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Abstract

In the field of low energy QCD the effective description of interactions between
ground state hadrons plays a major role in nuclear physics. One of these in-
teractions occurs between anti-kaons and nucleons, and is a topic of a long
standing interest. A specific attention is lately drawn to the possible existence
of bound states between Ks and nucleons. This old concept is based on the idea
that the attractive interaction between anti-kaons and nucleons, that already
manifests itself as the KN-pole of the Λ(1405)-resonance, is strong enough to
bind further nucleons by the help of a K. The simplest form of these clusters
is the KNN which consists of a K bound to two nucleons. This state might de-
cay into pΛ and is, thus, accessible via open strangeness production in p+p
collisions.

This work continues the investigations in this field, as a rather puzzling im-
pression is left behind from previous experiments, and further conclusions are
needed. The work contains two major data analyses.

The first one is dedicated to the KN bound state, and selects the semi-exclusive
reaction p+ p → p + K+ + Λ + X. This was done to investigate the strange res-
onances Λ(1405) and (1385)0 in their neutral decay channels 0π0 and Λπ0,
respectively. Besides resonance production, several other states contribute to
this final state. Their relative strengths have been determined and the obtained
production cross sections were in agreement with the results from an indepen-
dent analysis of the Λ(1405) decay into ±π∓, done in a parallel work.

To set reasonable constraints for coupled channels calculations in the KN sector,
a high-precision Λ(1405)-mass spectrum is needed. The obtained yield and un-
certainty of the Λ(1405) contribution to the final spectra, however, showed that
the required precision is not given in the neutral decay channel. Nonetheless,
the extracted production cross section of the (1385)0-resonance provided a
crucial constraint for the analysis of the Λ(1405) in its charged decay channels
±π∓, since the latter analysis requires this external constraint.

The second analysis is dedicated to the KNN state in which the semi-exclusive
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statistic p+ p→ p+ K+ + Λ+ X was narrowed to the exclusive reaction p+ p→
p+ K+ + Λ by exploiting the specific event kinematic. In total ≈ 20,000 events
with a background contamination of ≈ 10% were selected. The aim of this
analysis was to search for a possible contribution of the KNN to the pΛ final
state.

The data from the exclusive event selection were analyzed with help of a par-
tial wave analysis (PWA) from the Bonn-Gatchina group. In this way, a good
description of the full event kinematic was obtained with waves that include
the production of N∗+p and non-resonant pK+Λ intermediate states, which can
interfere. The pΛ invariant mass spectrum, which could contain the decay prod-
ucts of the KNN, can be described well without a contribution of the latter.

A statistical analysis was performed to quantify this observation and determine
an upper limit on the production cross section for the KNN in p+p reactions
at 3.5 GeV. The investigation of the local p0-value revealed an overall good
agreement between model and data within 3σ. In a next step, the production
of a KNN was included consistently into the PWA solution and the agreement
with the data was tested for several possible quantum numbers, masses and
widths of the latter. The upper limit was determined for a CLs value of 95%
and reads ≈ 2–7% ( = 30 MeV/c2), 3–10% ( = 50 MeV/c2) and 3–12% ( =
70 MeV/c2) of the total pK+Λ production cross section with MKNN = 2220 - 2370
MeV/c2.

The quantitative result of this thesis draws the conclusion that if a KNN exists,
its branching into pΛ is either small, or it is produced with a low cross section in
p+p reactions or it is so broad that a differentiation from background becomes
difficult. The possibility remains, however, that it has larger coupling strengths
to other final states which might still allow an experimental verification.
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Zusammenfassung

Im Bereich der nieder-energetischen QCD spielt die effektive Beschreibung von
Wechselwirkungen zwischen Hadronen-Grundzuständen eine wichtige Rolle in
der Kernphysik. Eine dieser Wechselwirkungen tritt zwischen Anti-Kaonen und
Nukleonen auf und ist ein Thema von lang anhaltendem Interesse. Besonders
im Fokus stand in letzter Zeit die mögliche Existenz von Bindungszuständen
zwischen Anti-Kaonen und Nukleonen. Dieses alte Konzept basiert auf der Idee,
dass eine anziehende Wechselwirkung zwischen Anti-Kaonen und Nukleonen,
die sich bereits im KN-Pol der Λ(1405)-Resonanz offenbart, so stark sein kön-
nte, dass weitere Nukleonen mit Hilfe von Anti-Kaonen verbunden werden kön-
nten. Die einfachste Form eines solchen Clusters stellt das KNN dar, das aus
einem K und zwei Nukleonen besteht. Dieser Zustand könnte in ein pΛ Paar
zerfallen und ist daher in expliziter Seltsamkeitsproduktion in p+p Kollisionen
messbar.

Diese Arbeit setzt die Untersuchungen in diesem Feld fort, da ein recht wider-
sprüchliches Bild von vorherigen Experimenten hinterlassen wurde und deswe-
gen weitere Befunde notwendig sind. Die Arbeit teilt sich in zwei größere Date-
nanalysen.

Die erste Analyse ist dem KN-Bindungszustand gewidmet und selektiert die
halbexklusive Reaktion p+p→ p+K++Λ+X. Dies wurde gemacht, um die selt-
samen Resonanzen Λ(1405) und (1385)0 in ihren neutralen Zerfallskanälen
0π0 bzw. Λπ0 zu untersuchen. Neben diesen Resonanzen tragen noch weit-
ere Zustände zu diesem Endzustand bei. Deren individuelle Beitragsstärken
wurden bestimmt und die ermittelten Produktionswirkungsquerschnitte waren
vereinbar mit den Ergebnissen einer unabhängigen Analyse des Λ(1405) Zer-
falls in ±π∓, die in einer parallelen Arbeit angefertigt wurden.

Um verwertbare Beschränkungen für coupled-channels Rechnungen im KN-
Fachgebiet zu erzeugen, benötigt man ein sehr präzises Λ(1405) Massenspek-
trum. Der erhaltene Beitrag des Λ(1405) im Endspektrum und seine Unsicher-
heit zeigte jedoch, dass die erforderliche Präzision in dem neutralen Zerfall-
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skanal nicht zu erreichen ist. Nichtsdestotrotz lieferte der gewonnene (1385)0

Produktionswirkungsquerschnitt einen wichtigen Beitrag zur Λ(1405) Analyse in
den geladenen Zerfallskanälen ±π∓, da diese Analyse eine externe Beschrän-
kung für den (1385)0 Beitrag benötigt.

Der zweite Teil der Analyse widmete sich dem KNN-Zustand, wobei die halb-
exklusive Statistik p + p → p + K+ + Λ + X in die exklusive Reaktion p + p →
p + K+ + Λ verringert wurde, unter Ausnutzung der speziellen Kinematik der
Ereignisse. Insgesamt wurden etwa 20,000 Ereignisse mit einer Untergrund
Kontamination von ≈ 10% selektiert. Das Ziel dieser Analyse war die Suche
nach einem möglichen Beitrag des KNN’s zum pΛ Endzustand.

Die Daten der exklusiven Ereignisselektion wurden mit Hilfe einer Partial Wellen
Analyse der Bonn-Gatchina Gruppe analysiert. Dadurch wurde eine gute Be-
schreibung der gesamten Ereignis-Kinematik erreicht, mittels Wellen, die die
Produktion von N∗+p- und nicht-resonanten pK+Λ Zwischenzuständen, welche
interferieren, beinhalten. Das pΛ invariante Massenspektrum, das die Zerfall-
sprodukte der KNN beinhalten könnte, kann gut ohne den Beitrag desselben
beschrieben werden.

Eine statistische Analyse wurde durchgeführt, um diese Beobachtung zu quan-
tifizieren und eine Obergrenze für den Produktionswirkungsquerschnitt des KNN
in p+p Reaktionen bei 3.5 GeV zu bestimmen. Die Untersuchung des lokalen
p0-Werts zeigte eine umfassend gute Übereinstimmung zwischen Modell und
Daten innerhalb von 3σ. In einem nächsten Schritt wurde die Produktion eines
KNN’s konsistent in die PWA Lösung eingefügt und die Übereinstimmung mit
den Daten wurde für etliche mögliche Quantenzahlen, Massen und Breiten des
Letzteren geprüft. Die Obergrenze des Produktionswirkungsquerschnitts wurde
für einen CLs-Wert von 95% bestimmt und ergibt sich zu ≈ 2–7% ( = 30
MeV/c2), 3–10% ( = 50 MeV/c2) und 3–12% ( = 70 MeV/c2) des totalen pK+Λ
Produktionswirkungsquerschnitts mit MKNN = 2220 - 2370 MeV/c2.

Das quantitative Ergebnis dieser Arbeit zieht die Schlussfolgerung, dass falls
das KNN existieren sollte es entweder eine kleine Kopplung zu Λp besitzt, oder
mit einem niedrigen Wirkungsquerschnitt produziert wird, oder so breit ist, dass
eine Unterscheidung vom Untergrund schwierig wird. Darüber hinaus besteht
jedoch weiterhin die Möglichkeit, dass das KNN eine stärkere Kopplung zu an-
deren Endzuständen besitzt, was eine experimentelle Bestätigung ermöglichen
würde.
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1 | Introduction

1.1 Fundamental Forces and Elementary Particles

The beginning of modern particle physics is marked by the early 1960s. Back
then the situation seemed much like a gold rush, as more and more particles
were discovered. Although exciting, the situation turned out to be rather un-
satisfying for the physicists as they were faced with a constantly increasing
number of "elementary" particles. Aiming at a comprehensive and compact
understanding of the building blocks of matter hundredths of fundamental com-
ponents seemed to be a rather odd and puzzling thought.

Figure 1.1: Known particles and exchange
bosons of the standard model of particle
physics [1].

A lot of effort was put into the
simplification of this situation where
the progress in theoretical particle
physics at that time was dominated
by the works of Murray Gell-Mann. He
and George Zweig independently in-
troduced a new classification scheme
for these recently discovered parti-
cles, now known as hadrons, that
involved new elementary particles:
the quarks [2, 3]. In this view, the
hadrons were build up by a group of
two or three quarks, respectively.

Today, the known components of mat-
ter and their interaction are well de-
scribed by the Standard Model (SM) of particle physics, see Figure 1.1. In this
picture, matter is made out of quarks and leptons which both come in three gen-
erations. The fundamental interactions (strong, weak, and electromagnetic) are
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1 Introduction

incorporated by the exchange of gauge bosons, shown in Figure 1.1. Although,
many believe in the existence of a more fundamental theory that will be able
to supersede the latter, the SM has only recently again proven its success by
the discovery of its last missing piece - the Higgs boson [4, 5].

1.2 Strong Interaction and QCD

The strong interaction in the Standard Model is described by the theory of
quantum chromodynamics (QCD). Within this field theory the interaction of the
strongly interacting fermions (quarks) is mediated by the exchange of bosons
(gluons) of which both carry a new quantum number: the color charge. Owed to
the fact that gluons also carry color charge, they are self-interacting. This leads
to a wealth of new phenomena such as asymptotic freedom and confinement.

Figure 1.2: The "running" coupling con-
stant αs of the strong interaction [6]. The
prediction of QCD (blue band) agrees well
with the measured values.

Asymptotic freedom is marked by the
weak strength of the strong force at
small distances and large energies.
This is described by the "running"
coupling constant αs that models the
changing strength of the strong in-
teraction, shown in Figure 1.2. At
these large energy scales QCD can
be treated preturbativley and this ap-
proach has proven its power by an
accurate description of many observ-
ables.

At low energies, where the strong
interaction is dominated by confine-
ment, one needs to apply different
methods in order to describe themea-
surements. In this regime, quarks and
gluons are no longer treated as indi-
vidual objects but are confined within
groups, known as hadrons. The world we live in is dominated by this low energy
regime and the observation of confined quarks in form of qq̄ (Mesons) and qqq
(Baryons) systems.
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1.3 Ground State Hadrons and Effective Field Theories

1.3 Ground State Hadrons and Effective Field

Theories

Figure 1.3: The ground state octets and singlets of hadrons. Left: Pseudo-scalar
mesons (JPC=0−+), right: ground state baryon octet and singlet states

(JP=1
2

+
).

Low-energy QCD with Nƒ = 3 quark flavors can be described within the con-
cept of an effective field theory. This theory is called chiral perturbation theory
(ChPT) and treats the confined hadrons as the relevant degrees of freedom.
It incorporates all important symmetries of its underlying fundamental the-
ory, QCD [7]. An important symmetry of this Lagrangian is the chiral symme-
try1. This SU(3)LxSU(3)R symmetry is broken twice: once spontaneously, which
causes the appearance of eight Goldstone bosons with degeneratemasses, that
can be identified with the mesons shown in Figure 1.3 on the left, and a second
time explicitly, which explains the experimentally observed mass difference [8]
among these bosons due to the finite quark masses [7].

The chiral Lagrangian couples the ground state baryons to the ground state
mesons and is, thus, used to explain basic hadronic interactions. The experi-
mental and theoretical determination of Baryon-Baryon (BB) and Meson-Baryon
(MB) interactions is, in this view, a test of QCD at low energy scales. Such pro-
grams have been carried out for NN [9], ΛN [10, 11], ηN [12, 13, 14] and KN

[15, 16, 17, 18] interactions, for example. The latter of these forces was found
to be strongly attractive in its isospin I=0 component. This gives rise to a lot of
measurable consequences that are discussed in the following.

1The interaction is equivalent for left and right handed quarks as well as for different flavours.
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1 Introduction

1.4 Low Energy KN Interaction

As discussed, ChPT is a useful theory for the description of the low energy sec-
tor of QCD. In contrast to other Meson-Baryon channels like πN or K+N this
approach fails, however, when applied to the KN interaction [19]. This has
three reasons [20]:
1) The KN interaction is strongly attractive in the I=0 channel and hence devel-
ops a bound state just below the threshold.
2) The π interaction, also attractive, develops a broad (I=0) resonance at
about the energy of the KN bound state. These effects alone would lead to
two separate objects observed in experiments.
There is, however, 3) a strong coupling between the π and the KN channel
which leads to an interference of the bound state and the resonance in the I=0
channel, known experimentally as the Λ(1405).

This picture is obtained by a non-perturbative chiral SU(3) coupled channels
approach [19, 21, 22], in which the Λ(1405) is generated dynamically from the
Meson-Baryon interaction.

Coupled channels framework

To treat the KN interaction in a coupled channels framework all channels with
S=-1 and Q=0 must be taken into account. These are the ten following chan-

nels: K−p, K
0
n, π0Λ, π00, π+−, π−+, ηΛ, η0, K+− and K00. The rela-

tivistic unitary T-Matrix Tj of the ten coupled channels can be described by a
self-consistent Bethe-Salpeter equation [15]:

Tj = Vj + VGTj. (1.1)

To constrain this phenomenological approach by chiral dynamics the MB inter-
action, derived from the next-to-leading order MB chiral Lagrangian, is used to
construct the interaction kernel Vj in this equation. The diagonal matrix G is
given by [15]:

G(Q) =

∫
d4k

(2π)4

i

[(Q− k)2 −M2
 + iε](k2 −m2

 + iε)
, (1.2)

with M and m being the mass of the baryon and the meson in channel . This
equation (1.1) is an integral equation which sums up a series of diagrams to an
infinite sum, illustrated in Figure 1.4. If the T-Matrix is calculated the scattering
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1.4 Low Energy KN Interaction

Figure 1.4: The infinite sum of diagrams (lower part) calculated within the Bethe-
Salpeter equation (upper part) [23].

amplitude ƒj can be derived according to [15]:

ƒj(
p
s) =

1

8π
p
s
Tj(
p
s) . (1.3)

This connects the theoretical framework to experimental observables, discussed
in the following.

1.4.1 Experimental Constraints

The low energy KN interaction can be divided into three major regions on the
energy axis: the resonance region, the threshold region, and the scattering re-
gion. In each part the complex scattering amplitude has distinct features which
can be compared to different experiments. In order to allow solid predictions for
yet unresolved phenomena in the S=-1 sector, the free parameters in the cou-
pled channels approach need to be constrained by a fit to the measured data.
In most attempts the scattering and threshold region is used to make predic-
tions of the resonance region, namely the positions of the two Λ(1405) poles.
In Ref. [24] the measured Λ(1405) mass distributions from photo-production
are used to make predictions on the scattering region, for example. Either way
can be used to test the solidity of the model parameters and make predictions
for observables.

7
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The Scattering Region

Figure 1.5: Two out of six K−p scattering channels fitted by the model of [15].

Equation 1.3 shows the connection of the calculated scattering matrix to an
experimental cross section via the square of the scattering amplitude. With this
connection the model parameters can be constrained by experimental data.
Figure 1.5 shows two measured scattering cross sections as a function of the
beam momentum compared to model fits of Ref. [15].

The available database includes the following reactions: K−p→ K−p, K̄0n, π+−,
π−+, π00, π0Λ, ηΛ, π0π00, the π−+ event distribution from K−p→ +(1660)π−

and the π00 event distribution from K−p→ π0π00 with pK = 0.687 GeV/c, re-
spectively (see e.g. Ref. [18] and references therein for the experimental data)

The Threshold Region

The threshold region describes the KN interaction at rest. As it is experimentally
extremely challenging to measure the scattering process at zero and near zero
momentum, no scattering data at threshold are available. There is, however,
access to this region via the measurements of kaonic atoms.

Firstly, the threshold branching ratios γ, Rc and Rn have been determined by

8



1.4 Low Energy KN Interaction

the measurement of stopped K− on hydrogen [25, 26]:

Rc =
σ(K−p→ charged particles)

σ(K−p→ all)
, γ =

σ(K−p→ π+−)

σ(K−p→ π−+)
(1.4)

Rn =
σ(K−p→ π0Λ)

σ(K−p→ all neutral states)
.

Secondly, from the measured energy shift, compared to the pure electromag-
netic value, (ΔE) and the width () of the 1s state in kaonic hydrogen (where
the effect of the strong potential is large) the complex scattering length a(K−p)
can be determined. The scattering length expresses the value of the scattering
amplitude at threshold a(K−p) = ƒK−p→K−p(

p
s =mK− +Mp) and can be deduced

from the values ΔE and  [15]. Figure 1.6 summarizes the three recent exper-
imental values for ΔE and  and the fitted values from different chiral models.
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Figure 1.6: Experimental data of 1s state of kaonic hydrogen (−ΔE and ) [27]
(KEK), [28] (DEAR) and [29] (SIDDHARTA). The theoretical predictions
stem from [15] (IHW in black plus symbol), [16] (CS in green triangle)
and Ref. [17] (MM in blue cross), the work quoted as OURS coincides
with the source of the figure in Ref. [18].

The Resonance Region

The resonance region describes the sub-threshold KN interaction. This part
of the KN scattering amplitude becomes important when the behavior of anti-
kaons in medium or kaonic nuclear bound states (Section 1.6) are studied. Due
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Figure 1.7: Theoretical predictions for the subthreshold K−p scattering amplitude.
A is from Ref. [18], B from Ref. [16] and C from Ref. [15].

to the attractive KN interaction, a low-energy kaon in the vicinity of nucleons
is described by the sub-threshold regime. This important region is, however,
not directly accessible by experimental observations. The reason for this is
the strong coupling of the KN and the π channel. Both channels bear an
attractive interaction that creates a bound state (KN) and a resonance (π)
which interfere and produce a mass distribution, known as the Λ(1405).

The fact that the observable in this energy region is an interfered sum of
two scattering amplitudes hinders a direct extraction of information. The sub-
threshold KN amplitude is, thus, predicted with help of the coupled channels
approach constrained to the scattering-, and threshold region. Even though,
there are a lot and precise measurements available, the sub-threshold extrap-
olations show larger differences between the models, as indicated in Figure
1.7. It displays the imaginary part of the K−p scattering amplitude, predicted
by different groups. The predictions differ significantly in the point where the
strongest absorption of the K−p channel appears.

This sub-threshold amplitude is a basic ingredient for the prediction of the
Λ(1405) mass distribution. To obtain this distribution also the π amplitude
for the I=0 channel has to be evaluated. The I=0 KN amplitude is obtained
from the K−p and K−n scattering amplitude of which the latter is not as well
constrained as the first. An interference pattern of both channels (KN − π),
of which the relative weight might differ depending on the reaction channel in
which the Λ(1405) is produced, gives the prediction for the Λ(1405) lineshape.

10



1.5 K Potentials at ρ0

1.5 K Potentials at ρ0

The KN interaction, discussed so far, is calculated in the vacuum ρ = 0. Besides
the uncertainties on the pure amplitude the extrapolation into the medium adds
additional uncertainty.

The advertised potentials can be divided into two classes. The "shallow" ones
giving usually values of −VK̄ ≈50–60 MeV [30, 31, 32, 33, 34] at ρ = ρ0, and the
KN threshold and the "deep" ones usually with potential depths in the order of
−VK̄ ≈150–200 MeV [35, 36, 37, 38, 39, 40] at ρ = ρ0. The latter one is obtained
by a global fit to all kaonic atom data throughout the periodic table. A major
difference among these two classes is based on the chiral or phenomenological
treatment of the KN interaction, whereby the chiral potentials are in most cases
"shallow". The work of [16, 40] tries to resolve this discrepancy by stating that
the fits to the atomic spectrum probe mainly sub-threshold KN energies where
the interaction is stronger and, thus, the optical potential with this amplitude
delivers deeper potential values than the ones constructed at threshold.

The discussion of the strength of the potential and the sub-threshold extrap-
olation of the KN scattering amplitude becomes important in view of possible
bound states of anti-kaons with nucleons. These bound states are a natural
extension of the picture that treats the Λ(1405) as being partially a KN bound
state. In case of a sufficiently deep potential also larger bound states like KNN
or KNNN could exist, named kaonic cluster, and discussed in the following sec-
tion.

1.6 Anti-Kaon Nuclear Bound States

The idea of bound states between kaons and nucleons is as old as the discovery
of these strange particles itself. Even before the exact nature and amount
of kaon states were known, "At the time of writing it is far from clear how

many distinct K-particles (of given charge, say) there are." [41], speculations
about bound states between these new particles and normal nuclear matter
began [41, 42, 43]. While the early speculations involved kaons (K+, K0), it was
soon clear that the fundamental component for a bound state, the attractive
interaction, was missing [44]. On the contrary, the interaction of anti-kaons and
nucleons was found to be attractive. This discovery, as interesting as it was,
did not simplify the picture. In contrast to kaons, anti-kaons can be absorbed
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by matter2, which reduces drastically the lifetime of possible anti-kaon nuclear
clusters, making them quasi-bound states. Despite this drawback, the scientific
interest in these theoretical objects began.

In the literature many names for bound states of anti-kaons and nucleons ap-
pear. Some of them are used in the following: (anti-)kaonic nuclear cluster,
(anti-)kaonic nuclear bound state, (kaonic) quasibound state, Λ∗-hypernuclei,
strange dibaryon, deeply bound kaonic cluster (DBKC), kaonic dibaryon, nuclear
kaonic hydrogen molecule.

1.6.1 The First Generation - Evolution of anti-Kaonic Nuclear
Bound States

The pioneers in this exciting field were approaching the idea of bound states
between anti-kaons and nucleons from many perspectives. The very first work
on this field stems from Y. Nogami in 1963 [45]. This work is motivated by the
interpretation of the Λ(1405) as a KN bound state by R. H. Dalitz and S. F. Tuan
[46, 47, 48]. Nogami discusses the three isospin configurations of the KNN

system and predicts a small binding energy for the most stable configuration of
≈10 MeV. The properties of the smallest kaonic cluster are discussed in Section
1.6.4.

In the early eighties, three works by Russian authors appeared which discussed
the possibility of bound states of a K− with a 4He nucleus [49, 50, 51]. Their
work was primarily motivated by the measurements of anomalously large 2p-
level shifts of kaonic He [52, 53]3. The authors found out that the K−-4He
system contains a nuclear level with l=1 and a binding energy and width both
of ≈0.5 MeV [50]. Their findings are, however, at question given the fact that
these early measurements were wrong (Footnote 3).

The data from heavier kaonic atoms have been more reliable and have also
provided motivation for a large number of works discussed in the following.
In order to extract an effective KN scattering length, multiple attempts have
been carried out to fit all available data of kaonic atoms (except K−H and K−
4He) with help of theoretical models. These fits revealed that the atomic levels

have negative energy shifts4, with respect to the pure Coulomb level, although

2This is the reason why kaons were initially preferred as bound state partners.
3Re-measurements of this system 30 years later solved a long standing puzzle by reporting a
significantly smaller value for the 2p-level shift [54, 55].

4less binding.
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1.6 Anti-Kaon Nuclear Bound States

the real part of the optical potential is attractive. This net repulsion is related
to the strong absorptive part of the optical potential which acts effectively as
a "repulsive" hard core [56, 57, 58]. Due to this strong absorptive part, an
unexpected phenomenon, the so-called Krell oscillations5 [59], occurs in kaonic
atoms. This phenomenon is well described in Refs. [60, 61] and is caused by
an interplay of the strong absorptive part of the optical potential (which acts
effectively repulsive) and the attractive real part. What connects this oscillating
behavior with the discussion of kaonic nuclear bound states is the fact that this
phenomenon goes hand in hand with the appearance of so-called "inner" and
"outer" states of the kaonic atom. The "outer" or also named atomic states refer
to the usual case where a kaon is located in an atomic orbit. The "inner" states,
which are also named nuclear states, describe a kaon inside of the nucleus
which is therefore considered as a kaonic nuclear bound state. This appearance
of kaons in the nucleus has been of continuous interest during the years [31,
56, 57, 58, 59, 60, 61, 62, 63, 64]. While on the one hand the great interest
in these states is stressed many authors are on the other hand quite reserved
whether one could ever observe these states directly, as they are expected to
be very broad due to the strong absorptive nature of the interaction.

Quantitative predictions about the properties of these nuclear states have been
put forward in Ref. [56] claiming that a K−32S bound state could only exist for
ReVK̄N ≈ 0– -100 MeV and ImVK̄N <15 MeV. In Refs. [57, 63] it is stressed that
kaonic nuclear states in heavier nuclei would have large widths of  = 50 MeV
up to over 100 MeV. The authors of Ref. [31] give very detailed predictions for
the nuclear levels in C, Ca and Pb. They find binding energies of 4–40 MeV and
widths of  = 40–200 MeV, which can cause a substantial overlap between the
different levels of excited states.

The work of Ref. [65], in contrast to the previously mentioned reports, con-
structs the elementary KN-potential not by a fit to the kaonic atom spectrum
but by solving the coupled Lippmann-Schwinger equations for five isospin chan-
nels KN, π, Λπ. The free parameters of the model were constrained by a fit to
the scattering and reaction data above threshold. This elementary model was
then used to calculate the behavior of a kaon inside a nucleus with the help of
an optical potential. Despite the different approach, they found bound states of
K̄ and 12C with a moderate binding of ≈60 MeV and widths of 20-100 MeV.

In harsh contradiction to these discussions stand two works by S. Wycech, one
coauthored by R. Staronski [53, 66]. They discuss the possibility of deeply

5This is an oscillating behavior of the calculated energy shift and width of the kaonic atom state
dependent on the strength of the nuclear interaction.
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bound kaonic states (DBKS) in a helium nucleus. Their work has also been mo-
tivated by the first generation measurements of kaonic helium, which according
to them, hint to a K̄α bound state. They estimated a binding of a kaon to the
nucleus as strong as 100–150 MeV. As a result of this strong binding a signif-
icant amount of phase space for the decay of such systems would be closed,
see Section 1.6.5. This reduced phase space causes the states to be as narrow
as ≈20 MeV.

At that time, the topic was not intensively discussed among the different groups
and a real change was only put forward several years later, discussed in the
following.

1.6.2 The Second Generation - A Boost to the Field

A renewed interest was initiated by the works of T. Kishimoto [67] in (1999)
and Y. Akaishi and T. Yamazaki [68, 69] in (2001). T. Kishimoto was predicting
large cross sections of the (K−,N) transfer reaction for the creation of a kaonic
nuclear bound state with help of K−-beams impinged on nuclear targets. In
his calculation he assumed a binding of BE = 100–150 MeV and obtained cross
sections for the cluster production in 12C as large as dσ/dΩ = 100–400 μb/sr.
This amazing result triggered some response by other theoreticians doubting
the correctness of the large cross section and the narrow width of the nuclear
states [30, 70]. Further interest was triggered by Kishimotos first connection of
the KN potential depth to a possible condensation of anti-kaons in the core of
neutron stars [67].

Y. Akaishi and T. Yamazaki on their behalf argued that a KNNN state, namely
K− 3He+K̄0 3H, would be bound by 108 MeV with a width of 20 MeV. These
characteristics have peculiar origins. According to the authors the binding is
so strong due to the shrinkage of the whole nucleus which substantially lowers
the bound state energy. Due to this lower energy, however, the π decay
channel is closed (Section 1.6.5). Further, the KNNN was constructed such that
it incorporates mainly the I=0 component of the KN interaction (3:1). In this
isospin channel the decay into Λπ is forbidden due to isopin conservation, so
that this state can only majorly decay by its small I=1 component. This specific
construction of the KNNN state is the reason for its small width [68, 69], which
was also confirmed by other authors [30].

Back-to-back with these new theoretical predictions a first experimental pro-
posal was put forward to cross check them [71]. Soon this experiment was con-
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1.6 Anti-Kaon Nuclear Bound States

ducted and the first results that reported signal candidates did induce a large
controversy, see Section 1.6.6. An overview of this era is given in Ref. [72].

1.6.3 State of the Art

Meanwhile, the field has reached a level of vivid discussion and proposals for
cluster candidates. In this line, a kaon is added to various other hadrons. Fig-
ure 1.8 shows the most commonly discussed two- and three-body systems [73].
Larger clusters, like the KNNN the K KNN or states with two different mesons,
like πKN are also found in the present literature [74, 75]. This subsection will
give a brief overview on the current predictions for the simplest cluster KNN
which are mainly obtained in two ways: Faddeev-, and variational calculations.

Figure 1.8: Family of few-body kaonic nuclear clusters [73].

Faddeev Calculations

In a Faddeev approach the three-body T-matrix is approximated by a sum of
matrices T  (T = T1 + T2 + T3) that describe the reaction:

j+ (k)→ + (jk), (1.5)

which accounts for elastic and rearrangement processes of the three particles
(i,j=1,2,3) [76]. In this way the three-body problem can be split into two-body
interactions while the third particle is treated as a spectator. Thus, the two-
body T-matrices can be used to build up T  [75]. The full mathematical concept
of this approach is explained for example in Refs. [76, 75].
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The KNN has been calculated within a coupled channel Faddeev approach in
[75, 76, 77, 78, 79, 80, 81, 82, 83]. This coupled channel approach has the
advantage that the conversion (πN – KNN) is taken into account and such
the binding energy and mesonic decay widths are calculated within the same
framework. The results of these calculations are summarized in Table 1.1.

Variational Calculations
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Figure 1.9: The results of the calculated ground state (g.s.) properties of kaonic
nuclear clusters, binding energy and width, from Refs. [74, 84].

In a variational approach the energy of the three-body system is minimized it-
eratively. For that a trial wave function Ψ(K,N,N) is constructed that describes
the configuration among the three particles. By evaluating the expectation
value of the three-body Hamiltonian Ĥ(T,VNN, VK̄N) with the trial wave func-
tion the energy of the system is obtained. The total energy of the system is
then minimized with respect to the parameters λ of the wave function ∂E

∂λ
= 0.

The minimum energy of the system corresponds to the binding energy of the
cluster. If the input values of the parameters that were used to construct the
wave function coincide within a certain accuracy with the values that minimize
the energy, the procedure converges and delivers appropriate results. Several
works have used a variational approach to determine the properties of the KNN
state [69, 74, 85, 86, 87, 88, 89, 90, 91]. The results are summarized in Ta-
ble 1.1. Figure 1.9 shows a graphical representation of the width and binding
energy of different kaonic nuclear bound states calculated in Ref. [74].

One disadvantage of variational calculations is that the imaginary part of the
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KN interaction has to be treated perturbatively and, thus, the width of the KNN
state needs to be calculated separately [85]. An advantage compared to the
Faddeev approach is that one obtains the wave function of the kaonic cluster
and with this its spacial distribution.

An evaluation of the distances between the three particles, obtained from the
wave function, states that the KNN is essentially a bound state of Λ(1405)-p
[85, 87]. In this sense the term Λ∗-Hypernuclei, that has been used as early as
in 1990 [65] for the kaonic nuclear bound states, is justified and consequently,
the KNN system has also been calculated in a variational approach as a Λ∗-N
bound state [88, 92].

Comparison

No matter which of the two methods is used to calculate the KNN three-body
system, one needs, in both cases, realistic NN and KN potentials as input. The
KN interaction can be taken from different models, chiral or phenomenologi-
cal ones. Depending on the model the KN interaction is then treated energy-
dependent or static. Further, the two body binding energy between KN can be
either treated as 12 MeV or 27 MeV deep, depending on the theoretical position
of the Λ(1405) mass. The NN potential inside the KNN system is usually taken
from external works dealing with nucleon nucleon interaction6.

The results of the different calculations are summarized in Table 1.1. Here, the
predictions for the binding energy BE, the mesonic decay width m, and the
non-mesonic decay width nm are summarized. The two nucleon absorption

process present in the decay of the KNN system (Section 1.6.5) and accounted
for by nm, is only taken into account by some of the calculations. It is in most
cases only an estimate. To stress the discrepancy between the calculations,
they are sorted according to their treatment of the KN interaction. The differ-
ences between the predictions are discussed in Refs. [82] and [83], and two
effects were named responsible. First, as suggested in Table 1.1, the energy-
independent KN interaction that has been used within phenomenological po-
tentials causes a systematic deeper binding than the use of energy dependent
chiral potentials. Second, the use of coupled (KN – π) or single channels (KN
– KN) can alter the results in view of the expected binding strength [76, 82].

6Argonne18 [85, 86], Argonne AV4‘ [74], Tamagaki potential G3RS [87], Bonn potential and
Nijmegen soft-core potential [88].
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Table 1.1: Overview of different predictions for the binding energy BE, mesonic-
m and non-mesonic nm decay widths of the KNN (in MeV), inspired
from Refs. [84, 93]. The symbols (♣,♡) mark different works by the
same authors.

Chiral, energy dependent

var. [74] var. [85, 86] Fad.♣ [81] Fad. [82, 77] Fad.♡ [83]

BE 16 17–23 9–16 26–35 32
m 41 40–70 34–46 50 49
nm 4–12 30

Non-chiral, static calculations

var. [90, 69] Fad.♡ [78, 76] Fad.♣ [79, 80] var. [89] var. [91]

BE 48 50–70 60–95 40–80 40
m 61 90–110 45–80 40–85 64–86
nm 12 ∼20 ∼21

In most of the calculations the width of the KNN system is considerably larger
than the binding energy which leads many authors to the conclusion that it will
be problematic to measure this state.

1.6.4 The KNN State, the Simplest Kaonic Cluster

If one considers a kaonic cluster in its simplest form, consisting of two nucleons
and one anti-kaon, its properties differ depending on the spin-isospin structure
of the three-body system. Here, all possible nucleon anti-kaon combinations
are introduced.

The most popular ansatz is to use a configuration were the two nucleons are in
an isospin 1 state and the total KNN isospin combines to 1/2. This configuration
of the NN isospin triplet state can be written as, see [89]:

ΨA = ((NN)1K)1/2. (1.6)

The spin between the two nucleons is then SNN=0. This KNN state can appear
in two possible charge combinations. For the Q=+1 case this is a linear com-
bination of a ppK− and a pnK̄0. In case the cluster has zero charge Q=0 its
particles combinations are pnK− and nnK̄0. If one re-couples the isospins in a
longer calculation [94] so that the basis is the KN system, one can write the
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wave function as [89]:

ΨA =

p
3

2
((NK)0N)1/2 +

1

2
((NK)1N)1/2. (1.7)

In this basis, one clearly sees that this state is in favor (3:1) of the stronger
KN attraction with I=0. This strength of the isospin 0 component makes ΨA the
best candidate for a bound KNN system.

If the anti-symmetric pn combination (NN=0, SNN=1) is considered, the wave
function looks like follows [89]:

ΨB = ((NN)0K)1/2. (1.8)

In this configuration, each charge state is built by only one particle combination.
In case of Q=0 it purely consists of pnK− and in case of Q=+1 it is a state of
pnK̄0. The re-coupling of the isospins to the KN base yields the following form
[89]:

ΨB = −
1

2
((NK)0N)1/2 +

p
3

2
((NK)1N)1/2 (1.9)

In this arrangement the KN isopin=0 component is only minor (1:3) and, hence,
the ΨB state is less bound than the ΨA combination.

The third three-body configuration is build with a total isospin of 3/2:

ΨC = ((NN)1K)3/2 . (1.10)

This is the only particle combination that comes with a negative charge or with
positive charge +2. The particle combinations are the following: either nnK−

for Q=-1 or ppK̄0 for Q=+2. Here, the nn and pp pairs are in an NN = 1 and
SNN = 0 state. If one re-couples the isospins, this state appears to be purely in
the KN isospin=1 configuration and is, thus, expected to be, if at all, less bound
than the others:

ΨC = ((NK)1N)3/2. (1.11)

The properties of all three KNN states are summarized in Tables 1.2 and 1.3.
As the decay products of the three clusters are the same, only ΨC can be dis-
tinguished from ΨA and ΨB by the charge of the products while the latter two
would simultaneously appear in an invariant mass spectrum if both states exist
[74].

Although most of the works in this field focus on the description of the bound
state in the formation ΨA, some have also mentioned and calculated the prop-
erties of the other two configurations ΨB and ΨC. Case ΨB is mentioned in
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Table 1.2: Different Properties of the KNN configuration.

Wave NN SNN tot JP Q Term

ΨA 1 0 1/2 0− 0, +1 "ppK−", 2
K̄
H

ΨB 0 1 1/2 1+ 0, +1 "dK−"
ΨC 1 0 3/2 0− -1, +2 -

Table 1.3: The resulting wave function Ψ for the different particle combinations of
the two nucleons and one anti-kaon.

NN = 1 NN = 0

Anti-Kaon nn pp pn pn

K− ΨC ΨA ΨA ΨB
K̄0 ΨA ΨC ΨA ΨB

Refs. [45, 87, 89] and calculated in Refs. [74, 75, 95]. In these recent works it
was concluded that the state ΨA overlaps with ΨB as they have binding energies
of 16 and 8-9 MeV, respectively, but large widths of 40 and 30 MeV, which will
make a distinction in a mass spectrum impossible [74]. In Ref. [95] the exis-
tence of this state is put at doubt, however, as it appears only as bound for one
of their tested KN interaction potentials which, at the same time, reproduces
the measured scattering data only roughly.

While the properties of ΨA and ΨB are calculated, the configuration with total
isospin 3/2 (ΨC) is only mentioned in Refs. [45, 87, 89].

1.6.5 Decay Modes and Width

The idea behind the existence of measurable anti-kaonic nuclear clusters is
that with a deep binding energy some of the possible decay channels may be
closed completely or have such a reduced phase space that the quasi-bound
states could be considerably narrow. Such a possibility of deeply bound kaonic
clusters was first mentioned in Refs. [53, 66], with a discussion of its decay
patterns. The possible decay modes of the three-body systems KNN (ΨA, ΨB,
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Figure 1.10: Feynman diagrams of the KNN decay via two-nucleon absorption.
The first diagram is forbidden in case of SNN = 0 (ΨA and ΨC) [85].

and ΨC) are the following:

KNN

+ N+ π (1.12)

Λ+ N+ π (1.13)

+ N (1.14)

Λ+ N (1.15)

The decay of the nuclear bound state proceeds via internal capture or scatter-
ing processes. One decay mode proceeds via one- or two-nucleon absorption of
the kaon which is discussed, for example, in Ref. [85]. One-nucleon absorption
leads to the final states in Equations (1.12) and (1.13) via two-nucleon absorp-
tion results in a pion-less final state in Equations (1.14) and (1.15). Possible
diagrams of the two-nucleon absorption processes are shown in Figure 1.10.

A second decay mechanism can occur via the internal formation of a Λ(1405)-
resonance, as discussed for example in Ref. [96]. The decay via this doorway is
only possible for KN-pairs in an isospin 0 state (not apparent in ΨC). Figure 1.11
shows possible decay diagrams with the internal formation of the Λ∗ and the
final states in Equations (1.14) and (1.15). It was found that the ratio of decay
widths in this decay scenario is relatively independent on the nuclear density
and approaches ΛN/N ≈ 1.2 [96], resulting in a total non-mesonic decay
width of 22 MeV at normal nuclear density.

Due to the large absorption cross section for the anti-kaon, the width of the
possible bound states is often predicted as rather large, see Table 1.1. In case of
a strong binding mechanism, the energy of the bound system could be lowered
so much that some of the possible decay channels would be closed and, thus,

21



1 Introduction

Λ

Λ

*
N

ΛN1 ΛN2 ΣN1 ΣN2

N

K

Λ

Λ

η

*

N

N Λ

Σ

*
N

N

K

Λ

Σ

π

*
N

N

Figure 1.11: Feynman diagrams of the KNN decay via the Λ∗-doorway [96].

the width of the kaonic cluster substantially narrows. Figure 1.12 illustrates the
decay threshold of the KNN system with respect to its unbound mass. In case
of a binding energy of ≈100 MeV, for example, the decay into Nπ is blocked.
An observation of the KNN system is thus crucially connected with its binding
energy as broad states are generally hard to measure.

ΣNπ

100   MeV  

ΛNπΣNΛN

Non-mesonic decay Mesonic decay

180 MeV
240 MeV

320 MeV

KNN

Figure 1.12: The decay channels that are closed at a certain binding energy of
the kaonic cluster.

The exact branching of the decay channels in Eqs. (1.12)–(1.15) is not known
as there are no experimental observations. Theoretically, the values have
been predicted by different groups, see Table 1.1. In Ref. [97] the ratio of the
two absorption modes is given as Equations (1.12)+(1.13)≈80% and Equations
(1.14)+(1.15)≈20%. The predicted values for m and nm in Table 1.1 also sug-
gest branchings in the range of (1.12)+(1.13)≈62-95% and (1.14)+(1.15)≈5-
28%. The ratio of the two non-mesonic decay modes is only discussed in
Ref. [96] and quoted in the previous paragraph. The ratio of the two mesonic
decay modes was quoted in another work as ΛNπ < 15% and Nπ > 85% [98].
The dominance of the mesonic decay modes is striking, given that experimental
searches have been done only for the decay channel in Eq. (1.15), so far.
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1.6 Anti-Kaon Nuclear Bound States

A signature of kaons bound to larger systems may only be visible, if the width
of the state does not exceed the level spacing between the different excited
states. In a recent study of larger kaonic nuclear systems within a chirally moti-
vated coupled-channel model [99] it was stated that the level spacing of larger
nuclear clusters (all but H, He and Li) is in fact of the same size as the width of
the bound states itself which would make a direct observation impossible.

1.6.6 Experiments to Search for Anti-Kaonic Nuclear Clusters

This section is well described by a statement of S. Wycech:
"The search for nuclear states of anti-kaons is a fascinating story of successes
and failures" [100]. Many attempts have been conducted to observe these
predicted states. Many of them have seen a signal and many of these were
later withdrawn. This is an overview of these attempts.

Experiments at KEK — PS

In 2004 the results from the E471-experiment at KEK were published [101, 102,
103]. These experiments have investigated the reaction:

K− + 4He→ N+ X, (1.16)

with stopped K−. The nucleon (N), produced together with the X, was selected
to be either a proton or a neutron, respectively. In this experiment X was tested
for the KNNN hypothesis. While the detection of the proton selects X with an
isospin of I=1 and charge Q=0, the detection of a neutron selects both isospin
states of X (I=0 or 1) and a positive charge Q=+1 [103]. The experimental data
showed a strong signal for KNNN (I=1, Q=0) of M=3118 MeV/c2 and a width of
 < 22 MeV/c2 and a non-significant signal for the KNNN (I=1/0, Q=+1) with
M=3141 MeV/c2 and a width of  < 23 MeV/c2. According to the theoretical
argumentation in Refs. [68, 69], however, the isospin I=0 state was expected
to be deeply bound and narrow, (Section 1.6.2) and not vice versa. The experi-
mental findings shown in Figure 1.13 were, in this respect, quite surprising.

Although these findings triggered some excited interpretations, a re-measure-
ment (experiment KEK-PS E549) with a higher statistic and an improved time
resolution showed a structureless spectrum of the observables in Figure 1.13
[104, 105]. The previously reported signals were attributed to effects of de-
tector mis-calibration and an upper limit (95% CL) of the kaonic cluster pro-
duction rate per stopped kaons was established. These upper limits for the
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two charge states are displayed in Figure 1.14. The reported upper limit for a
state S0(3115) is 0.2% per stopped kaon and excludes the previously reported
production rate of ≈1% [105].

Figure 1.13: Missing mass spectrum of the nucleon in Equation (1.16). Left panel
with N being a proton, right panel N being a neutron, taken from
Ref. [103].

Figure 1.14: Extracted upper limit (95% CL) of a KNNN kaonic cluster production
via Reaction (1.16). Left panel with N being a proton, right panel N
being a neutron, taken from Ref. [104, 105].
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1.6 Anti-Kaon Nuclear Bound States

Experiments at BNL — AGS

The proposed transfer reaction from Ref. [67] was carried out at the BNL facility
(Experiment E930) with K− of 0.93 GeV/c by the following reaction [106]:

K− + 16O→ n+ X, (1.17)

where X may stand for the possible production of a kaonic nuclear bound state.

Figure 1.15: Left panel: missing mass spectrum to the neutron of Reaction (1.17)
[106]. Right panel: missing mass spectra of Reaction (1.18) [107,
108].

The left panel of Figure 1.15 shows the missing mass spectrum of the detected
neutron. The large amount of statistic in the bound region (-200–0) MeV was
addressed to the strong attractive K̄N interaction. The small structure at -90
MeV was reported as an evidence for the formation of a kaonic nuclei in a p-
shell. The smaller structure at 130 MeV was interpreted as a kaon in an s-shell.
These results were stated as the first observation of kaonic nuclei.

A similar experiment, carried out at the KEK-PS facility (Experiment KEK-PS
E548) reported no such structures [107, 108]. The reaction was induced by
1 GeV/c kaons:

K− + 12C→ N+ X, (1.18)

K− + 16O→ N+ X, (1.19)

where N is either a proton or a neutron. The published spectra (right panel in
Fig. 1.15) revealed no distinct peak structures in the bound region (-150–0) MeV.
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The absence of peak structures was explained by the fact that these states are
probably smeared out bumps in the spectrum.

Experiments at CERN — LEAR

A substantially different experiment was carried out with the magnetic spec-
trometer OBELIX [109, 110]. There, different from all previous experiments,
the signals of KNN and KNNN were searched for in p̄+4He annihilations at rest:

p̄+ 4He→ p+ π− + p+ π+ + π− + R, (1.20)

R = n,

R = n+ K0.

Here, R stands for a missing rest. During the analysis it was observed that the
later discovered state only appears in events where R=n + K0. Why this is the
case could not be explained. When combining the p and π− from these 5-prong
events, the resulting spectrum showed some indication for Λ-hyperons, how-
ever, with a large background underneath the signal (left panel of Figure 1.16).
As no mass resolution of the Λs was extracted, the hyperons were selected

Figure 1.16: Figures from [109]. Left panel: Invariant mass of proton and pion
with an enhancement around the Λ mass of ≈ 1116 MeV/c2 . The
dashed lines indicate the selected range of statistic that was com-
bined with a second proton and plotted in the right panel. The right
panel shows the fitted distribution with a signal assumption.
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1.6 Anti-Kaon Nuclear Bound States

in a mass window of ±30 MeV/c2 around the nominal Λ mass and then com-
bined with the second proton, delivering eventually a signal for a new state
X. The result is shown in the right panel of Figure 1.16. The spectrum shows
an enhancement at 2212.2±4.9 MeV/c2 with a width of  < 24.4±8 MeV/c2.
The comparison of the yield in the Λ peak and the 67±22 events associated
to a new state X shows that a large fraction of Λ’s stem from the X system
which is quite astonishing. The overall frequency of X production in (p̄+4He)
was estimated to be 0.015%. The results were presented as indications for the
production of a KNN bound state [109, 110], whereas in Refs. [111, 112, 113]
the results were interpreted as a signature of a cusp effect due to the coupling
to the Λpπ-channel, similar to those observed in Refs. [114, 115]. Either way, a
re-measurement of this reaction system would be needed to cross check these
experimental findings with an independent analysis (see J-PARC proposal [116]).

Further, an analysis searching also for KNNN bound states by the decay into Λd
was put forward in the reactions:

p̄+ 4He→ p+ π− + d+ π+ + π− + R, (1.21)

R = n,

R = n+ K0.

Analogue to the analysis in the KNN case, the d was combined to p-π− pairs
with a mass consistent with a Λ mass ±30 MeV/c2. The resulting spectra of the
p, π− and p, π−, d pairs are shown in Figure 1.17. It was stated that, if the peak
is due to a deeply bound kaonic cluster, the binding energy is 121 MeV.

Figure 1.17: Figures from [109]. Left panel: Invariant mass of proton and pion
with a slight enhancement around the Λ mass of ≈ 1116 MeV. The
right panel shows the invariant mass of proton pion and d for p, π−

pairs close to the nominal Λ mass.
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Experiments at LNFN — DAϕNE

The FINUDA collaboration [117] reported a signal which they measured by
stopped K− on thin nuclear targets via the following reaction:

K− + 6Li, 7Li, 12C→ p+ Λ+ A′, (1.22)

where A’ accounts for the rest nucleus. The analysis filtered out p-Λ pairs from
Reaction (1.22) that were emitted back-to-back (cos(θ)LAB

Λ
< -0.8) in order to

guarantee the stopped kinematics of the K−. The pΛ invariant mass spectrum
under this condition is shown in the left panel of Figure 1.18. The spectrum
was announced as an evidence for the production of a KNN bound state with
positive charge, M = 2255±6 MeV/c2 and a width of  = 67±14 MeV/c2 [117].
This is equivalent to a binding energy of BE = 115 MeV for the system. The
estimated production rate for this state was in the order of 0.1% per stopped
kaon.

Figure 1.18: Left panel: Measured pΛ invariant mass for large opening angles,
inlet shows the acceptance corrected distribution [117]. Right panel:
Data in comparison to simulations not invoking the production of a
kaonic nuclear bound state but final state interaction [118].

Many points from this interpretation were criticized [118, 119, 120]. While
Ref. [118] suggested two nucleon absorption of the kaon with subsequent fi-
nal state interaction (FSI) of the p and the Λ, Ref. [120] described the measured
spectrum by single-nucleon knock-out reactions with FSI of the two outgoing
particles. In Ref. [119] the claim of the creation of a self-bound three-body
system inside a larger nucleus rather than a kaon bound to all nucleons was
criticized and the data could be explained as well with FSI effects, combined
with the Fermi motion of the nucleon pair on which the kaon gets absorbed.
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1.6 Anti-Kaon Nuclear Bound States

Figure 1.19: Left panel: Measured Λd invariant mass. Data are fitted with back-
ground distribution and an additional signal strength indicated by
the gray area [122]. Right panel: Data in comparison to simulations
not invoking the production of a kaonic nuclear bound [123].

Further attempts have been undertaken by the FINUDA collaboration to find
hints of heavier nuclear clusters like KNNN [121, 122]. The left panel of Fig-
ure 1.19 shows the invariant mass of Λd which are the decay products of the
KNNN. The spectrum was described by background and a new signal indicated
in gray. The signal was assigned with a mass M = (3251±6) MeV/c2 and a
width Λd = (36.6±14.1) MeV/c2 and a production rate of (4.4±1.4)10−3/K−

stop
.

The structure was interpreted as due to the absorption of a K− on an α-cluster
inside Li with the production of a kaonic nuclear bound state KNNN [121].

The work was again criticized for their interpretation of the data and it was
shown that the distribution could as well be explained by the absorption of a
K− by three nucleons, see right panel of Figure 1.19 [123]. Further doubts
were raised by the fact that in the KEK-PS E549 experiment the observed Λd

spectrum from K−+4He reactions showed also a structure at 3250 MeV/c2 that
was, however, interpreted without the involvement of a kaonic cluster, but by
three nucleon absorption [124].

Experiments at CEA-Saclay — SATURNE

In 2010, a work with re-analyzed data from the DISTO collaboration was pub-
lished which announced an indication for the formation of a deeply bound KNN
state [125, 126]. The investigated reaction was, as presented in this thesis, a
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p+p collision:

p+ p→ K+ + X→ p+ K+ + Λ, (1.23)

with a proton beam of Ekn = 2.85 GeV. The data were measured inside the
DISTO spectrometer and such the observables are distorted by acceptance ef-
fects. In opposition to an acceptance correction the data were compared to
phases space distributions inside the detector acceptance in order to reveal
physical signals. The method is quoted as "Deviation spectrum" method (DEV):

DEV =
Mesred

PS Acc
, (1.24)

where Measured and PS Acc denote an event distribution of an observable from
data and phase space simulation, respectively. This method is a division of the
observables from measured data by the spectra obtained from phase space
simulations. It is only equivalent to a correction of the data (CORR) with a
phase-space-model for the Dalitz plot distribution:

CORR =
Mesred

AccCorr
= Mesred ·

PS 4π

PS Acc
, (1.25)

as in this specific case the phase space distribution in 4π (PS 4π) is uniform and
can be substituted by 1. According to the argumentation in Refs. [125, 126], a
DEV spectrum shows a non-flat behavior in case of a deviation of the production
process from uniform phase space.

This approach has been previously applied on a set of data from p+p→ K+X re-
actions at three different beam energies [127]. The authors have divided their
inclusive pΛ spectra by phase space and found deviations. They attempted
to describe the data by including a pΛ resonance with mass 2.38 GeV, which,
however, did not fit well to the measured momentum distributions of the kaons.
Interesting in the context to DISTO is the fact that the authors stress the pres-
ence of N* resonances in the data, and state that the observed deviations can
also originate from these resonances.

The analysis performed had the aim to carve out structures in the observables
that can be associated with an excess compared to the phase space model.
Figure 1.20 displays the angular distribution of the proton and kaon against its
momentum in the center-of-mass system. The figure exhibits two deviations
from phase space: one for protons with a momentum of 0.7 GeV/c, and one for
kaons with a momentum of 0.4 GeV/c. The enhancement in the kaon momen-
tum was interpreted as a two-body production as shown in Equation (1.23).
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1.6 Anti-Kaon Nuclear Bound States

Figure 1.20: Measured-, model- and DEV event distributions of the proton (left)
and the kaon (right) of Reaction (1.23). Figure taken from [125].

The enhancement is pronounced for large production angles of the kaon and
the proton (cos(θ)CM

p
< 0.6 and -0.2 < cos(θ)CM

K+
< 0.4), as indicated by the

green and red lines in Figure 1.20. The event selection for proton angles was
motivated by a selection of events with large momentum transfer which could
enhance the relative amount of produced KNN states [126]. As mentioned in
Ref. [126] a selection of emission angles of either the proton or the kaon is fun-
damental for the appearance of a structure in the pΛ invariant mass spectrum
as emphasized by Figure 1.21 for the selection on proton angles. Here, a bell
shaped deviation from phase space distribution is observed with a fitted mass
of M = 2267±3(stat)±5(syst) MeV/c2 and  = 118±8(stat)±10(syst) MeV/c2.
This is equal to a binding energy of BE = 103 MeV for the three-body system
[125]. This deviation can be emphasized by a combination of both selections
on the kaon and the proton angle, which is shown in Figure 1.22. The extracted
signal is quoted with a significance of 26σ and a production cross section of the
order of the Λ(1405) which is about 20% of the total Λ production rate at this

Figure 1.21: DEV event distributions for events with large (left) and small (right)
proton angle in the CMS system. Figure taken from [125].
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Figure 1.22: DEV event distributions for events with large (left) and small (right)
proton angle in the CMS system both for large kaon angles. Figure
taken from [125].

energy [125] or 14% of the total pK+Λ final state as quoted in [128].

In a second re-analysis Reaction (1.23) was also investigated at a lower beam
kinetic energy of Ekn = 2.5 GeV [128]. The analysis was performed as discussed
for the case at the higher beam energy. A deviation from the phase space
model, that could be addressed to a new state, was not observed. Thus, the
production cross section of the X(2265) at the low beam energy was reported
as 0.2% of the pK+Λ production cross section [128].

In conclusion, the structure in the DEV spectrum observed by the DISTO col-
laboration was only present at 2.85 GeV, absent in 2.5 GeV and needed major
kinematic cuts in order to appear in the spectrum. The importance of these
cuts is precarious, as a deviation of the measured spectrum from phase space
distributions is clearly visible under no cut conditions in the momentum distri-
butions of the particles. Furthermore, a comparison to a phase space model
is generally questionable due to the long history of reported special production
kinematics involved in the pK+Λ final state. A deviation from phase space, thus,
simply indicates the large limitations of this model for the data description. A
critical review on this analysis, in light of the results reported by this and other
works, can be found in Chapter 7.
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1.6 Anti-Kaon Nuclear Bound States

Figure 1.23: Left panel shows the MMK+,π− spectrum of Reaction (1.26), right
panel shows the extracted upper limit for the production of a KNN in
the investigated reaction.Figure taken from [129].

Experiments at SPring-8

The LEPS collaboration at the SPring-8 facility searched for a KNN of positive
charge in the following reaction [129]:

γ+ d→ K+ + π− + X, (1.26)

with Eγ=1.5-2.4 GeV. They argued that this reaction can be seen as a virtual
strangeness induced reaction d(K−,π−)X or d(K∗−,π−)X, which has never been
measured before. To recover eventual properties of the KNN, they investigated
the inclusive missing mass spectrum MMK+ ,π− without a selection on possible
decay channels. The measured spectrum is shown in the left panel of Fig-
ure 1.23. The data could be described well by a cocktail of ordinary reaction
channels. Therefore, an upper limit of the production cross section for the nu-
clear bound state X was performed. The upper limit at a 95% CL as a function
of a hypothetical mass and width of the state X is given in the right panel of
Figure 1.23. These values correspond to about 1.5-5% ( = 20 MeV/c2), 5-15%
( = 60 MeV/c2) and 9.9-26% ( = 100 MeV/c2) of a typical cross section for
hyperon production such as γ+ d→ K+ + π− + Λ+ (ps) [129].

Upcoming Results

As no real convergence between the different exclusions and signal claims is
visible, the need for new experimental data is essential. Several results are on
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the way: A search for kaonic nuclear bound states with the KLOE drift chamber
by the AMADEUS collaboration [130, 131]; A search for the KNN in strong de-
cays of the ϒ(1S) at B-factories [132, 133] like BaBar and BELLE; A search for
a KNN of negative and zero charge in the reaction d(γ,K+π+)X and d(γ,K+)X,
respectively, by the LEPS collaboration [134]; A search for a KNN of positive
charge in the reaction 3He(inflight-K−,n)X [135] and via d(π+,K+)X at pK+ = 1.7
GeV/c (Experiment E27) [136] both at J-Parc.

1.6.7 Concluding Remarks

In the theory community the argue whether one deals with a shallow or deep
potential continues [107, 39]. Depending on the potential and models the pre-
dicted properties of the kaonic nuclear bound states are significantly different.
There is a general agreement that these states should exist. The question if
their properties are so opportune that one could see their footprint in an exper-
iment, is far from being answered.

Most signals, reported by experimental groups, did not withstand re-measure-
ments or were interpreted elsewise (KEK, BNL, OBELIX, FINUDA). On the other

Figure 1.24: Overview showing the large spread of theoretical predictions and
experimental announcements concerning the properties of the KNN
system [137]. References are as follows: Yamazaki and Akaishi YA
[90, 69], Shevchenko, Gal and Mares SGM [78, 76], Ikeda and Sato
IS [79], Dote, Hyodo, and Weise DHW [85, 86], Ivanov et al. IKMW

[138], Nishikawa and Kondo NK [139], Yamagata et al. YJNH [140],
Wycech and Green WG [89], and Arai, Yasui and Oka AYO [88].
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hand there have been experiments which did not observe any noteworthy struc-
ture in their measured spectra and reported upper limits for the according pro-
duction of anti-kaonic nuclear bound states. A figurative impression of the cur-
rent confusion in this field [137] is shown in Figure 1.24. Here, several prop-
erties as predicted and experimentally claimed for the KNN system are sum-
marized and show no consistent picture. The question remains if there is any
experimental access to the properties of these nuclear clusters. This work is
a continuation of the previous efforts. The later reported analysis will show
whether HADES sees a signal of the positively charged KNN in p+p collisions or
not.
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2 | Experiment and Methods

2.1 The HADES Setup

The analyzed data were recorded with the high-acceptance dielectron spec-
trometer – HADES. The design of the spectrometer is presented in Figure 2.1.
The left panel shows an expanded view of the spectrometer where the sixfold
geometry is nicely visible. The right panel shows a cross section through the
spectrometer in its compact configuration. The system consists of six identical

Figure 2.1: The HADES Detector. Left: Expanded view of the different layers,
right: cross section of the compact position [141, 142]. The different
detector parts are marked with numbers and discussed in the text.
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sectors arranged around the beam axis. It has a polar acceptance from 15◦ to
85◦ and a nearly full azimuthal coverage (85%). The momentum resolution of
the detector is Δp/p ≈ 3%. The subsystems are marked with numbers and are
discussed in the following; a detailed report of the technical design is published
in Ref. [142].

➀ – Beam and Target

The beam of the analyzed experiment was consisting of protons with a ki-
netic energy of 3.5 GeV (=̂ p(proton)=4.34 GeV/c, Etot(proton)=4.44 GeV,p
spp=3.18 GeV) and an intensity of ∼ 107 particles/s [143].

The beam protons were incident on a fixed liquid hydrogen target (LH2). It was
cooled down to 20 K at atmospheric pressure causing a density of 0.35 g/cm2,
and a total interaction probability of ∼0.7%. The target had a length of 4.4 cm
and a diameter of 2.5 cm.

The data were recorded after a first-level trigger decision (LVL1) which required
at least three hits in the META system (M3), see Point ➄ and ➅. In total 1.17 ·109
p+p events were written to tape and can be analyzed.

➁ – The Magnet ILSE

The inhomogeneous toroidal magnetic field between MDC layer II and III is cre-
ated by the Magnetic spectrometer ILSE (Ironless superconducting Electromag-
net). It causes charged particles to bend their flight direction in the polar angle
which is used to determine their momentum via the bending radius. The mag-
net is constructed such to guarantee a nearly field free region around the target
and MDC layers I and IV. In this way, the particles have almost straight tracks
while crossing the MDC chambers and are bent only between MDC layer II and
III. The magnet has a six-fold geometry arranged around the beam axis and
creates a magnetic field of about Bm=0.9 T in the center of the sector.

➂ – The RICH Detector

The first particle detector upstream the beam is the ring-imaging cherenkov
detector (RICH), which consists of two separated, gas-filled chambers. This de-
tector is used for real time e+-e− identification. It is constructed such, that it is
blind for traversing hadrons; only leptons and fast mouns will create Cherenkov
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light in the second half of the detector that is filled with a radiator gas. The
photons from the Cherenkov light are reflected by a mirror back into the first
half of the detector, which is separated from the radiator part by a CF2 window.
This first half is filled with CH4 and equipped with Cs photo cathodes to detect
the photons via the photo-effect. The emitted electrons from the Cs layer are
collected on the wires of a multi-wire proportional chambers (MWPC), so that a
signal can be processed.

➃ – The MDC Detectors

The mini drift chambers (MDC) are arranged in four modules and six sectors
around the beam axis. Two of the sectors (MDC I and II) are placed before and
two (MDC III and IV) are placed behind the magnet. This detector system is
used to measure the hit positions of a traversing particle which later allows to
determine its path-length and momentum via a Runge-Kutta track fitting algo-
rithm. The good spatial resolution of the detectors (∼100 μm) is a result of the
six wire planes in each module, that are oriented with a 20◦ offset in stereo
angle with respect to each other. In this way a precise intersection point of all
fired wires is obtained. The chambers are filled with a helium based counting
gas (He:i-Buthane=60:40) that gets ionized by a traversing particle. The pro-
duced secondary electrons create particle avalanches close to the wire which
induce a signal. The energy-loss of the particles is proportional to the deposited
charge on the wire and, thus, also a dE/dx information can be retrieved from
this detector.

➄ – The TOF Detectors

The large polar angles (44◦ to 88◦) of the time-of-flight detector system are
covered by the TOF detectors. They consist of 64 rods combined to 8 modules.
The rods have cross-sections of 20x20 mm (inner) and 30x30 mm (outer). The
scintillator rods are read out from both sides by photo multipliers. This allows a
spatial hit resolution of 25-27 mm and a time resolution of ∼150 ps. The stop-
time information, as well as the deposited energy dE/dx, is used for particle
identification.
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➅ – The TOFino Detectors

These detectors are similar to the TOF detectors and cover small polar angles
(15◦ to 44◦). Each sector is covered by four paddles with a cross section of
10x10 mm. The paddles are read out at one side only, which results in a time
resolution of 420 ps. The hit position can not be determined with this detector
alone but with the help of the pre-shower system. This time-of-flight detector
delivers the stop-time of a particle, as well as the deposited energy dE/dx, which
are used for particle identification.

➆ – The Pre-Shower Detectors

The single-sided readout of the TOFino detectors combined with the larger gran-
ularity hinders a determination of the hit position. Thus, the TOFino system is
equipped with a pre-shower detector. This detector has alternating layers of
gas filled wire-chambers and lead-converters for a shower creation. The parti-
cle induced showers are registered in the wire-chambers. The wire-chambers
determine the hit position of the traversing particle while the shower geometry
in the alternating layers delivers information whether the particle was a hadron
or a lepton (if p>400 MeV).

The three detectors TOF, TOFino and pre-shower build the META sytem (multi-
plicity electron trigger array). This interconnection of the three systems is used
for the LVL1 trigger decision, which needs the hit multiplicity information.

➇ – The Forward Wall

This detector was used for the first time in the analyzed p+p beam-time. It is a
scintillating hodoscope with three different module sizes: 1.5x1.5 cm (5-rows),
4x4 cm (2-rows), and 8x8 cm (3-rows) from inner to outer which deliver the
hit position of a particle. The scintillators deliver a time-of-flight information of
∼700 ps. It was placed 7m downstream the target, covers an acceptance of
0.33◦ to 7.17◦ in polar angle and a full azimuthal coverage. It was originally
installed for the spectator tagging in the d+p (1.25 GeV) experiment and the
event plane reconstruction in Au+Au, but in the presented analysis the FW is
also used to reconstruct the proton four-vector from exclusive event selections.
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2.2 Particle Identification – PID

The particle identification in HADES is different for leptons and hadrons. The
whole design of the spectrometer is optimized for lepton identification which
is done with help of a measured Chrerenkov ring in the RICH detector and
the shower geometry in the pre-shower detector. These two information are
matched with a reconstructed track in the MDC drift chambers and so the lep-
ton candidates are identified.

Charged hadrons, on the other hand, can be identified only via their energy-
loss or the time-of-flight. With these two methods the particle identity can be
determined so that the mass of the particle can be set to a nominal value taken
from literature [8].

PID with dE/dx

The theoretical energy-loss of a particle traversing matter can be described by
the Bethe-Bloch equation [144]:

dE

d
=

4πnz2

mec2β2
·
�

e2

4πε0

�2
·
�
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�
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2β2
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�
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�

(2.1)

with β=v/c, v the velocity of the particle, E the energy of the particle, x the
distance traveled by the particle, c speed of light, z· e the particle charge, e the
charge of the electron, me the rest mass of the electron, n the electron density
of the traversed material and I the mean excitation potential of the material.
This equation describes the kinetic energy-loss per traversed distance of a par-
ticle via its interaction with the shell atoms in the material. Equation 2.1 shows
that the energy-loss is only dependent on the velocity β and the charge z · e of
the particle. The energy-loss at a certain velocity is, thus, one unique value for
all particles. When the energy-loss is plotted against the momentum, however,
the different particles show a splitting of their energy-loss curves due to their
different masses.

The energy-loss information dE/dx can be retrieved from the MDC, TOF and
TOFino detectors. Figure 2.2 shows the energy loss of particles in the MDC drift
chamber from the p+p (3.5 GeV) experiment. Here, particles with a momentum
lower than 1 GeV can be distinguished from another with help of a graphical cut
in the dE/dx vs. momentum plane.
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Figure 2.2: Energy-loss dE/dx in the MDC drift chambers. The theoretical lines are
shown by the black Bethe-Bloch curves [23].

PID with TOF

A second, independent option to determine the PID of a particle proceeds via
the measured time-of-flight. The momentum of a particle is only dependent on
the relativistic velocity β and the mass:

p =m · c ·
β
p
(1− β2)

, (2.2)

with

β =


c
=
trck-ength

toƒ · c
. (2.3)

This provides the possibility to determine the PID of a particle via its time-
of-flight and the measured momentum. The momentum and track-length of
a particle are determined from a Runge-Kutta fit algorithm that uses the hit
information from the MDC chambers to reconstruct the complete particle path
through the spectrometer. The time-of-flight is measured via the time difference
between the event-start-time of the start-detector and the hit time in the META
system.

Unfortunately, the start-detector was not active in the p+p experiment so that
a-priori no start-time information is available. This hinders a direct access to
the time-of-flight, yet this quantity can be reconstructed, see Ref. [145]. The
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main points of the reconstruction procedure are the following: first a PID hy-
pothesis of a track is build, an according mass is assigned to that track; based
on Equation 2.2 its flight velocity is reconstructed; together with the velocity,
the measured track length, and the stop-time, the start-time of the track can
finally be restored. This is done for all tracks in the event. Then, a truncated
average from all the track-start-times in one event is build and taken as a gen-
eral event-start-time. This reconstructed start-time is afterwards used together
with the stop-signal from the track of interest to build the actual time-of-flight
of the particle and with this, finally, reconstruct its mass.

The particular reconstruction can be done in various ways, and several methods
were tested in parallel. The ways differ under which circumstances a certain
particle is included in the algorithm or not. If the information of the differ-
ent detectors are included with a different weight and whether some particles
are, later, thrown out from the algorithm. Appendix B shows a specific exam-
ple from the time-of-flight reconstruction procedure where the different options
were quantitatively compared with respect to the kaon purity in exclusive pK+Λ
production, see also Chapter 4.

2.3 Simulation Process

To cross check and verify the correctness of the developed data analysis, pro-
cess simulations are very helpful. In such simulations, events are generated
with a Monte Carlo simulation tool and then the particles in these events are
tracked through the full detector, whereby the single interactions of the par-
ticle with the detector material are modeled in detail. Then the same event
selection, as applied for the experimental data, is performed for the simulated
events.

The comparison of simulated and measured spectra allows to distinguish known
from unknown sources and offers the possibility to extract detailed information
from the measured data. The simulation steps are described in the following.

2.3.1 The PLUTO Event Generator

Events can be simulated with the PLUTO Event generator (v4.11) developed for
HADES [146, 147]. For heavy-ion collisions at intermediate energies particles
can be produced according to a thermal energy spectrum. For elementary re-
actions, like p+p collisions, the particles are produced according to a uniform
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distribution in the phase space volume, while guaranteeing energy and mo-
mentum conservation. If needed, angular distributions between the produced
particles or mass distributions of broad resonances can be implemented.

In case several channels are simulated simultaneously, their respective pro-
duction yield follows the implemented cross sections. The output cocktail is an
incoherent sum of all possible final states.

2.3.2 The Detector Geometry in GEANT

The events from the PLUTO simulation are further processed through a GEANT
simulation [148] of the HADES detector. In this simulation, the interaction of
particles with the detector material is modeled. Thereby, the particle is de-
flected in the magnetic field, scatters off material, creates avalanches in gas
filled areas, knocks out secondary particles from the detector material, and in
this way loses its energy. The interaction points with the detector material are
the output information of this simulation tool.

2.3.3 The Detector Response

To model a realistic detector response, the GEANT signals from the interaction
points are processed through a DST (data summary tape) simulation. Here, the
analog detector readout is modeled and the signals are further digitized. In
this way, detector noise, inefficiency, and finite resolution effects are modeled.
Then the particle tracks are reconstructed from the hit points in the same way
as in the real experiment, resulting in a momentum resolution of Δp/p ≈ 3%.
The trigger settings are also applied to the simulated events so that in the final
result the events have the same form as the experimental data.

2.4 Final State Selection

This thesis contains two major data analyses. The one regarding the production
of the Λ(1405)-resonance is introduced in Chapter 3. The one which discussed
the pK+Λ final state is introduced in Chapter 4.

As the underlying event kinematic in case of pK+Λ production is rather complex,
this section will discuss the major physics aspects that are connected to this
final state.
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2.4.1 The pK+Λ Final State

Figure 2.3: Possible production mechanisms leading to a pK+Λ final state [149].

The reaction:

p+ p→ p+ K+ + Λ (2.4)

is the simplest way to produce open strangeness in p+p collisions and is inves-
tigated since the pioneering work of Ref. [150] in the 60s. While experiments
with bubble chamber detectors collected only few statistics [127, 151, 152],
modern experiments are ideal to investigate Reaction (2.4) to great detail. An
example therefore is the DISTO detector at SATURNE [153, 154], and the COSY-
TOF [155, 156, 157] and ANKE [158] collaborations at COSY. The main purpose
of the experimental programs carried out by these groups is the investigation
of: the production mechanisms behind Reaction (2.4), the pΛ final state inter-
action, the creation of intermediate N∗+-resonances in the production process,
the N cusp effect, and the possible existence of di-baryons or pentaquarks.
Figure 2.3 shows the standard mechanisms for the production of the pK+Λ final
state. These processes involve pion-exchange (a), kaon exchange (b) and con-
tains for reactions with pion exchange also the possibility to create intermediate
N∗+-resonances (c).

Intermediate N∗-Resonances

While the very early works in this field neglected process (c) [159], it was soon
accepted that intermediate N∗+-resonances contribute strongly to the pK+Λ

final state via their decay into K+Λ. Nowadays, the production of intermedi-
ate resonances is a well established concept [155, 156, 157, 160, 161, 162].
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Figure 2.4: Contribution of N(1650) compared to the sum of N(1710) + N(1720)
as a function of the beam momentum [157].

Their production strengths were investigated quantitatively for energies of EKn
=2.16, 2.4 and 2.45 GeV [157]. In this work, the relative contribution of sev-
eral N∗+-resonances and non-resonant pK+Λ production was determined. It
was found that resonance production is by far the dominant process at these
energies. Figure 2.4 illustrates the result of their analysis where the relative
contribution of the resonances N∗+(1650) and N∗+(1720)+N∗+(1720) is pre-
sented.

These findings have major implication in the description of the production pro-
cess. The following reaction summarizes possible pK+Λ production processes
via intermediate states:

p+ p→p+ K+ + Λ (2.5)

→N∗+ + p (2.6)

Λ+ K+

→Θ++ + Λ (2.7)

p+ K+

→X+ + K+ (2.8)

p+ Λ

While Process (2.5) illustrates the non-resonant production of the three final
state particles, the Processes (2.6) - (2.8) contain intermediate states as sources
for the final state particles. Process (2.6) contains an intermediate N∗+-reso-
nance, Process (2.7) contains an intermediate pentaquark with charge +2 which
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Figure 2.5: Simulated invariant mass distribution in 4π for the production of the
pK+Λ final state via Reaction (2.6) with different intermediate N∗-
resonances.

was investigated in Ref. [163], and Process (2.8) contains the production of a
strange di-baryon, which is discussed in a following section.

Altogether, these processes are subsequent two-body reactions and hence the
particle kinematics are strongly correlated. Thus, every process with intermedi-
ate states contains kinematic reflections also in observables not directly related
to the N*-resonance. Especially two-body invariant masses are affected by this
phenomenon. For pK+Λ production at EKn = 3.5 GeV this effect was explained
and intensively studied in Ref. [164]. This finding means that if intermediate
states are present in the production, their kinematic has to be modeled with
care to understand the complete event kinematic. Figure 2.5 shows PLUTO sim-
ulations of production process No. (2.6) in which N∗-resonances with different
masses were simulated and the effect of kinematic reflections in the pΛ invari-
ant mass spectrum was studied. The distributions show that the pΛ invariant
mass is very sensitive to the production of N∗+-resonances.

Final State Interaction

A topic of great interest is the final state interaction that occurs between hadrons.
Via the production of pK+Λ, the final state interaction between Λ and proton is
intensively studied [156, 157, 165, 166]. Since the interaction between pro-
tons and Λ’s is known to be attractive, this should also have consequences for
measured cross sections and mass distributions. Especially the invariant mass
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distribution of pΛ is sensitive to this effect. As determined experimentally the
mass distribution should show an enhancement at lower mass values, as pre-
sented for example in Figure 7.2 of Chapter 7. The pK+Λ reaction with polarized
beams was further exploited to retrieve quantitative information on the pΛ in-
teraction in its triplet and singlet spin configuration [166]. Also the total cross
section of pK+Λ production close to threshold is enhanced due to this effect
which results in an increased ratio of pK+Λ to pK+0 cross sections at low ex-
cess energies [167, 168]. As this effect is concentrated at small opening angles
between the particles that are associated to small pΛ invariant masses, larger
invariant masses (and with this the KNN signal region) are not affected by this
interaction.

Di-Baryons

Reaction Nr. (2.8) contains the production of a strange di-baryon with a sub-
sequent decay into pΛ. It is a topic of long interest to find such states [159],
which have various properties. One example are the strange di-baryons Ds and
Dt which are expected close to the pΛ threshold. They were investigated by the
HIRES collaboration [169], after some signals have been found in earlier experi-
ments [170, 171]. The work of the former experiment did, however, not confirm
these findings and determined an upper limit for the production strength of the
di-baryon (see also Ref. [93] for a discussion on di-baryons).

In the view of the KN interaction and its measurable consequences the produc-
tion of a strange di-baryon might also be associated with a KNN. Thus, Process
(2.8) is of special interest and could look as follows:

p+ p
3.5GeV−−−−→ KNN+ K+ (2.9)

Λ+ p

π− + p.

Since the pK+Λ final state might indeed be sensitive to the production of a KNN,
the pΛ invariant mass distribution is of great interest.

Models for the Production Process

As discussed, this pΛ invariant mass observable could be distorted by pΛ final
state interaction for very low masses and kinematic reflections of the produc-
tion of N∗+-resonances. In order to take these effects into account, detailed
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Figure 2.6: The Angles between the particles in different reference frames. I)
shows the center of mass angles, II) shows the Gottfired-Jackson an-
gles and III) shows the helicity angles [23].

models have to be employed that contain the standard production mechanisms
of Figure 2.3. An extensive overview of established models for the production of
pK+Λ is given in the doctoral thesis of W. Schröder [172]. Most commonmodels
describe the reaction by the exchange of a meson as illustrated in process (a)
and (b) of Figure 2.3. In this way, production cross sections at single energies
can be reproduced by adapting the free parameters in the respective models,
but the description of the complete event kinematics, in form of differential
observables, often fails [172].

To cross check the validity of models the comparison of the latter to many dif-
ferential observables is needed. The observables used in this thesis for that
purpose are discussed the following. The inclusion of intermediate resonances
can be displayed by invariant masses of two particles such as MpΛ, MK+Λ and
MpK+. More detailed event kinematics can be displayed by angular distributions
in several reference frames [155]. Figure 2.6 illustrates how the angles are de-
fined. A detailed description of the properties of the different angles is given in
Ref. [23] and Chapter 6. The angles are denoted such, that the upper index in-
dicates the rest frame in which the angles are investigated and the lower index
indicates the angle in this frame or the opening angles between two particles,
respectively.
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Part II

Data Analysis and Results
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3 | The Neutral Strange Reso-

nances ∗ and Λ∗

This chapter presents the data analysis of two neutral strange resonances: the
(1385)0 with a mass of M=1384 MeV/c2 and a width of =36 MeV/c2, and
the Λ(1405) with a mass of M=1406 MeV/c2 and a width of =50 MeV/c2 [8].
These two resonances are produced in p+p collisions together with a proton
and a K+ in the final state via: p + p → Y0 + K+ + p; where Y0 might as well
be a ground state hyperon, namely Λ or 0. An exclusive reconstruction of
these strange particles requires also the identification of their decay products,
as a missing mass spectrum to the p and K+ would display an overlap of these
nearby resonances.

Equations (3.1) and (3.5) show the decay branches of the two resonances. The
only decay that differs among the two is their decay into neutral hyperons, since
the decay of the (1385)0 into 0π0 is forbidden due to isospin conservation.

p+ p
3.5GeV−−−−→ Λ(1405) + K+ + p (3.1)

− + π+

n+ π− 33.33% (3.2)

+ + π−

p+ π0

n+ π+ 16.11% (3.3)

0 + π0

Λ+ γ

p+ π− 21.35% (3.4)

n+ π0
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p+ p
3.5GeV−−−−→ (1385)0 + K+ + p (3.5)

− + π+

n+ π− 5.85% (3.6)

+ + π−

p+ π0

n+ π+ 2.83% (3.7)

Λ+ π0

p+ π− 55.68% (3.8)

n+ π0

This difference makes a distinction of the ∗ and Λ∗ feasible. An unambiguous
separation is possible if one reconstructs the particles directly from the invari-
ant mass of their decay products in the neutral channels (3.4) and (3.8). This
is not achieved in this analysis, as the HADES spectrometer is not capable of
identifying long-lived, neutral particles, such as neutrons, π0, and γ.

Nevertheless, the mass spectra of the particles can be disentangled by exam-
ining the missing mass to the primary p and K+ (MMpK+) under different event
selections. To do so, an observable that is sensitive to the additionally produced
γ in the decay of the Λ(1405) (Eq. (3.4)) must be carefully evaluated. This ob-
servable is the missing mass to all charged particles in the event (MMpK+pπ−),
which is different for the two cases (3.4) and (3.8).

The here presented data analysis exploits this fact in order to reconstruct the
Λ(1405)-mass spectrum from its decay into 0π0, and to evaluate the produc-
tion cross section of the (1385)0 in the p+p reaction.

The Λ(1405) was also investigated by the reconstruction of its charged decay
products, ±π∓, despite the drawback from the inseparable (1385)0 contam-
ination in the mass spectrum [23, 173]. This is reasonable, as the branching
ratio of the (1385)0 into this decay is low, so that only a small number of
events might contaminate this spectrum. To constrain the yield of the (1385)0

however, an external reference for its production cross section is needed. This
input will be delivered from the analysis, explained in this chapter.
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3.1 Event Selection

The final state of the resonance production and decay contains the primary
produced proton and the K+, as well as the neutral decay products from the
resonance decays. In this analysis a Λ-hyperon from the decay is reconstructed
via its daughter particles p and π−. The event selection is two-fold: in one
case, events where required to have four registered tracks in the main HADES
detector, three with positive-, and one with negative charge; in the other case,
events were accepted if there were three registered tracks in the HADES detec-
tor and one hit in the Forward Wall hodoscope. In the latter case the registered
tracks in the main spectrometer contain two of positive and one of negative
charge. These two different data sets are referred to as HADES data-set and
WALL data-set in the following description. A sketch which illustrates the differ-
ences between these data-samples is shown in Figure 4.1 of Chapter 4.

3.1.1 Particle Identification

In both data-sets the charged tracks, detected in the main HADES spectrom-
eter, were assigned with a particle ID via their energy loss in the MDC drift
chambers, as described in Section 2.2 and shown in Figure 3.1. This selection is

Figure 3.1: The energy loss per distance in the MDC drift chambers as a function
of the particle momentum. The black lines represent the theoretical
energy loss for pions, kaons and protons. The pink shapes define an
area which determines the PID association of pions and protons.
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applied to protons and pions whereas the additional positively charged particle
was first only assumed to be a kaon. The particles are selected with help of
two-dimensional cuts which define a region of high probability for the dE/dx vs.
mom value to belong to a certain particle species. These cuts are shown in
Figure 3.1 together with the nominal energy loss of the particles, according to
the theoretical Bethe-Bloch curve. After this particle identification, the analysis
of the two data-sets proceeds separately.

3.1.2 Reconstruction of the Λ(1116)-Hyperon

After the selection of the four particles, the Λ-hyperon is reconstructed from
the invariant mass of its decay products: the proton and the π−. Figure 3.2
shows the signals of the reconstructed Λ’s for the HADES and WALL data sets
under further cut conditions, explained in the following. The mass-resolution of
the HADES signal is better than the signal from the WALL data-set, since in the
latter case the proton which is used to reconstruct the Λ was detected in the
FW hodoscope. Therefore, the momentum resolution for this proton is worse
than for the other particles. Still, a clear signal of the Λ-hyperon is visible in the
right panel of Figure 3.2 which shows the great capabilities of this detector.

HADES WALL

Figure 3.2: The invariant mass of p–π− pairs for pre-selected exclusive events
that could contain strangeness.The left panel shows the signal recon-
structed from the HADES data-set and the right panel shows the signal
reconstructed with help of the proton detected in the FW.
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HADES Data-Set
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Figure 3.3: Schematic view of the Λ-hyperon decay into proton and π−. The dif-
ferent distances between particle tracks and intersection points can
be used to suppress combinatorial background [23, 141].

The combinatorial background, underneath the signal, can be effectively sup-
pressed by considering the Λ-decay topology, as illustrated in Figure 3.3. dΛ,
dp and dπ− display the distance of closest approach between the respective
particle track and the primary vertex. d is the distance between the primary-,
and the secondary vertex, and dt is the track distance between the two decay
particles p and π−. The detailed influence of the track cuts on the Λ-signal were
tested in Ref. [145]. For the purpose of a good signal, the following cut values
were selected: distance between the proton and pion track (dt < 18 mm), dis-
tance of closest approach of the Λ to the primary vertex (dΛ < 23 mm), and a
constraint that the distance of closest approach has to be bigger for the π− than
for the proton (dπ−>dp). These cuts increase the signal-to-background ratio of
the Λ-signal [145]. The left panel of Figure 3.2 illustrates the signal after the
cuts have been applied. In order to obtain a realistic impression how large the
background in the selected events might be, the event kinematics were con-
strained to an area relevant for semi-inclusive Λ-hyperon production. This is:
MMpK+>1000 MeV/c2, as real strangeness signals start with the appearance of
the exclusive pK+Λ production at MMpK+=1116 MeV/c2, and likewise: MMpK+Λ>-
70 MeV/c2, as below that mass range pure combinatorial background is located.
With these cuts, the Λ-signal in Figure 3.2 reveals a good estimation for the
background in the mass spectra, underneath the events with strangeness pro-
duction. Finally, p-π− pairs were selected as Λ-candidates, if their invariant
mass was within 1106-1122 MeV/c2.
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WALL Data-Set

In this case, the track topology can not be used for the background suppression,
as no track information from the proton is known. The proton was reconstructed
via a straight line from the primary vertex to the hit point in the FW. This is
justified, as the magnetic field strength should be negligible at these low polar
angles. For the momentum resolution itself, the true off-set of the proton track
from the primary vertex (dp) does not play a large role as an error source, since
the distance of the FW to the primary vertex is 7 m. The only track observable
that is available from the Λ-decay, shown in Figure 3.3, is dπ−. It was, however,
found that cuts on this observable have no large influence on the signal quality
of the Λ.

As in the case of the HADES data, the Λ-signal in Figure 3.2 is shown in a
kinematic range where strangeness can be produced (MMpK+>1000 MeV/c2 and
MMpK+Λ>-126 MeV/c2). The Λ-hyperon was finally identified by p-π− pairs with
an invariant mass of 1101–1129 MeV/c2.

3.1.3 Kaon Signal and Mis-Identification Background

A last observable that is used to filter out exclusive strangeness production in
the p+p statistic, is the reconstructed mass of the K+ candidates. Until this
point in the analysis, the kaon was not specifically assigned with a PID. It was
only assumed that the third positively charged track in the event corresponds
to the kaon. Figure 3.4 shows the reconstructed kaon mass, according to the
method discussed in Section 2.2, and after the Λ selection. In the left panel,
kaon candidates of the HADES data-set are shown, and the right panel shows
kaon candidates of the WALL data-set. Although no further PID selection was
performed on these particles, a clear signal of the kaon is visible in both cases.
This is mainly due to the fact that strangeness (S=-1) was explicitly selected
in these events by the Λ reconstruction and, thus, strangeness conservation
requires a S=+1 particle in the event, demonstrated by the kaon signal in Figure
3.4.

As noticeable from the Figure, the kaon candidates are in some cases truly
protons or pions. For this reason, only events with a kaon candidate mass of
270–700 MeV/c2 for the HADES statistic, and a mass of 340–750 MeV/c2 for the
WALL statistic were accepted for the final analysis.

Despite this selection, both statistics will suffer from a small contribution of
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Figure 3.4: The reconstructed particle mass of the kaon candidates for the HADES
(left) and WALL (right) data-sets.

events in which a proton or a π+ is falsely mis-identified as a K+, yet this mis-
identification background can be modeled with help of an adapted side-band
analysis, described also in Appendix A.2 of Ref. [23].

The Side-Band Background

To model this source of background in the selected statistic, two additional
data-samples are created in which explicitly pions and protons (fake kaons)
are selected from the kaon mass spectrum for the further analysis. This is
done by a mass cut of -1000–0 MeV/c2 for the pion sample and 1100–2000
MeV/c2 for the proton sample1. In order to describe the measured data, two
properties have to be adapted: first, the kaon kinematic in the data-sample
has to be reproduced by the side-band data samples; and second, the relative
contribution of proton and π+ mis-identification in the selected kaonmass range
has to be determined.

To adapt the kinematic of the side-band samples to the kaon kinematic, the
kaon momentum is exploited. The sum of the side-band momentum distribu-
tions should match with the kaon momentum spectrum. This is achieved by

1Both sets were obtained prior to the Λ selection but in the same kinematic range as the kaon
sample: M>70 and MMpK>0.
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scaling the two side-bands to the data bin-by-bin in momentum [23]:

SF(p) =
YK+(p)

α · Yπ+(p) + Yp(p)
. (3.9)

Here, SF(p) is the momentum dependent scaling factor, and Y name the yields
of the three different data-samples per momentum bin. The scaling factor of
Equation (3.9) has one degree of freedom (α), which is the relative contribution
of protons and π+ to the selected strangeness data sample. To fix this ratio to
an optimal value, different versions of the side-band sample (different α) have
to be compared to experimental observables.

The panels in the upper row of Figure 3.5 demonstrate the results of the mo-
mentum scaling procedure. As forced by Equation (3.9), the sum of both con-
tributions models the kaon momentum perfectly. The observables that help to
determine the correct scaling factor α are the following four observables: the
invariant mass of p–π− in three ranges (if MMp,K+>0 MeV/c2, >1000 MeV/c2

and >1300 MeV/c2, respectively), and the left tail of the missing mass to the
proton and K+ (MMp,K+ 0–1000 MeV/c2), where only the contribution of mis-
identification background is present. Two of these observables are presented
in Figure 3.5 for the HADES data-set in the middle and lower row. The figure
also shows an example of the background modeling for three different scaling
factors α. One with too much relative proton content (left column) and one with
too much pion content (right column). The middle column shows an example
that belongs to one of the best descriptions. The best scaling factor should
describe all four tested observables well and is extracted for HADES and WALL
data separately. The scaled side-band samples describe these observables very
well. The only important element to consider is, in fact, the correct background
yield underneath the Λ signal. That beyond that the overall shape of the data
is described so well shows the accuracy of this method.

With help of the scaling factor α and the momentum dependent scale-factor
SF(p) the side-band events can be weighted such that any desired observable
can be displayed with an reliable description of the contained background. Ap-
pendix A contains figures where the mis-identification background is shown for
the observable MMp,K+ in both data-sets.

The observables in Figure 3.5 reveal a small physical signal in the SB sample.
This is due to the fact that the kaon mass distribution has a large width so that
even the selection of fake kaons far left and right in the mass spectrum will
contain a small amount of real kaons. This contribution can be well estimated
with help of simulations. The latter are fed into the side-band analysis and such
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Figure 3.5: An example of the mis-identification background adaptation in the
HADES data-sample. The upper row shows the momentum distribu-
tion in the kaon data-sample that is described by the scaled sum of
the proton and pion side-band samples. The middle and lower rows
shows the Λ signal in a mass range MMp,K+>0 MeV/c2 and >1000
MeV/c2. The three columns show the result for three different scaling
ratios α of Eq. (3.9). While the left SB-background overestimates the
combinatorial yield under the Λ, the right column is an example for an
underestimated yield.
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3 The Neutral Strange Resonances ∗ and Λ∗

the signal strength in the real data sample relative the the strength in the side-
band sample can be evaluated and eventually subtracted from the background.

3.2 Simulation Model for the Measured Data

To describe and understand the measured event distributions, simulations are
needed. The simulations developed for that purpose contain several channels
of strangeness production with the four charged particles: p, K+, p, and π− in
the final state. The individual contribution of each channel can be estimated
with help of measured cross sections at other beam energies. These different
measurements can be fitted with a function that is proportional to the avail-
able phase space for the particle production. Then the cross section at 3.5 GeV
beam kinetic energy can be deduced from the fit. This procedure was adapted
and explained in the preceding work of this analysis [145]. The result of this
procedure should be seen as a provisional result. Figure 3.6 shows the event
distribution of the missing mass to the primary p and K+ in the HADES accep-
tance for the simulation cocktail.
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Figure 3.6: Simulated distribution of MMpK+ , where many channels contribute to
the total sum. The cross sections of the individual channels where
extracted from a phase space fit, see Ref. [145].

The comparison of this spectrum to the measured event distribution, shown in
the left panel of Figure 3.7, reveals striking differences. The mis-identification
background which comes from non-strange events is certainly absent in the
simulations, the yield of 0-production (∼1200 MeV/c2) is slightly too low, and
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3.2 Simulation Model for the Measured Data

the yield of the resonance production at higher energies is overestimated. Es-
pecially the statistic at 1500 MeV/c2 is not visible in experimental data.

This mismatch is due to a limited validity of the phase-space interpolation of
measured cross sections. The drawback of this approach was also shown for
associate K0 production in the same set of measured data [174]. The analysis
of several exclusive production channels involving a K0 showed large differ-
ences between the input cross sections from phase space fits and the output
cross sections of the analysis. Table 3.1 shows these differences, obtained from
the analysis. The range of the cross sections stems from the modeling of the
simulation which can be included either with a flat or an-isotropic angular dis-
tribution in the CMS system. Still, the differences between input and output are
large.

Table 3.1: Cross section from the analysis of associate K0 production from the
same experiment [174]. Compared are the input cross section from an
external fit and the cross sections extracted from the analysis.

Channel σPS ƒ t – input [μb] σMt ƒ t – output [μb]

→ pK0+ 20.43 24.25–26.27
→ pK0(1385)+ 5 .31 13.15–14.35
→ pK0Λπ+ 18.40 2.37–2.57

The same effect is present for associate K+ production, as visible in Figure
3.6. To deduce the right channels that contribute to the measured spectra and
their according strength, the individual components have to be adapted to the
experimental data, since an external reference was shown to be insufficient.
This adaption is done in form of a fit algorithm which is described in the next
section.

3.2.1 The Fitting Procedure

In the following approach, each simulated reaction channel was scaled such to
the data that the incoherent sum of the different simulations describes the mea-
sured event distributions well. The fitting process uses several input channels,
fit observables, and fit constraints in order to deliver the best result possible.
The different aspects of the fit are explained in the following.
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3 The Neutral Strange Resonances ∗ and Λ∗

Input For The Fit

The possible contributions to the observed final yield that are included into the
fit are the reaction channels listed in Table 3.2. The contribution of channels
in which two pions were directly produced was found to be insignificant. The

Table 3.2: The implemented channels for the multi-fit and their according color
code in the figures.

Number Channel Color

1 → pK+Λ(1405) violet
2 → pK+(1385)0 light-green
3 → pK+Λπ0 (non res.) red
4 → pK+Λ dark-blue
5 → pK+0 cyan
6 → pK+0π0 (non res.) pink
7 → pK+Λ(1520) dark-green
9 → pK++π− (non res.) beige
0 and 12 mis-identification background gray
- incoherent sum of the fit plum

simulations of channel No. 4 have been modified to include an angular distri-
bution of the Λ in the CMS system. This distribution is necessary in order to
describe both data-sets equally well. The distribution of the Λs follows a sum
of Legendre polynomials as shown by Eq. 6.1 in Chapter 6. The coefficients for
the modification were extracted at EKn = 2.5 GeV and taken from Ref. [155].

Observables for the Fit

Each reaction channel has a slightly different event distribution in kinematic
observables of the three measured particles p, K+ and Λ. The best observable
to distinguish the channel contributions from another is the missing mass to all
the particles (MMpK+Λ). In order to maximize the stability of the procedure, this
observable was fitted differentially in different bins of MMpK+ . The ranges in
MMpK+ are as follows:
1) 0–800 MeV/c2, 2) 980–1150 MeV/c2, 3) 1160–1225 MeV/c2, 4) 1250–1310
MeV/c2, 5) 1330–1430 MeV/c2 and 6) >1440 MeV/c2. Figure 3.7 highlights the
different ranges in MMpK+ of the fitting procedure, whereas Figures 3.8 and 3.9
show the event distribution of MMpK+Λ in these six bins for the HADES and WALL
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Figure 3.7: Missing mass to the proton and K+ for HADES (left) and WALL (right).
The numbers 1-6 correspond to the different ranges in which the ob-
servable MMpK+Λ was fitted.

data set, respectively. To constrain the yield of the Λ(1520) better, the MMpK+

was fitted directly in the mass range 1450-1620 MeV/c2. Low masses of MMpK+

can not be included into the fit as they are directly sensitive to the Λ(1405)

mass distribution, which is not known exactly. The Figures 3.8 and 3.9 illustrate
one example of a successful fit, where the sum of the nine contributions can
describe all 12 histograms well, when fitted simultaneously.

Constraints for the Fit

To increase the stability of the fit, three constraints have been included. Chan-
nel No. 3 and No. 6 were constrained to have a lower contribution than Channel
No. 4 (see Table 3.2).

Channel No. 9 was constrained to have a lower contribution than one third of
the sum of Channel No. 1 and No. 2. The last constraint was implemented
according to the results obtained from Ref. [23, 173]. It is an upper limit, as the
results from Ref. [23, 173] obtained a cross section ratio of Channel No. 9 to
the sum of No. 1 and 2 of R=(No. 9/(No. 1+No. 2))=0.37.

The mis-identification background that was already well constrained by the data
is free to vary within ±5% of its initial strength.
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3 The Neutral Strange Resonances ∗ and Λ∗

Figure 3.8: The event distribution of MMpK+Λ in six different mass bins of MMpK+.
The different panels show experimental data from the HADES statistic
(black dots) together with the single channels (see Table 3.2 for the
color description) and their sum (violet).

Figure 3.9: The event distribution of MMpK+Λ in six different mass bins of MMpK+.
The different panels show experimental data from the WALL statistic
(black dots) together with the single channels (see Table 3.2 for the
color description) and their sum (violet).
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3.2 Simulation Model for the Measured Data

3.2.2 The Nominal Result

Figures 3.8 and 3.9 present the result of this fitting procedure, where the in-
coherent sum is compared to the fitted observables. The overall event distri-
butions in the different bins are modeled well by the simulations (plum-colored
histogram).

Having fixed the relative yield among the different contributions, all observ-
ables of interest can be described by the sum of the adapted cocktail. To do
so, each histogram of a production channel has to be scaled according to its
scale-factor that was used by the fit. Table 3.3 shows the scaling-factors which
have to be multiplied to the histogram of the according channel. Also shown is
the ratio of the (1385)0 to Λ(1405) production which can be used as an input
for the Λ(1405) analysis from the charged decay channels ±π∓ [23]. As the
same amount of events was used in each channel simulation, the output scale-
factors can be directly related to the ratio of the production yield and thus also
to the cross section. For example, does this fit result predict a larger production
cross section of the Λ(1405) than the (1385)0.

Table 3.3: The result of the fit are the scaling factors for each simulated channel.
The events have to be multiplied with this number to obtain the correct
final yield that describes the experimental data.

Channel Scaling Factor from the Fit

→ pK+Λ(1405) 0.008692
→ pK+(1385)0 0.004592
→ pK+Λ(1520) 0.008409
→ pK+Λ 0.032727
→ pK+Λπ0 0.001027
→ pK+0 0.011388
→ pK+0π0 0.000744
→ pK++π− 0.000276
Ratio (1385)0/Λ(1405) 0.528288
SB-background (Hades) 1.04982
SB-background (WALL) 0.95000
χ2 2.12283

The relevant observable for this analysis is the missing mass to the p and K+

four-vector (MMpK+), as it contains information about the Λ(1405) mass distri-
bution. Figures 3.10 and 3.11 show this observable for the HADES and WALL
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3 The Neutral Strange Resonances ∗ and Λ∗

data-set, respectively. The mass distribution is displayed after the subtraction
of the mis-identification background. The figures which include this background
contribution are shown in Appendix A. Like the fit observables, these mass dis-
tributions can be described well by the incoherent sum of the cocktail. The
contributions of the three resonances Λ(1405), (1385)0 and also the Λ(1520),
are clearly visible. The yield of the Λ(1405) and the (1385)0 can not be di-

Figure 3.10: Missing mass to the proton and the K+ for the HADES data set. Left
panel shows the statistic for all channels, right panel shows an en-
largement of the resonance region.

Figure 3.11: Missing mass to the proton and the K+ for the WALL data set. Left
panel shows the statistic for all channels, right panel shows an en-
largement of the resonance region.
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3.2 Simulation Model for the Measured Data

stinguished without the result of the multi-fit as they overlap. As visible in the
Figures, the yield of the Λ(1405) is not two times the yield of the (1385)0, as
the scaling-factors in Table 3.3 might suggest. This is attributed to the different
decay-branching ratios of the resonances (87% ∗ and 33% Λ∗) into a final
state with a Λ-hyperon, see Equations (3.1) and (3.5).

The simulated sum of all contributions, shown by the plum-colored histogram,
is shifted slightly towards higher masses in respect to the experimental data.
This effect is visible for the HADES and the WALL data-set. It can be explained
with help of the results from Ref. [23, 173]. In this work, the lineshape from
the Λ(1405)-resonance produced in p+p collisions was determined with a max-
imum in the mass distribution located at around 1385 MeV/c2. The same im-
pression is delivered by these figures. The effect is, however, not so strong due
to the large contribution from the (1385)0 and the fact that these observables
are not corrected for acceptance and efficiency.

3.2.3 Disentangling the Resonances

As discussed, the only observable that helps to discriminate (1385)0 from
Λ(1405) production is the missing mass to all measured particles. This ob-
servable is presented in Figure 3.12 for both data-sets in linear and logarithmic
scale. The simulations of the (1385)0 production (see channel No. 2 in Table
3.2) shows a nice signal of the π0 in both data-sets. Due to the poor momen-
tum resolution of the forward wall the mass spectrum of the WALL data-set is
significantly broader as compared to the HADES set. This broadening results in
a different π0 mass resolution. The two π0 signals from the (1385)0 simula-
tion have been fitted with a Normal distribution to extract the mass resolution.
The values are μ= 134.7 MeV/c2 and σ= 28.6 MeV/c2 for the HADES data and
μ= 147.0 MeV/c2 and σ= 56.3 MeV/c2 for the WALL data. The shifted value of
the π0 in respect to the nominal value of 135 MeV/c2 [8] for the WALL data set
might hint to a slight mis-calibration of this detector. This calibration error will
only be visible in observables that use the secondary proton for a mass distri-
bution. For the line-shapes of the resonances this is not relevant as they are
displayed by the missing mass to the primary proton and K+.

To disentangle the Λ(1405) from the (1385)0 the data are selected according
to their missing mass MMp,K+,p,π−. Figure 3.12 shows that the channel with
Λ(1405) production (violet) has a slightly shifted mass distribution towards
higher missing masses as compared to the (1385)0 (light-green), however,
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3 The Neutral Strange Resonances ∗ and Λ∗

Figure 3.12: Measured mass distribution of MMp,K+,p,π− for the HADES data-set
(upper panels) and the WALL dataset (lower panels) shown by the
black points. Compared to them are the incoherent cocktails of all
simulated channels (plum-colored line). The histograms from the
channel No. 2 and No. 3 (see Table 3.2) show a signal of the π0.
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3.2 Simulation Model for the Measured Data

these two mass distributions are also overlapping, making a complete disen-
tanglement impossible.

The (1385)0-signal from its Λπ0 decay

To enrich the data with signal from the (1385)0-reonance production, events
with a missing π0 have to be selected. Therefore a cut of 70<MMp,K+,p,π−<175
MeV/c2 for the HADES events and 65<MMp,K+,p,π−<230 MeV/c2 for the WALL
events was applied. Figure 3.13 shows the mass distributions of MMpK+ for
events that are enriched with (1385)0 signal by the previous cuts, for both
data-sets. The distributions clearly peak at around 1380 MeV/c2.

The results are presented for two cases: one, where the missing mass to the
proton and the K+ is calculated from the measured four-vectors of the two par-
ticles; and one, where the missing mass is calculated from refitted four-vectors,
so that the complete event kinematics of all particles fulfills the constraint that
the missing mass to all charged particles is the mass of the π0; while the invari-
ant mass of the secondary proton and π− is equal to the mass of the Λ-hyperon.
As visible in the figures, this refit has no major effect on the mass resolution of
the (1385)0.

With help of the simulation cocktail the different contributions to the spectra
can be displayed. While the peak of the HADES data-set according to the fit re-
sult consists mainly of the contribution from (1385)0, the mass spectrum from
the WALL data is contaminated by a large amount of signal from the Λ(1405).

The reason seems two-fold:
First of all, the acceptance for the events in which a Λ(1405)-resonance is pro-
duced is higher for the WALL data visible by comparing Figure 3.10 with 3.11.
This is explained by the fact that heavy resonances leave less production en-
ergy to their partners p and K+ which are thus less likely to fly into the accep-
tance hole of the spectrometer at θ<15◦ and can be detected. Second, is the
MMp,K+,p,π− resolution worse in the WALL data-set than in the HADES data set,
as previously explained, which causes a generally larger admixture of Λ(1405)
in the (1385)0 mass spectrum for the WALL data.

A quantitative summary of different resonance yields in the mass spectrum and
the contamination from the Λ(1405)-resonance is given in Table 3.4. Although
the WALL data-set presents ∼400 (1385)0 events, their contamination by the
Λ(1405) is high. As, however, the exact line-shape from the Λ(1405) in this
decay is not known, this contribution is critical as it can not be subtracted easily.
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Figure 3.13: The missing mass to the proton and the K+ (MMpK+) for refitted
and un-refitted events, both selected for a missing π0 in the eventf.
Shown for both data-sets HADES upper panels and WALL lower pan-
els. The sum of all channels (plum-colored) is compared to the ex-
perimental data (black dots). The single channels correspond to the
colored histograms and are described in Table 3.2.
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Table 3.4: Final yield of the (1385)0 analysis for both data-sets that is extracted
with help of simulations.

Contribution WALL HADES

Total yield 1170 720
Λ(1405) yield 320 62
(1385)0 yield 390 285
R (Λ∗/∗) [%] 82 22

Thus, quantitative information of the (1385)0, like mass and width, are difficult
to extract. In case of the HADES data-set the contribution of the Λ(1405) is
lower with 22% but also the statistic of (1385)0 with ∼300 events.

In the literature, only two reports about (1385)0 production in p+p collisions
are published: one from Klein et. al [175], and one from the ANKE collaboration
[176]. While the signal in Ref. [175] is reconstructed by the invariant mass of its
decay products Λπ0 and is, thus, essentially free from Λ(1405) contamination,
the signal from Ref. [176] is reconstructed also via the missing mass to the
proton and K+, and faces, therefore, also the same problems as the here pre-
sented analysis. The exact strength of cross contamination is, unfortunately,
not discussed quantitatively by the authors of [176], so that no comparison of
the signal purity can be made. The reported signal strength is 170±26 counts.

The Λ(1405)0-signal from its 0π0 decay

To enrich the events with the Λ(1405) resonance signal, two cuts were tested:
MMp,K+,p,π−> 170 MeV/c2 (A) andMMp,K+,p,π−> 195 MeV/c2 (B). These cuts should
select events in which more than a π0 is missing in the reaction, see Equation
3.1. The resulting mass distributions, after the selection, for both data-sets are
presented in Figure 3.14. The large contamination by (1385)0 is obvious. Only
the HADES data set under cut condition B shows a suppressed contribution of
the (1385)0. Table 3.5 summarizes quantitative information about the signal
contamination and the extracted Λ(1405) yield. The relative contamination of
(1385)0, expressed by the ratio R is high between 11-28%. The only case with
a lower contamination of 11% has, at the same time, the lowest reconstructed
yield of 90 Λ(1405) events.

In order to deliver a good constraint for theoretical calculations of the KN inter-
action sub-threshold, a high statistic Λ(1405) mass spectrum is needed which
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Figure 3.14: The missing mass to the proton and the K+ (MMpK+) for the cut con-
ditions A and B, to suppress contamination from the (1385)0. In
both data-sets HADES upper panels and WALL lower panels. The
sum of all channels (plum-colored) is compared to the experimen-
tal data (black dots). The single channels correspond to the colored
histograms and are described in Table 3.2.
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Table 3.5: Final yield of the Λ(1405) analysis for both data-sets that is extracted
with help of simulations.

WALL HADES
Contribution Cut > 170 Cut>195 Cut > 170 Cut>195

Total yield 765 567 205 148
Λ(1405) yield 352 284 121 90
(1385)0 yield 155 88 34 10
R (∗/Λ∗) [%] 44 31 28 11

has, at the same time, a low probability of ambiguous interpretations (eg. pure
(1385)0 yield). This is not fulfilled by the present analysis. The statistic re-
mains low, if the cut on the missing mass to all charged particles is strict. In
case the cut is released, however, the contamination from (1385)0 becomes
critical.

The only measurement of the Λ(1405)-signal from its decay into 0π0, so far,
stems from the ANKE collaboration [176] and is not corrected for the losses
caused by limited acceptance and efficiency. They reported a Λ(1405)-signal
with a statistic of 156±23 reconstructed events. This statistic is in the same
order as extracted by the here presented analysis, however, the ANKE-signal
is quoted to be free from (1385)0 contamination due to the good separa-
tion quality. The ANKE collaboration showed with simulation [176] that es-
sentially no events of the (1385)0 production contaminate the mass area of
MMp,K+,p,π−>mπ0+55MeV/c

2. This must originate from a π0-signal with a resolu-
tion of σ ∼ 18 MeV/c2 in their spectrometer. This exceeds the precision obtained
with the HADES detector (28.6 MeV/c2 and 56.3 MeV/c2).

3.2.4 The Systematic Uncertainty

To test the influence of different event selections on the fit result, the fit has
been repeated under different cut selections, fit constraints, and simulation
properties. In order to test different selection cuts, the following track and mass
cuts have been varied by ±10% and ±20%, respectively: distance between the
decay proton and pion from the Λ (dt), distance of closest approach between
the Λ-track and the primary vertex (dΛ) and the mass window of the Λ mass
cut (IMpπ−). These are the cuts applied to the HADES data-sample. Further,
the mass window of the Λ mass cut in the WALL data selection was varied. In
this procedure, the cuts have been varied for simulated and measured data
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simultaneously. The changes of the different cuts were permuted either among
the ±10% or the ±20% group, including in both cases also the nominal cut
values, which resulted in 161 different event selections.

To test different fit constraints, the range in which the yield of the mis-iden-
tification background could be varied was changed. The nominal contribution
of the mis-identification background to the experimental data is already well
constrained by the procedure that models the mis-identification background
(Section 3.1.3). Still, the yield was given a tolerance of ±5% so that the final
strength of this contribution to the total experimental yield was determined by
the fit. In two variations the mis-identification yield was constrained either to
a tolerance of ±4% or ±6%, respectively. Each of the three tolerances was
combined with the 161 different statistics from the cut variations.

To test different simulation properties, two of the eight simulated channels have
been modified. In Ref. [23, 177] an angular distribution for the production
p + p → n + K+ + (1385)+ was extracted from the data. In view of this result
also the channel p+p→ p+K++(1385)0 might contain a non-isotropic angular
distribution of the (1385)0 in the p+p CMS system. Thus, the whole fitting
procedure was repeated for two versions in the simulation: once with a flat
differential cross section for the (1385)0 production and once with the same
distribution, as measured for the (1385)+. In Ref. [23, 173] the mass peak of
the Λ(1405)-resonance was determined to be rather low at 1385MeV/c2 instead
of 1405 MeV/c2. To test the influence of this result on the fit procedure the
simulations of the reaction p + p → p + K+ + Λ(1405) were included once with
a Λ(1405)-mass of 1405 MeV/c2 and once with a mass of 1385 MeV/c2. All
four variations were combined with the previously discussed selections, and fit
constrains, resulting in 1932 different versions of the fitting procedure.

The different variations are summarized in Table 3.6. This variation in the fit
results in diverging scaling-factors for the different contributing channels, which
are illustrated in Figures 3.15 - 3.18. As a direct connection between the scaling-
factors from the fit and the production cross section exists (Eq. 3.11) the scatter
of the scaling-factors gives an estimate of the systematic uncertainty of the
production cross section for the included channels.

The figures show that while the channels of direct Λ- and 0-hyperon produc-
tion are well determined by the fit (Figure 3.15), the other channels suffer from
a large systematic uncertainty. This is obvious as the former channels are
well separated from the others in the MMpK+ spectra. The production of the
(1385)0-resonance is better constrained than the production of the Λ(1405)-
resonance and the Λ(1520)-resonance, which both have no lower limits of their
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Table 3.6: The variation of different cuts and fit constraints to evaluate the sys-
tematic uncertainty of the multi-fit procedure.

Constraint Nominal Variation A Variation B

dΛ (HADES) <23 ±10% ±20%
dt (HADES) <18 ±10% ±20%
Mpπ− (HADES) 1106–1122 ±10% ±20%
Mpπ− (WALL) 1001–1129 ±10% ±20%

↑ Total: 161 cut variations ↑
M(Λ(1405)) 1405 MeV/c2 1385 MeV/c2

dσ/dcos(θ)∗ Flat =̂ (1385)+ [177]
Mis-ident. background tolerance ±5% tolerance ±6% tolerance ±4%

contribution. The channels: pK+0π0 and pK++π− are also not well con-
strained by the fit as they have a broad mass distribution in the missing mass
to all particles and the missing mass to the proton and the K+. The produc-
tion of pK+Λπ0 is better constrained. It is the non-resonant component of the
(1385)0 production and, as the cross section of the latter is rather well con-
strained, the variation for this channel is also limited. The mean value and the
range of outcome values of the fit are summarized in Table 3.7 and create the
range for the systematic uncertainty of the fit result.

Table 3.7: Result of the systematic error evaluation. Each channel has a spread
of output cross sections that is represented by a mean and a range of
observed values.

Channel p+ p→ Mean [μb] Range [μb]

pK+Λ 36.25 35.6–36.8
pK+0 12.66 12.3–12.9
pK+Λ(1405) 7.01 0–14
pK+(1385)0 5.9 4.4-7.8
pK+Λ(1520) 4.65 0–11
pK++π− (non-res.) 2.64 0–10
pK+Λπ0 (non-res.) 1.42 0–3.5
pK+0π0 (non-res.) 3.59 0–7.8
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Figure 3.15: Extracted cross sections of 1932 different fit trials. Left: Cross sec-
tion for pK+Λ production and right: for pK+0 production.

b]µ) [
+

(1405)+p+KΛ(σ

0 2 4 6 8 10 12 14 16 18 20

C
o
u
n
ts

0

20

40

60

80

100

120

140 (1405) w/o weightΛ

(1405) wweightΛ

(1385) w/o weightΛ

(1385) wweightΛ

b]µ) [
+

+p+K0(1385)Σ(σ

0 1 2 3 4 5 6 7 8 9 10

C
o
u
n
ts

0

20

40

60

80

100

120

140

160

180 (1405) w/o weightΛ

(1405) wweightΛ

(1385) w/o weightΛ

(1385) wweightΛ

Figure 3.16: Extracted cross sections of 1932 different fit trials. Left: Cross sec-
tion for pK+Λ(1405) production and right: for pK+(1385)0 produc-
tion.
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Figure 3.17: Extracted cross sections of 1932 different fit trials. Left: Cross sec-
tion for pK+Λ(1520) production and right: for pK++π− production.
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Figure 3.18: Extracted cross sections of 1932 different fit trials. Left: Cross sec-
tion for pK+Λπ0 production and right: for pK+0π0 production.
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3.3 Production Cross Sections

The scaling factors from the fit-procedure are directly linked to the production
cross section, which has already been exploited to create the Figures 3.15–3.18
and also the values in Table 3.7. This connection is derived as follows. The
yield of a measured contribution from a certain channel can be modeled with
simulation. To do so, the yield of the simulated channel (after the full scale
simulation process) is scaled with the scaling-factor from the fit to match the
measured distribution:

YEp,cc = YSm,cc · SF, (3.10)

with YEp,cc the experimental yield in the detector acceptance that is attributed
to a certain channel, YSm,cc the simulated yield from the event generator in the
detector acceptance, and SF the scaling factor that is applied to the simulated
yield to reproduce the experimental data. To obtain an experimental yield in
4π and an according production cross section, the reconstructed event yield for
each channel needs to be corrected for losses due to incomplete acceptance
and efficiency. The correction is estimated with help of simulations. Therefore,
the ratio of events in 4π and in the detector acceptance is build.

YEp,4π = YEp,cc ·
YSm,4π

YSm,cc

= YSm,cc · SF ·
YSm,4π

YSm,cc

= YSm,4π · SF. (3.11)

YSm,4π is the number of initially simulated events per channel, which is 1·108
events for all of them. This relation is elegant as it connects the scaling-factor
directly to the production yield of the respective channel.

Finally, the production yield is related to a cross section by a normalization
of the measured p+p elastic scattering yield to the elastic cross section in the
detector acceptance, described more exhaustive in Section 6.2.1. In short sum-
mary of this procedure: the measured events are normalized to a production
cross section by scaling them by NF=1.11·10−8 mb:

σEp,4π = YSm,4π · SF ·NF mb. (3.12)

The statistical error of the experimental cross section in one channel can be
written as:

ΔσEp,4π =
YSm,4π · SF ·NF
p
YSm,cc

mb (3.13)

If the different yields are evaluated from their contributions in Figures 3.10 and
3.11 the statistical errors are the ones summarized in Table 3.8. The error
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3.3 Production Cross Sections

Table 3.8: Example of cross section for different conditions in the fitting procedure
with their according statistical. (A) MΛ∗ = 1405, no ∗ angular distr;
(B) MΛ∗ = 1405, ∗ angular distr; (C) MΛ∗ = 1385, no ∗ angular distr;
(D) MΛ∗ = 1385, ∗ angular distr.

Channel p+ p→ σA [μb] σB [μb] σC [μb] σD [μb]

pK+Λ(1405) 9.65±0.55 6.13±0.44 5.75±0.69 11.54±0.85
pK+(1385)0 5.10±0.24 6.34±0.33 6.14±0.27 6.81±0.46
pK+Λ(1520) 9.33±1.26 6.64±1.07 4.40±0.87 6.62±1.52
pK+Λ 36.33±0.51 36.30±0.51 36.59±0.51 36.60±0.42
pK+Λπ0 1.14±0.13 2.26±0.18 0.25±0.06 1.80±0.17
pK+0 12.64±0.32 12.66±0.32 12.74±0.32 12.75±0.26
pK+0π0 0.83±0.13 2.36±0.13 5.62±0.35 3.66±0.35
pK++π− 0.31±0.17 0.017±0.105 5.29±0.67 8.96±1.14
χ2 2.12 2.23 2.33 2.27

is an average of the error obtained from the two figures. For each channel
four examples out of the ∼2000 variations are shown in the table. σA and σB
show results obtained while fitting simulations with a Λ(1405) mass of M=1405
MeV/c2 and σC and σD contain a Λ(1405) signal of M=1385 MeV/c2. Further
do σB and σD contain the modification of the differential cross section of the
(1385)0 production in the center of mass frame. As expected, the relative
error is increasing with a decreasing amount of yield (cross section) to evaluate
the contribution.

The results from the here presented analysis can be compared to an indepen-
dent analysis of the Λ(1405) production in the same recorded statistic but an-
alyzed through its decay into the charged final stated ±π∓. This analysis is
independent as it is only connected to this analysis via the inclusion of the
(1385)0 production cross section which is an external constraint. Due to the
fact that the branching ratio of the (1385)0 into the analyzed final state ±π∓

is low (8.6%) as compared to the Λ(1405) (49.4%), a large systematic uncer-
tainty has, fortunately, no major effects on the yield of the (1385)0 under the
Λ(1405) signal, so that this outcome is solid.

Table 3.9 compares the results of this analysis with the independent analysis
from Ref. [23]. The values are shown with their statistical-, and systematic
error. All cross sections have the same common error of 7% from the cross
section normalization procedure. The results of this analysis are presented for
σA and σD, see Table 3.8 for properties. While the fit giving the results σA is
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3 The Neutral Strange Resonances ∗ and Λ∗

Table 3.9: Comparison of the extracted cross sections of this analysis with the
cross sections of the analysis from the charged decay channels of the
Λ(1405). ♡ shows results from this work. The values are quoted with
their statistical-, and systematic error and contain the same common
error of 7% from the cross section normalization procedure, not explic-
itly quoted.

Channel p+ p→ σ [μb] [23, 173] σA [μb]♡ σD [μb]♡

pK+Λ(1405) 9.2±0.9+3.3−1.0 9.65±0.55+4.35−9.65 11.54±0.85+2.46−11.54
pK+(1385)0 - 5.10±0.24+2.7−0.7 6.81±0.46+0.99−2.41
pK+Λ(1520) 5.6±1.1+1.1−1.6 9.33±1.26+1.67−9.33 6.62±1.52+4.38−6.62
pK++π− (non res.) 5.4±0.5+1.0−2.1 0.31±0.17+9.69−0.31 8.96±1.14+1.04−8.96
K+−Δ(1232)++ 7.7±0.9+0.3−0.9 - -

pK+Λ - 36.33±0.51+0.47−0.73 36.60±0.42+0.2−1
pK+Λπ0 (non res.) - 1.14±0.13+2.36−1.14 1.80±0.17+1.7−1.80
pK+0 - 12.64±0.32+0.26−0.34 12.75±0.26+0.15−0.45
pK+0π0 (non res.) - 0.83±0.13+6.97−0.83 3.66±0.35+4.14−3.66

completely independent of the work presented in Refs. [23, 173, 177], the fit
resulting in σD includes their result, such as the shifted Λ(1405) mass and the
non-isotropic differential cross section for the (1385)0 production in the CMS
system. The results are in agreement with each other except the value for the
pK++π− (non res.) production, which seems way too low for σA. Due to the
large systematic uncertainty this value is still compatible with the result from
Ref. [23, 173].

A second iteration of the multi-fit with the external cross section constraints
from Ref. [23, 173] might stabilize the fit and decrease the systematic uncer-
tainty. However is no further use expected of this procedure as no independent
result will be obtained from it and the Λ(1405)-resonance mass spectra are too
low in statistic so that even a good handle on the Λ(1405) production cross
section is of no further use for the 0π0 decay channel investigation.
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4 | Exclusive Event Selection

and Model Description

In this chapter, the analysis of the reaction:

p+ p→ p+ K+ + Λ, Λ→ p+ π−, (4.1)

is discussed with the motivation to study the possible existence of the smallest
of the anti-kaonic nuclear bound states, the KNN. While the data selection is
discussed in this chapter, their interpretation will be presented in Chapter 5
with the aim to extract tighter constraints for the expected cross section of the
kaonic cluster production in p+p collisions.

4.1 Selection of the p+K++Λ Sample

A data sample containing 1.2·109 events of the type p+p → X, that had been
measured by the HADES apparatus [142], was analyzed to find events with
the exclusive production of the three particles X = p + K+ + Λ. This reaction
is of particular interest as it must contain information about an intermediate
KNN of positive charge (see Section 2.4), should the latter exist. Its production
would look like follows: p+p → KNN+ K+ → p+ Λ+ K+. Here, the kaonic bound
state (KNN) is produced together with a K+. When only the K+ is measured,
one can obtain all necessary information about the bound state by employing
the missing mass technique. Hereby, one relies on the knowledge of the four-
momenta of the two initial protons and performs the following calculation:

PK̄NN = PBem−p+ PTrget−p − PK+ , (4.2)

where P are the four-momenta of the initial and final particles. The absolute
value of the four-vector |PK̄NN| corresponds to the mass of the kaonic cluster
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MKNN. In this way, one could obtain the mass distribution of the kaonic bound
state. Although an inclusive measurement of the K+ is sufficient to reconstruct
the properties of the kaonic bound state, it is not sufficient to select the Reac-
tion (2.9) exclusively. Using this approach, one would get the sum of several
reactions containing a K+ [145], e.g pπ0ΛK+.

Keeping in mind the expected minor contribution of Reaction (2.9) to the total
production cross section of K+ (=̂ 0.1 mb, see Fig. 6.16 of Chapter 6), it is
essential to select also the decay products of the KNN, in order to suppress
possible sources of background. Therefore, the decay of the KNN into p + Λ is
tagged as well in this analysis, in order to select Reaction (4.1) exclusively.

A novelty in the p+p campaign in April 2007 was the installation of a new de-
tector, the so called Forward Wall hodoscope (FW or WALL). From this detector
a time of flight information of the particles, flying into the very forward direc-
tion (0.33◦ to 7.17◦), can be retrieved. As the data analysis showed that a
large fraction of decay protons from the Λ were emitted in the forward accep-
tance hole of the HADES spectrometer [145], it was decided to use also the
data taken by the Forward Wall for a further analysis. The information from this
detector is, however, not sufficient to determine the particles PID so that an
event hypothesis has to be applied to reconstruct the complete four-vector of
the particle. Previously, it was checked with simulations that the cases in which
the detected particle in the WALL is a proton amounts to roughly 89% [145].
Figure 4.1 summarizes the differences between the two data sets.

4.1.1 Event Selection

HADES Data-set

At first, those data were selected in which four tracks are reconstructed inside
of the HADES detector (three of positive and one of negative charge). The track-
bending of the particles inside of the magnetic field of the detector determines
the momentum components of the four-vectors. To obtain the full four-vector of
the particle, their masses have to be determined as well. The two protons and
the pion were selected, as described for the Λ(1405) and (1385)0 analysis
in Chapter 3, according to their energy loss in the MDC chambers. The fourth
particle, which should be the kaon, was preliminary taken as a third positive
particle with no further constraints on its energy loss. By this approach a mass
was assigned to each track.
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4.1 Selection of the p+K++Λ Sample

Figure 4.1: The two pictures show the differences between the two data-sets. The
four tracks of each event have been registered in different detector
parts.

WALL Data-set

The selection in the WALL data-set is similar to the HADES selection. As one par-
ticle was "missing" in the HADES detector the events were selected for three
detected particles inside HADES and one additional hit in the forward wall, illus-
trated in Figure 4.1 on the right. While the hit in the FW was assumed to be a
proton the other three particles in HADES were still identified via PID cuts. The
four-vector of the proton in the forward wall was determined by the assumption
of a straight track from the primary vertex to the hit position in the WALL. The
absolute momentum was determined from the measured time-of-flight of the
particle and the track length.

4.1.2 Constraints for the Data Selection

To select those data out of the statistic with four pre-selected particles, which
contain exclusively reaction (4.1), one can use very basic physical constraints
like momentum and energy conservation:

pp1, + pp2, + pπ−, + pK+, = 0, (4.3)

pp1,y + pp2,y + pπ−,y + pK+,y = 0, (4.4)

pp1,z + pp2,z + pπ−,z + pK+,z = pz,Bem−p, (4.5)

Ep1 + Ep2 + Eπ− + EK+ = ECM. (4.6)
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4 Exclusive Event Selection and Model Description

Figure 4.2: Δpy and Δpz for events that contain the four required particles in the
HADES data-set, where Δp = pƒ n − pn.

Moreover, one of the protons and the π− should stem from the decay of the
Λ-hyperon. Thus, their four-momenta should be correlated, and the mass of
the summed four-vectors is, in this case, distributed around the mass of the
Λ-hyperon (1115.683 MeV/c2). The resolution of the reconstructed Λ’s is illus-
trated in Figure 3.2 of Chapter 3. As this is an exclusive event selection, the
missing mass of the other proton and the K+ should also correspond to the
mass of the Λ-hyperon. This can be expressed as follows:

(Pπ− + Pp2)
2 = (MΛ)

2, (4.7)

(PBem−p + PTrget−p − PK+ − Pp1)2 = (MΛ)
2. (4.8)

These six observables (Eqs.(4.3)-(4.8)) can be displayed for the complete num-
ber of events containing the pre-selected particles. An example of the event
distribution is illustrated in Figure 4.2, where Δpy and Δpz are shown for the
HADES data-set1. One sees the enhanced yield around Δp = 0 MeV/c on the top
of a broad background.

4.1.3 A Kinematic Fit as Filter for p+K++Λ Events

The, in the following, discussed selection concerns the HADES data-set. In case
the analysis differs between the two sets discrepancies will be pointed out.

With the mentioned constraints of Eqs. (4.3)-(4.8), there are two options for
data selection. One is to use hard cuts. Accordingly one takes only those

1The observables are constructed from the difference of initial and final vectors.
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events for a further analysis that lie in a predefined window. For example,
Figure 4.2 suggests to include only events where the missing momentum in
|py| is <90 MeV/c into the further analysis. This can be successively done for
all observables that are sensitive to distinguish reaction (4.1) from background.
This method is simple and straightforward. Yet, one does not take into account
the correlation of observables among each other and so the cuts may not be
optimally tuned. In order to do so one would have to define cuts on one observ-
able as a function of some others. An example is the momentum dependent
resolution. Higher momenta are measured with a higher absolute error. Many
kinematic observables are dependent on the measured momenta. Therefore,
the definition of hard cuts on a narrow kinematic-derived distribution like in Fig-
ure 4.2 would imply, that events containing larger momenta are systematically
sorted out due to them being further smeared out in the distribution. Another
disadvantage is that the background contribution in such analyses would be
larger than necessary.

An alternative option for particle selection, in this specific case, is the kine-
matic fit [178, 179]. This fit uses the physical constraints of Eqs. (4.3) - (4.7)
in spherical coordinates together with the known errors of the measurement in
1/p, θ, and φ, caused by the detector. The fit tests for each event how much
the reconstructed four-momenta of the four particles have to be varied, based
on their error, to fulfill the required physical constrains. The further the initial
values have to be shifted in order to fulfill the constraints, the more unlikely it is
that the event naturally fulfills these constraints. This is, for example, the case
for events where originally more than four particles are produced or events
which do not contain an intermediate Λ-hyperon (see Table 3.2 in Chapter 3 for
possible sources of background).

A quantification of how well the data fit to the hypothesis of Reaction (4.1) is
the p-value2. This is an output of the kinematic fit algorithm and is defined as:

p− e =
∫ ∞

χ2
eent

P(χ2, Ndƒ )dχ2 . (4.9)

χ2
eent

is the χ2-value of the fitted event and P(χ2, Ndƒ ) the χ2 probability den-
sity function for the given number of degrees of freedom (Ndƒ ) of the fit. The
p-value is a good variable to separate signal from background events and takes
values between zero and one. While signal events show a flat p-value distribu-
tion between 0 and 1, background events have a prominent yield of p-values
close to 0 and a sharply falling distribution for higher p-values. Figure 4.3 shows

2An exhaustive description of this observable is given in Chapter 5.
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Figure 4.3: p-value distribution of a kinematic fit to the pre-selected data. A kine-
matic according to Equations (4.3) - (4.8) was required. The right
panel presents a zoom into small p-values. Here all channels besides
(4.1) and (4.10) are only located in the first bin of the histogram (for
channel description see Table 3.2 in Chapter 3).

the p-value distribution for events that contain the four pre-selected particles.
In the logarithmic representation the data show a relatively flat distribution with
a eminent peak at very low p-values. The sum of simulated channels and the
mis-identification background describes the measured data well3. These contri-
butions are the same as for the Λ(1405) and (1385)0 analysis as introduced
in Chapter 3.

The right panel of Figure 4.3 displays a zoom into the low p-value region. Here,
it is evident that all channels with more than four particles have a p-value within
the first bin of the histogram. Only the simulations of reaction:

p+ p→ p+ K+ + 0, (4.10)

have larger p-values, outside the first bin. This is attributed to the very similar
kinematics in both reactions of (4.1) and (4.10) as the latter contains only one
additional, γ-particle (from the -decay) as compared to the former. This makes
these two reactions hard to distinguish. The ratio between channel (4.10) and
(4.1) is, fortunately, decreasing rapidly for increasing p-values. The other main
background, stemming from the mis-identification of kaons, is also centered at
low p-values.

3The scaling factors for the different simulations are taken from Table 3.3 in Chapter 3.

88



4.1 Selection of the p+K++Λ Sample

Figure 4.4: Mass distribution of the kaon candidate in the selected HADES statis-
tic. Data points are black. Simulations of events that contain real
kaons (red) are shown together with events where the kaon was in
fact a pion or proton (blue). The sum of the scaled simulations is
shown in gray.

To obtain a good compromise between efficiency (keeping many events) and
purity (rejecting background events), the data selection was constrained to
events with p-values>0.01. After this selection the contamination from events
of type (4.10) in the pK+Λ data sample was estimated to about 1% in the HADES
data-set, using the simulations illustrated in Figure 4.3. For the WALL the con-
tamination of the previous reaction amounts to roughly 3%.

The second large background arises from the mis-identification of pions and
protons as kaons. This property should be visible in the reconstructed mass
distribution of the kaon candidates. The mass distribution is calculated with
help of the measured time-of-flight. This quantity was, however, not directly
accessible in the experiment and had to be reconstructed afterwards. Appendix
B contains a detailed description of the possibilities for a time-of-flight recon-
struction procedure.

Figure 4.4 shows the reconstructed mass distribution of the kaon candidates.
The mass was reconstructed using method No. 1, described in Appendix B.
Together with the measured data, simulations are shown in which the events
were separated according to the real PID of the kaon candidate. The red his-
togram displays events where the kaon candidate was indeed a kaon and the
blue histogram reveals events where the kaon was in fact a proton. This is
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visible by the enhanced yield in the mass spectrum around mp ≈ 938 MeV/c2.
Events in which a pion was mis-identified as kaon are possible but apparently
suppressed by the data selection, as no enhancement of yield is observed at
the nominal pion mass of mπ+ ≈ 140 MeV/c2. The yield that is attributed to the
mis-identification of kaons as pions and protons is denoted as mis-identification
background. The measuredmass distribution, displayed in Figure 4.4, was fitted
with the sum of the individual contributions from simulations. The sum of these
contributions, displayed in gray, describes the measured data well. The total
signal-to-background ratio (S/B) in the full range amounts to ≈ 2.9. This value
can be improved by the selection of a mass region with an increased S/B ratio.
Based on the scaled simulations this range was determined to 0< mK+−cnddte
< 680 MeV/c2 (230-640 MeV/c2 for the WALL data-set). By restricting the data
to this mass range, events with a mis-identified proton can be suppressed ef-
fectively. The S/B ratio in this mass region is 19.4. Additionally to those events
where the time-of-flight could be reconstructed, there is a fraction of events
where the kaon candidate had no hit in the detector system that measured the
stop signal for the time-of-flight. Thus, the mass of the particle could not be
reconstructed. In these cases there is no further criteria to separate good from
bad events. With help of the simulations, the S/B ratio for these events can be
estimated to 6.2. Although this value is worse than the S/B ratio in the selected
mass range, this sample is kept since the data themselves amount to roughly
20% of the statistic inside the mass window. This inclusion decreased the total
S/B value to 15.3 (for a detailed report about the WALL statistic see Appendix
B).

The final result of these event selections is described in the next paragraphs.

Summary of HADES Analysis

A pK+Λ data sample of 13,155 events could be extracted from the complete
p+p→ X statistic. The contamination of Reaction (4.10) is 1%, and the contam-
ination from mis-identification background is 6.5%.

Summary of the WALL Analysis

From the WALL statistic 9,000 pK+Λ events could be retrieved from the com-
plete p+p→ X statistic. The contamination of reaction (4.10) is 3%, while the
contamination frommis-identification background is 11.7% and with this double
as high as in the HADES statistic.
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4.2 Characteristics of p+K++Λ Production

Figure 4.5: Left panel: Missing mass distribution to the K+ and Λ exhibiting a
proton signal. Right panel: Missing mass distribution to the proton
and the kaon showing a Λ signal.

In the next step, the properties of the selected events were investigated in de-
tail. The left panel of Figure 4.5 shows the missing mass distribution to the
Λ and kaon four-vector (MMK+,Λ), in which a proton signal is visible, while the
right panel presents the missing mass to the proton and kaon (MMp,K+) where
a Λ signal is visible. These two figures serve as an example to demonstrate
the resolution of the measured kinematics and are analogous to the momen-
tum distributions in Figure 4.2. The proton, for example, has no intrinsic width,
and the Λ width is negligible. The observed widths are, thus, a pure effect of
the finite detector resolution. The kinematic fit treats the illustrated detector
resolution properly, due to the inclusion of the parameter errors into the fitting
procedure. One output that the fit provides (p-value) has already been used
to constrain the data selection. Another output of the kinematic fit are new
four-vectors that are close to the measured ones but are shifted such that they
fulfill the physical constraints mentioned in Sec. 4.1.2. The advantage of these
new, shifted four-vectors is an improvement in the resolution of all observables
that are constructed out of these four-vectors. The missing mass distribution
MMΛ,K+ of the refitted vectors, for example, is a delta-function peaked at the
mass of the proton4. These refitted kinematics are especially useful for observ-
ables like invariant masses of two particles as they are not a direct constraint
of the kinematic fit. Figure 4.6 presents in the left panel the missing mass

4This follows as this observable is tightly constrained by selection criteria 4.8.
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Figure 4.6: Left Panel: Missing mass to the proton. Right panel: Invariant mass
distribution of K+ and Λ. Both observables are shown for the mea-
sured four-vectors (blue dots) and the refitted ones (black line) for the
HADES data-set.

to the proton (MMp) and in the right panel the invariant mass of kaon and Λ

(MΛ,K+). By kinematic constraints, these two observables should exhibit exactly
the same distribution; due to the finite resolution of the spectrometer they do
not (visible by the blue dots). The mass distributions of the refitted four-vectors
(black line) inhibit a better mass resolution as these vectors fulfill energy and
momentum conservation and are, thus, not so much distorted by effects due to
the detector resolution. The refitted vectors show the same mass distribution
for both observables. One can also observe that the refit did influence the pro-
ton properties more than the Λ and kaon properties as the mass distribution in
the first histogram shows a stronger modification. The observables presented
further in this thesis are all obtained from the refitted four-vectors.

4.2.1 Single Particle Kinematics

To understand the underlying dynamics in the production of the three particles
pK+Λ, the kinematics of each particle are useful observables to study. A sub-
objective of this work is to understand the kinematics behind the production
of the three particles pK+Λ and accordingly reproduce their behavior with a
model. As discussed in Section 2.4, the simplest approach for the description
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4.2 Characteristics of p+K++Λ Production

Figure 4.7: Components of the four-vector of the three particles in the CMS for
the HADES data set (black points) shown with phase space simu-

lations of pK+Λ (blue dots).
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of the kinematics is the assumption that the particles are produced via phase
space without dynamics. This would result in a uniform event distribution in the
Dalitz-Plot, which is a two-dimensional representation of the event kinematics.

The observables that are presented in the following are, however, not a direct
measure of the real production properties. Their spectra are strongly affected
by the acceptance of the HADES spectrometer. Thus, in order to judge whether
the model describes the production kinematics correctly, it should only be com-
pared to the data inside the acceptance of the spectrometer. If the kinematics
in the acceptance differs between the model and the experimental data, they
will also differ in the full phase space and in this way the model can be iden-
tified as wrong. Only if the model describes all independent observables well,
it is probable that it reproduces the kinematics correctly. Figure 4.7 shows the
momentum, theta and phi distributions in the center of mass system (CMS)
each for p,K+ and Λ, respectively. Simulations of Reaction (4.1), in which the
particles are produced via phase space, are compared to the data. The agree-
ment between the model and the measured data is rather poor. The kaon is the
only particle that is described by the phase space simulations. Still, this does
not mean that there are no complex kinematics involved in the production of
the kaon. It means that the kaon is more independent from the underlying pro-
duction mechanism than the proton or the Λ. The reason for this might be due
to their two-step production via an intermediate N∗ that decays into a K+Λ-pair.
In this case the kinematics of the N* is mainly carried by the Λ as a result of the
large mass difference to the kaon.

4.2.2 Multi-Particle Kinematics

It is obvious that if the simple kinematic of each particle is not described by a
phase space production of pK+Λ, more sophisticated observables that combine
the kinematics of many particles, will also not be consistent with this hypothe-
sis. In Figure 4.9 the experimental invariant mass distributions of two particles
are compared to the resulting distributions of the phase space simulations. The
differences between the two histograms in the K+Λ (=̂MMp) invariant mass
distribution are striking. This observable will differ from a pure phase space
distribution if intermediate N*-resonances are contributing to the production
process. In this case, the kinematics of the K+ and the Λ would be correlated
and especially their invariant mass would not be distributed equally along the
Dalitz-Plot but the statistic would be enhanced in the region corresponding to
the N∗ masses (see e.g. the Dalitz-plot in Figure 6.12 of Chapter 6).
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4.2 Characteristics of p+K++Λ Production

Figure 4.8: Angular correlations of the three particles for the HADES data set

(black points) shown with phase space simulations of pK+Λ (blue
dots). The upper index at the angle indicates the rest frame (RF)
in which the angle is investigated. The lower index names the two
particles between which the angle is evaluated. CM stands for the
center of mass system. B and T denotes the beam and target vector,
respectively. See Figure 2.6 for further explanations.
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Figure 4.9: Invariant masses of two particles for the HADES data set (black
points) shown with phase space simulations of pK+Λ (blue dots).

The invariant mass of pΛ which corresponds to the missing mass to the kaon is
again described well by the phase space as already the kinematics of the kaon
could be modeled with these simulations. Still, that matching does not mean
that phase space is an appropriate model as it does not catch the complete
kinematics which is visible in the angular distributions (Figure 4.8). Here, the
spatial correlation of the produced particles can be demonstrated. The only
observable which is described well by phase space pK+Λ production is the kaon
angle in the CM system. This means that the kaon is not exhibiting a strong
angular anisotropy in the CM system. The other eight angles do show that the
complete event kinematics is missed by the model.

This result, combined with the reports from earlier measurements [155, 156,
157, 160, 161, 162], confirms that the production of pK+Λ cannot be under-
stood as a simple phase space process. Motivated by the aim to model the
production process exactly, and also in order to see if a kaonic cluster partici-
pated in the reaction, it was decided to use a partial wave analysis tool.

4.3 A Partial Wave Analysis for p+K++Λ Production

A partial wave analysis in general tries to decompose the scattering process
into separate sub-processes according to the quantum numbers of the initial
and final state. The differential cross section of the reaction (in this case a
three particle production out of the collision of two particles) can be written
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as [180]:

dσ =
(2π)4 |A|2

4|k|ps
d3(P, q1, q2, q3), (4.11)

P = k1 + k2. (4.12)

Where d3 is the phase space element of the three final state particles with the
four-momenta q; k are the four momenta of the two initial state protons; |k|
is the absolute value of the momentum of the beam proton calculated in the
CMS;

p
s is the center of mass energy of the colliding system; A is the transition

amplitude from the initial to the final state. This transition amplitude can be
decomposed into partial waves as follows [180]:

A =
∑

α

Aα
tr
(s)Qn

μ1 ...μJ
(S, L, J)A2b(S2, L2, J2)(s)Q

ƒ n
μ1...μJ

(, S2, L2, J2, S
′, L′, J). (4.13)

The initial p+p system is characterized by their quantum numbers S, L, J, which
denote their combined spin, orbital momentum and total angular momentum.
Instead of treating the thee particles in the final state independently it is useful
to select a two-particle subsystem and treat the third particle with respect to
this system. Consequently S2, L2, J2 denote the combined spin, orbital momen-
tum and total angular momentum of the two particle subsystem. The total final
state is then described by S′, L′ and J, where S′ denotes the spin of the system
when the two-particle state and the third particle are combined, and L′ denotes
the orbital momentum between the third particle and the subsystem. If q is
the four-momentum of the third particle, the invariant mass of the subsystem
can be written as:

s = (P− q)2. (4.14)

Aα
tr
(s) is the transition amplitude from the initial to the final state where the

multiindex α accounts for all combinations of S, J, L, S2, L2, J2, S′, L′,  and q and
is associated with certain waves.
A2b(S2, L2, J2)(s) contains the re-scattering process in the two-particle final
channel;
Qn
μ1...μJ

(S, L, J) are the spin-momentum operators of the initial state and describe

the production process;
Qƒ n
μ1...μJ

(, S2, L2, J2, S
′, L′, J) is the spin-momentum operator of the final state and

describes the decay processes.
The exact form of the operators can be taken from [181, 182]. The transition
amplitude is parametrized as follows [183]:

Aα
tr
(s) = (α

1
+ α

3

p
s)e

α
2 . (4.15)
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As the center of mass energy of this experiment was constant the third param-
eter α

3
which is responsible for the energy dependence of each partial wave

is not used. This means that each transition (α) from initial to final state is
described by a strength and a phase.

The part of the amplitude that describes the energy dependence of the the scat-
tering process with an intermediate state including a resonance is parametrized
as a relativistic Breit-Wigner in the following form [182]:

A
β

2b(sK+Λ) =
Mtot

M2 − sK+Λ − Mtot
, (4.16)

with M and tot expressing the mass and width of the intermediate resonance.
In case that particles do not come from a resonance but interact via a re-

scattering in the final state, A
β

2b(s) looks as follows:

A
β

2b(spΛ) =

β

γγ′
p
spΛ

1− 1
2
r
β

γγ′q
2

β

γγ′ + q
β

γγ′q
2L2 /F(q, r

β

γγ′ , L2)
. (4.17)


β

γγ′ describes the scattering length of two particles γ and γ′, r
β

γγ′ describes the
effective range of the two particle system and q denotes the relative momen-
tum between p and Λ. While γγ′ = pp or pΛ is included in the formalism in
general, for this special case, in which only pK+Λ events are investigated, γγ′

stands for pΛ. The F(q, r, L) is the Blatt-Weisskopf form factor. As in these cases
only a two particle subsystem is considered the quantum number of the third
particle is irrelevant. This is expressed by the multiindex β which runs over all
combinations of the two particle system (S2, L2 and J2) and is a sub-set of α.

The so far illustrated parts of the amplitude (4.16) and (4.17) describe the scat-
tering process as a function of the energy. The angular dependence of the
scattering amplitude, that is characteristic for a partial wave decomposition, is
contained in the momentum part of the spin-momentum operators [184]. It is
parametrized by Legendre polynomials that depend on the cosine of the scat-
tering angle between initial and final state particles in the CMS, see Appendix
A in Ref. [184] for details.

In this experiment, the initial state consists of two colliding protons, and the
final state is composed of the three particles pK+Λ, see Reaction (4.1). In Ap-
pendix C, all possible quantum numbers of the initial two-proton system are
listed. For this experiment, the possibilities were limited to states with J<3.
This leaves six combinations as possible initial states: 1S0, 3P0, 3P1, 3P2, 1D2
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4.3 A Partial Wave Analysis for p+K++Λ Production

and 3F2. The states are characterized by the spectroscopic notation [185]:

2S+1LJ, (4.18)

where S is the total spin of the p+p system, L is the orbital momentum between
the two protons and J is the total angular momentum.

The final state interaction is manifold. As explained in Section 2.4, the final
pK+Λ state may contain several intermediate particles. The most prominent
ones are N∗+ resonances that subsequently decay into K+ and Λ, see Reaction
(2.6). The Bonn-Gatchina framework performs a global fit of the data. This
means, that specific waves contain already a certain mass distribution accord-
ing to an implemented resonance parametrization. Mass and width parameters
of the resonances are not determined by the fit but are used as external con-
straints. These constraints are provided by the PDG [8] which contains a list of
N*-resonances. Not not all of them are, however, well established. Within this
thesis no conclusion can be drawn about the precise contribution of the differ-
ent N∗+-resonances to the investigated final state and hence no cross section
of the latter will be extracted. Thus, all N*-resonances below the mass of 2100
MeV/c2 that have a measured K+Λ branching above 1% were considered as pos-
sible contribution to the K+Λ yield. Table 4.1 lists the selected N*-resonances,
their quantum numbers, masses, widths and branching ratios into K+Λ. Espe-
cially the branching in K+Λ is not well known in most of the cases.

Using this table, one can construct several allowed transitions from a p+p initial
to a N∗++p final state. One transition will be discussed here as an example. A
proton has the following quantum numbers JP = 1/2+, where J is the total spin
of the particle and P is its parity. A system of two protons can, therefore, have

Table 4.1: Selected N*-resonances with their properties [8].

Notation in PDG Old notation Mass [GeV/c2] Width [GeV/c2] ΛK /A %

N(1650) 1
2

−
N(1650)S11 1.655 0.150 3-11

N(1710) 1
2

+
N(1710)P11 1.710 0.200 5-25

N(1720) 3
2

+
N(1720)D13 1.720 0.250 1-15

N(1875) 3
2

−
N(1875)D13 1.875 0.220 4±2

N(1880) 1
2

+
N(1880)P11 1.870 0.235 2±1

N(1895) 1
2

−
N(1895)S11 1.895 0.090 18±5

N(1900) 3
2

+
N(1900)P13 1.900 0.250 0-10
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Table 4.2: JP realizations of a combined system of a 1
2

−
and a 1

2

+
particle.

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 0− 1−

1 1+ 0+,1+,2+

2 2− 1−,2−,3−

3 3+ 2+,3+,4+

a total spin S = 0 or S = 1. If one considers the S = 0 combination and assumes
no orbital momentum between the two particles (L = 0), the quantum numbers
of the system are JP = 0+. This state can also be characterized in the spectro-
scopic notation (Equation (4.18)). Then, in this example, the p+ p combination
is in the state 1S0.

If one considers, further, a final state of an N∗(1650) with the quantum num-
bers JP = 1/2− produced together with a proton, one has to build all possible
combinations of a 1/2− and a 1/2+ state. These combinations are listed in
Table 4.2.

In each transition from initial to final state, the total spin J and the parity P

have to be conserved. If one searches for a transition from the 1S0 initial state,
one has to find a final state, which has also JP = 0+. As seen from Table 4.2,
these quantum numbers are present for the configurations in which the spins of
N∗(1650)+ and a p add up to S = 1 and the orbital momentum between them
is L = 1. This state is marked bold. In the spectroscopic notation this final state
can be written as 3P0.

To constrain the orbital momenta of the initial and final states, that may possibly
be populated, one can orientate oneself at the available energy of the reaction.
In the case presented here, the p beam had a kinetic energy of 3.5 GeV. This is
equivalent to a center of mass energy of

p
s = 3.176 GeV. Appendix C contains

a detailed description of all the selected waves of the p+p initial as well as the
pK+Λ final system.

4.3.1 Data Fitting Procedure

The parameters 1 and 2 (from Equation 4.15) of each transition wave are
determined from the PWA by an unbinned fit (event-by-event wise) of the PWA-
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4.3 A Partial Wave Analysis for p+K++Λ Production

amplitude to the experimental data. As an input for the fitting procedure, ex-
perimental data are needed together with phase space simulations, that were
filtered through the detector acceptance and treated in the same way by the
analysis as the experimental data. Both data sets are provided in form of a list
containing all components of the four-vectors of proton, kaon and Λ. All these
components were fitted simultaneously in each single event. Important is that
the events fulfill constraints like momentum and energy conservation which is
a further argument to use vectors with refitted kinematics in the analysis, see
Sec. 4.2. In addition, the PWA code needs a list of possible transition waves
that can contribute to the investigated final state. The list with the transition
amplitudes used in this analysis is shown in Tables 6.2-6.5 of Chapter 6. Ap-
pendix C describes how they were selected. In case the final state contains
a resonance, its mass and width values have to be provided in an extra input
list. Their exact properties can, in principle, be used as a free fit parameter. To
decrease the number of degrees of freedom in the fit, however, the mass and
width properties of the N*-resonances were fixed to the PDG values [8].

The PWA fits the sum of all transition amplitudes on an event-by-event base
to the provided list of experimental data. The fit is based on a log-likelihood
minimization. It repeats this fitting procedure for many iterations. The number
of iteration steps is fixed by the user. In this work, a default number of 100
iteration steps is used. Unless no improvement of the log-likelihood value is
observed the full iteration is performed; in case the fit arrives to a minimum
earlier, the iteration is terminated and the final result is reported.

As an output, the fit delivers a value for 1 and 2 for all included waves. The
overall quality of the fit is presented by the maximum likelihood value. In order
to make a statement about the quality of the fit, based on this discrepancy
variable, its probability density function (PDF) needs to be evaluated5. The
PDF for this discrepancy variable (maximum log likelihood) was not determined.
Still, this variable is a useful quantity on a relative scale. By comparing the log
likelihood value of many fits the best fit can be determined through the largest
negative value. To represent and cross check the fit result in a graphical way,
each simulated event that was used as an input for the fitting procedure is
assigned a weight to model the shape of the PWA solution. When filling these
events with their according weights in a histogram the PWA solution can be
compared to the measured data inside the acceptance of the spectrometer.

5See Chapter 5 for a detailed discussion about statistics.
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4.3.2 Fit Cross Checks

In a first iteration, only the events of the HADES data set were fitted by the
Bonn-Gatchina-PWA code. The best solution that has been obtained is pre-
sented in Figure 4.10 and 4.12. Here, five N*-resonances (N(1650), N(1710),
N(1720), N(1875) and N(1895)) and four non-resonant waves were used in the
fit. This corresponds to the N* fit version No. 9 in Table 4.3 and the non-resonant
wave fit version No. 4 in Table 4.4. This solution yields a very good description
of the measured data, as visible in Figures 4.10 and 4.12. As a cross check,

Figure 4.10: Invariant masses of two particles for the HADES data set (black
points) shown with the best PWA solution (blue dots) fitted to
these data.

Figure 4.11: Invariant masses of two particles for the WALL data set (black
points) shown with the best PWA solution (blue dots), obtained
by a fit to the HADES data only.
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Figure 4.12: Angular correlations of the three particles for the HADES data set

(black points) shown with the best PWA solution (blue dots) fitted
to these data. See Figue 2.6 for further details about the observ-
ables.

the PWA solution, obtained only from the HADES events, was compared to the
events in the WALL data sample. Figures 4.11 and 4.13 point out that the ex-
perimental data inside of the WALL acceptance (black data) can be described
to a large extent by the PWA solution (blue points). Because the solution is not

103



4 Exclusive Event Selection and Model Description

Figure 4.13: Angular correlations of the three particles for the WALL data set

(black points) shown with the best PWA solution (blue dots), ob-
tained by a fit to the HADES data only. See Figue 2.6 for further
details about the observables.

biased by the WALL data-set, this is a proof of a certain predictive power of
the solution for detector-blind regions. Since the HADES data-set contains no
particles emitted in the very forward direction (0.33◦ to 7.17◦), and the WALL
does, these two data-set can not be seen as sub-sets of one-another but are
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Figure 4.14: Invariant masses of two particles for the three particles for the se-

lected HADES data set (black points) shown with the best PWA

solution (blue dots), obtained by a fit to the HADES data, excluding
a MpΛ mass range of 2200-2300 MeV/c2 (upper row) and excluding a
MpΛ mass range of 2300-2400 MeV/c2 (lower row).

independent. This is an important quality check for the PWA code.

Another important check tests whether a signal in the data which was not in-
cluded in the PWA, e.g the KNN, could extensively bias the fit. Again, only the
HADES data were fitted while the results are discussed for both data sets. The
following cross check was performed: events in a certain mass range in MpΛ

were excluded from the fit; The remaining events were fitted by the PWA. This
cross check was done for two mass ranges. 1) a mass range from 2200 MeV/c2

- 2300 MeV/c2 in MpΛ was excluded; and 2) a mass range from 2300 MeV/c2

- 2400 MeV/c2 in MpΛ was excluded from the fit. In this way one creates data

samples that certainly do not contain the production of 1) a low-mass KNN and
2) a high-mass KNN and one can cross check if an exclusion of these - eventu-
ally KNN contaminated - events changes the prediction of the fit.

105



4 Exclusive Event Selection and Model Description

The results of these fits to the selected events are presented in Figure 4.14.
The PWA fits also well to the reduced data sample. The two solutions, obtained
from these samples, can be drawn in the complete mass range as well. This
way one can determine how much the fit changes its prediction for a certain
mass range when the events within this range are excluded. Figure 4.15 shows
the MpΛ for the three different solutions for the HADES and WALL data sets.
Specifically the upper right panel reveals that the inclusion of mass ranges
that could contain a small amount of signal seems not to bias the fit. For the
WALL data set more differences between the three cases are visible. This is,
however, not surprising as non of the WALL data were used for this test and
the lower panels reveal, thus, the changes in the extrapolations to this phase
space which are, nonetheless, small. In this respect, it is remarkable how well
the fit describes the data. The fit, furthermore, seems not to be biased by
events in certain mass windows, as the resulting distribution does not show
a systematic difference within these mass ranges for fits that in- and exclude
this range. There is one systematic deviation of the solution symbolized by the
green dots in a mass range of 2220-2250 MeV/c2 in the lower right panel of
Figure 4.15. In this mass range the new solution is systematically below the
original solution, shown with the blue dots. As in this solution (green dots) the
mass range from 2300-2400 MeV/c2 was excluded, and not the range of 2220-
2250 MeV/c2, the statistic that differs was actually included into the fit. For this
reason this systematic difference can not be attributed to a hidden signal that
changes the prediction of the PWA solution. A detailed comparison of the PWA
solutions to the data in several observables is documented in Appendix D.

These cross checks strengthen the reliability of the introduced method. The
successful cross check of fitting only one complete data set and extrapolating
to the other data set assures us to fit both data sets simultaneously. This will
further stabilize the out-coming prediction of the PWA.

4.3.3 Systematic

The application of the PWA framework to the pK+Λ data sample has shown that
due to the large number of parameters the solution is not very sensitive to the
input wave composition: the inclusion or exclusion of different N∗+ resonances
has in many cases no strong impact on the shape of the solution for the var-
ious observables. Thus, the considered data sample is not able to determine
a unique set of the contributing N∗+. To reassure that this ambiguity does not
lead to a bias of the final statement about the production of a kaonic cluster,
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Figure 4.15: Invariant Mass of pΛ for the HADES data set (upper panels) and
WALL data set (lower panels) (both black points), presented to-
gether with the best PWA solution (blue dots), fitted to the HADES
statistic only. Compared to these results are the two cross checks,
where once events were rejected from the fit with a mass range of
2200-2300 MeV/c2 (violet points) and once within a mass range of
2300-2400 MeV/c2 (green points). The left panels show the full mass
range and the right panels show a zoom into the excluded mass re-
gions.
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Table 4.3: Different versions of N* combinations in the PWA input.

No. Resonance combinations

0 N(1650), N(1710), N(1720)
1 N(1650), N(1710), N(1720), N(1900)
2 N(1650), N(1710), N(1720), N(1895)
3 N(1650), N(1710), N(1720), N(1880)
4 N(1650), N(1710), N(1720), N(1875)
5 N(1650), N(1710), N(1720), N(1900), N(1880)
6 N(1650), N(1710), N(1720), N(1900), N(1895)
7 N(1650), N(1710), N(1720), N(1900), N(1875)
8 N(1650), N(1710), N(1720), N(1895), N(1880)
9 N(1650), N(1710), N(1720), N(1895), N(1875)

10 N(1650), N(1710), N(1720), N(1880), N(1875)
11 N(1875), N(1880), N(1895), N(1900)

Table 4.4: Different sets of non-resonant waves in the PWA input.

No. Non-resonant waves

0 no non-resonant waves
1 (pL)(1S0)− K
2 previous wave + (pL)(3S1)− K
3 previous waves + (pL)(1P1)− K
4 previous waves + (pL)(3P0)− K
5 previous waves + (pL)(3P1)− K
6 previous waves + (pL)(3P2)− K
7 previous waves + (pL)(1D2)− K
8 previous waves + (pL)(3D1)− K
9 previous waves + (pL)(3D2)− K

a systematic variation of the used partial waves in the PWA input was per-
formed. The solution itself contains resonant and non-resonant production of
pK+Λ. Therefore two types of variations have been tested. First, the number of
included N*-resonances was varied. The combination of tested N*-resonances is
listed in Table 4.3. Second, in each N* combination the number of non-resonant
waves has been modified. The combinations of different non-resonant waves
are listed in Table 4.4. Through a permutation of the input possibilities in Tables
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Table 4.5: Best solutions for each N* combination in the PWA.

No. of N* combination No. of non-res. waves Log-likelih.

0 7 -2415.74
1 8 -2708.49

2 8 -2524.59
3 8 -2712.49

4 4 -2671.05
5 8 -2310.4
6 9 -2754.37

7 8 -2657.77
8 8 -2734.97

9 6 -2698.86
10 4 -2642.58
11 0-9 >0

Table 4.6: Naming scheme for the four best solutions.

Name N* combination No. of non-res. waves Loglikelih.

1/8 N(1650), N(1710), 8 -2708.49
N(1720), N(1900)

3/8 N(1650), N(1710), 8 -2712.49
N(1720), N(1880)

6/9 N(1650), N(1710), 9 -2754.37
N(1720), N(1900), N(1895)

8/8 N(1650), N(1710), N(1720), 8 -2734.97
N(1895), N(1880)

4.3 and 4.4 a number of 120 PWA solutions have been tested. The quality of
the PWA solution is determined by the loglikelihood value of the fit which is an
output of the Bonn-Gatchina PWA. The comparison of the different loglikelihood
values for the various permutations allows to decide which solution describes
the data best. For each N* combination the solution with the best loglikelihood
was determined. This value depends only on the number of non-resonant waves
that have been included. In case of the resonance combination No. 11 no good
value for any non-resonant combination could be achieved. Table 4.5 shows the
loglikelihood value for each N* combination. The four best results are marked
in bold. Table 4.6 summarizes the four best solutions and their further naming
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scheme. The overall best agreement with the data is obtained with a solution
that contains N(1650), N(1710), N(1720), N(1900) and N(1895) as well as nine
non-resonant waves of pK+Λ. The superposition of the four best solutions in
comparison to the data is illustrated by a gray band in Figures 4.16 - 4.19. The
width of the band represents the scatter of the different solutions. The iterative
permutation of included waves in the PWA fit procedure shows that even if the
exact composition of participating partial waves to the process p+p→ p+K++Λ

can not be determined unambiguously, the quality of data description is yet
comparable and does not induce a large systematic uncertainty in the predicted
shape of the pΛ invariant mass distribution. This result is important as it allows
a stable prediction for the pΛ invariant mass distribution without the inclusion
of a signal of a possible kaonic cluster production. The gray bands in Figures
4.16 - 4.19 are, thus, the null hypothesis (no signal) for a further statistical
significance test.
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Figure 4.16: Invariant masses of two particles for the HADES data set (black
points) shown with the four best PWA solutions (gray band), ob-
tained by a fit to the HADES and WALL data.

Figure 4.17: Invariant masses of two particles for the WALL data set (black
points) shown with the four best PWA solutions (gray band), ob-
tained by a fit to the HADES and WALL data.
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Figure 4.18: Angular correlations of the three particles for the HADES data set

(black points) shown with the four best PWA solutions (gray
band), obtained by a fit to the HADES and WALL data. For details
about the observables see Fig. 2.6.
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Figure 4.19: Angular correlations of the three particles for the WALL data set

(black points) shown with the four best PWA solutions (gray
band), obtained by a fit to the HADES and WALL data. For details
about the observables see Fig. 2.6.
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5 | Is There a New Signal? - A

Statistical Analysis

The discovery of a new signal implies that the so far known concepts have
failed to describe a measurement. Only then it is legitimate to test further
hypotheses that include the existence of new particles. In order to do that, at
least two hypotheses have to be tested on the data. The so called background
hypothesis (established signal sources) and the signal hypothesis (new signal
component and background).

This chapter discusses the test of two hypothesis compared to the data. To
quantify the test results the frequentist statistics is introduced and applied.

5.1 The Frequentist Approach

The fequentist approach is based on the idea to quantify the reliability of a result
based on its recurrence in case of constantly repeating an experiment. It is
important to note here that the frequentist statistics will not deliver confidences
in a model or parameter but the statement one obtains is about the probability
to observe the measured data.

The approach quantifies the agreement between a model and data. This is done
by defining a discrepancy variable (test statistic) [186].

In this analysis, the data are compared to the model in a binned representation
(mass bins, angle bins etc.). Here, uncorrelated events with non-varying prob-
ability of occurrence are summarized. In such cases, the statistic inside one
bin approximates a Poisson distribution [187]. This analysis uses, based on the
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argumentation in Ref. [186], the Pearson χ2 statistic:

χ2
P
=

Nb∑

=1

(m − λ)2

λ
, (5.1)

as a discrepancy variable. Here, m are the number of measured events in
the bin i, and λ are the number of expected events in the bin according to
the model. Nb is the number of considered bins. In the Poisson statistic the
standard deviation of the expected value is given by

p
λ. The denominator

in Equation (5.1) is, thus, the squared error of the expected bin entry accord-
ing to the model. The measured values m fluctuate around their expectation
value λ. Even in case the data are compared to the correct model the discrep-
ancy between model and data will vary with a certain probability. Due to these
fluctuations χ2

P
is also a random variable. The probability distribution of the

measured χ2
P
value, P(χ2

P
,Ndf), can be approximated by a χ2-distribution [186],

with Ndf being the number of degrees of freedom of the test. The observed
χ2
P
can take all values between 0 and ∞, where the most likely value of the

probability distribution is Ndf. In most cases one would expect to measure a χ2
P

value close to Ndf whereas large χ2 values occur with a lower probability.

Rather than using χ2 directly to express the trust in a model, one uses the p-
value. A p-value is defined based on a discrepancy variable, as it is constructed
as the integral over the probability density function (pdf) of the discrepancy
variable. The integral starts from the measured discrepancy value of the exam-
ined data (χ2

P,d
) and ends at infinity. In this approach, the p-value is calculated

from a χ2-distribution which is a good approximation for the real pdf of χ2
P
. The

p-value of χ2
P
is, thus, written as:

p-value=

∫ ∞

χ2P,d

P(χ2, Ndƒ )dχ2 . (5.2)

Here, P(χ2, Ndƒ ) is the pdf of the χ2-distribution and χ2
P,d

is the Pearson χ2-
value of the present data. As the p-value is calculated from the tail of the
probability distribution, it tells, given themodel is correct, how probable it would
be to observe an agreement between the model and the data that is equal or
worse than the observation in the present experiment. Due to its mathematical
construction a p-value distribution for a correct model is expected to be flat
between [0,1] [186]. Wrong models on the other hand will produce very small p-
values, which have a rapidly falling distribution towards higher p-values [186].
This is the reason why p-values can be used to discriminate models. If one

116



5.2 Test of the Null Hypothesis H0

observes, for example, a p-value of 0.01 one would, in case the model is correct,
have observed one of the 1% most unlikely experimental outcomes. In such
a case one would tend to conclude that the model one used is probably not
correct rather than considering a very unlikely outcome.

Unfortunately, there is a constantly reoccurring misunderstanding about the
meaning of p-values. This topic is intensively discussed in the literature [188,
189, 190, 191]. Especially Ref. [191] summarizes nicely how a p-value is often
misunderstood as a probability of the model or a tested parameter. This is not
the case; with that method one gains no information how probable a certain
scenario or parameter is. Such information can only be achieved by a Bayesian
analysis. Remembering the footing of the frequentist statistic one should stick
to the expression that given the tested model one has observed one of

the α% most unlikely outcomes. Rejecting a hypothesis at a certain prob-
able outcome does at the same time imply that in α% of the cases one would
reject a hypothesis though it is actually true, only because one has had bad
luck and detected a very unlikely outcome. This scenario is called a Type-I error
[192]. In this sense the p-value is not a strict criteria which will falsify models
on an absolute level, if a model is rejected based on the p-value it is, thus, not
proven to be wrong but it is determined to be unlikely that the model would
produce such an experimental outcome.

5.2 Test of the Null Hypothesis H0

A null hypothesis is also called the background-only hypothesis and assumes
that the observables can be described by well established physical signals. The
search for a new signal aims to reject the null hypothesis. The null hypothesis
itself is, thus, enough in order to discover a new signal. Due to the complex-
ity of the pK+Λ production process there is, so far, no theoretical model that
can predict the full event kinematic and with this the expected shape of the pΛ
mass distribution a priori. The only models which describe, for example, the pΛ
mass distribution are, therefore, the data based PWA solutions. These solutions
contain, up to this point, no additional signal besides the production of N* res-
onances and non-resonant pK+Λ production. This is the reason why the further
statistical tests are performed with the four best solutions of the PWA analysis,
obtained by a fit on both experimental data sets, as null hypotheses.

The statistical test was performed on the measured data sets for HADES and
WALL separately. The observable expected to be most sensitive to the produc-
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tion of a kaonic cluster is the invariant mass distribution of pΛ. Here, the statis-
tic of events that contain the production of a cluster, is expected to accumulate
around a certain value which would correspond to the mass of the cluster. The
model is, thus, compared to the data in this observable. As discrepancy vari-
able χ2

P
was used, as described in Section 5.1. The χ2

P
was calculated for each

mass bin separately (to be sensitive to the mass of the kaonic cluster) and one,
therefore, speaks of a local p0-value.1 To account for the systematic uncertainty

HADES WALL

Figure 5.1: The upper figures compare the four best PWA solutions to the mea-
sured data (Based on a fit to both data sets HADES and WALL). Shown
is the invariant mass of pΛ of both data sets compared to the solu-
tions. The lower figures contain the local p0 distributions for the four
PWA solutions compared to the measured data. The gray dashed lines
mark the equivalent significances 1σ, 2σ, and 3σ, respectively.

1The index 0 indicates that it is the p-value of the null-hypothesis.
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of the PWA fitting procedure the local p0-value was determined for all four best
solutions separately. Figure 5.1 summarizes the different p0-values of these
solutions for both mass distributions (see App. F for separate figures). As the
four solutions predict similar values for the expected number of events in each
bin the extracted p0-values are also very similar. The uncertainty of the four
extracted p-values depending on the PWA solution can be compiled in a gray
systematic band. This is illustrated in Fig. 5.2. The separately calculated results
can also be combined by a sum over the discrepancy in the same HADES and
WALL mass bin. Then the χ2

P
from Equation (5.1) is a sum over two discrepan-

cies. If an enhancement of the data compared to the model is present in both
data sets, this sum would strengthen the observed deviation. If a deviation is
present only in one data set, it is probably a fluctuation and then the combined
analysis will smooth out these results. The combined p-value from both data
sets is shown in Figure 5.3.

The agreement between a hypothesis and measured data, in the field of parti-
cle physics, is usually expressed in in terms of n·σ, which is called equivalent
significance [192]. To obtain this equivalent significance the upper tail (p-value)
of the χ2-pdf is translated to an upper tail of the standard Gaussian pdf [192].
In this way one can translate χ2

P,d
to an equivalent value gssd (in case the

data would fluctuate according to a normal distribution). As gssd expresses
an upward fluctuation of a standard Gaussian random variable (instead of a
Poisson random variable) it is natural to express this upward fluctuation (dis-
tance from the mean) in terms of n standard deviations (nσ). This equivalent
significance is also plotted on the y-axes of Figures 5.1 and 5.2. A deviation is
called significant if the probability of a data point fluctuating by chance with
respect to a given model by chance is certainly low.

By pure convention a deviation is declared as indication (<3σ), observation (3σ)
and discovery (5σ) respectively [193]. These standard deviations correspond to
probabilities when expressed as p-values. A 3σ standard deviations for example
includes 99.73% of the area under a normal distribution. As a p-value is defined
as the tail of a distribution (outside nσ) this would correspond to a p-value of
0.0027. If one considers only one-sided fluctuations, as one can clearly see
whether the data overestimate or underestimate the model, the probability to
find a data point outside a one sided range of 3σ is 0.13%. This reads as
a rather low probability and is thus classified as observation. However, only
the measurement of a one sided fluctuation that occurs with a probability of
0.000029% by chance is considered to be so significant to announce a discovery
of a new signal (this corresponds to a p-value of 2.9 · 10−07).

119



5 Is There a New Signal? - A Statistical Analysis

HADES WALL 

Figure 5.2: The range of p-values from the four best solutions (see Figure 5.1)
is displayed here as a gray band. The gray dashed lines mark the
equivalent significances 1σ, 2σ, and 3σ, respectively.

Figure 5.3: The figure shows the local p0 distribution for a combined analysis of
HADES and WALL data. The differences between the four best solu-
tions are summarized by a gray band. The gray dashed lines mark the
equivalent significances 1σ, 2σ, and 3σ, respectively.
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In this test the p-values in Figure 5.2 reach only in one bin an equivalent signifi-
cance of 3σ within the full range of its systematic uncertainty2. There is, still no
observation of a signal as I) the mass of 2600MeV/c2 is far above the mass of a
bound ppK− system below ≈2370MeV/c2 II) The fluctuation is only visible in the
HADES data set and absent in the WALL data set and III) the strongest point is
that this bin shows a downward fluctuation of the data with respect to the mod-
els, see upper panel in Fig. 5.1. Thus, this can not be a sign of an additional
signal. As all other local p0-values stay far beyond 2.5σ the conclusion of this
investigation is that the data are fully consistent with the null hypothesis within
the systematic uncertainties. There is no need to include an additional signal
into the model to describe the data. No hint of a kaonic cluster was found in
both data-sets.

In tests where one calculates local p0-values one should, in principle, take also
the "look elsewhere" effect into account [194]. This effect describes the fact
that also correct models can yield with a certain low probability small p-values.
If one compares a model to the data in many experiments (b= many bin entries)
one would increase the chance to observe in one of the experiments an improb-
able outcome. If one would investigate an infinite number of mass bins it will
happen that at one mass bin the p-value will be so low that one could announce
a discovery. This effect can be corrected. As in this data, however, no signal
candidate is observed there is no need to quality check and correct the p-value
for the "look elsewhere" effect.

5.3 The Research Hypothesis Hμ

The data do not support the hypothesis of a kaonic cluster being produced in
the investigated process. Its existence, still, cannot be ruled out. In order to
give a quantitative statement of its possible production cross section in a proton
proton collision at 3.5 GeV beam kinetic energy an upper limit of the latter was
determined. As we observe one particular decay channel of the kaonic cluster,
see Reaction (1.12)-(1.15) of Chapter 1, we can only report about a fraction of
the total production cross section.

This part of the thesis will show the test of the research hypothesis Hμ which
includes a small yield of produced kaonic clusters to obtain a quantitative state-
ment about the upper limit on its production cross section. μ here stands for a
flexible production cross section that is proportional to the transition amplitude

2Visible in the HADES dataset (left panel) one of the very right mass points at 2600MeV/c2.
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of the final state in which the kaonic cluster is formed. The research hypothesis
Hμ is constructed out of the null hypothesis H0 by including an additional tran-
sition amplitude into the model. The parameters in the Hμ-hypothesis are fixed
to the values of H0. Only two parameters in Hμ are free. This is the phase and
amplitude of the wave in which a kaonic cluster is produced.

The upper limit on the production strength of the kaonic cluster is obtained with
the CLs method [192, 195, 194, 196]. This method is an advancement of the
standard frequentist confidence level CL. The frequentist ’confidence level’ cov-
ers the true parameter with a probability of CL% b= 1-α%, where α is called the
size or significance level of the test and is equal to the p-value. By convention
tests are usually done at a CL of 95 or 99%. The probability that the parame-
ter is not in the stated region is then only 5% or 1%. This Type-I error rate is
expressed by α and should be sufficiently small.

A parameter in a test of size α will be rejected if:

pμ ≤ α, (5.3)

where pμ is the p-value obtained in a test of a hypothesis were the tested
parameter has the strength μ, e.g. the kaonic cluster production cross section.

This standard approach has a critical drawback in case of signals with a low
production yield. By this conventionalmethod onemay exclude signals to which
the experiment has no sensitivity [192].3 A further critical point is the fact that
one can show that the experiment with the higher expected background can
set stronger constraints on a production yield as compared to a background
optimized experiment [196]. The reason for this is that the CL limit will always
deliver statements about the signal plus background, as it is technically not
possible to separate both in most experiments. The modern approach called
CLs tries to solve these problems. Here the ’confidence level’ is defined as a
ratio of the Hμ and H0 hypotheses. Is reads as follows:

CLs =
pμ

1− p0
. (5.4)

Values are rejected in a test if CLs ≤ α. The new selection condition for pμ
translates into:

pμ ≤ α · (1− p0). (5.5)

3E.g. cases in which the background fluctuation is artificially low.
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5.3.1 Implementation

The research hypothesis contains three different transitions amplitudes in which
a kaonic cluster could be produced:

WeA : ′p+ p′ 1S0 → ′ppK(2250)− K ′ 1S0, (5.6)

WeB : ′p+ p′ 3P1 → ′ppK(2250)− K ′ 1P1, (5.7)

WeC : ′p+ p′ 1D2 → ′ppK(2250)− K ′ 1D2. (5.8)

In this expression the spectroscopic notation 2S+1LJ is used to characterize the
initial and final state, see Equation 4.18. The produced yield of the kaonic clus-
ter will, most likely, stem from a sum of all three waves. For technical purposes
we tested three different conditions, where the whole yield stems exclusively
from Wave A, Wave B, and Wave C, respectively. To take into account that our
knowledge on the true N∗ content in the data is limited, these three waves
were implemented into each of the four best background hypotheses (H0) to
construct four different research hypotheses. This will deliver a systematic un-
certainty on the extracted result. The tested combinations are summarized
in Table 5.1. Since consistent information about the mass and width of the

Table 5.1: The combinations for each kaonic cluster value include 4 PWA solutions
and three transition amplitudes. In total: 12 different hypothesis. The
nomenclature of the solutions is taken from Table 4.6.

WaveA WaveB WaveC

Sol No. 1/8 x x x
Sol No. 3/8 x x x
Sol No. 6/9 x x x
Sol No. 8/8 x x x

kaonic cluster are not available from theory, several mass and width combi-
nations were tested. In this work, 16 different masses ranging from 2220 to
2370 MeV/c2 were tested in 14 mass bins of the pΛ mass observable. As the
tested widths of the kaonic cluster are by far larger than the bin width, many
bins in the model histogram will be affected by its implementation. The tested
combinations are summarized in Table 5.2. The kaonic cluster is implemented
in the Bonn-Gatchina PWA framework as relativistic Breit-Wigner-distribution,
introduced in Equation (4.16).

To summarize shortly: a hypothetical kaonic cluster is included in a fixed so-
lution of the PWA. The phase of this transition is free to vary, while amplitude

123



5 Is There a New Signal? - A Statistical Analysis

Table 5.2: Tested kaonic cluster values. Each point has a combination of a certain
mass and a width. In total 48 combinations were tested.

Mass [MeV/c2] Width [MeV/c2]

2220 30, 50, 70
2230 30, 50, 70
2240 30, 50, 70
2250 30, 50, 70
2260 30, 50, 70
2270 30, 50, 70
2280 30, 50, 70
2290 30, 50, 70
2300 30, 50, 70
2310 30, 50, 70
2320 30, 50, 70
2330 30, 50, 70
2340 30, 50, 70
2350 30, 50, 70
2360 30, 50, 70
2370 30, 50, 70

is scaled higher and higher in each test. The outcome of the fits with varying
amplitudes are compared to the data. For each solution it is tested whether
the agreement with the data excesses the pre-defined CLs value. This test of
increasing amplitudes is done for all four best solutions of the PWA and for all
three transition amplitudes that contain a kaonic cluster. This results in twelve
different upper limits which will define a range of uncertainty of the tested
model, see Table 5.1. To account for the theoretical dispute on the exact prop-
erties of the kaonic cluster, means the mass and width of this state, several
masses and widths were tested in combination. Table 5.2 contains all tested
properties of the kaonic cluster.

5.3.2 Parameter determination

This work will deliver an upper limit for the KNN production cross section at a
CLs of 95%. To obtain this level the research hypothesis Hμ has to be compared
to the data for several values of the implemented amplitude strength of the
kaonic cluster production wave. To obtain the full hypothesis Hμ, however,
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Figure 5.4: The dashed line illustrates the produced yield of kaonic clusters and
the solid line illustrates the yield observed after interference. Shown
are for each dataset (HADES left, WALL right) two different PWA solu-
tions. The amplitude is fixed to 10.

the waves once more have to be fitted to the data. This has its origin in the
unknown phase of the transition amplitude. Depending on this parameter the
wave of the kaonic cluster may interfere constructively or destructively with
all the other waves with the same JP configuration. Due to this interference,
the observed ’bump’ in the pΛ invariant mass distribution will differ. Figure 5.4
shows for a given amplitude strength the yield one observes with respect to
the null hypothesis as a function of the phase of the wave. The observed yield
is calculated as the difference between the null hypothesis and the research
hypothesis (Nμ−N0). The input yield of the kaonic cluster, which is proportional
to the amplitude strength, stays constant.

The solid, green curve in Figure 5.4 shows the observed kaonic cluster yield for
the best solution No. 6/9 (Table 4.6). The kaonic cluster wave has a maximum
destructive interference at a phase of 50 degree and a maximum constructive
interference at 230 degree for the HADES data set. For the WALL data-set the
maximum destructive interference is at about 300 degree while the maximum
constructive interference is around 115 degree. The reason for this difference
is based on the different geometrical acceptance of both data sets. Within the
acceptances the ratio of the yield from different transition waves varies which
results in specific interference patterns. In principle, the upper limit can be
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calculated by assuming, in a conservative case, a maximum destructive inter-
ference. In this case a maximum amplitude strength can be included with, at
the same time, minimal influence on the mass spectrum. As illustrated in Fig-
ure 5.4, however, the maximum destructive interference is not clearly defined,
as it differs for both data sets. The most conservative estimation (destructive
interference) can, thus, not be set by hand. Because of that the phase is free
to vary and is determined by a new fit to the data. For each amplitude iteration
the phase that fits best to both data sets is determined. The fit will find, in an
ideal case, a compromise for the minimal observed yield between the HADES
and WALL data set. Still, also in case of destructive interference at a certain
amplitude strength, a signal in the pΛ mass spectrum will be visible.

After fitting the research hypothesis to the data all parameters are fixed. This
procedure is repeated in a first iteration for six different amplitude strengths of
equal step size. Figure 5.5 shows the development of the visible kaonic cluster
yield in the research hypothesis Hμ. It is always compared to the experimental
data and the null hypothesis H0. Also displayed is the pure kaonic cluster yield
before the interference. As the fit tries to create a result consistent with the
data a destructive type of interference is observed. This can be recognized by
the small difference between Hμ and H0 although already an evident yield of
kaonic cluster is put into the hypothesis.

To finally obtain a quantitative statement about the agreement between data
and Hμ, the resulting mass distribution of the hypothesis is compared to the
data for each tested amplitude strength. The p-value of the research hypothesis
is calculated as follows: The resulting mass distribution of Hμ is scaled to the
data in the region excluding the signal area of MppK−± . Then χ2

P
is calculated

by a sum over all bins in the histogram, see Equation (5.1). From this χ2
P
-value

the p-value of Hμ is calculated. A result of this procedure is presented in Figure
5.6, where the pμ-value of the HADES dataset is shown as a function of the
increasing amplitudes. The figure shows the test for a mass of 2370 MeV/c2

and a width of 50 MeV/c2. The tested solution is No. 1/8. Shown in Figure
5.6 is the p-value for all three transition waves. The pμ-value decreases with
increasing amplitude. The higher the signal strength the worse the agreement
of Hμ with the measured data. The dashed orange line shows a p-value of
0.05. The p-value that satisfies the constraints of CLs is represented by the
red dashed line. This line is below 0.05 and is calculated according to Equation
(5.5). The size of the test α was set to 5%. In order to determine the factor
(1 − p0) the p-value of H0 was calculated in the same region as previously for
Hμ. As for each H0 hypothesis of the four different solutions p0 was calculated
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Figure 5.5: An example of the increasing amplitude strength (1-6). The pictures
show the result for the HADES data set and the solution 1/8, where
the kaonic cluster is produced via Wave C. The kaonic cluster was
simulated with a mass M=2260 MeV/c2 and a width of =50 MeV/c2.
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Figure 5.6: The pμ-value of the HADES dataset as a function of the amplitude of
the kaonic cluster wave. The example shows the test with M=2370
MeV/c2, =50 MeV/c2. CL 95% (orange-dashed line), CLs95% (red-
dashed line).

separately, the extracted CLs limit to which Hμ is compared to will differ for the
four cases but will in any case be lower than 0.05.

All amplitudes that deliver a p-value lower than indicated by the red line are
rejected by the fit. As the amplitude iteration steps are finite the upper limit
is not determined with a fine precision but has a certain error. This finite step
size is dedicated to the fact that the data have to be fitted again to extract the
phase of the wave. Since this procedure is very time consuming when testing it
with all the parameters the amplitudes are only increased with a finer step-size
in the vicinity of the rejection amplitude.

By combining the amplitudes that fulfill the condition of CLs one can present the
result as a function of the kaonic cluster mass, as done in Figures 5.7, 5.9 and
5.11. The four different solutions are represented by the different colors. The
points represent amplitudes still consistent with the CLs criteria the error goes
up to the points which were rejected by the test. The exact value at which the
transition from accepted to rejected happens lies somewhere between these
two limits. Only some of the amplitudes where sampled in a second iteration
with smaller steps. This is the reason for the different error widths. Most im-
portant was the sampling of the solutions which gave the largest compatible
amplitude as this constructs the upper limit of the kaonic cluster production
strength, based on our model.

Besides extracting the amplitude at which the CLs criteria is no longer fulfilled,
the Bonn-Gatchina framework allows to translate the amplitude of a process
into its percentage on the total production cross section of the final state. This
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Figure 5.7: The upper accepted amplitude at a CLs limit of 95%. The three figures
show the limit for all three transition amplitudes. The different colors
represent the upper limit for the four best solutions. This is obtained
from the HADES data-set for a simulated width of 30 MeV/c2.

Figure 5.8: The upper limit on the production of a KNN in the measured reaction
at a CLs limit of 95%. The limit is quoted in percentage of total pK+Λ
production cross section. The three figures show the limit for all three
transition amplitudes. The different colors represent the upper limit
for the four best solutions. This is obtained from the HADES data-set
for a simulated width of 30 MeV.
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5 Is There a New Signal? - A Statistical Analysis

Figure 5.9: The upper accepted amplitude at a CLs limit of 95%. The three figures
show the limit for all three transition amplitudes. The different colors
represent the upper limit for the four best solutions. This is obtained
from the HADES data-set for a simulated width of 50 MeV/c2.

Figure 5.10: The upper limit on the production of a KNN in the measured reaction
at a CLs limit of 95%. The limit is quoted in percentage of total pK+Λ
production cross section. The three figures show the limit for all
three transition amplitudes. The different colors represent the upper
limit for the four best solutions. This is obtained from the HADES
data-set for a simulated width of 50 MeV.
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Figure 5.11: The upper accepted amplitude at a CLs limit of 95%. The three fig-
ures show the limit for all three transition amplitudes. The different
colors represent the upper limit for the four best solutions. This is ob-
tained from the HADES data-set for a simulated width of 70 MeV/c2.

Figure 5.12: The upper limit on the production of a KNN in the measured reaction
at a CLs limit of 95%. The limit is quoted in percentage of total pK+Λ
production cross section. The three figures show the limit for all
three transition amplitudes. The different colors represent the upper
limit for the four best solutions. This is obtained from the HADES
data-set for a simulated width of 70 MeV.
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5 Is There a New Signal? - A Statistical Analysis

is shown in Figures 5.8, 5.10 and 5.12. The resulting numbers might seem
astonishingly high. Unlike in many analyses where the observed yield in a bump
is directly related to a production yield, this can not be done with interference.
When two sources interfere the final yield can not be attributed clearly to one or
the other source only from observing the interference pattern. The percentages
quoted in Figures 5.8, 5.10 and 5.12 are, thus, attributed to an initial yield
before interference as, a final yield is not clearly defined in this approach. Only
in case of absent interference one could observe directly a signal with 5% signal
strength as compared to the total pK+Λ production cross section.

For an upper bound on the production amplitude the most conservative case
at a mass point is the one that sets the limit. The differences arise from the
different interference patterns in the solutions. Figure 5.4 already indicated the
strong destructive interference of solution 1/8 which in this case also sets the
upper limit for most of the cases. To summarize the results of Figures 5.8, 5.10
and 5.12 the highest percentage of cross section still accepted by CLs is shown
in Figure 5.13. One can see that the upper limit as a function of the kaonic
cluster mass is rather structure-less. While a kaonic cluster produced via Wave
A and B seems to allow a higher yield by still being consistent with the data, a
production of a kaonic cluster via Wave C is stronger constrained to about half
the production strength as compared to the two other cases. The larger the
width of the produced state the more yield is consistent with the data.

70

50

30

2+1-0+

Figure 5.13: The upper limit on the production of a KNN in the measured reaction
at a CLs limit of 95%. The limit is quoted in percentage of total pK+Λ
production cross section. The three figures show the limit for all
three transition amplitudes. This is obtained from the HADES data-
set for a simulated width of 30, 50, and 70 MeV.
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6 | Extraction of the pK+Λ Pro-

duction Cross Section

This chapter discusses the different PWA solutions in 4π. Contributions of single
waves to the total solution are shown and explained. With help of these PWA
solutions an acceptance correction of the measured data is performed. This
correction allows to extrapolate the measured yield in the limited detector ac-
ceptance to the full phase space. The corrected data are then interpreted and
compared to other measurements.

6.1 PWA Solution in 4π

As previously discussed, the solution of the PWA can be displayed graphically
by filling events from phase space simulations with their PWA weight into a his-
togram. This has been shown for simulated events inside of the detector accep-
tance in the previous chapter. The PWA can further also assign corresponding
weights to simulated events in 4π. In this way a graphical representation of the
PWA solution in the full phase space is obtained. As the HADES and WALL data
sets are just two sub-statistics of the same process the 4π result is the same
for both of them.

Figures 6.1 and 6.2 demonstrate the observables in the full phase space ac-
cording to the four best PWA solutions. To compare the four best solutions in
a convenient way the histograms were normalized to the same area. The pre-
diction for the center of mass angles and the Gottfried-Jackson angles (middle
row of Figure 6.2) according to the different solutions agree well. The invari-
ant masses and the helicity angles (lower row of Figure 6.2) show some slight
disagreements. The first panel of Figure 6.1 shows the invariant mass of the
Λ−K+-pair. As this observable is very sensitive to the content of N*-resonances
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6 Extraction of the pK+Λ Production Cross Section

Figure 6.1: Two-particle masses for the four best solutions of the PWA (different
colors). The results are normalized to the same area.

the discrepancies can be explained by their different contributions in the mod-
els. While Sol. No. 6/9 (green) and No. 8/8 (cyan) have a contribution of the
N*(1895), this particle is missing in Sol. No. 1/8 (blue) and 3/8 (red). This ef-
fect reflects clearly the properties of the N*-resonance, listed in Table 4.1. The
N*(1895) is the most narrow N* included in the PWA with a width of about 90
MeV/c2 and hence its presence leads to an increased yield in the Λ K+ invariant
mass distribution around 1900 MeV/c2.

Solution No. 3/8 (red) on the other hand does not contain the two high mass
resonances N*(1895) and N*(1900) and has, hence, a systematic shift of its
predicted Λ K+ invariant mass distribution towards lower masses as compared
to the other three solutions. This effect is even more clearly visible in the
helicity plot in panel h) of Figure 6.2. In this reference frame solutions that
contain N* resonances with low masses produce yield at small opening angles
of Λ and K+ (cosθ ≈1), like sol. No. 3/8.

The results of the PWA can be also presented quantitatively. Table 6.1 contains
the contributions of the different initial p+p waves to the total pK+Λ production
cross section. The differences between the four best PWA solutions are obvious.
The relative difference as compared to the highest value is displayed by the
last column. The relative differences of the order of 50% are too large to draw
conclusions about the single contributions of initial p+p amplitudes on the total
production cross section. One can recognize, however, some qualitative trends.
The 3P0 initial state seems to have a small contribution in all solutions, while
the largest contribution in all but one solution is given by the 3F2 initial wave.
This can be an argument to include higher partial waves of the initial state to
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6.1 PWA Solution in 4π

a)                                           b)                                           c)

d)                                                                                         f)

                                              e)

       g)                                    h)                                           i)

                               

Figure 6.2: Angular correlations of the three particles for the four best PWA solu-
tions of the PWA (different colors). The results are normalized to the
same area. The upper row shows the angle of the particle in the CMS
(a)-c)), the middle row show the Gottfried-Jackson distributions (d)-f))
and the lower row show the helicity angles (g)-i)). See Figure 2.6 for
further explanations on the observables.
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6 Extraction of the pK+Λ Production Cross Section

Table 6.1: Contribution of the different initial p+p waves to the total pK+Λ produc-
tion cross section. All given in [%]. The last column shows the range R
of the different solutions related to the highest value.

In. State Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8 R/(hig. val.)

1S0 16.2 6.8 9.5 10.7 0.58
1D2 19.9 23.5 22.7 35.6 0.44
3P0 6.4 10.0 8.9 7.0 0.35
3P1 12.0 25.6 16.3 9.5 0.36
3P2 21.2 9.2 19.6 22.1 0.57
3F2 24.2 24.5 22.9 15.0 0.37

the fitting procedure by aiming to learn something about the exact partial wave
contributions of the pK+Λ final state.

The transition waves with the different contributions of intermediate states to
the pK+Λ final state are shown in the Tables 6.2 - 6.5. The transition waves are
grouped according to their initial state, shown in the first column. All waves with
the same initial state can interfere with each other. The intermediate state is
shown in the second column. It expresses the N* or non resonant composition,
followed by the total multiplicity (2S+1), and the angular momentum between
the particles (S, P, D, and F). The contribution of each intermediate state of
the transition is expressed in percent of the total pK+Λ production cross sec-
tion. The waves marked with "-" were not included in the fitting routine of the
particular solution. The range of the contributions varies largely. This means
that within this approach no clear statement about the exact contribution of
each wave to the final state can be drawn. To determine the exact partial wave
content more data also at different beam energies and with polarization observ-
ables would probably be needed.
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6.1 PWA Solution in 4π

Table 6.2: Partial wave contributions to the 1S0 and 1D2 initial state. All in [%].

In. st. Interm. st. Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8 Range [%]

1S0 S11(1650)p-3P 4.45 0.8 0.31 0.18 0.18-4.45
1S0 S11(1895)p-3P - - 2.41 1.05 0.00-2.41
1S0 P11(1710)p-1S 2.31 0.23 0.78 0.5 0.23-2.31
1S0 P11(1880)p-1S - 0.8 - 1.37 0.00-1.37
1S0 P13(1720)p-5D 1.83 0 11.46 0.01 0.0-11.46
1S0 P13(1900)p-5D 8.9 - 12.74 - 0.0-12.74
1S0 D13(1875)p-3P - - - - -
1S0 (pL)(3S1)K-3P 2.84 0.25 0.57 2 0.25-2.84
1S0 (pL)(3P0)K-1S 5.26 6.38 4.39 9.04 4.39-9.04
1S0 (pL)(3P2)K-5D 0.13 0.56 0.03 0.05 0.03-0.56
1S0 (pL)(3D1)K-3P 1.17 1 0.17 0.03 0.03-1.17

1D2 S11(1650)p-3P 1.28 0.06 0.25 0.07 0.06-1.28
1D2 S11(1650)p-3F 0.31 1.01 0.43 0.69 0.31-1.01
1D2 S11(1895)p-3P - - 0.38 1.18 0.00-1.18
1D2 P11(1710)p-1D 1.42 3.11 6.53 1.03 1.03-6.53
1D2 P11(1710)p-3D 0.67 0.48 1.78 4.87 0.48-4.87
1D2 P11(1880)p-1D - 1.68 - 3.73 0.00-3.73
1D2 P11(1880)p-3D - 0.02 - 0.08 0.00-0.08
1D2 P13(1720)p-5S 7.6 0.14 3.44 0.77 0.14-7.60
1D2 P13(1720)p-3D 0.02 1.64 0.53 7.09 0.02-7.09
1D2 P13(1720)p-5D 3.05 0.45 0.07 0.71 0.07-3.05
1D2 P13(1900)p-5S 7.15 - 4.03 - 0.00-7.15
1D2 P13(1900)p-3D 9.4 - 0.08 - 0.08-9.40
1D2 P13(1900)p-5D 1.34 - 0.54 - 0.00-1.34
1D2 D13(1875)p-5P - - - - -
1D2 (pL)(1P1)K-3D 0.29 0.01 0.08 1.02 0.01-1.02
1D2 (pL)(1D2)K-5P 6.72 1.18 3.28 4.28 1.18-6.72
1D2 (pL)(1D2)K-5F 0.16 0.26 0.03 0.24 0.03-0.26
1D2 (pL)(3S1)K-3P 1.47 0.46 0.77 0.25 0.25-1.47
1D2 (pL)(3S1)K-3F 0.2 0.4 0.49 0.7 0.20-0.70
1D2 (pL)(3P0)K-1D 2.01 0.04 0.29 0.01 0.01-2.01
1D2 (pL)(3P1)K-3D 0.5 0.02 0.72 0.55 0.02-0.72
1D2 (pL)(3P2)K-5S 0.3 3.06 4.47 0.61 0.30-4.47
1D2 (pL)(3P2)K-5D 0.2 0.86 0.07 0.04 0.04-0.86
1D2 (pL)(3D1)K-3P 5 7.61 7.16 11.5 5.00-11.5
1D2 (pL)(3D1)K-3F 0.9 2.95 1.29 2.34 0.90-2.34
1D2 (pL)(3D2)K-5P - - 0.07 - 0.00-0.07
1D2 (pL)(3D2)K-5F - - - - -
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Table 6.3: Partial wave contributions to the 3P0 and 3P1 initial state. All in [%].

In. st. Interm. st. Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8 Range [%]

3P0 S11(1650)p-1S 1.27 5.42 1.82 4.48 1.27-5.42
3P0 S11(1895)p-1S - - 2.28 0.03 0.00-2.28
3P0 P11(1710)p-3P 1.72 0.32 6.48 0.42 0.32-6.48
3P0 P11(1880)p-3P - 0.89 - 0.25 0.00-0.89
3P0 P13(1720)p-3P 0.16 0.9 2.67 0.07 0.07-2.67
3P0 P13(1900)p-3P 1.28 - 0.48 - 0.00-1.28
3P0 D13(1875)p-5D - - - - -
3P0 (pL)(1S0)K-1S 2.3 0.06 0.01 1.41 0.01-2.30
3P0 (pL)(1P1)K-3P 0.58 1.14 0.83 0.33 0.33-1.14
3P0 (pL)(3P1)K-3P 0.96 0.04 1.38 0.16 0.04-1.38
3P0 (pL)(1D2)K-5D 0.03 0.68 0 0.49 0.00-0.68
3P0 (pL)(3D2)K-5D - - 0.36 - 0.00-0.36

3P1 S11(1650)p-3S 1.08 3.38 0.25 0.37 0.25-3.38
3P1 S11(1650)p-3D 0.07 5.39 2.09 0.45 0.07-5.39
3P1 S11(1895)p-3S - - 0.56 0.68 0.00-0.68
3P1 S11(1895)p-3D - - 0.14 0.15 0.00-0.14
3P1 P11(1710)p-1P 0.02 4.71 0.77 4.5 0.02-4.71
3P1 P11(1710)p-3P 0.92 11.56 5.4 7.85 0.92-11.56
3P1 P11(1880)p-1P - 0.92 - 0.41 0.00-0.92
3P1 P11(1880)p-3P - 0.08 - 1.6 0.00-1.60
3P1 P13(1720)p-3P 0.05 4.27 2.22 0.62 0.05-4.27
3P1 P13(1720)p-5P 1.68 0.57 0.03 0.09 0.03-1.68
3P1 P13(1720)p-5F 0 0 0 0 -
3P1 P13(1900)p-3P 5.27 - 2.74 - 0.00-5.27
3P1 P13(1900)p-5P 0.79 - 0.02 - 0.00-0.79
3P1 D13(1875)p-3S - - - - -
3P1 D13(1875)p-3D - - - - -
3P1 D13(1875)p-5D - - - - -
3P1 (pL)(3S1)K-3S 0.14 0.95 0.87 0.08 0.08-0.95
3P1 (pL)(3S1)K-3D 0.23 1.64 0.92 1.23 0.23-1.64
3P1 (pL)(3P0)K-1P 0.02 0.28 0.53 0 0.00-0.53
3P1 (pL)(1P1)K-3P 0.72 3.05 1.02 1.78 0.72-3.05
3P1 (pL)(3P1)K-3P 1.21 0.05 0.65 2.7 0.05-2.70
3P1 (pL)(3P2)K-5P 0.49 0.74 0.7 1.72 0.70-1.72
3P1 (pL)(3P2)K-5F 0.09 0.4 0.13 0.01 0.01-0.40
3P1 (pL)(1D2)K-5D 0.4 0.03 0.58 0.1 0.03-0.58
3P1 (pL)(3D2)K-5D - - 0.16 - 0.00-0.16
3P1 (pL)(3D1)K-3S 4.7 11.6 7.13 1.56 1.56-11.6
3P1 (pL)(3D1)K-3D 0.59 1.34 0.85 0.09 0.09-1.34
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6.1 PWA Solution in 4π

Table 6.4: Partial wave contributions to the 3P2 initial state. All given in [%].

In. st. Interm. st. Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8 Range [%]

3P2 S11(1650)p-1D 2.24 1.75 1.89 5.1 1.75-5.10
3P2 S11(1895)p-1D - - 0.08 0.45 0.00-0.45
3P2 P11(1710)p-3P 0.49 0.14 3.34 7.93 0.14-7.93
3P2 P11(1710)p-3F 1.69 2.21 0.34 0.04 0.04-2.21
3P2 P11(1880)p-3P - 0 - 2.11 0.00-2.11
3P2 P13(1720)p-3P 4.05 1.28 7.33 0 0.00-7.33
3P2 P13(1720)p-5P 8.63 0.09 1.01 0.08 0.08-8.63
3P2 P13(1720)p-3F 1.05 0.33 1.2 2.94 0.33-2.94
3P2 P13(1720)p-5F 5.59 0.27 0.5 0.32 0.27-5.59
3P2 P13(1900)p-3P 4.74 - 6.2 - 0.00-6.20
3P2 P13(1900)p-5P 2.28 - 0.07 - 0.00-2.28
3P2 D13(1875)p-5S - - - - -
3P2 D13(1875)p-3D - - - - -
3P2 D13(1875)p-5D - - - - -
3P2 (pL)(1S0)K-1D 1.99 0.06 0.09 0.03 0.03-1.99
3P2 (pL)(3S1)K-3D 0.97 0.05 0.98 0.1 0.05-0.98
3P2 (pL)(1P1)K-3P 0.92 0.22 1.32 1.77 0.22-1.77
3P2 (pL)(1P1)K-3F 0.18 0.77 0.26 0.04 0.04-0.77
3P2 (pL)(3P1)K-3P 1.55 0.16 2.22 0 0.00-2.22
3P2 (pL)(3P2)K-5P 1.02 0.04 1.46 0.27 0.04-1.46
3P2 (pL)(3P2)K-5F 0.05 0.12 0.08 0.19 0.05-0.19
3P2 (pL)(1D2)K-5S 0.73 0.04 0.64 16.24 0.04-16.24
3P2 (pL)(1D2)K-5D 0.07 0.07 0.6 0.08 0.07-0.60
3P2 (pL)(3D1)K-3D 0.56 2.4 0.81 1.99 0.56-2.40
3P2 (pL)(3D2)K-5D - - 0.21 - 0.00-0.21
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Table 6.5: Partial wave contributions to the 3F2 initial state. All given in [%].

In. st. Interm. st. Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8 Range [%]

3F2 S11(1650)p-1D 4.6 3.71 0.61 1.86 0.61-4.60
3F2 S11(1650)p-3D 0.37 1.16 1.75 0.23 0.23-1.75
3F2 S11(1895)p-1D - - 0.39 0.03 0.03-0.39
3F2 S11(1895)p-3D - - 0.26 0.55 0.26-0.55
3F2 P11(1710)p-3P 1.95 5.42 5.79 18.48 1.95-18.48
3F2 P11(1710)p-3F 3.04 0.66 0.35 0.14 0.14-3.04
3F2 P11(1880)p-3P - 15.27 - 20.32 0.00-20.32
3F2 P13(1720)p-3P 6.59 2.31 17.3 1.07 1.07-17.3
3F2 P13(1720)p-5P 0.21 0.01 0.63 0.07 0.01-0.63
3F2 P13(1720)p-3F 1.03 0.04 2.81 1.76 0.04-2.81
3F2 P13(1720)p-5F 0.19 0.82 0.01 0.07 0.01-0.82
3F2 P13(1900)p-3P 3.89 - 25.13 - 0.00-25.13
3F2 P13(1900)p-5P 0.05 - 3.08 - 0.00-3.08
3F2 D13(1875)p-5S - - - - -
3F2 D13(1875)p-3D - - - - -
3F2 D13(1875)p-5D - - - - -
3F2 (pL)(1S0)K-1D 3.16 0.91 0 0.2 0.00-3.16
3F2 (pL)(3S1)K-3D 1.95 0.24 0.01 0.11 0.01-1.95
3F2 (pL)(1P1)K-3P 1.24 0.02 1.77 0.01 0.01-1.77
3F2 (pL)(1P1)K-3F 0.24 0 0.35 0.34 0.00-0.35
3F2 (pL)(3P1)K-3P 0.13 0.95 1.02 0.86 0.13-0.95
3F2 (pL)(3P2)K-5P 1.38 1.41 1.97 0.78 0.78-1.97
3F2 (pL)(3P2)K-5F 0.07 0.02 0.1 0.25 0.02-0.25
3F2 (pL)(1D2)K-5S 13.72 5.58 6.05 0.05 0.05-13.72
3F2 (pL)(1D2)K-5D 0.04 1.06 1.01 0.14 0.04-1.06
3F2 (pL)(3D1)K-3D 0.76 0.94 1.09 1.62 0.76-1.62
3F2 (pL)(3D2)K-5D - - 0.28 - 0.00-0.28
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6.1 PWA Solution in 4π

One can get an estimation of the different N* contributions by adding the con-
tributions of all waves that contain a certain N* in the intermediate state. As
the waves interfere with each other this does not correspond to the observed
strength of the single resonances. This is expressed by the fact that the sum of
the different waves exceeds 100%. Table 6.6 gives the results of this summation
for all four best solutions. The intermediate state of non-resonant formation of

Table 6.6: Contribution of the different N* and non resonant intermediate states
to the total pK+Λ production cross section. All given in[%].

Interm. State Sol. 1/8 Sol. 3/8 Sol. 6/9 Sol. 8/8

N*(1650) 15.7 22.7 9.4 13.4
N*(1710) 14.2 28.8 31.6 45.8
N*(1720) 41.7 13.1 51.2 15.7
N*(1875) - - - -
N*(1880) - 19.7 - 29.9
N*(1895) - - 6.5 4.1
N*(1900) 45.1 - 55.1 -
Sum Res 116.7 84.3 153.8 108.9

(pL)(1S0) 7.4 1.0 0.1 1.6
(pL)(3S1) 7.8 4.0 4.6 4.5
(pL)(3P0) 7.3 6.7 5.2 9.1
(pL)(3P1) 4.3 1.2 6.0 4.3
(pL)(3P2) 3.7 7.2 9.0 3.9
(pL)(1D2) 21.9 8.9 12.2 21.6
(pL)(3D1) 13.7 27.8 18.5 19.1
(pL)(1P1) 4.2 5.2 5.6 5.3
(pL)(3D2) - - 1.1 -
Sum non res 70.3 62.0 62.3 69.4

pK+Λ appears to be constantly around 65% of the total pK+Λ production cross
section. The state in which p and Λ are in a relative (1D2) or (3D1) state seems
to be favored by all solutions. The interpretation of the N* contribution is more
difficult. A resonance with a mass around 1900 MeV/c2 is certainly needed by
the fit. As the different resonances in this mass regime have, however, broad
widths, the fit is not very sensitive to their exact contribution. The results sum-
marized in Table 6.6 allow, thus, no clear statement about the exact resonance
cocktail. The yield of N* contribution varies between 80% and 150% and is in
all cases substantially larger than the non-resonant production. The ratio of res-
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6 Extraction of the pK+Λ Production Cross Section

onance production to the total yield varies between 60% and 70%. The pK+Λ

production is, thus, dominated by N* production.

6.1.1 4π Distribution of Single Resonances

6/9

Figure 6.3: Two-particle masses for the best PWA solution (6/9) in 4π. The differ-
ent histograms correspond to different single resonance contributions.

The PWA framework does also allow to visualize the 4π distributions of the sin-
gle contributions in the solution. This is done in the following for the overall best
solution No. 6/9. The single waves of non-resonant production of pK+Λ included
in Sol. No. 6/9 are shown in Appendix G.1. Figures 6.3 and 6.4 present the sin-
gle contributions of the different N*s to the total solution. The invariant mass of
ΛK+ in Figure 6.3 is obviously sensitive to the mass and width properties of the
contributing N*-resonances, despite the fact that the broad resonances largely
overlap.

The Angular Distribution in the CMS Frame

Figure 6.4 displays the different angular correlations in the production of the
N* resonances. The upper rows present the CM angular distributions. As the
N* resonance is produced together with a proton, the angular distribution of
the latter reflects directly the production dynamics of the accompanying reso-
nance. Therefore, the angular distribution of the proton is the most interesting
observable of the CMS distributions. In case of N* production the Λ and K+

distributions only mirror the kinematic of the leading proton.

The angular momenta between the different particles is exhibited by the angu-
lar distributions of the particles in the CMS system. In each model, that aims
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6.1 PWA Solution in 4π

a)                                            b)                                            c)

d)                                            e)                                            f)

g)                                            h)                                            i)

Figure 6.4: Angular distributions for the best PWA solution (6/9) in 4π. The dif-
ferent histograms correspond to different single resonance contribu-
tions. The upper row shows the angle of the particle in the CMS (a)-c)),
the middle row show the Gottfried-Jackson distributions (d)-f)) and the
lower row show the helicity angles (g)-i)). See Figure 2.6 for further
explanations on the observables.
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6 Extraction of the pK+Λ Production Cross Section

at predicting the production and decay of N* dominated final states, a proper
access and incorporation of angular distributions is essential. Quantitative in-
formation about the angular distribution can be extracted from the data with
help of Legendre coefficients. To do so, a sum of weighted Legendre polynomi-
als is fit to the data. This sum of Legendre polynomials is expressed as follows:

dN

d
= A0P0()+A1P1()+A2P2()+A3P3()+A4P4()+A5P5()+A6P6(), (6.1)

with the Legendre coefficients A and the Legendre Polynomials:

P0() = 1, (6.2)

P1() = , (6.3)

P2() =
1

2
(32 − 1), (6.4)

P3() =
1

2
(53 − 3), (6.5)

P4() =
1

8
(354 − 302 + 3), (6.6)

P5() =
1

8
(635 − 703 + 15), (6.7)

P6() =
1

16
(2316 − 3154 + 1052 − 5). (6.8)

As the colliding system is symmetric the angular distribution of the particles in
the CMS has to be symmetric around cosθ = 0. Hence, the coefficients A1, A3
and A5 are fixed to zero in this fit. Further, the inclusion of a Legendre polyno-
mial P6 showed no large effect in the fits as the coefficients A6 were compatible
with zero. The fit to the single resonance and non-resonant contributions of the
p-CMS angle is shown in Appendix G.2 and describes the PWA-model distribu-
tions in all cases perfectly. The quantitative results of the fit are summarized
in Table 6.7. The Legendre coefficients were normalized to A0 to allow for a
comparison.

If the particles would be produced in S-wave only, the CMS distributions would
be flat, and the coefficients A1 − A6 equal to zero. The contribution of higher
orders of Legendre polynomials causes an anisotropic angular distribution and
indicates higher angular momenta between the particles. As the production of
single states can proceed via multiple intermediate configurations, the num-
bers in Table 6.7 express a sum over many transition amplitudes. Due to these
multiple production ways a general trend in the coefficients is hardly visible.
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6.1 PWA Solution in 4π

Table 6.7: The Legendre coefficients of the p-angular distribution in the CMS sys-
tem. The coefficients are extracted from the single distributions in Fig-
ure 6.4 and normalized to A0=1.

Interm. State A0 A1 A2 A3 A4

Sum of all contr. 1 - 0.71 - 0.11

N*(1650)-p 1 - 0.13 - -0.62
N*(1710)-p 1 - 1.06 - 0.37
N*(1720)-p 1 - 0.79 - -0.1
N*(1875)-p - - - - -
N*(1880)-p - - - - -
N*(1895)-p 1 - 1.16 - 0.13
N*(1900)-p 1 - 0.43 - 0.06

(pL)(1S0)-K 1 - 0.34 - 0.01
(pL)(3S1)-K 1 - -0.04 - -0.06
(pL)(3P0)-K 1 - 0.09 - 0.00
(pL)(3P1)-K 1 - -0.30 - -0.16
(pL)(3P2)-K 1 - 0.39 - 0.01
(pL)(1D2)-K 1 - 0.46 - -0.37
(pL)(3D1)-K 1 - 0.09 - 0.15
(pL)(1P1)-K 1 - 1.15 - 0.41
(pL)(3D2)-K 1 - -0.08 - 0.08

The higher order coefficient A2 shows no dependency on the resonance mass,
whereas the absolute values A4 seems to decrease approximately with increas-
ing resonance mass. Whether this is a general feature or a coincidence due
to the summation over many intermediate transitions can not be judged. The
strength of A2 and A4 in case of non resonant production seems to vary from
strong to weak without any significant feature. A2 and A4 can be strong or weak
both for resonant and non-resonant production of the pK+Λ final state.

These coefficients of the single resonance contributions can be used as an input
for resonance-models. The production of ΛK+-pairs at low and intermediate
beam energies proceeds - to a large extent - via N* resonances [155, 156, 157,
160, 161, 162]. The kinematic in the production of the resonances, listed in
Table 6.7, can be included into transport models.

The distributions of single resonances are not accessible in an experiment, as
only the interfered sum of all contributions can be measured. The first row
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6 Extraction of the pK+Λ Production Cross Section

Figure 6.5: The angular distribution of the proton in the CMS system. Left figure
show a fit with a sum of Legendre polynomials up to the fourth order.
Right figure shows the same data fitted with Legendre polynomials up
to the sixth order. The inlet shows two bins that were excluded from
the fit.

of Table 6.7 shows the Legendre coefficients from a fit to an interfered sum
of all contributing waves (the 4π PWA solution). This can be compared to the
Legendre coefficients of the experimental data. The Legendre coefficients of
the data of this work were determined by a fit of Function 6.1 to the acceptance
corrected angular distribution of the proton, shown in Figure 6.5. Contrary to
the coefficients of the PWA solution an inclusion of the Legendre term P6 is
necessary in order to describe the distribution.

The overall angular distribution of the proton can no longer give insight into
single production processes but does still contain information. This is revealed
by comparing this result to measurements of differential cross sections at other
beam energies. In Ref. [172] the Legendre coefficients of proton, Λ and K+

in pK+Λ production were compared to each other at different excess energies
close to threshold. Figure 6.6 shows these coefficients for the proton. No clear
trend was observed at low energies. Comparing the normalized Legendre co-
efficients at higher beam energies results in the values of Table 6.8. The low
energy data are taken from tables quoted in Ref. [155]. At higher energies the
distributions were scanned from the publications [197, 161, 162] and fitted with
Legendre polynomials of the sixth order. The fit is shown in Appendix G.4.

Opposite to the low energy data the strength of the Legendre polynomials, ex-
pressed by the coefficients A increases with increasing beam energy. This
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6.1 PWA Solution in 4π

Figure 6.6: The Legendre coefficients that describe the angular distribution of the
proton in the CMS system at different excess energies [172].

Table 6.8: Legendre coefficients of the proton angle in the CM-system, shown for
different beam kinetic energies. Values are scaled to A0 = 1. 1This
work, *scanned from the document and fitted (Appendix G.4).

Ref. Ekn [GeV] ε [MeV] A1/A0 A2/A0 A4/A0 A6/A0

[155] 2.16 127.7 0.21±.10 0.99±0.18 0.42±0.14 -
[155] 2.26 161.6 -0.08±.08 0.67±0.18 0.46±0.13 -
[155] 2.4 208.4 -0.07±.28 0.84±0.53 0.56±0.43 -
[197]* 2.85 353.7 - 1.0±0.21 0.0±0.64 0.4±0.29
PWA1 3.5 551.9 - 0.71±0.01 0.11±0.01 0.0
Data1 "" "" - 0.89±0.19 0.41±0.21 0.32±0.11
[161]* 4.1 724.4 - 1.8±0.19 1.3±0.25 0.8±0.24
[162]* 5.13 1001.5 - 2.7±0.17 2.3±0.21 1.0±0.19

holds for all three coefficients A2, A4 and A6. Where A2 > A4 > A6. This trend
of the strength of the Legendre polynomials which expresses the angular mo-
mentum between the particles could be caused by the fact that with increasing
beam energy higher angular momenta can be excited. The higher the angular
momentum (order of Legendre polynomial) the more energy is needed to excite
it, which could explain the hierarchy among the coefficients.

Helicity Angles

The pΛ- and pK+-helicity angles (panel g) and h) of Figure 6.2) show mainly the
width and mass information of the N* resonances, similar to the direct mass
distributions in Figure 6.3. The reason for this is that the helicity angle is a
projection of the two-particle invariant masses on the cos(θ) axis. This can
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6 Extraction of the pK+Λ Production Cross Section

be expressed through the expansion of the helicity-angle in terms of invariant
masses [167], here shown for the KΛ-helicity angle:

cos(θRF KΛ
pΛ

) =
h
2M2

KΛ
(m2

p
+m2

Λ
−M2

Λp
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For a given mass of MΛp the MKΛ is strongly constrained from the two-body
kinematics in the production. Only the width of MKΛ systems, together with the
excess energy from the N* to its decay into KΛ slightly smears out this direct
connection between the two observables1. This way, one can see that a given
mass in MΛp determines directly the value of the opening angle between p and
the Λ in the KΛ-helicity angle. Due to the smearing of the MKΛ mass informa-
tion, the KΛ-helicity angle contains only minor kinematic reflections of the N*
resonances. It does contain, however, another valuable information. In this
frame decay properties of the N* resonances will appear. The rest-frame is con-
structed from the decay particles of the N* (K+ and Λ) so that the N* is at rest in
this frame. The angle, displayed in this rest frame, is the angle between proton
and the Λ. The proton is produced with the N* and thus carries information
about its opposite flight direction. If there is any asymmetry in the decay of the
N* then this asymmetry affects the angular distribution of the decay products,
in respect to the N* flight direction which is displayed by the discussed observ-
able. One can see that all angular distributions of the N* resonances are flat
(see panel i) of Figure 6.2) except the ones for N*(1720) and N*(1900). The dif-
ference between these and the other resonances is their spin. Both resonances
have spin 3/2. The decay products K+ and Λ both have only spin 1/2. As the to-
tal spin has to be conserved in the resonance decay, there has to be an orbital
angular momentum between the decay particles to guarantee this conserva-
tion. This angular momentum causes an asymmetric distribution of the decay
particles with respect to the mother (N*) flight direction. The total sum of all
contributions in this observable does also contain interference which hinders a
detailed interpretation of its sub-components in the experimental distributions.

Gottfried-Jackson Angles

The Gottfried-Jackson angles, as displayed in the panels d)-f) of Figure 6.2,
contain information about angular momenta of exchange particles, like in case

1This smearing of the direct connection between the invariant masses is less pronounced in the
pΛ- and pK-helicity angles which results in a good visualization of the N* resonance mass and
width properties.
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6.2 Acceptance and Efficiency Correction

of pion or kaon exchange (see [168, 155, 23] for further explanations). As the
exchange mechanism is not a focus of the present analysis the angles are not
further discussed.

6.2 Acceptance and Efficiency Correction

The so far presented experimental results are heavily distorted by the detec-
tor acceptance and the event selection process. To obtain information about
the production kinematics and involved resonances the observables should be
investigated in the full phase space. Therefore, the data need to be corrected
for the losses of events. The production of three particles in the final state is
determined by four independent kinematic variables2. A model-independent
acceptance correction, thus, needs to be performed in four dimensions simulta-
neously. This approach demands, however, a large number of simulated events
to populate each four dimensional entry of an acceptance matrix with enough
statistic to keep the errors low. Further, this approach does not provide any
model with which one can extrapolate the cross section to acceptance hole
areas. Another option is to take a model that has proven its excellent data
description in a limited acceptance to extrapolate to the "blind" regions.

As the four best PWA solutions describe the data in a similar good way, see Fig-
ures 4.16–4.19 of Chapter 4 for comparison, they all can be used to build a cor-
rection function for the measured data. Due to the slight systematic variation
of the PWA content, the corrections will yield different results which accounts
for the systematic uncertainty on the PWA solutions. The acceptance functions
are obtained in the following way: the simulated phase space events that have
been assigned a PWA weight are filtered through the full simulation chain, as
described in Section 2.3, and then the same analysis as for the experimental
data is applied to these events. The obtained spectra for each observable
are divided by their according spectra in 4π. In this way, a bin-by-bin ratio of
events in the full and limited acceptance is obtained. Figures 6.7 and 6.8 show
the resulting acceptance and efficiency functions. The efficiency correction is
done in one dimension whereas the other three dimensions on which the ef-
ficiency depends on are integrated. The integration relies entirely upon the
correct distribution of simulated events in the phase space. The acceptance
and efficiency of the pK+Λ reconstruction is in the order of 0.5%. The loss of

2Originally the three four-vectors contain all together 12 components. Three are determined by
the defined particle masses, three by momentum conservation and one by energy conserva-
tion. One observable additionally vanished due to the reaction symmetry in ϕ.

149



6 Extraction of the pK+Λ Production Cross Section

a)                                            b)                                           c)

d)                                            e)                                           f)

g)                                            h)                                           i)
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Figure 6.7: Acceptance functions of the angular correlations of the three particles
for the four best PWA solutions of the PWA (different colors). Sol. No.
6/9 (green), Sol. No. 8/8 (cyan), Sol. No. 1/8 (blue) and Sol. No. 3/8
(red). a)-c) correction for CMS angles, d)-f) correction for Gottfried-
Jackson angles, and g)-i) correction for the helicity angles. See Figure
2.6 for further explanations on the observables.
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Figure 6.8: Acceptance functions of the two-particle masses for the four best PWA
solutions of the PWA (different colors). Sol. No. 6/9 (green), Sol. No.
8/8 (cyan), Sol. No. 1/8 (blue) and Sol. No. 3/8 (red)

events due to the decay of the Λ into pπ− (64%) is taken into account as the 4π
distribution contains the full set of all Λs.

To obtain the experimental event distribution in 4π the experimental spectra
inside the acceptance were divided by the corresponding acceptance function.
This was done for each acceptance function of the four best PWA solutions. The
single 4π spectra of all solutions and observables are shown in Appendix G.3.
The combined results are shown in Figures 6.9 and 6.10. The bin entry corre-
sponds to the value obtained from the correction function of Sol. No. 6/9. The
displayed errors account for the statistical error of the experimental data. The
gray boxes show the systematic error of the acceptance correction. This error
was obtained by the maximum deviation of any of the three other correction to
the one of Sol. No. 6/9. As expected, the experimental data in 4π are consisted
with the predictions of the PWA solution.

The CM distributions are symmetric with respect to the CM axis. The IMK+Λ

shows the event distributions as predicted by the PWA. Single peaks due to N*
resonances are not visible due to the large widths of the states. The small peak
at around 1900 MeV/c2, present in some of the solutions, seems to appear also
in the experimental data but is slightly shifted to lower masses.

The K-Λ helicity angle (panel i) Figure 6.9) shows a relatively flat behavior.
Within the large spread of the data points it is consistent with the PWA model
that predicts a slight modulation as a function of the angle. In Ref. [167, 168]
this observable was proposed to study the pΛ final state interaction. As ex-
pressed by Eq. 6.9 the helicity angle is tightly correlated with the invariant
mass of two particles. An angle of cosθ = 1 is related to small invariant masses
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6 Extraction of the pK+Λ Production Cross Section

a)                                            b)                                            c)

d)                                            e)                                            f)

g)                                            h)                                            i)

Figure 6.9: Experimental distributions of the three particle angular correlations,
corrected for acceptance and efficiency. Inlets show bins that are far
out as compared to the other values. See Figure 2.6 for further expla-
nations on the observables.

of pΛ where the final state interaction should be the strongest. In Ref. [155] an
enhancement of statistic at very small pΛ opening angles was observed for Ekn
= 2.16, 2.26, and 2.4 GeV, respectively. This was interpreted as a trace of p-Λ
final state interaction. The K-Λ helicity angle at 3.5 GeV does not show such a
behavior at cosθ=1. The reason for this is that at higher energies only a small
portion of the phase space is influenced by final state interaction [168, 198].
Hence, these effects are less pronounced at the here investigated energy.
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6.2 Acceptance and Efficiency Correction

Figure 6.10: Experimental distributions for the two-particle invariant masses cor-
rected for acceptance and efficiency.

For the investigation of the kaonic nuclear bound state KNN, the invariant mass
of p and Λ is the most relevant observable. The acceptance corrected spectrum
of the IMpΛ of Figure 6.10 shows a smooth increase of the measured yield with
increasing mass of the system. There is no broad structure at M = 2267 MeV/c2

and  = 118 MeV/c2 visible, as reported by the DISTO collaboration [125, 126].
Two bins stick out from the smooth trend of this observable. The one at 2130
MeV/c2 can be assigned to the N-cusp, a well known phenomena in the in-
variant mass of pΛ [199]. This behavior is assigned to a coupled channel of
 − N ↔ Λ − p which opens at about 2130 MeV/c2. To investigate the bin at
2270 MeV/c2 the four IMpΛ spectra of Appendix G.3 are shown with a zoom into
the relevant mass region. Figure 6.11 presents four times the IMpΛ distribution
each figure corrected for acceptance and efficiency with another model.

Figure 6.11: IMpΛ for the four different correction functions. Points show the ex-
perimental values and the lines the PWA-model that was used for the
correction.
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6 Extraction of the pK+Λ Production Cross Section

Only in two of the corrections the mass bin sticks out of the general trend. In
all cases it is consisted with the PWA model prediction within 3σ. How signifi-
cant such deviations nonetheless are is shown by a statistical analysis of this
observable in Chapter 5.

Figure 6.12 shows the Dalitz-plot of pK+Λ events. In this representation two
particle invariant masses are plotted against each other. The upper figures
show the Dalitz-plot for M2

K+Λ
vs. M2

pΛ
whereas the lower figures show M2

K+p

vs. M2
pΛ
. The left panels show the distributions inside of the acceptance of

the HADES spectrometer. The structures that are visible here are regions of
enhanced acceptance of the pK+Λ events. The efficiency correction is done
in the same way as for the one dimensional observables. For the correction
function only solution No. 6/9 was used. The efficiency corrected data are
shown in the panels of Figure 6.12 marked with "Exp 4π". The Dalitz-plots show
acceptance-holes for events in which two particles have a large opening angle
(=̂ high invariant masses), as in such cases the third particle escapes into the
acceptance hole at low polar angles (<15◦). Resonances appear as a band in
the Dalitz-plot and such a band is visible at about 3 ·106(MeV/c2)2 of M2

K+Λ
(left

panel "Exp 4π" of Figure 6.12). The Λp final state interaction should appear
as an enhancement in the low pΛ-invariant mass region. This is hardly visible
by eye, as the statistic in this region is very scarce, but could be extracted
eventually by a two dimensional fit of the Dalitz-plot similar as done in [157].
The Dalitz-plots show no band in the MpΛ plane that could be attributed to a
state that decays into proton and Lambda.

The 4π PWA distribution shows a peculiar effect at very low pΛ invariant masses,
namely a depletion of events. It is not exactly clear what is the cause of this
effect. It is definitely not a repulsive pΛ interaction, as Figure G.1 in Appendix
G clearly shows the attractive component of the non-resonant wave. On could
think that these are some interference effects, but as the experimental data
in this region are lacking, it can not be stated whether this is a phenomenon
purely in the model, or not.

6.2.1 Absolute Cross Section

The corrected distributions in 4π in Figures 6.10 and 6.9 are already scaled to an
absolute cross section. This is done as described in [143]. The transformation
of counts to cross section is obtained from the ratio of p+p elastic events to
the p+p elastic cross section from reference measurements [143]. This ratio is
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6.2 Acceptance and Efficiency Correction

Figure 6.12: The two columns show two dalitz plots. Once for the measured data
(Exp Acc), once for the data which were corrected for the losses of
efficiency (Exp 4π), and once for the PWA model No. 6/9 in 4π (Sim
4π).
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6 Extraction of the pK+Λ Production Cross Section

expressed by the Rustamov-Factor:

Rustamov-Factor=
Ncc
pp,e

σccpp,e

=
N4π
pp,e

σ4πpp,e
= 22271,7. (6.10)

Ncc
pp,e

and σcc
pp,e

denote the measured yield and literature cross section of the

p+p elastic reaction in a limited CM angle. This ratio also correspond to the ratio
of produced elastic events in 4π and the according total elastic cross section.
The "Rustamov-Factor" is given for one analyzed file. The file contains a certain
amount of recorded events which is roughly constant throughout the beam-
time. To obtain a cross section from a number of reconstructed events the
following calculation needs to be applied:

σ4π
pK+Λ

= Ncc
pK+Λ

() ·
1

AccCorr(x)
·

1

R-F ·NFes

·DSF. (6.11)

Ncc
pK+Λ

() and AccCorr() denote the reconstructed number of events and the
according correction factor as a function of the observable in which the correc-
tion is applied. R − F and NFes are the "Rustamov-Factor" and the number of
files used for the analysis. DSF is a factor that corrects for the LVL1 trigger
downscaling3 of the experimental data of the p+p experiment and has a value
of 3. The normalization of measured p+p elastic events to the literature cross
section, according to Eq. (6.10) contains a systematic uncertainty of 7%.

6.2.2 The pK+Λ Production Cross Section

The integrated yield of the histograms in Figures 6.10 and 6.9 delivers the total
production cross section of p+p→ pK+Λ at Ekn(p)=3.5 GeV. To obtain a sys-
tematic error on the total production cross section the observables in 4π where
integrated for each acceptance correction function separately. Appendix G.3
shows all experimental observables corrected to a 4π acceptance for the four
best PWA solutions separately. Figure 6.13 presents two examples of the 48
integrated observables. The corrected data are displayed together with the
corresponding model. The model is normalized to the experimental data in
the indicated range inside the brackets. To obtain the total production cross
section each histogram was integrated. The experimental data are summed
inside of the indicated range. Outside of this range the extrapolated model
value is taken for the integration. The resulting cross section is quoted in each
histogram. Table 6.9 summarizes the results of the integration of all the pre-
sented histograms of Appendix G.3. The average cross section obtained with

3only every third event, unbiased by the second level trigger, has been recorded.
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6.2 Acceptance and Efficiency Correction

Figure 6.13: Blue data-points experimental data for MK+Λ and MpK+ corrected
with PWA-model No. 6/9. The line shows the prediction of the PWA-
model No. 6/9 overlayed to the experimental distributions.

Table 6.9: The extracted cross section of the acceptance corrected histograms.
All given in [μb].

Histogram Sol. No. 6/9 Sol. No. 1/8 Sol. No. 3/8 Sol. No. 8/8

CMSΛ 36.88±0.36 37.79±0.37 36.41±0.35 35.95±0.35
CMSp 38.27±0.47 39.41±0.53 36.43±0.47 36.3±0.44
CMSK+ 38.8±0.32 39.57±0.33 37.68±0.3 36.7±0.3

GJ-Angle RF-pK 37.25±0.35 38.18±0.37 36.16±0.34 35.29±0.33
GJ-Angle RF-KΛ 38.15±0.36 39.11±0.37 37.21±0.34 36.74±0.34
GJ-Angle RF-pΛ 40.41±1.06 41.67±1.09 40.75±1.10 39.7±1.15
H-Angle RF-pΛ 37.63±0.37 38.47±0.38 36.97±0.36 36.14±0.35
H-Angle RF-pK 37.23±0.40 37.91±0.41 36.38±0.38 35.51±0.38
H-Angle RF-KΛ 37.75±0.42 38.36±0.44 37.22±0.42 36.24±0.40

IM(ΛK+) 38.72±0.35 39.57±0.36 37.83±0.34 37.01±0.33
IM(pK+) 38.25±0.34 39.27±0.35 37.52±0.33 36.59±0.32
IM(Λp) 38.07±0.38 38.83±0.40 37.35±0.36 36.41±0.36
Average 38.12±0.43 - - -
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6 Extraction of the pK+Λ Production Cross Section

Sol. No. 6/9 is written in the last row of Table 6.9. The systematic error is
constructed by the maximum deviations to this value, marked in bold. The
uncertainty due to the normalization to p+p elastic events gives an additional
error of 2.67 μb. A last error comes from the fact that the data contain a certain
amount of statistic not associated to pK+Λ production. This amount is roughly
6% as described in Section 4.1.3. The overall total production cross section,
thus, reads as:

σpK+Λ = 38.12± 0.43+3.55−2.83 ± 2.67(p+p-error)−2.86(background) μb. (6.12)

The same analysis was performed for the WALL data and is shown in Appendix
H. It can, however, only be used as a qualitative cross check, as the efficiency of
the Forward Wall hodoscope has never been determined. The 4π distributions of
the corrected WALL data set is in a good qualitative agreement with the HADES
data set. The extracted cross section is only of use if an efficiency factor of the
Wall will be applied to it.

6.3 Comparison With Other Results

The extracted pK+Λ cross section of this work can be compared to the cross
sections at other beam energies. Figure 6.14 shows in both panels the pK+Λ

production cross sections of higher and lower beam momenta of the p+p re-
action system. Figure 6.15 shows in both panels the pK+0 production cross
sections of higher and lower beam momenta of the p+p reaction system. The
cross section of the pK+0 production of this work is taken from the multifit
analysis presented in Chapter 3. The left panels of Figures 6.14 and 6.15 show
the model prediction of a one boson exchange model of Ferrari et al. [149, 200],
which incorporates the production of K+Λ resonances. The different lines cor-
respond to different cut-off parameters on the four-momentum squared of the
exchange boson, and a variation of the coupling constant G0pK+, as illustrated
in Figure 6.15 [149, 200]. The models can describe the data well and are con-
sistent with our measurement, shown by the pink star.

If no model prediction of the production process is available the measured cross
sections are often fitted by a parametrisation given by [201, 202]:

σ(pbem) =  ·


1−

Æ
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. (6.13)
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Figure 6.14: pK+Λ production cross section at different beam momenta. Pink star
- this work. References to the data points are shown in Table G.1.
Left panel shows model predictions taken from Ref. [149] (Ferrari
67) and Ref. [200] (Ferrari 68). Right panel shows a fit of a phase
space function according to Eq. (6.13).

Figure 6.15: pK+0 production cross section at different beam momenta [155].
Left panel shows model predictions taken from Ref. [149] (Ferrari
67) and Ref. [200] (Ferrari 68). Right panel shows a fit with the
phase space function in Eq. (6.13).
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6 Extraction of the pK+Λ Production Cross Section

pth is the threshold momentum for the according production, pbem is the beam
momentum, m the mass of the proton, and a, b and c are free parameters de-
termined by the fit. This function reproduces the energy dependence of the
phase space just above the threshold reasonably well [201]. Originally the pa-
rameters a, b, and c were tuned such that they match the predictions of a
boson exchange model in Ref. [202] and were not fitted to the data. The result-
ing model prediction of the original work is shown in Figure 6.16. It practically
overestimates all but two experimental measurements. If the parameters a,
b, and c are released, however, and fitted to the experimental data the three
curves, shown in the right panels of Figures 6.14 and 6.15, appear. One curve
is fitted only to the low-energy data of COSY and Macher et al. (LED), one also

Figure 6.16: Inclusive (dots) and exclusive (squares) kaon production cross sec-
tion in p+p collisions. The curves show model predictions for the
three cross sections parametrized with Function (6.13) [202].

includes the high energy data from the Landoldt Börnstein Series, and the third
one includes all data points such as the HADES measurement. The prediction is
very sensitive to which experimental data points are included into the fit. The
pK+Λ and pK+0 cross-section, determined in this work, lie, like some other
data at higher energies, below the phase-space parametrisation. The pK+Λ and
pK+0 production cross sections at a beam momentum of 4338 MeV/c (EKn =
3.5) interpolated with the different models are shown in Tables 6.10 and 6.11.
The extracted cross sections of this work are consistent with these interpolated
cross sections within 3σ of the experimental errors.
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6.3 Comparison With Other Results

Table 6.10: Interpolated pK+Λ production cross section at a beam momentum of
4338 MeV/c. The cross sections of HADES are shown for the two differ-
ent data analyses (multi-fit) and (PWA). They include an additional er-
ror of 7% due to the cross-section normalization to p+p elastic events.

Fit Cross section [μb]

Ferrari (67) [149] 41.5
Ferrari (68) [200] 46.1
Low energy data 8.7
LED + Landolt Börnstein 49.24
LED + LB + HADES 47.7

HADES-values 36.33±0.51+0.47−0.73 (multifit)

38.12±0.43+3.55−2.83-2.9 (PWA)

Table 6.11: Interpolated pK+0 production cross section at a beam momentum of
4338 MeV/c. The cross section of HADES is shown for the data analysis
from Chapter 3 (multi-fit) and includes an additional error of 7% due
to the cross-section normalization to p+p elastic events.

Fit Cross section [μb]

Ferrari (67) [149] 13.2-16.9
Ferrari (68) [200] 11.1-14.3
Low energy data 108.7
LED + Landolt Börnstein 18.3
LED + LB + HADES 16.8

HADES-value 12.64±0.32+0.26−0.34
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7 | Discussion and Outlook

7.1 HADES Results in the Context

In this section, the result of this work is put in context with pK+Λmeasurements
at different beam energies and is confronted to the claims of the DISTO collab-
oration that the observed structure X(2265) is associated with the production
of a kaonic nuclear bound state KNN. Table 7.1 gives an overview of reported
pΛ mass spectra at various beam kinetic energies and the according excess
energies of different production processes. The first excess energy is quoted
for the pK+Λ production threshold, the second shows the excess energy of the
hypothetical state X(2265) together with a K+, and the third quotes the excess
energy over the production threshold for the Λ(1405)-resonance.

Table 7.1: Different publications showing a pΛ invariant mass spectrum.  Λ∗ with
M=1385 MeV/c2 [23, 173].b not published. The values denote EKn in
[GeV] and excess energies ε in [MeV].

Figure Reference EKn ε(pK+Λ ) ε(DISTO) ε(pK+Λ∗)

7.2/7.3 [199]/ [157] 2.16 203.7 -9.3 -65.6
7.2 [199, 166] 2.28 246.0 33.0 -23.3
7.4/7.3 [172]/[157] 2.4 284.0 71.0 14.7
7.3 [157] 2.49 315.7 102.7 46.4
b [128] 2.5 318.2 105.1 48.8
b [125] 2.85 430.5 217.5 161.2
7.5 [203] 3.1 508.3 295.2 239.0
7.6 this work 3.5 629.3 416.3 360.0
7.7/7.8 [161] 4.1 815.0 602 545.7
7.9/7.10 [162] 5.13 1079.6 866.5 810.3
7.11 [204] 7.1 1560.4 1347.36 810.3
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7 Discussion and Outlook

The results in this table should be compared to the statements of the DISTO
collaboration concerning the production yield of the X(2265) structure. After
the interpretation of the structure in the pΛ spectrum as a new state (DISTO at
2.85 GeV), it was estimated that at the lower beam energy of 2.5 GeV (see Table
7.1) the defined state X(2265) could be produced with a yield of 33% of that ob-
served at 2.85 GeV [205]. A re-analysis of the 2.5 GeV DISTO data, however, did
not show any sign of the X(2265). In a report that followed, the production cross
sections of the X(2265) were quoted as 16% and 0.2% of the pK+Λ production
cross section for 2.85 GeV and 2.5 GeV, respectively [128]. An interpolation
of the pK+Λ production cross section in Figure 7.1 delivers a production cross
section of ≈ 33.7 μb and ≈ 41.0 μb for 2.5 GeV and 2.85 GeV, respectively. This
translates then into the estimated cross sections for the X(2265) production of
5.4 μb and 0.008 μb. As quoted in Ref. [125], the produced yield of X is found
to be as large as for the Λ(1405) which is in agreement with the estimations for
the Λ(1405) production cross section done in the next section.

Figure 7.1: The production cross sections of the pK+Λ and the pK+Λ(1405) final
state at intermediate excess energies [173].

7.1.1 DISTO Signal at Low Energies

Table 7.1 shows the excess energy for the production of a X(2265). Beginning
from a beam energy of 2.4 GeV, structures of the X(2265) should be visible in
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7.1 HADES Results in the Context

the data. Given the large width of 120 MeV of this state, its production at an
excess energy of -9 MeV is kinematically still allowed.

The close inspection of the pΛ invariant mass spectra in Figures 7.2, 7.4, and 7.3
shows no sign of an enhancement of statistic at 2265 MeV/c2 or 5.13 (MeV/c2)2,
respectively. Together with the negative findings at a beam energy of 2.5 GeV
from the DISTO collaboration itself, the interpretation of X(2265) being due to
the production of a new state namely the KNN is questionable.

The absence of the structure at EKn = 2.5 GeV was interpreted as a sign for the
unique production mechanism of the KNN, namely via the Λ∗-doorway forma-
tion [128, 87]. In this ansatz, the production of the KNN is postulated via:

p+ p→ K+ + p+ Λ(1405)→ K+ + [pΛ(1405)]→ K+ + KNN. (7.1)

Following this suggestion, a Λ(1405) needs to be produced prior to the appear-
ance of a KNN, which is only possible above the Λ∗ production threshold. Due
to this mechanism the absence of a signal at 2.5 GeV was explained and an
upper limit of 0.2% of the pK+Λ production cross section was reported [128].

Still, the excess values quoted in Table 7.1, on the other hand, reveal that from a
beam kinetic energy of 2.4 GeV on the production of a Λ(1405) is kinematically
possible.

Figure 7.1 (Ref. [173]) shows the production cross section of the pK+Λ and the
pK+Λ(1405) final state at intermediate excess energies. From this interpolation
of the cross sections, a value of 4.46 μb and 1.15 μb can be estimated for the
Λ(1405) production at EKn = 2.85 and 2.5 GeV, respectively. Based on this
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Figure 7.2: pΛ invariant masses from p+p collisions at EKn = 2.16 and 2.28 GeV
[199, 166]. The two distributions at 2.28 GeV stem from two separate
analyses of the same data.
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EKin=2.16 EKin=2.4 EKin=2.49Data

Model

2.05      2.1     2.14     2.19    2.24     2.28    2.32    2.37 2.05      2.1     2.14     2.19    2.24     2.28    2.32    2.37 2.05      2.1     2.14     2.19    2.24     2.28    2.32    2.37 

Figure 7.3: pΛ invariant masses from p+p reactions at EKn =2.16, 2.4 and
2.45 GeV [157].

Figure 7.4: K+Λ-, and pΛ invariant masses from p+p collisions at EKn = 2.4 GeV
[172].

comparison, a decreased yield of X(2265) rather than a complete lack is more
naturally the consequence. In the Λ∗-doorway picture the observed Λ(1405)

particles in the final state are the remaining seeds of the KNN production. If
the ratio of unaffected Λ(1405) and produced KNN via Reaction (7.1) stays
constant, a produced yield of 1.38 μb for the X(2265) production would be
expected. In case the sticking of the Λ(1405) and the proton to a KNN occurs
only in a small amount of phase space, this ratio should be even higher at lower
energies. The explanations in Ref. [128] for the missing X(2265) signals seems,
thus, rather inconclusive as it is not motivated why, despite a finite yield of
Λ(1405), no trace of a X(2265) signal is visible.
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7.1 HADES Results in the Context

7.1.2 DISTO Signal at High Energies

According to the argumentation in Ref. [128, 87], the larger production rate of
the Λ(1405) at higher proton beam energies should favor the production of a
KNN via Reaction (7.1). This is not confirmed by several observations ranging
from EKn = 3.1 to 7.1 GeV. Figures 7.5-7.11 show pΛ invariant mass spectra in
which no substantial excess compared to the model predictions is visible.

The result of this thesis adds a quantitative statement to this qualitative inspec-
tion. Figure 7.6 summarizes the mass spectra from this work. These observ-
ables show no enhancement at a pΛ mass of 2265 MeV/c2. This observation is
accompanied by an elaborate statistical analysis which tests the possible pro-
duction yield of a KNN at 3.5 GeV beam kinetic energy. The result shows that in
case of interference with other production channels the contribution of a KNN

to the total pK+Λ production cross section can be as large as ≈ 2–7% ( = 30
MeV), 3–10% ( = 50 MeV) and 3–12% ( = 70 MeV). With the results from
Chapter 6 this translates into 0.7-2.5 μb, 1-3.5 μb, and 1-4.2 μb, respectively.
This is indeed a conservative estimate as it implies destructive interference of
the KNN wave with the other waves. In this way, a part of the cross section can
be reserved for the production of a KNN without its appearance in the pΛ mass
spectrum.
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Figure 7.5: pΛ invariant mass from p+p collisions at EKn = 3.1 [203].
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HADES acc. WALL acc. 4π

Figure 7.6: pΛ invariant masses from p+p collisions at EKn = 3.5 GeV, shown for
the two detector acceptances and 4π (this work).

Figure 7.7: K+Y0-, and pY0 invariant masses for exclusive 0 and Λ from p+p
collisions at EKn = 4.1 GeV [161]. The distributions show nicely the
kinematic reflections of the N∗-resonance production in the pΛ mass
spectrum.
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7.1 HADES Results in the Context

Figure 7.8: pΛ invariant masses from p+p collisions at EKn = 4.1 GeV for low and
high masses of K+Λ [161].

Figure 7.9: pΛ invariant masses from p+p collisions at EKn = 5.13 GeV [162]. The
figures show a comparison of the data with phase space distributions
(solid line) and the inclusion of kinematic reflections (dashed line).
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Figure 7.10: pΛ invariant mass distributions shown as a function of the momen-
tum transfer. The curves show phase space distributions. Produced
in p+p collisions at EKn = 5.13 GeV [162].

Figure 7.11: K+Λ-, and pΛ invariant masses from p+p collisions at EKn = 7.1 GeV
[204]. The solid curve shows the predicted distribution from a one
pion exchange model and the dashed curve shows the distribution
for the one kaon exchange model.
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A further upper limit, that also includes interferences, is reported by an analysis
of data measured with the FOPI spectrometer at EKn=3.1 GeV [203], which was
conducted in parallel to the here presented work. At this beam energy, an upper
limit for the production cross section of the KNN of 4–55% ( = 20 MeV), 5–32%
( = 50 MeV) and 18–80% ( = 80 MeV), depending on the assumed mass of the
hypothetical state, was deduced. The corresponding mass spectrum is visible
in Figure 7.5.

The definition of a KNN contribution in this work is quite different from the one
in the DISTO analysis, where the yield was associated to an observed instead
of a produced yield (prior to its destructive-, or constructive interference). If
the cross section in the HADES analysis would be defined by the integral of
a visible signal, as done by DISTO, it would be consistent with approximately
zero, as displayed in Figure 7.6.

No signal from a KNN was observed in the analysis of the HADES data, although,
a certain amount of Λ(1405) is produced at EKn = 3.5 GeV, with a cross sec-
tion as high as: σpK+Λ(1405)=9.2±0.9+3.3−1.0±0.6 μb [23]. If the production of the

KNN indeed proceeds via the sticking of a p to a Λ(1405), this observation is
inconsistent with the explanations in Ref. [128] why a signal at 2.5 GeV beam
energy is absent. In case of an energy independent sticking probability of the
Λ(1405) and the p, the production rate of the hypothetical state X(2265) at 3.5
GeV is expected to be double as high as for the DISTO experiment at 2.85 GeV.

Non of this is observed and, thus, this work excludes the predicted "dominance
of the Λ(1405)-doorway scenario" of Ref. [87] at a beam energy of 3.5 GeV.
This is valid only for the pΛ decay channel.

7.1.3 Conclusion

In view of an absent signal at lower and higher energies, the interpretation
of the observed structure X(2265) in the pΛ invariant mass spectrum (DISTO
signal) as a KNN signal is called into question.

This work adds, for the first time, a quantitative statement to these observa-
tions. The analysis of 20,000 pK+Λ events with help of a partial wave analysis
is an ideal tool to implement the production of a kaonic cluster in a consistent
way. A strong statement can be made that, even though destructive interfer-
ence are present in the model that allow a contribution as high as 12% (pro-
duced yield) of the pK+Λ production cross section, the DISTO signal strength of
16% (observed yield) at 2.85 GeV can be excluded.
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The scenario of a large formation of a KNN bound state in p+p reactions, as
predicted in Ref. [87], can not be confirmed by a wealth of measurements
in the relevant energy regime and the quantitative results of this work. This
thesis, therefore, relegates the strong claims put forward in Ref. [125] and is,
thus, a crucial addition to the ongoing discussion of possible KNN signals and
their interpretation.

Extending this non-observation of any signal in the pΛ spectrum to signals
from other reaction systems, one can conclude that neither a FINUDA like sig-
nal (M, )= (2225±6, 67±14) MeV/c2 [117] nor an OBELIX like signal (M, )=
(2212.2±4.9, < 24.4±8) MeV/c2 [117] was observed in p+p collisions with a
pK+Λ final state.

7.2 Outlook

7.2.1 Further Possibilities for the Partial Wave Analysis

In principle, it is possible to add the KNN directly into a PWA of measured data
instead to a fixed solution with N∗ resonances and perform a simultaneous fit
with all other waves. That was not done in this work, as the ambiguities from
the N∗-resonances itself are already huge. Thus, any extracted information of
a KNN in such kind of fit is not solid enough to make a clear statement about
possible mass width and yield values that are most consistent with the data.

One may perform such an analysis for the search of a KNN, if first, the status of
the existence of some N∗-resonances is more solid and second, the masses and
widths of them are much better established. To obtain these information, the
large-scale analysis of pK+Λ final states at several beam energies, measured
by different collaborations, is certainly the right approach [206]. This proposed
program combines these data in order to perform a simultaneous partial waves
analysis of the various data-sets (EKn = 1.8 – 3.5 GeV). In this way one may fix
the contributions of the different N∗’s with a better accuracy.

Further, one can perform a PWA of other final states of the N∗ decay in parallel
and cross check the results for consistency. An example of such a discussion
is given in Ref. [200]. If a value for the branching ratio is known, the yield
from the K+Λ final state can be used to reconstruct the total N∗ production in
p+p collisions which can not deviate much from the yield established from the
pπ final state, for example.
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These improvements may help to stabilize the prediction of the fit. Neverthe-
less, a critical evaluation of the proposed transition amplitude strength of a
KNN contribution needs to be performed in such a kind of fitting procedure.
Careful evaluation of the fitted yield as a function of the included uncertainties
of other transition waves is indispensable.

7.2.2 How to find a KNN?

The searches for the KNN in its pΛ decay channel, so far, have not resulted into
a breakthrough. Given the decay branching ratios in Table 1.1 of Section 1.6,
a search for the KNN in other decay channels might be more promising. The
most promising one would be KNN→ Nπ. As the mass spectra of such decays
start at ≈ 2270 MeV/c2, very deeply bound kaonic cluster can not be accessed
via this final state.

Figure 7.12 presents the invariant masses of +pπ− and −pπ+ as a byproduct
of the Λ(1405) analysis in its charged decay channels [23]. The figure is pre-
sented inside of the HADES acceptance and shows that large opening angles
(correlated with large invariant masses) are preferred by the acceptance. The
statistic below 2400 MeV/c2 is, unfortunately, too low to draw any conclusion
about a KNN signal in the data. An inclusion of the Forward Wall to the analysis,
as done in this work, might be helpful to get a better access to low opening an-
gles between the particles. The mass observable in this case, however, should
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Figure 7.12: The Nπ final states from p+p collisions at 3.5 GeV [23]. The left
panel shows the invariant mass of +pπ− and the right panel shows
the invariant mass of −pπ+. A signal of the KNN is expected some-
where below 2400 MeV/c2.
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Figure 7.13: The missing mass to the K+ from p+p collisions at 3.5 GeV. The left
panel shows the statistic for the HADES acceptance and the right
panel for the WALL acceptance. A signal of the KNN is expected
somewhere below 2400 MeV/c2.

be accessed via the missing mass to the kaon rather than the invariant mass of
three particles, as the mass resolution of this four-vector will probably be better.

Figure 7.13 presents themissing mass to the K+ from the analysis of the Λ(1405)
and (1385)0 decays (Chapter 3). It is a sum of missing pΛ (blue), p0 (cyan),
pΛπ0 (green), p0π0 (violet), and mis-identification background (gray shaded)
– to name the main components. The statistic was selected to contain mainly
contributions from the production of resonance and thus the mass spectrum of
MMK+ =̂ p0π0 (for Λ∗) and pΛπ0 (for ∗). This was done by a restriction of
the data (MMp,K+ ,p,π− > 60 MeV/c2 (HADES), > 55 MeV/c2 (WALL), and < 400
MeV/c2 for both cases) which cuts away most of the pK+Λ and pK+0 contri-
bution. The sum of the components (plum-colored) can describe the measured
data from both data-sets (HADES and WALL) well. No major excess is observed
at the mass range below 2400 MeV/c2. But also in this statistic the events
are limited and in addition dominated by pK+0 production, so that a detailed
conclusion can not be drawn from these data. To access this decay channel in
the future, experiments with a much higher statistic and a good acceptance for
multi-particle final states are needed.
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A | Additional Figures to the

Y0∗-Analysis

The mass distributions in Figures A.1 and A.2 show the MMpK+ for the selected
events prior to the subtraction of the mis-identification background. The fig-
ures reveal how nice the background (gray-shaded) can be modeled with the
side-band data samples. The distributions after the background subtraction are
shown in Figures 3.10 and 3.11 of Chapter 3.

Figure A.1: Missing mass to the proton and the K+ for the HADES data set. Left
panel shows the statistic for all channels, right panel shows an en-
largement of the resonance region. The color code of the different
channels is explained in Table 3.2 of Chapter 3.
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Figure A.2: Missing mass to the proton and the K+ for the WALL data set. Left
panel shows the statistic for all channels, right panel shows an en-
largement of the resonance region. The color code of the different
channels is explained in Table 3.2 of Chapter 3.
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B | Time-of-flight Reconstruc-

tion for pK+Λ Events

As discussed in Section 2.2 of Chapter 2, a missing event-start-signal in the
p+p experiment, prevents the direct measurement of the time-of-flight of the
particle. This quantity can, however, be reconstructed, see Ref. [145]. The
method was introduced in Section 2.2, where it was pointed out that several
options for this reconstruction exist. This Appendix illustrates these methods
quantitatively based on the exclusive event selection of the pK+Λ final state.
Table B.1 summarizes the details of the different TOF-reconstruction methods
tested in this analysis. In each method different constraints were applied to the
data selection. In method No. 1, for example, both protons and the pion were
used for the time-of-flight reconstruction. The kaon was only used in case it was
selected by a PID cut in the dE/dx vs. momentum spectrum in both detectors:
TOF and MDC. In method No. 2 the protons were only taken for the time-of-flight
reconstruction in case their position in the dE/x vs. mom. spectrum did not

Table B.1: Possible methods to reconstruct the time-of-flight by combining the in-
formation of the four particles. n=not used, y=used, nK=particle was
not inside the dE/dx cut for kaons. TOF and MDC indicate that the par-
ticle was only used for the reconstruction if it was identified, by the
respective dE/dx cuts, as kaon.

No. p1 p2 π− K+

0 y y y n
1 y y y TOF and MDC
2 nK nK y TOF and/or MDC
3 nK nK y TOF and MDC
4 nK nK y n
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coincide with the kaon PID cut. This was done to avoid that kaons are mistaken
for protons. In general, this scenario is very unlikely. Due to the data analysis
the remaining statistic is, however, so strongly enhanced with kaons that this
mix-up of the PID could happen. Out of all five methods only three use the kaon
track for the time-of-flight reconstruction. This inclusion has to be monitored
carefully, as it could introduce a bias. Thus, in these methods the kaon is only
used, if at least one other track has been used for the reconstruction as well.

B.1 TOF Reconstruction for the HADES Data

Figure B.1 displays, for the events with a p-value>0.01 (see Chapter 4 for anal-
ysis details), the result of the reconstructed kaon mass distributions for each
method. The data are displayed together with simulations in which the kaon
candidate is a true kaon, pion or proton, respectively. The contributions were
fitted to the data, such that the sum of the components describes the measured
data best.

The five presented methods differ in how narrow the mass distribution is, and
hence also the signal-to-background ratio (S/B) underneath the kaon peak dif-
fers among them. To calculate the signal yield, the histograms in Figure B.1,
that contain the kaon contribution (red dashed), were integrated. For the back-
ground estimation, the histograms of pion and proton contribution (in blue)
were integrated.

The total S/B-ratio amounts to ≈ 2.9 with minor differences between the meth-
ods. To improve this value a mass range between 0< mK+−cnddte < 710
MeV/c2 was chosen and the S/B ratio was computed inside this mass range
separately. Additionally to those events in which the time-of-flight reconstruc-
tion worked well, there are three other cases:
Case 1: In these events, no stop signal was measured for the track of the kaon-
candidate. This is the result of an efficiency of ≈ 90% in the META detector
system. In this case, the kaon mass remains unknown.
Case 2: The time-of-flight could not be reconstructed by the method as not
enough particles were available for the procedure. This happens in ≈0.1% of
the cases and is, thus, negligible.
Case 3: The reconstructed time-of-flight of the kaon candidate has nonphysical
values of v>c. The masses have, thus, negative values.

The S/B ratio in the selected mass range, as well as for the two relevant cases 1
and 3, are quoted in Table B.2. Based on the numbers in this table the methods
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Figure B.1: The mass distributions of selected kaon candidates for five different
reconstruction methods, see Table B.1. Together with the data simula-
tions for various scenarios for the real identity of the candidate (pion,
proton or indeed kaon) are shown.
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B Time-of-flight Reconstruction for pK+Λ Events

Table B.2: Selected events and S/B ratio for the different reconstruction meth-
ods, all for a p-value cut of >0.01. M displays the statistic in the se-
lected mass range (0-710 MeV/c2), 1 and 3 show the statistic for the
two cases, mentioned in the text, and Tot displays the sum of events.

No. S/B M S/B 1 S/B 3 S/B Tot Data M Data 1 Data 3 Data Tot

0 18.4 6.1 16.8 14.7 9790 2119 1536 13445
1 18.5 6.3 16.5 15 10095 2119 1412 13626
2 15.8 6.3 16.0 13.5 10537 2119 1288 13944
3 17.9 6.2 16.2 14.5 10090 2119 1425 13634
4 17.8 6 16.4 14.4 9775 2119 1554 13448

0-4 have been compared and the method No. 1 was chosen as best method for
the time-of-flight reconstruction. It has the best signal to background ratio and
a good yield of events. Furthermore, if one compares the selected statistic in
the mass range for the three cases, described above, one may choose to take
the data of Case 1 and Case 3 both into account. Their signal-to-background
ratio is well and the number of 10-20% of additional events is considerably
large. In case of method No. 1 the number of selected events is roughly 13600
with about 6.7% of background contamination.

To check a possible improvement of the S/B ratio two tests were performed.
One test compared the resulting S/B and the selected statistic for different p-
value cuts. Table B.3 shows the same information as Table B.2 for different
p-value cuts in the data selection. All results are presented for a time-of-flight
reconstruction with method No. 1.

A stricter p-value cut, as p-value>0.03, will increase the S/B ratio and decrease,

Table B.3: For method No. 1 and mass range 0-710 MeV/c2: Selected events and
S/B ratio for the different p-value cuts. M displays the statistic in the
selected mass range (0-710 MeV/c2), 1 and 3 show the statistic for the
two cases, mentioned in the text, and Tot displays the sum of events.

p-value S/B M S/B 1 S/B 3 S/B Tot Data M Data 1 Data 3 Data Tot

>0.01 18.5 6.3 16.5 15 10095 2119 1412 13626
>0.02 20.2 6.9 17.7 16.3 9524 1970 1317 12811
>0.03 21.4 7.3 18.8 17.3 9190 1886 1263 12339
>0.04 22.2 7.6 19.5 17.9 8930 1829 1216 11975

182



B.1 TOF Reconstruction for the HADES Data

at the same time, the number of selected events. One can compare the results
for a p-value cut of >0.01 to a cut of >0.03. The background in the selected
data sample decreases from 6.7% to 5.1%, but, at the same time, the loss of
data is about 12%. Based on this it was decided to keep the p-value cut of
>0.01 for the data selection as the best option.

The second test was done by varying the selected mass range. The results
are illustrated in Table B.4. The different mass cuts change the amount of
selected events and the resulting S/B ratio. To decide which option is the best,
one has to choose whether a good purity or a high amount of selected events
is the most important aim. In this work it was decided to go for a maximum
yield rather than the smallest S/B possible. In the case of a selected mass
range of 0-650 MeV/c2 the loss of events is 8% compared to a selection of 0-
710 MeV/c2, whereas the contamination of misidentified events decreases from
7.2% to 5.5%. In this example the loss of events is too high so that this option
was rejected. If one translates the percentage of contamination into counts one
realizes that, if one opens the mass window from 680 MeV/c2 to 710 MeV/c2 one
would gain 300 events but about half of them belong to the background. The
best choice for the pK+Λ analysis is, thus, a mass cut of 0-680 MeV/c2.

Table B.4: For Method 1 and p-value cut of >0.01: Selected statistic and S/B ratio
for the different methods. M displays the statistic in the selected mass
range (0-710 MeV/c2), 1 and 3 show the statistic for the two cases,
mentioned in the text, and Tot displays the sum of events.

Range [MeV/c2] S/B M S/B Tot Data M Data Tot

0-760 14.2 12.6 10677 14212
0-730 16.5 13.9 10325 13860
0-710 16.5 13.9 10325 13860
0-680 19.4 15.3 9964 13499
0-650 26.3 17.9 9222 12757
0-620 30.2 19.0 8777 12312

In summary: for the HADES statistic method No. 1 is used to calculate the
time-of-flight. The best S/B ratio is obtained with a p-value cut of >0.01. Events
where selected, if the reconstructed mass is 0-680 MeV/c2 or if case 1 or 3 of
the time-of-flight reconstruction occurred in the event. The selected number of
events is ≈13,500 and the resulting S/B is ≈15.3 which implies a background
contamination of 6.5%.
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B.2 TOF Reconstruction for the Wall Data

For the events in which one particle was detected in the Forward Wall detector,
the time-of-flight reconstruction procedure stays the same as for the HADES
data set. As the time information of the WALL was rejected from the procedure,
there is, however, one particle less to build an average time of flight. Figure
B.2 shows the results of the different time-of-flight reconstruction procedures
for this data set. The resulting S/B ratio and the number of selected events
are summarized in Table B.5. Given this result, the time-of-flight reconstruction
method No. 2 was chosen as the best one for this data set. Compared to the
HADES events the S/B ratio = 7.6 is rather low. Also the statistic is less with
around 10,000 events.

Table B.5: Selected events and S/B ratio for the different reconstruction meth-
ods all for a p-value cut of >0.01. M displays the statistic in the se-
lected mass range (0-710 MeV/c2), 1 and 3 show the statistic for the
two cases, mentioned in the text, and Tot displays the sum of events.

No. S/B M S/B 1 S/B 3 S/B Tot Data M Data 1 Data 3 Data Tot

0 6.0 6.3 5.2 5.9 5910 1384 1479 8773
1 7.6 7.7 6.3 7.3 6295 1384 1367 9046
2 7.5 8.9 7.4 7.6 7013 1384 1239 9636
3 6.9 7.6 6.2 6.8 6296 1384 1391 9071
4 5.4 6.1 5.0 5.4 5890 1384 1510 8784

Likewise to the HADES data, also in this case two checks were performed to
validate a good S/B ratio and a high number of selected events. Table B.6
shows the results of the time-of-flight reconstruction with method No. 2 for

Table B.6: For Method 2 and mass range 230-700 MeV/c2: Selected statistic and
S/B ratio for the different p-value cuts. M displays the statistic in the
selected mass range (0-710 MeV/c2), 1 and 3 show the statistic for the
two cases, mentioned in the text, and Tot displays the sum of events.

p-value S/B M S/B 1 S/B 3 S/B Tot Data M Data 1 Data 3 Data Tot

>0.01 7.5 8.9 7.4 7.6 7013 1384 1239 9636
>0.03 8.3 9.7 8.0 8.3 6258 1194 1095 8547
>0.06 9.7 12.6 9.0 9.8 5715 1051 987 7753

184



B.2 TOF Reconstruction for the Wall Data

different p-value cuts. The p-value cut variation demonstrates a suppression of
background contamination from 13.2% in case of a p-value >0.01 to 10.2% in
case of a p-value >0.06. The amount of selected events, however, decreases
from 9636 to 7753 which is a loss of ≈20% of data. This is considerably large
so that a background suppression via a stricter p-value cut was not considered.

A better option is to change the selected mass range. Table B.7 shows the re-
sults for a variation of the selected mass range of the kaon candidates. If one
narrows the mass cut from 230-700 MeV/c2 to 230-640 MeV/c2 the contamina-
tion of bad events is suppressed from 13.2% to 11.7%. This goes along with a
loss of statistic of 5.9% which is equal to ≈500 events, which is a considerable
improvement. Consequently, the choice was made to select a mass range of
230-640 MeV/c2.

Table B.7: Selected statistic and S/B ratio for the different kaon mass ranges. The
results were obtained with time-of-flight reconstruction method No. 2.

Range [MeV/c2] S/B M S/B Tot Data M Data Tot

230-700 7.5 7.6 7013 9636
230-670 8.1 8.0 6730 9353
230-640 8.7 8.5 6448 9071
230-610 9.3 8.8 6113 8736

In summary: The S/B ratio for the WALL data-set is worse than for the HADES
data-set. To reconstruct the start-time of the events the TOF reconstruction
method No. 2 was selected. A p-value cut of >0.01 was applied to the data
to improve the S/B ratio. The kaon candidates where selected, if their mass
was within 230-640 MeV/c2 or if the events belonged to Case 1 or 3 of the
time-of-flight reconstruction. The selected number of events is ≈9,000 and the
resulting S/B is ≈8.5 which implies a background contamination of 11.7%.
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Figure B.2: The mass distributions of selected kaon candidates for five different
reconstruction methods, see Table B.1. Together with the data sim-
ulations for two scenarios for the real identity of the candidate (pion
or indeed kaon) are shown. The proton contribution to the data are
fitted with a gauss function.
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C | Selection of TransitionWaves

for the PWA

In the following, the spectroscopic notation [185] will be used to define initial
and final states, see Equation 4.18 of Chapter 4. The states are further classi-
fied by their parity P and total spin J, in the form JP.

C.1 Initial State of the Reaction

To characterize the initial proton proton state one needs to build all possible
combinations of the quantum numbers of the two particles. The proton has

the following quantum numbers: JP = 1
2

+
. The spins of the two protons can be

combined to a singlet or a triplet state with Stot = 0 and Stot = 1 respectively.
Additionally, an orbital momentum L can appear between the two particles dur-
ing the scattering process. The states in which the two protons react with each
other are the ones listed in Tables C.1 and C.2.

As the initial system consists of two identical fermions its wave function has to

Table C.1: 2S+1LJ of a combined system of two 1
2

+
states. In case of a p+p system

the states colored in gray are forbidden.

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 1S0
3S1

1 1P1
3P0, 3P1, 3P2

2 1D2
3D1, 3D2, 3D3

3 1F3
3F2, 3F3, 3F4
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Table C.2: JP of a combined system of two 1
2

+
states. In case of a p+p system the

states colored in gray are forbidden.

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 0+ 1+

1 1− 0−,1−,2−

2 2+ 1+, 2+, 3+

3 3− 2−,3−,4−

be antisymmetric. For that, the following relation must be fulfilled:

(−1)S+L+1 = −1. (C.1)

This means S+L must be an even number, which rules out the states in Tables
C.1 and C.2 colored in gray.

The angular momentum which appears between the two protons is constrained
by the available energy of the reaction. To describe the reaction at 3.5 GeV
the angular momentum between the particles was limited to F-Waves with J<3
[183]. As a consequence of this limitation there are in total six initial combina-
tions (without 3F3, 3F4) in which the two protons can react with each other.

C.2 Final State of the Reaction

In the PWA, the following compositions of a final state in pK+Λ were considered:

→p+ N∗+ → p+ K+ + Λ, (C.2)

→(pΛ) + K+ → p+ K+ + Λ, (C.3)

→ppK− + K+ → p+ K+ + Λ. (C.4)

In the first reaction a proton with JP = 1
2

+
and an N∗+-resonance with various JP

are produced. In the second reaction the non-resonant production of pK+Λ is
modeled in terms of an isobar of pΛ. This means the particles are first combined
to a common state (pΛ) which could have various JP combinations and one of
these states is then combined to the kaon with JP=0−. In the third reaction the
kaonic cluster with JP = 0− (see Section 1.6.4 of Chapter 1) is produced together
with a kaon of JP = 0−.
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C.2 Final State of the Reaction

To determine, for example, under which condition a process according to Reac-
tion C.4 can occur from an initial p+p state one has to determine the total spin
and parity of the complete final state.

C.2.1 Final States Including N∗+ Resonances

The N∗+ resonances that have been used in the PWA are the following (full prop-

erties are listed in Table 4.1): N(1650)1
2

−
, N(1710)1

2

+
, N(1720)3

2

+
, N(1875)3

2

−
,

N(1880)
1
2

+
, N(1895)1

2

−
, N(1900)3

2

+
. There are thus four different types of res-

onances according to their spin parity combination: JP=1
2

−
, 1
2

+
, 3
2

−
and 3

2

+
. In

the following tables the spin and parity of the complete final states consisting
of a proton and one of these N∗+ resonances are listed.

Table C.3: JP of a combined system out of a 1
2

−
and a 1

2

+
particle.

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 0− 1−

1 1+ 0+,1+,2+

2 2− 1−,2−,3−

3 3+ 2+,3+,4+

Table C.4: JP of a combined system of a 1
2

+
and a 1

2

+
particle.

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 0+ 1+

1 1− 0−,1−,2−

2 2+ 1+,2+,3+

3 3− 2−,3−,4−
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Table C.5: JP of a combined system of a 3
2

+
and a 1

2

+
particle.

❍
❍
❍
❍
❍
❍

L
Stot 1 3/2 2

0 1+ 3/2+ 2+

1 0−,1−,2− 1/2−, 3/2−, 5/2− 1−, 2−, 3−

2 1+,2+,3+ 1/2+, 3/2+, 5/2+, 7/2+ 0+, 1+, 2+, 3+, 4+

3 2−,3−,4− 3/2−, 5/2−, 7/2−, 9/2− 1−, 2−, 3−, 4−, 5−

Table C.6: JP of a combined system of a 3
2

−
and a 1

2

+
particle.

❍
❍
❍
❍
❍
❍

L
Stot 1 3/2 2

0 1− 3/2− 2−

1 0+,1+,2+ 1/2+, 3/2+, 5/2+ 1+, 2+, 3+

2 1−, 2−,3− 1/2−, 3/2−, 5/2−, 7/2− 0−, 1−, 2−, 3−, 4−

3 2+,3+,4+ 3/2+, 5/2+, 7/2+, 9/2+ 1+, 2+, 3+, 4+, 5+

Example for a Transition

A proton proton pair in the initial state JP=1− (spectroscopic notation 3P1) could

make a transition into a p+N∗+ pair with an N∗+ of spin parity 3
2

−
. This transi-

tion can happen for three combinations of L and S marked in bold in Table C.6.
The spectroscopic notation of the final state reads 3S1 for the case L=0 and
Stot=1, 3D1 for the case L=2 and Stot=1, and 5D1 for the case L=2 and Stot=2.
In the PWA framework, the transition is written as follows into the input list of
possible transition amplitudes:

 → ′N∗ − p′ (2Stot + 1) ′L′
tot

(C.5)
3P1 → ′D13(1875) − p′ 3 ′S′, (C.6)
3P1 → ′D13(1875) − p′ 3 ′D′, (C.7)
3P1 → ′D13(1875) − p′ 5 ′D′. (C.8)

Here,  represents the initial state followed by the N∗ − p final state. The total
spin of the final state is expressed by (2Stot + 1) and Ltot stands for the total
orbital momentum between the proton and the N*.

The states listed in the tables above are limited to F-waves. The exact order

190



C.2 Final State of the Reaction

Table C.7: N*-p final state and the maximum populated angular momentum be-
tween the particles.

Final states
p
sTh [MeV]
p
sEp-
p
sTh [MeV] max. L populated

N(1650) + p 2593.27 583.1 F-wave
N(1710) + p 2648.27 528.1 F-wave
N(1720) + p 2658.27 518.1 F-wave
N(1875) + p 2813.27 363.1 D-wave
N(1880) + p 2808.27 368.1 D-wave
N(1895) + p 2833.27 343.1 D-wave
N(1900) + p 2838.27 338.1 D-wave

of orbital momentum which can be present between the proton and the N∗+-
resonance is limited by the excess energy of their production. As an estimate
for this effect one can suppose that every 150 MeV above threshold a new
order of orbital momentum can be populated [183]. The CMS energy in this
experiment is

p
sEp=3176.37 MeV. This leads to the limits in Table C.7. The

complete list of possible final states in which N* resonances are produced is
listed in Table C.9.

C.2.2 Final States Including Non-Resonant Production of pK+Λ

To extract the properties of this three particle final state first the proton and the
Lambda are combined to a common system (pΛ). The quantum numbers of this
system are listed in Tables C.4 and C.8. To obtain the quantum numbers of the
total final state the (pΛ) isobar is combined with the kaon. This is done as an
example for the first three (pΛ) states.

Table C.8: (2S+1)LJ of a combined system of 1
2

+
and 1

2

+
(pΛ).

❍
❍
❍
❍
❍
❍

L
Stot 0 1

0 1S0
3S1

1 1P1
3P0, 3P1, 3P2

2 1D2
3D1, 3D2, 3D3

3 1F3
3F2, 3F3, 3F4
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Table C.9: N*-p final states that can be produced out of a certain p+p initial state.

2S+1LJ (p+p) JP ’N*-p’ (2Stot+1)Ltot
1S0 0+ ’S11(1650)-p’ 3P, ’S11(1895)-p’ 3P, ’P11(1710)-p’ 1S,

’P11(1880)-p’ 1S, ’P13(1720)-p’ 5D, ’P13(1900)-p’ 5D,
’D13(1875)-p’ 3P

3P0 0− ’S11(1650)-p’ 1S, ’S11(1895)-p’ 1S, ’P11(1710)-p’ 3P,
’P11(1880)-p’ 3P, ’P13(1720)-p’ 3P, ’P13(1900)-p’ 3P,
’D13(1875)-p’ 5D

3P1 1− ’S11(1650)-p’ 3S, ’S11(1650)-p’ 3D, ’S11(1895)-p’ 3S,
’S11(1895)-p’ 3D, ’P11(1710)-p’ 1P, ’P11(1710)-p’ 3P,
’P11(1880)-p’ 1P, ’P11(1880)-p’ 3P, ’P13(1720)-p’ 3P,
’P13(1720)-p’ 5P, ’P13(1720)-p’ 5F, ’P13(1900)-p’ 3P,
’P13(1900)-p’ 5P, ’D13(1875)-p’ 3S, ’D13(1875)-p’ 3D,
’D13(1875)-p’ 5D

3P2, 3F2 2− ’S11(1650)-p’ 1D, ’S11(1895)-p’ 1D, ’P11(1710)-p’ 3P,
’P11(1710)-p’ 3F, ’P11(1880)-p’ 3P, ’P13(1720)-p’ 3P,
’P13(1720)-p’ 5P, ’P13(1720)-p’ 3’F’, ’P13(1720)-p’ 5F,
’P13(1900)-p’ 3P, ’P13(1900)-p’ 5P, ’D13(1875)-p’ 5S,
’D13(1875)-p’ 3D, ’D13(1875)-p’ 5D

1D2 2+ ’S11(1650)-p’ 3P, ’S11(1650)-p’ 3F, ’S11(1895)-p’ 3P,
’P11(1710)-p’ 1D, ’P11(1710)-p’ 3D, ’P11(1880)-p’ 1D,
’P11(1880)-p’ 3D, ’P13(1720)-p’ 5S, ’P13(1720)-p’ 3D,
’P13(1720)-p’ 5D, ’P13(1900)-p’ 5S, ’P13(1900)-p’ 3D,
’P13(1900)-p’ 5D, ’D13(1875)-p’ 5P

Kaon Combined With a (pΛ) of Quantum Numbers 1S0, (0
+)

If one wants to know if such a (pΛ) state can be produced together with a kaon
from an initial p+p sate with the quantum numbers 0+, one will see in Table
C.10 that this is not possible, since such a state does not exist in this specific
combination of pK+Λ. One can, however, produce this constellation of particles
from an initial state with JP=0− which is the 3P0 wave of p+p. In the Bonn-
Gatchina PWA framework a non-resonant final state is expressed as follows: the
spectroscopic notation of the pΛ state is written in brackets followed by the way
how the kaon is combined to that state. The previously discussed combination
would look as follows: (1S0) 1S. Outside the brackets 1 stands for (2S+1) of the
combined final state and S denotes the angular momentum between the kaon
and the (pΛ) state.

192



C.2 Final State of the Reaction

Table C.10: Jp of a final state in which a Kaon (0−) was combined with a (pΛ)
system of 1S0, (0+).

❍
❍
❍

❍
❍
❍

L
J(pΛ) 0

0 0−

1 1+

2 2−

3 3+

Kaon Combined With a (pΛ) of Quantum Numbers 3S1, (1
+)

Table C.11: Jp of a final state in which a Kaon (0−) was combined with a (pΛ)
system of 3S1, (1+).

❍
❍
❍
❍
❍
❍

L
J(pΛ) 1

0 1−

1 0+, 1+, 2+

2 1−, 2−, 3−

3 2+, 3+, 4+

Kaon Combined With a (pΛ) of Quantum Numbers 1P1, (1
−)

Table C.12: Jp of a final state in which a kaon (0−) was combined with a (pΛ)
system of 1P1, (1−).

❍
❍
❍
❍
❍
❍

L
J(pΛ) 1

0 1+

1 0−, 1−, 2−

2 1+, 2+, 3+

3 2−, 3−, 4−
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The total list of non-resonant waves that can be mapped to the initial p+p state
is summarized in Table C.13. The non-resonant pK+Λ production was limited to
(pΛ) states with L<3 and J<3 [183].

Table C.13: Non-resonant waves that can be produced out of a certain p+p initial
state. In the brackets: state of pL; Values outside of the brackets:
state of the Kaon relative to the (pΛ) system

2S+1LJ (p+p) JP 2S+1LJ (pΛ)-K

1S0 0+ (3S1) 3P, (3P0) 1S, (3P2) 5D, (3D1) 3P, (3D3) 7F
3P0 0− (1S0) 1S, (1P1) 3P, (1D2) 5D, (3P1) 3P, (3D2) 5D
3P1 1− (1P1) 3P, (1D2) 5D, (3S1) 3S, (3S1) 3D, (3P0) 1P, (3P1) 3P,

(3P2) 5P, (3P2) 5F, (3D1) 3S, (3D1) 3D, (3D2) 5D, (3D3) 7D
3P2, 3F2 2− (1S0) 1D, (1P1) 3P, (1P1) 3F, (1D2) 5S, (1D2) 5D, (3S1) 3D,

(3P1) 3P, (3P2) 5P, (3P2) 5F, (3D1) 3D, (3D2) 5D, (3D3) 7D
1D2 2+ (1P1) 3D, (1D2) 5P, (1D2) 5F, (3S1) 3P, (3S1) 3F, (3P0) 1D,

(3P1) 3D, (3P2) 5S, (3P2) 5D, (3D1) 3P, (3D1) 3F, (3D2) 5P,
(3D2) 5F, (3D3) 7P, (3D3) 7F

C.2.3 Final State Including the Production of a "ppK−"

According to the theoretical predictions the kaonic cluster with the quantum
numbers 0− has the highest chance of existence according to its isospin con-
figuration, see Section 1.6.4. In this case, the kaonic cluster and the kaon have
both the quantum numbers JP=0−. The total parity of the combined system is
P= (-1)·(-1)·(-1)L. So P=+1 for odd angular momenta and P=-1 for even angu-
lar momenta. The total spin is S=0. These results are summarized by Table
C.14. Out of these four final states only 0+, 1− and 2+ can be populated as

Table C.14: JP of a combined system of 0− and 0−

❍
❍
❍
❍
❍
❍

L
Stot 0

0 0+

1 1−

2 2+

3 3−
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their quantum numbers coincide with the initial p+p system. The transitions
are written as follows:

(0+) 1S0 → ′ppK(2250)− K ′ 1 ′S′, (C.9)

(1−) 3P1 → ′ppK(2250)− K ′ 1 ′P′, (C.10)

(2+) 1D2 → ′ppK(2250)− K ′ 1 ′D′. (C.11)

Besides this option, which is considered in the PWA of this thesis, there is the
possibility that a kaonic nuclear cluster with the quantum numbers JP=1+ may
exist, see Section 1.6.4. It would be called "dK−". Technically it is possible to
include such a state however with other quantum numbers for the waves. The
latter are summarized in Table C.14. In the case of "dK−" production, there

Table C.15: JP of a combined system of 1+ and 0−

❍
❍
❍
❍
❍
❍

L
Stot 1

0 1−

1 0+, 1+, 2+

2 1−, 2−, 3−

3 2+, 3+, 4+

are more possible transitions from initial to final state than in the case for the
"ppK−". All quantum numbers except: 1+, 3−, 3+, and 4+ can be mapped to an
initial state. These transition waves would look like follows:

(0+) 1S0 → ′dK− − K ′ 3 ′P′, (C.12)

(1−) 3P1 → ′dK− − K ′ 3 ′S′, (C.13)
3P1 → ′dK− − K ′ 3 ′D′, (C.14)

(2−) 3P2 → ′dK− − K ′ 3 ′D′, (C.15)

(2−) 3F2 → ′dK− − K ′ 3 ′D′, (C.16)

(2+) 1D2 → ′dK− − K ′ 3 ′P′, (C.17)
1D2 → ′dK− − K ′ 3 ′F′. (C.18)
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C Selection of Transition Waves for the PWA
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D | Results of the PWA fit Ex-

cluding Certain Mass Ranges

in MpΛ

D.1 Test PWA Solution compared the Selected

Statistic

In this appendix, a more extended look on pictures from a quality check is done
which was discussed in Section 4.3.2 of Chapter 4. Figures D.1 and D.2 display
the experimental distributions that result from events where the mass ranges
2200-2300 MeV/c2 and 2300-2400 MeV/c2 in MpΛ were rejected from the PWA
fit, respectively. Together with the data the PWA solutions that were fitted to
these events are shown. The two-particle invariant mass distributions in which
a certain mass range of MpΛ was rejected in the data are shown in Figure 4.14
of Chapter 4.
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D Results of the PWA fit Excluding Certain Mass Ranges in MpΛ

Figure D.1: Angular correlations of the three particles for the selected HADES

data set (black points) shown with the best PWA solution (blue
dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2200-2300 MeV/c2.
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D.1 Test PWA Solution compared the Selected Statistic

Figure D.2: Angular correlations of the the three particles for the selected

HADES data set (black points) shown with the best PWA solution

(blue dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2300-2400 MeV/c2.
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D Results of the PWA fit Excluding Certain Mass Ranges in MpΛ

D.2 Test PWA Solution compared the full Statistic

Figures D.3 and D.4 display the two particle invariant masses for the full statistic
of the measured data. They are compared to the PWA test solutions in which a
part of the statistic was rejected from the fit. The angular distributions for the
data are shown in Figures D.5 and D.6. Also in this figures the PWA from the
selected statistic is extrapolated to the full statistic and compared to the data.

Figure D.3: Two particle invariant masses for the three particles for the complete

HADES data set (black points) shown with the best PWA solution

(blue dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2200-2300 MeV/c2.

Figure D.4: Two particle invariant masses for the three particles for the complete

HADES data set (black points) shown with the best PWA solution

(blue dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2300-2400 MeV/c2.
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D.2 Test PWA Solution compared the full Statistic

Figure D.5: Angular correlations of the three particles for the complete HADES

data set (black points) shown with the best PWA solution (blue
dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2200-2300 MeV/c2.
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D Results of the PWA fit Excluding Certain Mass Ranges in MpΛ

Figure D.6: Angular correlations of the the three particles for the complete

HADES data set (black points) shown with the best PWA solution

(blue dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2300-2400 MeV/c2.
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D.2 Test PWA Solution compared the full Statistic

The same figures for the WALL data set are shown in the following. Figure D.7
displays the invariant mass of two particles for the complete WALL statistic
overlayed by PWA solutions that were obtained by a fit to a selected HADES
statistic. The Figures D.8 and D.9 show the angular distributions of the complete
WALL statistic together with the PWA solutions that were obtained from a fit to
the mass constrained HADES data sets.

Figure D.7: Two particle invariant masses for the three particles for the complete

WALL data set (black points) shown with the best PWA solution

(blue dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2200-2300 MeV/c2 (upper figures) and 2300-2400 MeV/c2

(lower figures).
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D Results of the PWA fit Excluding Certain Mass Ranges in MpΛ

Figure D.8: Angular correlations of the the three particles for the complete WALL

data set (black points) shown with the best PWA solution (blue
dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2200-2300 MeV/c2.
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D.2 Test PWA Solution compared the full Statistic

Figure D.9: Angular correlations of the the three particles for the complete WALL

data set (black points) shown with the best PWA solution (blue
dots), obtained by a fit to the HADES data, excluding a MpΛ mass
range of 2300-2400 MeV/c2.
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D Results of the PWA fit Excluding Certain Mass Ranges in MpΛ
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E | Comparision of the Four Best

PWA Results

This Appendix compares the four best PWA solutions of Chap. 4 to each other.
Figure E.1 shows the mass and Figures E.3 and E.2 the angular distributions.

Figure E.1: Two particle masses for the four best PWA solutions inside the HADES
(upper) and WALL acceptance (lower panels), normalized to the same integral.
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E Comparision of the Four Best PWA Results

Figure E.2: Angular correlations of the three particles for the four best PWA so-
lutions (different colors) inside of the HADES acceptance. The results
are normalized to the same integral.
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Figure E.3: Angular correlations of the three particles for the four best PWA solu-
tions (different colors) inside of the WALL acceptance. The results are
normalized to the same integral.
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E Comparision of the Four Best PWA Results
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F | p-Values for the Four Best

Solutions

This appendix shows detailed figures to the local p0-value evaluation. While
Figures F.1 and F.2 show the four best solutions compared to the measured
pΛ invariant mass distribution for the HADES and WALL data-sets, Figures F.3
- F.6 present the according local p0-values and equivalent significance (nσ),
dependent on the pΛ invariant mass for each tested solution.
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F p-Values for the Four Best Solutions

Sol. Nr. 6/9 

Sol. Nr. 1/8 Sol. Nr. 3/8 

Sol. Nr. 8/8 

Figure F.1: The Figure compares the four best PWA solutions of a fit to both data
sets HADES and WALL. Shown is the invariant mass of pΛ of the HADES
data-set compared to the solution.
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Sol. Nr. 6/9 

Sol. Nr. 1/8 Sol. Nr. 3/8 

Sol. Nr. 8/8 

Figure F.2: The Figure compares the four best PWA solutions of a fit to both data
sets HADES and WALL. Shown is the invariant mass of pΛ of the WALL
data-set compared to the solution.
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F p-Values for the Four Best Solutions

Figure F.3: The upper panels present the comparison of Sol. No. 1/8 to the an-
alyzed events for the HADES (left) and WALL (right) data-sets. The
lower panels show the calculated local p0-value for different pΛ invari-
ant masses. The gray dashed lines show the equivalent significances
in nσ.
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Figure F.4: The upper panels present the comparison of Sol. No. 3/8 to the an-
alyzed events for the HADES (left) and WALL (right) data-sets. The
lower panels show the calculated local p0-value for different pΛ invari-
ant masses. The gray dashed lines show the equivalent significances
in nσ.
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F p-Values for the Four Best Solutions

Figure F.5: The upper panels present the comparison of Sol. No. 6/9 to the an-
alyzed events for the HADES (left) and WALL (right) data-sets. The
lower panels show the calculated local p0-value for different pΛ invari-
ant masses. The gray dashed lines show the equivalent significances
in nσ.
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Figure F.6: The upper panels present the comparison of Sol. No. 8/8 to the an-
alyzed events for the HADES (left) and WALL (right) data-sets. The
lower panels show the calculated local p0-value for different pΛ invari-
ant masses. The gray dashed lines show the equivalent significances
in nσ.
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F p-Values for the Four Best Solutions
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G | Appendix for the 4π Dis-

tributions

G.1 4π Distributions of All Non-Resonant Waves

Figures G.1-G.3 show the invariant mass and angular distribution for single tran-
sition waves of the PWA solution for non-resonant pK+Λ production.

6/9

Figure G.1: Two particle invariant masses of the single non-resonant waves of
pK+Λ production shown for Sol. No. 6/9.
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G Appendix for the 4π Distributions

Figure G.2: Angular correlations of the three particles for the single non-resonant
waves of pK+Λ production shown for Sol. No. 6/9.
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G.1 4π Distributions of All Non-Resonant Waves

Figure G.3: Angular correlations of the three particles for the single non-resonant
waves of pK+Λ production shown for Sol. No. 6/9.
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G Appendix for the 4π Distributions

G.2 Proton Angular Distributions in the CMS

Figure G.4 displays the angular distribution of the proton in the CMS of all waves
with resonant production of pK+Λ of Sol. No. 6/9. Figures G.5 and G.6 show the
fit of the Legendre polynomials according to Eq. (6.1) to the single PWA waves.

Figure G.4: The angular distributions of the proton in the CMS for the different N*
resonances scaled to the same integral.

6/9

Figure G.5: The angular distributions of the proton in the CMS for the different N*
resonances, fitted with Equation (6.1)
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G.2 Proton Angular Distributions in the CMS
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Figure G.6: The angular distributions of the proton and kaon in the CMS for the
different non-resonant waves, fitted with Equation (6.1)
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G Appendix for the 4π Distributions

G.3 Systematic of the Acceptance Correction

Figures G.7-G.10 show the experimental data, corrected to 4π with help of the
PWA solution. The correction of each observable is done for each of the four
PWA solutions separately. The resulting spectra in 4π are compared to the PWA
solution that was used for the correction. The PWA solution is scaled to the
data in the indicated range in the histogram. To calculate a cross section the
experimental data were summed inside of this range and the remaining yield is
calculated from the integration of the model value.
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G.3 Systematic of the Acceptance Correction
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Figure G.7: CMS angles corrected with the four different models (6/9-blue, 1/8-
red, 3/8-green, 8/8-cyan). Data were integrated in the indicated
range. Outside the range the model value was added to obtain the
total cross section.
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G Appendix for the 4π Distributions
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Figure G.8: Gottfried-Jackson angles corrected with the four different models (6/9-
blue, 1/8-red, 3/8-green, 8/8-cyan). Data were integrated in the indi-
cated range. Outside the range the model value was added to obtain
the total cross section.
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Figure G.9: Helicity angles corrected with the four different models (6/9-blue,
1/8-red, 3/8-green, 8/8-cyan). Data were integrated in the indicated
range. Outside the range the model value was added to obtain the
total cross section.
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Figure G.10: Two-particle invariant masses corrected with the four different mod-
els (6/9-blue, 1/8-red, 3/8-green, 8/8-cyan). Data were integrated in
the indicated range. Outside the range the model value was added
to obtain the total cross section.
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G.4 Angular Distribution of the Proton at Different Energies

G.4 Angular Distribution of the Proton at Different

Energies

Figure G.11 shows the measured angular distribution of the proton in the CMS
frame from different experiments. The data were taken from Refs. [162, 197,
161], scanned and then fitted with a Legendre polynomial of the sixth order
according to Equation (6.1). The extracted coefficients are normalized to A0
and quoted in the figures.

Figure G.11: Original figures can be found in W. Chinowsky et al. [162], R. Louttit
et al. [197] and E. Bierman et al. [161]

229



G Appendix for the 4π Distributions

G.5 pK+Λ Production Cross Section

Here the detailed source for the cross sections, illustrated in Figures 6.14 and
6.15 of Chapter 6, is listed. The values were all taken from the Durham Hep-
Data Project (http://hepdata.cedar.ac.uk). The according references to the sin-
gle data points are summarized in Table G.1.

Table G.1: References for the different production cross sections of Figure 6.14.

Experiment Reference

COSY-11 [207]
COSY-11 [208]
COSY-11 [209]
COSY-TOF [156]
HiRes [210]
ANKE [211]
ANKE [212]
Fickinger et al. [213]
Landolt Börnstein [214]
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H | Acceptance correction for

the WALL data set

In Chapter 6 the acceptance and efficiency correction of the HADES data set is
shown. The same procedure applied for this data set can also be applied to the
WALL data set. The results should, however, only be considered as a qualitative
study, as the efficiency of the Forward Wall has not been determined.

Figures H.1 and H.2 show the acceptance corrected invariant mass and angular
distribution of the WALL data set. The angular distribution of the Λ in the center-
of-mass system shows the difference of this data set compared to the HADES
data set. Here also Λ’s in the very forward direction could be reconstructed.
Although meaningless without the WALL efficiency factor, the histograms were
also integrated and extrapolated to obtain a total yield and cross section. The
values of each observable are summarized in Table H.1.

Figure H.1: Experimental distributions of the WALL data set for the two-particle
invariant masses, corrected for acceptance and efficiency.
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H Acceptance correction for the WALL data set

Figure H.2: Experimental distributions of the WALL data set for the three particle
angular correlations, corrected for acceptance and efficiency. Inlets
show bins that are far out as compared to the other values.
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Table H.1: The extracted cross section of the acc. corr. WALL histograms in [μb].

Histogram Sol. No. 6/9 Sol. No. 1/8 Sol. No. 3/8 Sol. No. 8/8

CMSΛ 59.79±1.04 61.80±1.07 64.34±1.14 61.54±1.09
CMSp 57.89±0.48 59.70±0.49 60.87±0.51 59.58±0.50
CMSK+ 60.15±0.68 62.73±0.73 63.55±0.74 62.15±0.75
GJ-Angle RF-pK 60.95±1.38 61.56±1.11 62.09±1.24 64.01±2.06
GJ-Angle RF-KΛ 58.76±0.59 60.71±0.63 61.09±0.61 60.04±0.61
GJ-Angle RF-pΛ 57.63±0.51 59.39±0.53 60.33±0.53 58.76±0.52
H-Angle RF-pΛ 60.03±0.92 62.10±0.94 62.27±0.95 60.61±0.89
H-Angle RF-pK 58.72±0.80 60.31±0.84 61.14±0.83 59.92±0.82
H-Angle RF-KΛ 60.52±1.23 61.76±1.19 62.57±1.32 62.27±1.30
IM(ΛK+) 59.20±0.87 60.56±0.88 61.29±0.96 60.11±0.93
IM(pK+) 56.55±0.59 57.94±0.60 58.19±0.61 57.12±0.61
IM(Λp) 57.91±1.14 59.16±1.08 59.30±1.01 60.66±1.29
Average 59.00±0.85 - - -

An average cross section with the uncertainties discussed also in Section 6.2.2
reads:

σpK+Λ = 59.00± 0.855.3
2.45
± 4.13(p+p-error)−8.67(background) μb. (H.1)

Again, this should only be taken as a starting value which needs to be corrected
for the forward wall efficiency.

A qualitative comparison of the two corrected data samples is given in the
Figures H.3 and H.3. Due to the different absolute scale the WALL histograms

Figure H.3: Experimental distributions of the WALL and HADES data set for the
two-particle invariant masses, corrected for acceptance and effi-
ciency. The WALL histograms were scaled to the HADES histograms.
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Figure H.4: Experimental distributions of the WALL and HADES data set for the
three particle angular correlations, corrected for acceptance and effi-
ciency. The WALL histograms were scaled to the HADES histograms.
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were scaled down to the HADES data. The agreement is good, especially in the
angular distributions. At the edges of the histograms towards angles of 0 and
180◦ the statistic in either one of the data sets can deviate, which is however
accompanied with large statistical errors. It may be, that for these events an
acceptance correction is not reasonable and that this statistic needs to be cut
out. See e.g. last Gottfried-Jackson Frame in the middle row. The HADES data
are strongly deviating at the borders of the histogram which seems unreason-
able. The WALL statistic, in this observable, might give a better orientation of
the true event distribution.

The differences between the two data sets are nicely visible in the two dimen-
sional event distribution of the Dalitz-plot, Figure H.5. In the Dalitz-plot M2

K+p

vs. M2
pΛ

the statistic is mainly concentrated on a small spot, namely large

masses of MK+p. This goes along with a large opening angle between the two
particles which implies that the Λ flew into the forward direction where one of
its decay products was later detected by the forward wall. The overall phase
space coverage of this data sample is, thus, worse than the one of the HADES
data set, see Figure 6.12 for comparison.
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H Acceptance correction for the WALL data set

Figure H.5: The two columns show two dalitz plots. Once for the measured WALL
data (Exp Acc), once for the data which were corrected for the losses
of efficiency (Exp 4π), and once for the PWA model No. 6/9 in 4π (Sim
4π).
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