a percentage of error on the value of SCdef itself. Once all the
individual contributions to the systematic errors are gathered, the final overall uncertainty is
obtained by taking their quadratic sum.

All the variables listed above are measured for each centrality range individually. Further-
more, as visible in the experimental results presented in Section 6.2, the statistical errors are
dominant in the analysis. This fact can lead to difficulties in the determination of if a trial has
a systematic effect or not. More precisely, SCvar may be in agreement with SCdef within sta-
tistical uncertainties, and thus the resulting σBarlow is artificially below one. To palliate for this
issue, the differential representation is supported with the integrated versions of the variables
from Eqs. (5.4)–(5.7). To compute them, the results for the SC must first be rebinned for the
analysed centrality range, with the help of the method presented in Ref. [166]. This rebinning
allows to increase the total statistics of the sample and therefore to reduce the width of the
statistical uncertainties. Using the same notation introduced in the first part of this section, the
weight average, or integrated result for a given SC is defined as

ŜCi =
∑N
j=1 SCi,j/σ

2
i,j∑N

j=1 1/σ2
i,j

, i = def, var, (5.8)

where N is the number of centrality bins included in the rebinning, i.e. the number of points in
the differential representation of the Barlow test. The variance on ŜCi is calculated with

V̂ari = 1∑N
j=1 1/σ2

i,j
, i = def, var. (5.9)

This leads to an estimation of the rebinned statistical error given by

σ̂i =
√

V̂ari/N, i = def, var. (5.10)
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The attribution of the systematic uncertainty for a trial is done in the following way. The in-
tegrated Barlow variables are used as the key element to determine if a trial needs to be included
in the final systematic uncertainties. The individual errors are obtained from the differential
representation. Two effects need to be taken into account. Firstly, the final measurements for a
given SC(k, l,m) are spread on several orders of magnitude. Secondly, the values and errors in
the central collisions are small, leading to an increased probability to present artifacts for the
σBarlow and the relative variation. Based on these, two different estimations are used. For the
measurements in the central ranges 0–5%, 5–10% and 10–20%, the absolute variation is taken
as the raw systematic error for the trial. For the semicentral results (20–50%), the smoothed
relative variation (i.e. the arithmetic average between the data points2) is used instead. As
the measurements of SC(2, 4, 6) and SC(3, 4, 5) cover the centrality range 0–30%, the absolute
variation is also used in the centrality bin 20–30% for these two observables.

5.6.2 Example of systematic analysis: SC(2, 3, 4)

This section gathers the outcomes of each trial for the observable SC(2, 3, 4) as an example of
the method described above. The corresponding attributed errors are summarised in Table 5.3.
The tables for the other observables can be found in Appendix E. The corresponding figures can
be found in the ALICE internal analysis notes in Ref. [167].

Table 5.3: Summary of the systematic uncertainties for each trial for the observable SC(2, 3, 4).
The columns 0–5%, 5–10% and 10–20% summarise the absolute variations, while 20–50% con-
tains the relative variations (see text). An en-dash “—” indicate a trial without a statistically
significant deviation.

Trial 0–5% 5–10% 10–20% 20–50% Figures
Centrality 1.61 × 10−13 −4.82 × 10−13 1.86 × 10−12 15.3% 5.19
PVz −2.58 × 10−13 −3.21 × 10−13 −7.15 × 10−13 3.3% 5.20
NTPC −2.87 × 10−13 −7.50 × 10−13 −1.18 × 10−12 5.0% 5.21
χ2/NDF — — — — 5.22
DCAxy −1.17 × 10−13 −9.65 × 10−14 5.02 × 10−13 19.7% 5.23
DCAz — — — — 5.24
++/- - — — — — 5.25
Filter 5.65 × 10−13 9.69 × 10−14 2.61 × 10−12 3.8% 5.27
Overall 7.13 × 10−13 9.57 × 10−13 3.53 × 10−12 25.9%

Centrality

The default centrality estimation in this work is done with the SPD clusters CL1. The trial
is thus established by changing the centrality estimator in Table 5.1 to a second estimator, the
V0M. No other modifications are needed as the “triangle” employed to parametrise the criteria
for the rejection of the HMOs present the same shape and inclination with the two estimators
(Fig. 5.5). Figure 5.19 summarises the outcome of the Barlow test in this case. The number
of σBarlow for the integrated results is σBarlow ∼ 2. Combined to the σBarlow oscillating between
−2 and 2 in the differential view, this means this trial must be included in the systematic
uncertainties.

2If a centrality presents a relative variation highly different from the others due to artifacts, it is excluded
from the averaging.
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Figure 5.19: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the centrality
estimation.

Primary vertex

The systematic trials considered here are |PVz| < 6 cm and |PVz| < 12 cm, compared to the
default |PVz| < 10 cm. The results are shown in Fig. 5.20. The integrated view shows a σBarlow
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Figure 5.20: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the primary
vertex.

higher than one for the two trials. Furthermore, the relative variations in the differential repre-
sentation present values which can reach nearly 50% in central collisions. It has been therefore
decided to add the second trial into the list of contributions to the systematic uncertainties.

Number of TPC clusters and χ2/ndf

The decision on the minimum number of space points in the TPC needed for a track to be
acceptable can be seen as a compromise between two factors. As stated in Section 5.2, the more
points a track possesses, the better it can be reconstructed. However, setting the minimum
requirement with a higher value will bias the selection towards the high-momentum straight
tracks. In this analysis, the default selection is generally fixed to 70, which is a commonly
accepted value in ALICE. The systematic trials are then obtained by relaxing this value to 50
and tightening to 100 (Fig. 5.21). It has to be noted that 50 is the minimum requirement set
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Figure 5.21: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the number
of TPC clusters.

during the filtering of the TPC-only tracks. It has been decided to include the second trial
into the contributions to the overall systematic error, as its has a σBarlow larger than 1 for the
integrated view, and systematically negative in the differential one.

Concerning the χ2/ndf , the default range [0.1, 4.0] is varied to [0.3, 4.0] as a first trial, and
to [0.1, 3.5] as a second trial. Both trials present extremely small σBarlow for all centralities in
Fig. 5.22, therefore this check is not included in the list.
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Figure 5.22: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for χ2/ndf .

Distance of closest approach

The variations of the criteria on the distance of closest approach has an effect on the
rejection of tracks whose origin is too far from the primary vertex, and thus, it directly affects the
contribution from the secondary particles from weak decays for example. Figure 5.23 summarises
the results of tightening the default criterion |DCAxy| < 2.4 cm to 1 and 2 cm, while Fig. 5.24
does the same for the variation from |DCAz| < 3.2 cm to 2.1 cm. A statistically significant
deviation is observed only for DCAxy.
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Figure 5.23: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the DCA in
the transverse plane.
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Figure 5.24: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the DCA
along the beamline.

Magnetic field

The two configurations of the solenoid magnet in ALICE are included in the default analysis.
As a systematic check, the 88 good runs of the data sample are divided between the ones
measured with the polarity of the magnet “++” and the ones with the polarity “- -”. The
results are obtained for each one of these subsamples and compared to the default study in
Fig. 5.25. Despite the large relative variations, no systematic trend can be seen. Therefore, no
systematic variation has been attributed to this observable.

Filterbit

The last systematic observable that is considered here is the choice of filtering conditions
that are applied in the transition from ESD to AOD files. As stated in Table 5.2, the results are
obtained by default with TPC-only tracks. To determine the effects coming from the filtering,
a trial is conducted using hybrid tracks with the filterbit 768. This filter is the combination
of two different filters: the global hybrid tracks (filterbit 256) and the complementary hybrid
tracks (filterbit 512). These filters combine the information from the ITS and the TPC, but
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Figure 5.25: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the polarity
of the solenoid magnet.

lead to a severely non-uniform azimuthal distribution. To palliate some of this effect, the hybrid
filter 768 has been designed. Furthermore, the addition of the ITS allows the removal of a more
important portion of the secondary tracks.

However, as the filter used in the analysis is also used in this case to reject the HMOs, these
latter criteria have to be adapted. As shown in the left panel of Fig. 5.26, the parametrised lines
defined for TPC-standalone tracks reject an important part of the healthy events originating
from the two-dimensional correlations between hybrids and global hybrids. The parametrisation

Figure 5.26: Correlation histogram for the multiplicity of the hybrid tracks (filterbit 768, Mhyb)
and the global hybrid tracks (filterbit 256, Mgl) after the selection on PVz before (left) and after
(right) application of the criteria to reject the HMOs. The black (red) lines show the criteria
obtained for hybrid (TPC-only) tracks.

is therefore changed to the following selection criteria:

Minimum boundary for the high multiplicity outliers : Mhyb ≥ 1.14Mgl − 35.00,
Maximum boundary for the high multiplicity outliers : Mhyb ≤ 1.63Mgl + 70.00,

where Mhyb (Mgl) is the multiplicity of (global) hybrid tracks in a certain event.
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The results of the systematic trial for the hybrid tracks is shown in Fig. 5.27. A significant
variation can be observed, meaning this trial is included in the overall uncertainty on SC(2, 3, 4).
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Figure 5.27: Differential (left) and integrated (right) Barlow test for SC(2,3,4) for the filterbit.
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Chapter 6

Experimental Results and
Theoretical Calculations

This last chapter is divided into three main parts. The first one, Section 6.1, describes the
theoretical models used in this work. Section 6.2 shows the experimental results for the three-
harmonic SCs measured with ALICE and compared to theoretical calculations from EKRT
and iEBE-VISHNU. Finally, the first predictions for the ACs are presented in Section 6.3.
Furthermore, if not stated otherwise, the errors bars represent the statistical uncertainties of
the measurements and the coloured boxes their systematic uncertainties.

6.1 Theoretical models

This section summarises the details about the theoretical models used through this work,
either to check properties of the proposed observables, either to get predictions at initial and
final states. In the latter case, the comparisons of these predictions to the experimental results
allow a better fine-tuning of the input parameters of the models or the development of brand
new ones.

6.1.1 HIJING

One of the principal models widely used in this analysis is HIJING [72, 73], already men-
tioned in Section 1.4 and in Chapters 4 and 5. HIJING is a MC event generator designed for
the studies of the jet and multiparticle production in high energy nuclear collisions (pp, p–A,
A–A) and the exploration of various ranges of initial conditions which may happen in high
energy nuclear collisions. It contains descriptions of mechanisms like soft beamjets, multiple
minijet production, a model for jet quenching, and a parton structure dependent on the im-
pact parameter of the collision for nuclear shadowing studies. Additionally, the dependence on
the inelastic processes number on the impact parameter is expressed based on the geometry
of the nuclei. These features are formulated based on various models like the Lund FRITIOF
and the dual parton model for the description of nuclear collisions at centre of mass energy√
sNN ≤ 20 GeV/u, and pQCD in PYTHIA for the hadronic interactions. This combination of

pQCD to nuclear effects and jet-related processes gave to HIJING a major role in nuclear colli-
sions studies, as semihard phenomena were expected to become central at the RHIC and LHC
energies. Furthermore, HIJING makes also a link between the physics at the SPS, dominated
by non-perturbative fragmentation, and the pQCD found in the higher energies colliders.

While all these points above show the use of HIJING as a prediction and analysis tool for jet
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and more widely nuclear physics, its role in flow analysis is slightly different. All the mechanisms
described in HIJING introduce correlations between only a few particles in the system. As flow,
as a collective effect between all the produced particles, is not present in HIJING, this generator
can be used to test the robustness of newly designed flow observables against nonflow, like the
SCs (Section 4.1.5) and the ACs (Section 4.2.4). Moreover, its second role in this work has the
estimation of the pT-weights for the NUE corrections as described in Section 5.3.

The HIJING simulations used here are the LHC11a10a_bis ALICE production anchored
to the LHC10h Pb–Pb data at √sNN = 2.76 TeV, as mentioned in Section 3.2.4. For the AOD
162 filtering, the list of runs selected for the analysis is the same as the one for the experimental
data (see Appendix D). The details of the event and track selections applied at reconstruction
level for the robustness against nonflow of the SCs and ACs can be found in Tables 5.1 and 5.2.

6.1.2 EKRT

One of the models used to get theoretical predictions of the higher-order SCs is the event-by-
event Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) model [118, 168]. The initial conditions,
for example the initial energy density profiles, are computed using an event-by-event next-to-
leading-order (NLO) combination of pQCD and saturation model for the gluon production. El-
liptic flow has been originally described using (2+1)D ideal fluid dynamics. The NLO-extension
introduced viscous hydrodynamics descriptions among other elements. This state-of-the-art
model is well known for its various parametrisations of the temperature dependence of the η/s,
tuned to reproduce measurements of vn for the full centrality range in heavy-ion collisions (see
bottom panels of Fig. 1.19). It is also able to predict with good agreement the charged hadron
multiplicity and spectra in the low-pT region at RHIC and LHC energies. More examples of
predictions with the different parametrisations of the NLO-extension of EKRT can be found in
Ref. [118].

The theoretical predictions for the three-harmonic SCs have been obtained with a sample
of 40k events for the centrality range 0–100%. Two different parametrisations of η/s(T ) have
been initially studied: η/s(T ) = 0.2 and η/s(T ) = “param1” (Fig. 1.19). This latter tuning
is characterised by a lower temperature of about 150 MeV of the transition from the hadronic
to the QGP phase [118, 169]. The slope is linearly decreasing in the hadronic phase, while the
opposite behaviour is seen above the phase transition. These two parametrisations have been
chosen as they are the ones with the best predictions of the lower order SCs. This can be
seen, for instance, in Fig. 2 of Refs. [114, 116], also visible in Section 1.5. As they gave similar
descriptions of all the studied combinations of SCs and NSCs, only the predictions obtained for
the “param1” tuning are presented in the experimental part of the analysis (Section 6.2).

6.1.3 TRENTo

The Reduced Thickness Event-by-event Nuclear Topology (TRENTo) model [170] is one
of the two models used for the initial conditions of the hydrodynamic model iEBE-VISHNU
(see Section 6.1.4). It has been introduced for the study and constraint of the initial state of
high-energy pp, p–A and A–A collisions. Its name comes from its key concept: the participant
thickness of each projectile involved in the collision. The supposition is then made that there
is a scalar field, dependent on the thickness of the two projectiles, which proportionally relate
them to the entropy production. TRENTo is, therefore, an effective model for the generation
of realistic MC entropy profiles for the initial conditions. It also contains no assumption on the
physical mechanisms that intervene in the entropy production, the pre-equilibrium dynamics or
the thermalisation phase.

It has to be noted that TRENTo depends on a dimensionless parameter p, which can take
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any real value. According to this value of p, different physical mechanisms governing the entropy
production can be described. For example, p = 1 reduces TRENTo to a MC-Glauber model
with wounded nucleons, or if p is negative, the deposition of entropy is completely suppressed
in the direction of the impact parameter. In the simulations used in this work, this parameter
is set to p = 0.007, as this tuning has been shown to reproduce with good agreement previous
experimental measurements.

6.1.4 iEBE-VISHNU

The second theoretical model used for predictions of the SCs is iEBE-VISHNU [171]. This
MC event generator simulates the hydrodynamic evolution of the heavy-ion collision. As seen in
Section 1.4, models based on hydrodynamics computations need initial conditions as an input.
iEBE-VISHNU calculates then the initial energy density evolution using a combination of 2+1
causal hydrodynamics and an equation of state itself a union of lattice QCD and hadronic
resonance gas model [172]. The final distributions of fluid are then converted into distributions
of hadrons through the application of the Cooper-Frye formula [173]. It has to be noted that
iEBE-VISHNU directly returns as its output the flow amplitudes and symmetry planes in each
event, meaning they don’t need to be estimated afterwards with correlations techniques.

The first theoretical predictions obtained for the three-harmonic SCs have been obtained
using MC-Glauber as initial conditions for iEBE-VISHNU. The final state results have then
been obtained with the output of the hadronisation phase. More details about the tuning and
the obtained results can be found in Ref. [117]. However, a distinct set of predictions has been
used for the results published in Ref. [169] and presented in this thesis. There, the initial energy
density comes from the TRENTo model described above. This distribution is then connected
to iEBE-VISHNU and the hadron distributions obtained at the end of this procedure are let
evolved through the UrQMD model [174, 175]. Finally, a global Bayesian analysis is employed
to extract the initial conditions and free parameters of the full model. It has to be further noted
that, in the case of the ACs, predictions for the two configurations of iEBE-VISHNU have been
employed.

6.1.5 MuPa Monte Carlo Glauber model

The last model presented here is the MuPa MC-Glauber model. This version of the MC-
Glauber model presented in Section 1.3 has been developed locally, mainly based on Ref. [60].
The main conception steps about the implementation of this model can be found in Ref. [176].
However, the current work employed an updated version of the model, with the following changes
compared to the implementation described in said reference. First, the minimal distance previ-
ously set to 0.8 fm has been changed to 0.4 fm according to Ref. [177]. Furthermore, the impact
parameter is now randomly selected following a linear distribution in the range 0–20 fm. Finally,
the output of the simulations is saved event-by-event and the needed all-event averages can be
computed in the post-processing step of the analysis.

The simulated data used in this work have been obtained with the following configuration
of the parameters. The lead ions are simulated with a radius RA = 6.67 fm and a surface width
parameter ξ = 0.44 fm. The centre of mass energy is set to √sNN = 2.76 TeV as in the LHC Run
1. Two values for the inelastic nucleon-nucleon cross section are investigated: σinel

NN = 6.4 fm2

from Ref. [162] and the σinel
NN = 6.18 fm2 from the more recent Ref. [177].
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6.2 Higher order Symmetric Cumulants in ALICE

The results shown in this section are derived from the ones released in Ref. [169]. While
the formalism introduced in Section 4.1 can be applied to any number of flow harmonics, this
experimental analysis is focused only on the case of three different amplitudes. This choice
is motivated by the fact this is the next natural step after the studies of the two-harmonic
SCs [114, 116]. Moreover, as it will be illustrated later in this section, the volume of data in
the LHC10h sample is sufficient to get first meaningful predictions of the SC(k, l,m), but not
enough to get reasonable statistical uncertainties in peripheral collisions.

6.2.1 Interpretation of the experimental results

The two panels of Fig. 6.1 present the centrality dependence of SC(k, l,m) and NSC(k, l,m)
for different combinations of flow magnitudes. The results for SC(2, 3, 4) (black circles) and
SC(2, 3, 5) (blue squares) are non-zero. They show an increase in magnitude with the centrality,
although with opposite signs. It has to be stressed out that these are the first measurements
of genuine correlations between more than two flow amplitudes. Furthermore, they have the
potential to constrain the non-linear response in the higher flow harmonics. It has been shown
that both ε2 and ε3 contribute in the expansion of v5, while only ε2

2 plays a role in v4 (see
Section 1.4). This implies that the genuine correlations observed in SC(2, 3, 5) — where all
the harmonics are related through the non-linear response v5 ∼ ε2ε3 — and in SC(2, 3, 4) —
where ε3 is not linked to v4 — are expected to come from different physics mechanisms. This
latter point has also an impact on the NSCs themselves. The negative slope visible in SC(2, 3, 4)
can be found in NSC(2, 3, 4) as well, while the positive trend of SC(2, 3, 5) is not present in
NSC(2, 3, 5). Finally, it has to be noted that, in opposition to the previous methods used to
constrain the non-linear response [178], the new information from the higher order SCs do not
require any hypothesis on the nature of the two-harmonic correlations.

In the case of the correlations with higher order flow harmonics, the measurements for
SC(2, 4, 6) and SC(3, 4, 5) are both in agreement with zero for the analysed centrality range.
Two major points can be raised from this observation. These results could not have been pre-
dicted from the measurements between each pair of harmonics in SC(m,n). Moreover, they
imply that the three-harmonic correlations (and not the three-harmonic cumulants) can be de-
composed into a superposition of their respective two-harmonic measurements.

Another element of the SCs that can be studied is their signature. In the case of the
two-harmonic SCs, vm and vn are said to be (anti-)correlated if the corresponding SC(m,n)
is (negative) positive. The consequence of this sign on the relation between vm and vn (see
Section 1.5) can then be easily understood by rewriting Eq. (2.62) as

SC(m,n) =
〈(
v2
m −

〈
v2
m

〉) (
v2
n −

〈
v2
n

〉)〉
. (6.1)

This formulation means that, for SC(m,n) > 0, if v2
m >

〈
v2
m

〉
is found in an event, there is an

increased probability to find v2
n >

〈
v2
n

〉
in the same event. This pattern is denoted by (+,+).

The same logic applies as well in the case of the negative signs, leading to the pattern (−,−).
Moreover, SC(m,n) < 0 leads to the two patterns (+,−) and (−,+).

This concept can then be generalised to the situation with three different harmonics. There,
Eq. (4.1) can be rewritten under the form

SC(k, l,m) =
〈(
v2
k −

〈
v2
k

〉) (
v2
l −

〈
v2
l

〉) (
v2
m −

〈
v2
m

〉)〉
. (6.2)
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Figure 6.1: Centrality dependence of several combinations of flow amplitudes for SC(k, l,m) (a)
and NSC(k, l,m) (b) in Pb–Pb collisions at √sNN = 2.76 TeV with ALICE [169].

The reasoning used in the previous case can again be applied here. Only the patterns (+,+,+)
and (+,−,−) are allowed if SC(k, l,m) > 0, with (+,+,+) the notation for “if for an event
v2
k >

〈
v2
k

〉
and v2

l >
〈
v2
l

〉
are found, then there is an enhancement of the probability to find

v2
m >

〈
v2
m

〉
”. Furthermore, if SC(k, l,m) < 0, then only the patterns (+,+,−) and (−,−,−)

are possible. Finally, it has to be noted that only the two- and the three-harmonic SCs can be
rewritten in these forms. For four and more harmonics, this is not possible anymore.

The signatures of the combinations of harmonics shown in Fig. 6.1 are persistent within
uncertainties for the full centrality range. This implies that the relations between the three
harmonics could only vary between two possible event-by-event patterns as a function of the
centrality.

More importantly, these signatures give also new information, which cannot be extracted
from the previous two-harmonic measurements. The observable SC(2, 3, 4) is taken here as an
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example of this argument. The pairs of harmonics that can be created with v2, v3 and v4 are
SC(3, 2), SC(4, 2) and SC(4, 3). It is known from the previous systematic studies on the two-
harmonic SCs in Ref. [116] that they follow the patterns (+,−), (+,+) and (+,−) respectively
(Fig. 6.2). These sequences would lead to the two possible three-harmonic patterns (+,+,−) and

Figure 6.2: Centrality dependence of various combinations of two-harmonic Symmetric Cumu-
lants [116].

(+,−,−) (from the permutation of (−,+,−)) and therefore, the sign of the resulting SC(2, 3, 4)
could be either negative or positive. However, the measurements of SC(2, 3, 4) clearly indicate
a negative sign, hence the newly accessible information.

6.2.2 Comparison with hydrodynamic predictions

The experimental results presented above can now be compared with the predictions from
the theoretical models introduced in Section 6.1 (Fig. 6.3). Both the EKRT (blue band) and the
iEBE-VISHNU (black band) models can describe the overall trend of all the analysed observables
in the centrality dependence. However, it has to be noted that they predict SC(2, 4, 6) to be
strictly positive when the data are compatible with zero. Quantitatively, EKRT is found to be
in better agreement for SC(2, 3, 4) (panel (a)) and SC(2, 3, 5) (panel (c)) than iEBE-VISHNU
where the two observables are underestimated. The predictions for their normalised counterparts
are, however, in better agreement with the data and the results from EKRT.

As stated in Chapters 2 and 4, it is possible to compare the predictions at initial and final
states to get information about the hydrodynamic non-linear response. The explanation for this
argument is the following. As seen in Section 1.4, if the values of the eccentricities εn are small,
it is possible to relate them to the flow amplitudes with vn = knεn. For the elliptic n = 2
and the triangular n = 3 harmonics, this approximation is sufficient. However, for higher order
harmonics, non-linear behaviour cannot be neglected. By doing the ratio between the SCs and
the averages of the implied amplitudes, the linear components of the response cancel out. Any
observation of a variation between the NSCs at initial state and final state is then a sign of
non-linear response. Figure 6.3 also show the initial state of EKRT (pink band) and TRENTo
used as initial conditions for iEBE-VISHNU (green band) for NSC(2, 3, 4) and NSC(2, 3, 5). For
both pairs of models, the difference between the two sets of predictions shows the development
of genuine correlations between v2, v3 and v4 during the hydrodynamic evolution of the QGP.
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This behaviour is also hinted in the case of NSC(2, 3, 5).
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Figure 6.3: Predictions from the theoretical models for the centrality dependence of the
SC(k, l,m) and NSC(k, l,m) shown in Fig. 6.1 [169].

6.3 Predictions for the Asymmetric Cumulants

This last section presents the first theoretical predictions obtained for various combinations
of two-harmonic ACs. Some of the measurements shown here are presented in Refs. [125,157].
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6.3.1 Comparisons for the initial state

The predictions for various combinations of two-harmonic ACs are illustrated in Figs. 6.4–
6.9. The panels in the left column show the results for the initial state, going from the lowest
to the highest order of AC. Some global features can be distinguished for all combinations. The
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Figure 6.4: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(2, 3) (top), AC3,1(2, 3) (middle) and AC4,1(2, 3) (bottom). Results for MuPa-
Glauber courtery of M. Lesch. Results for iEBE-VISHNU courtesy of S.F. Taghavi [125].

deviation from zero of the predictions from TRENTo (red squares) is generally closer to zero
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than the ones from the Glauber models (black, blue and green markers). A decrease of the
amplitudes of the genuine correlations with the order of the AC is seen for all models. This
can be explained by the fact that higher order ACs like AC4,1 probe correlations with higher
moments of the flow amplitudes.
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Figure 6.5: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(2, 4) (top), AC3,1(2, 4) (middle) and AC4,1(2, 4) (bottom). Results for MuPa-
Glauber courtery of M. Lesch. Results for iEBE-VISHNU courtesy of S.F. Taghavi [125].

For some of the proposed combinations of amplitudes, a change of signature can also be
observed in one of the three moments of ACs (AC2,1(2, 3) in Fig. 6.4, AC2,1(2, 4) in Fig. 6.5 and
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AC4,1(4, 5) in Fig. 6.9). Furthermore, the predictions from the MuPa MC-Glauber models (blue
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Figure 6.6: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(2, 5) (top), AC3,1(2, 5) (middle) and AC4,1(2, 5) (bottom). Results for MuPa-
Glauber courtery of M. Lesch. Results for iEBE-VISHNU courtesy of S.F. Taghavi [125].

and green filled markers) are generally in agreement with the results from the published MC-
Glauber (black circles). Small to no effects can be seen between the two different cross-sections
in the MuPa MC-Glauber. It has also to be noted that the MuPa MC-Glauber predictions for
AC2,1(4, 2), AC4,1(4, 2), AC2,1(4, 3), and AC3,1(4, 3) are also compatible with the ones from the
same model with the inverted harmonics.
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Figure 6.7: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(3, 4) (top), AC3,1(3, 4) (middle) and AC4,1(3, 4) (bottom). Results for MuPa-
Glauber courtery of M. Lesch. Results for iEBE-VISHNU courtesy of S.F. Taghavi [125].

6.3.2 Comparisons for the final state

The right panels in Figs. 6.4–6.9 present the predictions for the final state from iEBE-
VISHNU using MC-Glauber or TRENTo as initial state. All combinations present similar be-
haviours, with the predictions from TRENTo+iEBE-VISHNU showing a large amplitude, with
an increase and a decrease as a function of the centrality — excepted for ACa,1(4, 5), a = 2, 3, 4
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Figure 6.8: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(3, 5) (top), AC3,1(3, 5) (middle) and AC4,1(3, 5) (bottom). Results for MuPa-
Glauber courtery of M. Lesch. Results for iEBE-VISHNU courtesy of S.F. Taghavi [125].

which only shows an increase — while MC-Glauber+iEBE-VISHNU is closer to zero with small
to nearly no amplitude of variation. However, it has to be stressed out that all the results
presented in this section are preliminaries. More thorough studies are needed in this direction
before any final statement can be done on the ACs.
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Figure 6.9: Predictions for the centrality dependence of the initial state (left) and the final state
(right) of AC2,1(4, 5) (top), AC3,1(4, 5) (middle) and AC4,1(4, 5) (bottom). Results for iEBE-
VISHNU courtesy of S.F. Taghavi [125].
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Chapter 7

Summary

This thesis presents the development of a new alternative approach for the measurements
of the genuine correlations between different flow amplitudes, based on the mathematical for-
malism of cumulants from Kubo. The starting point of this method is the observation that
the well-known two-harmonic Symmetric Cumulants (SCs) are cumulants of the two flow am-
plitudes v2

m and v2
n, instead of the azimuthal angles as it was the case for the old approach.

From this statement, the SCs have been generalised to any number of flow harmonics, while
preserving their cumulants properties. For these purposes, two sets of expressions have been
obtained: the definitions in terms of flow amplitudes which are sufficient for theoretical studies
and their counterpart with the azimuthal angles to use in experimental analyses. The validity
of this new theoretical framework has been demonstrated with the help of toy MC studies and
realistic HIJING simulations, besides the mathematical derivations of the required properties.
This approach has then been extended to the broader case of the genuine correlations between
distinct moments of two and more flow amplitudes, the Asymmetric Cumulants (ACs). Again,
mathematical proofs, as well as toy and realistic MC simulations, have ensured the legitimacy
of the method.

Collective anisotropic flow has always been one of the tools used to probe the initial condi-
tions and system properties of the quark–gluon plasma (QGP) created in heavy-ion collisions.
Recent measurements of single flow amplitudes with multiparticle cumulants have shown their
sensitivity to these system properties, namely the average of the ratio of the shear viscosity over
entropy density, 〈η/s〉. The possibility to study the genuine correlations between two differ-
ent flow amplitudes through the SCs and their access to new information like the temperature
dependence of η/s has been a new milestone in the flow community. This shows that recent
developments in the theoretical and experimental techniques used in such analyses have been,
and still are, crucial to obtain observables sensitive to the properties of this strongly interacting
system with the least systematic biases as possible. This work — and this novel method — are
thus in line with this idea by giving access to new and independent information and constraints
which were inaccessible with previous techniques.

Furthermore, asking the proposed observables to be valid cumulants of only the flow am-
plitudes ensures a straightforward interpretation of the results. A zero value directly means an
absence of genuine correlations between the corresponding flow magnitudes, while the opposite
conclusion can be reached if non-zero results are observed. As it does not remove the robustness
against nonflow correlations or require higher order azimuthal correlators than its traditional
counterpart, this ease in the interpretation of the new approach represents a great advantage in
flow studies.

Another step achieved in this thesis is the first measurement of the event-by-event genuine
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correlations between three different flow amplitudes using the SCs discussed above. These results
have been obtained in the Pb–Pb collisions at √sNN = 2.76 TeV measured by ALICE in 2010.
This choice of dataset has been motivated by its excellent data taking conditions. The absence
of dead zones in the TPC (as it is the case in 2011) ensured a flat acceptance in azimuthal
angles and removes the need to correct for non-uniform acceptance effects. Furthermore, while
2015 and 2018 Pb–Pb datasets are larger, leading to an increase of the statistical precision, they
also contain pile-up and distortion effects which need to be corrected. Therefore, this makes the
2010 dataset a good and clean sample to get a first look at novel flow observables.

As these measurements result from the generalisation of the two-harmonics SCs, the event
and track selections have been widely based on the criteria used in the former studies. All-
inclusive charged tracks reconstructed solely from the information from the TPC, the so-called
TPC-only tracks, have been selected in the kinematic range 0.2 < pT < 5.0 GeV/c and |η| < 0.8
commonly used in integrated flow analyses in ALICE. Additional criteria related to the detectors
have been employed to ensure a good quality of the reconstructed tracks and events. A total
of 8.2 × 106 minimum bias events in the centrality range 0—50% have been kept after the full
selection for the analysis itself.

Four distinct combinations of harmonics have been measured with the SCs in the final state.
Both SC(2, 3, 4) and SC(2, 3, 5) have shown a clear presence of genuine correlations. Besides,
their signatures, negative and positive respectively, are constant for the full analysed centrality
range. It has also been demonstrated how these signatures are new information which could not
have been predicted with certainty from the previous two-harmonic SCs results. Furthermore,
another result accessible only with the new SCs is the agreement of SC(2, 4, 6) and SC(3, 4, 5)
with zero for their full centrality range. This is unprecedented, as the corresponding two-by-two
genuine correlations are all non-zero over the same range.

Finally, these data have been compared to the predictions from two theoretical hydrody-
namic models with different initial conditions: TRENTo+iEBE-VISHNU, and EKRT. Several
additional and independent information, and constraints, can be extracted from such compar-
isons. First, these models have been tuned to reproduce with a good agreement the previous
flow measurements. However, their predictions for the three-harmonic SCs have revealed some,
in some cases quite important, deviations with the experimental data. This means that these
new results can then be used to improve the tuning of these models. Second, the compar-
isons of the initial and final state predictions using the normalised SCs have also shown great
potential in flow studies. The difference observed between the two states for NSC(2, 3, 4) has
illustrated the development of genuine correlations during the hydrodynamic evolution of the
QGP medium. The same behaviour has also been hinted in the case of NSC(2, 3, 5). Finally, this
latter combination of harmonics has also another interest on its own. It is known that the fifth
flow amplitude v5 presents a non-linear contribution from the second and third eccentricities, ε2
and ε3 respectively, in the form ε2ε3. The study of the genuine correlations between v2, v3 (both
of which are linearly related to their corresponding eccentricities) and v5 has therefore the great
potential to give more information on this non-linear response.

These measurements have been the first look at the generalised SCs and have proved the
feasibility of the new approach in flow analyses. Differential studies, in terms of transverse
momentum, pseudorapidity and particle identification, using the Run 2 Pb–Pb data sample are
already planned. Despite the additional challenges represented by the needed corrections on the
data, these measurements will benefit from the increased size of the dataset, allowing possible
exclusions of some tunings for the theoretical models. Similar studies will also be established for
the two- and three-harmonic ACs, potentially giving access to new information on the nature
of the genuine correlations between the flow amplitudes as well as new constraints on the initial
conditions and system properties of the QGP.
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Less close from now, the future collisions in Run 3, and corresponding increases of energy
and luminosity will be of great help in such precision techniques and allow the measurements of
even higher order SCs and ACs.
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Appendix B

Demonstrations

In this appendix, all the demonstrations mentioned in Section 1.4 and in Chapter 2 are
presented.

B.1 Exact relation for the flow amplitudes vn

The relation to prove here is the one of Eq. (1.14), recalled here:

vn = 〈cos [n (ϕ−Ψn)]〉 .

The Fourier series in Eq. (1.13) can be expressed in a simplified way as

f(ϕ) = 1
2π

[
1 + 2

∞∑
n=1

vn cos (n(ϕ−Ψn))
]
, (B.1)

with ϕ the azimuthal angles of the detected particles, vn the flow amplitudes and Ψn the sym-
metry planes. The mean of a random variable x is defined as

〈x〉 ≡
∫ 2π

0
xf(x)dx. (B.2)

Using the definition of the mean on the right-handed side (RHS) of Eq. (1.13) gives

〈cos[n(ϕ−Ψn)]〉 =
∫ 2π

0
dϕ cos[n(ϕ−Ψn)]f(ϕ)

= 1
2π

∫ 2π

0
dϕ cos[n(ϕ−Ψn)]

{
1 + 2

∞∑
m=1

vm cos[m(ϕ−Ψm)]
}

= 1
2π

∫ 2π

0
dϕ cos[n(ϕ−Ψn)]

+ 1
π

∫ 2π

0
dϕ

∞∑
m=1

vm cos[n(ϕ−Ψn)] cos[m(ϕ−Ψm)], (B.3)

where the definition of the Fourier series (B.1) has been used to get the second equality.
The first term of the RHS is zero. For the second term, the orthogonality relation of

trigonometry, ∫ 2π

0
dx cos(mx+ α) cos(nx+ β) = π cos(α− β)δmn, (B.4)

123



Appendix B. Demonstrations

where m,n are nonzero integers, α, β are arbitrary and δmn is the Kronecker delta symbol, is
used. This gives

〈cos[n(ϕ−Ψn)]〉 =
∞∑
m=1

vm cos(−Ψn + Ψm)δmn = vn, (B.5)

which is the desired result. �

B.2 Two-particle correlations in terms of Q-vectors

This section shows the demonstration of Eq. (2.14), which is repeated here for completion
purposes.

〈2〉n,−n = 1(M
2
)
2!

[
|Qn|2 −M

]
. (B.6)

The first part of the proof consists to show that

〈2〉n,−n = 1(M
2
)
2!

M∑
j,k=1
j 6=k

ein(ϕj−ϕk). (B.7)

This is achieved with the following derivation. The most general form for a two-particle correlator
of the single harmonic n is given by (Eq. (2.11))

〈2〉n,−n =

∑M
j,k=1
j 6=k

wjwkein(ϕj−ϕk)

∑M
j,k=1
j 6=k

wjwk
. (B.8)

For unit particle weights wj , wk = 1, the denominator becomes

M∑
j,k=1
j 6=k

1 = M(M − 1) =
(
M

2

)
2!, (B.9)

where
(M

2
)
is the binomial coefficient. Inserting this result into the general definition above

returns Eq. (B.7). This result is then used to prove the initial equation, Eq. (2.14). The
right-handed term can be rewritten as the sum over all combinations of azimuthal angles of M
particles minus the sum of terms where the particles are taken identical (j = k), i.e.

1(M
2
)
2!

M∑
j,k=1
j 6=k

ein(ϕj−ϕk) = 1(M
2
)
2!

 M∑
j,k=1

ein(ϕj−ϕk) −
M∑
j=1

ein0



= 1(M
2
)
2!

 M∑
j=1

einϕj

M∑
k=1

e−inϕk −M


= 1(M

2
)
2!

(QnQ∗n −M)

= 1(M
2
)
2!

(
|Qn|2 −M

)
, �

(B.10)
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where the definition of the Q-vector Qn (Eq. (2.13)),

Qn ≡
M∑
k=1

einϕk . (B.11)

has been used.

B.3 Semi-invariance of SC(m, n)

This section shows how to the two-harmonic SCs fail to meet the semi-invariance require-
ment for multivariate cumulants when it is applied with the flow amplitudes vm and vn as the
stochastic variables.

Consider two constants cm and cn. The semi-invariance criterion for SC(m,n) can be
expressed as follows:〈

(vm + cm)2 (vn + cn)2
〉
−
〈

(vm + cm)2
〉〈

(vn + cn)2
〉

=
〈

(vm + cm)2 (vn + cn)2
〉

−
〈(
v2
m + 2cmvm + c2

m

)〉 〈(
v2
n + 2cnvn + c2

n

)〉
=
〈
v2
mv

2
n

〉
−
〈
v2
m

〉〈
v2
n

〉
+ 2cm

(〈
vmv

2
n

〉
− 〈vm〉

〈
v2
n

〉)
+ 2cn

(〈
v2
mvn

〉
−
〈
v2
m

〉
〈vn〉

)
+ 4cmcn (〈vmvn〉 − 〈vm〉 〈vn〉)
6= SC(m,n). �

(B.12)

This derivation proves that SC(m,n) is not a valid cumulant of the flow amplitudes vm and vn,
but of the flow amplitudes squared v2

m and v2
n, as it has been shown for SC(k, l,m) in Section 4.1.
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Appendix C

Additional Figures for the
Asymmetric Cumulants

C.1 Nonflow scaling up to Mfinal = 550
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Figure C.1: Multiplicity dependence of the various ACs for strong few-particle correlations with
the fit of the corresponding nonflow scaling. Alternative version of Fig. 4.17.
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Appendix D

Technical Details for the
Experimental Analysis

This appendix presents the technical information concerning the acquisition of the exper-
imental results. The code used to run on the Grid and obtain the multiparticle correlators
needed for the computation of the SCs and the ACs is the class AliAnalysisTaskTwoMultiCorrela-
tions.(h, cxx) can be found in the Github repository https://github.com/alisw/AliPhysics/
blob/master/PWG/FLOW/Tasks/. The two main parts of the experimental analysis have been
obtained with the versions vAN-20190625-1, vAN-20200207-1 and vAN-20201214-1 of the Ali-
Physics software. The first analysis daily tag has been used to get the preliminary results showed
at the Quark Matter 2019 conference, while the second one corresponds to the version of the
checks presented in Ref. [169]. The third one, finally, is the last analysis tag used to get the final
results through the LEGO Train framework. The final results for the SCs can be found in the
wagons CF-CF_PbPb-9083, CF-CF_PbPb-9129 and CF-CF_PbPb_MC_AOD-2778.

As stated in Chapter 5, the analysis has been conducted on the Pb–Pb dataset at √sNN =
2.76 TeV taken in 2010. This corresponds in the internal naming scheme of ALICE to the
LHC10h dataset. The reconstruction is the pass 2 and the filtering is the AOD160, both of
which are the latest configuration available for this data taking period. Among the 90 runs
indicated as good in the Run Condition Table, the following 88 are included in this work:

139510, 139507, 139505, 139503, 139465, 139438, 139437, 139360, 139329, 139328, 139314,
139310, 139309, 139173, 139107, 139105, 139038, 139037, 139036, 139029, 139028, 138872,
138871, 138870, 138837, 138732, 138730, 138666, 138662, 138653, 138652, 138638, 138624,
138621, 138583, 138582, 138578, 138534, 138469, 138442, 138439, 138438, 138396, 138364,
138275, 138225, 138201, 138197, 138192, 138190, 137848, 137844, 137752, 137751, 137724,
137722, 137718, 137704, 137693, 137692, 137691, 137686, 137685, 137639, 137638, 137608,
137595, 137549, 137544, 137541, 137539, 137531, 137443, 137441, 137440, 137439, 137434,
137432, 137431, 137430, 137243, 137236, 137235, 137232, 137231, 137230, 137162, 137161.

It has to be noted that the quality of the runs indicated in the Run Condition Table is
a decision from the Central QA. This procedure done centrally on the data is made to check
the quality of each run and classify them done between the ones that are not usable in physics
analysis, the ones that can be used with caution (for instance in certain analyses only) and the
ones that are good for all analyses.

The computation of the particle weights used to correct for detector effects in the ALICE
data has been done with HIJING simulations. The production anchored to the LHC10h dataset
is the LHC11a10a_bis, with AOD162 as the latest available filtering. The list of analysed runs
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is the same as the one above. The origin of the rejection of the “good” runs 137546 and 137530
come from this HIJING production. Some issues (empty bins in some centrality ranges e.g.),
which were affecting the final corrections, have been found during the quality assurance of the
dataset.
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Appendix E

Support Figures for the Estimation
of the Barlow Test

This Appendix gathers the tables used to determine the systematic uncertainties of the
three-harmonic SCs and NSCs shown in Section 6.2, with the exception of SC(2, 3, 4) presented
as an example in Section 5.6.2. The corresponding support figures can be found in the ALICE
internal analysis notes in Ref. [167].

Table E.1: Summary of the systematic uncertainties for each trial for the observable NSC(2, 3, 4).
The columns 0–5%, 5–10% and 10–20% summarise the absolute variations, while 20–50% con-
tains the relative variations (see text). An en-dash “—” indicate a trial without a statistically
significant deviation.

Trial 0–5% 5–10% 10–20% 20–50%
Centrality 2.97 × 10−3 −1.87 × 10−3 2.258 × 10−3 15.5%
PVz −4.37 × 10−3 −1.36 × 10−3 −8.31 × 10−4 3.2%
NTPC — — — —
χ2/NDF — — — —
DCAxy −3.14 × 10−3 −2.15 × 10−3 1.92 × 10−3 12.4%
DCAz — — — —
++/- - — — — —
Filter 1.40 × 10−2 2.23 × 10−3 2.18 × 10−3 8.1%
Overall 1.53 × 10−2 3.86 × 10−3 3.76 × 10−3 21.7%
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Table E.2: Summary of the systematic uncertainties for each trial for the observable SC(2, 3, 5).
The columns 0–5%, 5–10% and 10–20% summarise the absolute variations, while 20–50% con-
tains the relative variations (see text). An en-dash “—” indicate a trial without a statistically
significant deviation.

Trial 0–5% 5–10% 10–20% 20–50%
Centrality −2.15 × 10−13 −2.12 × 10−13 −7.11 × 10−13 21.1%
PVz — — — —
NTPC 8.49 × 10−13 −1.04 × 10−12 −3.02 × 10−12 13.9%
χ2/NDF — — — —
DCAxy −2.55 × 10−13 2.35 × 10−12 4.84 × 10−12 35.7%
DCAz −3.73 × 10−14 8.46 × 10−13 9.33 × 10−13 9.6%
++/- - — — — —
Filter 1.67 × 10−13 −1.07 × 10−12 1.72 × 10−12 7.8%
Overall 9.28 × 10−13 2.92 × 10−12 6.07 × 10−12 45.5%

Table E.3: Values of the systematic uncertainties for each trial for NSC(2,3,5). The columns 0–
5%, 5–10% and 10–20% contain absolute variations and 20–50% relative variations as described
above. A dash indicates a trial not included in the overall value due to not have significant
statistical deviation.

Trial 0–5% 5–10% 10–20% 20–50%
Centrality −1.14 × 10−2 −2.88 × 10−3 −2.69 × 10−3 19.6%
PVz — — — —
NTPC 4.13 × 10−2 −1.48 × 10−2 −1.08 × 10−2 11.3%
χ2/NDF 5.26 × 10−3 −3.51 × 10−3 2.31 × 10−3 12.4%
DCAxy 1.90 × 10−2 2.56 × 10−2 9.31 × 10−3 21.4%
DCAz −2.62 × 10−3 1.10 × 10−2 2.53 × 10−3 8.4%
++/- - — — — —
Filter 3.03 × 10−2 −1.02 × 10−2 1.84 × 10−2 18.9%
Overall 5.61 × 10−2 3.35 × 10−2 2.37 × 10−2 39.4%

Table E.4: Values of the systematic uncertainties for each trial for SC(2,4,6). All the values
are the absolute difference between systematic trials and default. A dash indicates a trial not
included in the overall value due to not have significant statistical deviation.

Trial 0–5% 5–10% 10–20% 20–50%
Centrality 2.72 × 10−13 −1.40 × 10−12 1.98 × 10−12 −2.30 × 10−12

PVz 1.18 × 10−13 −4.95 × 10−14 1.17 × 10−12 1.93 × 10−12

NTPC — — — —
χ2/NDF 4.92 × 10−14 2.54 × 10−13 9.32 × 10−13 −2.10 × 10−12

DCAxy — — — —
DCAz — — — —
++/- - — — — —
Filter −1.96 × 10−13 −1.30 × 10−12 1.49 × 10−12 −4.82 × 10−12

Overall 3.59 × 10−13 1.93 × 10−12 2.89 × 10−12 6.06 × 10−12
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Table E.5: Values of the systematic uncertainties for each trial for SC(3,4,5). All the values
are the absolute difference between systematic trials and default. A dash indicates a trial not
included in the overall value due to not have significant statistical deviation.

Trial 0–5% 5–10% 10–20% 20–50%
Centrality — — — —
PVz — — — —
NTPC — — — —
χ2/NDF 4.11 × 10−14 −1.94 × 10−14 2.97 × 10−13 2.86 × 10−13

DCAxy 2.61 × 10−13 −7.03 × 10−13 2.09 × 10−13 5.69 × 10−13

DCAz — — — —
++/- - — — — —
Filter 1.60 × 10−13 5.18 × 10−14 1.19 × 10−13 9.03 × 10−13

Overall 3.09 × 10−13 7.05 × 10−13 3.82 × 10−13 1.10 × 10−12
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