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Abstract
TUM School of Natural Sciences

Doctor of Philosophy

A Strange and Charming Tale on Hadronic Interactions

by Emma Sophia Chizzali

In this thesis, the final state interaction of various systems of hadrons with
valence-quark content beyond the light u and d flavors was explored, employing
the method of femtoscopy. This technique relates momentum correlations of hadron
pairs to their emission source and interaction potential. It provides an alternative,
novel approach to accessing information about the residual strong interaction be-
tween particles, including unstable ones, that cannot be studied in classical scatter-
ing experiments. ALICE at the LHC is the ideal environment for the measurement
of such correlation functions due to its excellent particle identification capabilities
and high-statistics data sample of pp collisions at

√
s = 13 TeV, where the emission

region is ∼ 1 fm.
In that setting, the first measurement of the D and light-flavor K and π meson

correlation functions of same- and opposite-charged pairs was performed. The raw
signals were corrected for background contributions in order to obtain the genuine
correlation functions and compare them to the available theoretical predictions of
the residual strong interaction. The D–K correlation functions lack statistical preci-
sion and are compatible with the different models. The D–π data, on the other hand,
clearly favor the Coulomb-only hypothesis and are incompatible with the predic-
tions of the residual strong interaction. The deviation is especially pronounced for
the opposite-charge combination. Due to the higher statistical precision, the correla-
tion functions are further used to determine the scattering length of the D–π interac-
tion in the isospin I = 3/2 and I = 1/2 states, the former of which is shared between
the two charge combinations. In a simultaneous fit to the data, where a Gaussian-
type potential was used to parametrize the interaction in each isospin state, values
consistent with zero within the uncertainties were obtained.

Furthermore, the p–ϕ correlation function, previously measured by ALICE
in pp collisions at

√
s = 13 TeV, was re-analyzed. The spin 3/2 component of

the interaction was constrained by the LQCD potential, simulated by the HAL
QCD collaboration. This made it possible to study the spin 1/2 contribution,
which is currently inaccessible on the lattice due to the effect of open channels. It
was modeled with a phenomenological complex potential, whose real part was
motivated by the parameterization of the LQCD simulation, while the imaginary
part, which accounts for inelastic contributions, was modeled by a Yukawa-type
potential describing a 2nd-order kaon exchange. The potential parameters were
determined by a fit to the data, and the interaction was found to be attractive and
strong enough to support a p–ϕ bound state with a binding energy between 12.8
and 56.1 MeV. Furthermore, the scattering parameters for the spin 1/2 interaction
were derived for the first time.

HTTP://WWW.TUM.DE
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Zusammenfassung

In dieser Arbeit wurde die Methode der Femtoscopy angewandt um die Wech-
selwirkung zwischen verschiedenen Paaren von Hadronen zu untersuchen, ein-
schließlich jener mir einer Valenz-Quark Zusammensetzung jenseits der leichten u
und d Flavours. Diese Technik setzt Impulskorrelationen von Hadronenpaaren mit
ihrer Emissionsquelle und ihrem Wechselwirkungspotenzial in Beziehung. Sie bi-
etet einen alternativen, neuartigen Ansatz um Informationen über die starke Wech-
selwirkung zwischen Teilchen zu erhalten, einschließlich instabiler Teilchen, die in
klassischen Streuexperimenten nicht untersucht werden können. ALICE am LHC
bietet die ideale Voraussetzungen für die Messung solcher Korrelationsfunktionen
aufgrund der hervorragenden Teilchenidentifikation und der hohen hochstatistis-
chen Daten von pp Kollisionen mit

√
s = 13 TeV, bei denen der Emissionsbereich

∼ 1 fm ist.
In dieser experimentellen Umgebung wurde die erste Messung der Korrelations-

funktionen von D und K bzw. π Mesonen mit gleicher und entgegengesetzt Ladung
durchgeführt. Die gemessenen Signale wurden um Hintergrundbeiträge korrigiert
und die resultierenden Korrelationsfunktionen mit den verfügbaren theoretischen
Vorhersagen der starken Wechselwirkung verglichen. Den D–K Korrelationsfunk-
tionen mangelt es an statistischer Präzision, und sie sind mit den verschiedenen
Modellen kompatibel. Die D–π Daten hingegen deuten auf eine reine Coulomb
Wechselwirkung hin und sind nicht mit den Vorhersagen über die starke Wechsel-
wirkung vereinbar. Die Abweichung ist besonders ausgeprägt für Paare mit entge-
gengesetzter Ladung. Aufgrund der höheren statistischen Genauigkeit wurden die
Korrelationsfunktionen außerdem zur Bestimmung der Streulänge der D–π Wech-
selwirkung im Isospin-Zustand I = 3/2 und I = 1/2 verwendet, wobei ersterer
zu beiden Ladungskombinationen beiträgt. In einer simultanen Anpassung an die
Daten, bei der die Wechselwirkung in den jeweiligen Isospin-Zuständen mit einem
Potential vom Gauß-Typ parametrisiert wurde, wurden Werte bestimmt, die inner-
halb der Unsicherheiten mit Null übereinstimmen.

Außerdem wurde die p–ϕ Korrelationsfunktion, die zuvor von ALICE in pp
Kollisionen mit

√
s = 13 TeV gemessen wurde, erneut analysiert. Die Spin-

3/2 Komponente der Wechselwirkung wurde mit einem LQCD-Potenzial model-
liert, welches von der HAL QCD Kollaboration simuliert worden war. Dies er-
möglichte die Untersuchung des Spin-1/2 Beitrags, welcher aufgrund des Effekts
offener Kanäle derzeit in QCD-Gitter Rechnungen unzugänglich ist. Der Beitrag
wurde mit einem phänomenologischen komplexen Potenzial modelliert, wobei für
den Realteil eine, der LQCD-Simulation ähnliche Form gewählt wurde, während
der Imaginärteil, der die inelastischen Beiträge berücksichtigt, durch ein Potenzial
vom Yukawa-Typ modelliert wurde, das einen Kaon Austausch zweiter Ordnung
beschreibt. Die Potenzialparameter wurden an die Daten angepasst. Dabei wurde
festgestellt, dass die Wechselwirkung attraktiv und stark genug ist, um einen gebun-
denen p–ϕ Zustand zu bilden, welcher eine Bindungsenergie zwischen 12, 8 und
56, 1 MeV hat. Darüber hinaus wurden zum ersten Mal die Streuparameter der Spin-
1/2 Wechselwirkung abgeleitet.
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Chapter 1

Introduction

The question of what the world is made of has preoccupied mankind for centuries.
We have come a long way since Greek philosophers such as Leucippus and his stu-
dent Democritus first proposed atoms as the indivisible building blocks of matter
more than 2000 years ago. Thanks to the rapid technological advances of the last
century, we are now able to resolve its smallest, fundamental constituents and study
how they interact with each other. Our current understanding of the world and the
laws of nature at the most elementary level is embodied in the Standard Model (SM)
of particle physics, a well-established and tested theory describing all the known
fundamental particles and the forces among them1.

Quantum quantum chromodynamics (QCD) is the part of the standard model
that focuses on the strong interaction between quarks mediated by gluons. More-
over, it governs the spectrum of strongly interacting composite particles, called
hadrons2, which make up almost the entire mass of the tangible universe. Hadrons
experience the residual effect of the strong interaction, the most prominent exam-
ple of which is the nuclear force between protons and neutrons. At the quark level
in the high-energy regime, the strong interaction is well described by perturbative
QCD (pQCD). At low-energies and subatomic scales, however, where the relevant
degrees of freedom are hadronic, it lacks a coherent understanding due to the break-
down of pQCD. Alternative approaches, such as numerical (lattice) calculations, ef-
fective field theories, or phenomenological models, are available, but the measure-
ments needed to test or constrain them are limited. While a reasonable amount of
nucleon-nucleon scattering data is available, realizing such experiments becomes
very challenging to impossible once exotic and unstable particles are involved. In
recent years, this gap has been filled by correlation measurements at accelerator fa-
cilities such as the LHC. This thesis focuses on studying the residual strong interac-
tion among pairs of unlike hadrons, where one contains strange or charm quarks,
applying the femtoscopy method on data measured by ALICE in pp collisions at√

s = 13 TeV. Before presenting the technique, the experimental apparatus, and the
results of the two primary analyses carried out during my doctoral studies in the
following chapters, an introduction to the SM and strong interaction, with a special
focus on hadrons, is needed.

1Gravity, which is one of the four fundamental forces, is not included in the SM. However, there are
ongoing efforts to provide a quantum theory of gravity and merge it with the SM or find an alternative,
unifying theory. However, this is beyond the scope of this thesis. Moreover, gravity is negligible in
its relative strength compared to the strong, electromagnetic, and weak forces and is not relevant on a
microscopic scale.

2Hardons are color-neutral bound states of quarks and gluons.
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FIGURE 1.1: The elementary particles within the standard model. Fig-
ure taken from [1].

1.1 The standard model of particle physics

The standard model of particle physics is the theory describing three of the four
fundamental forces: the strong, electromagnetic, and weak interaction. Moreover, it
classifies all known elementary particles, as depicted in Fig. 1.1.

The Higgs scalar boson is responsible for the bar mass of the rest of the particles,
while the Gauge vector bosons are the force carries. Due to their bosonic nature,
they all have full-integer spins. Gluons g mediate the strong interaction and couple
to so-called color charge, while photons γ are the exchange particles of the electro-
magnetic interaction between particles with electric charge. The mediators of the
weak force are the Z and W bosons. Charged current interactions, related to W-
boson exchange, only involve left-handed particles and right-handed antiparticles,
while the neutral current Z bosons do not distinguish between the chirality of parti-
cles. Due to the large mass of its exchange particles, the weak interaction has a short
range.

The basic building blocks of matter are the quarks and leptons, both fermions
with half-integer spin. Each has six different types (flavors), which are grouped in
pairs according to their mass, resulting in three generations (families). Addition-
ally, each elementary fermion has a respective anti-particle whose quantum state is
interchanged with that of the particle by the combined application of charge con-
jugation C, parity P, and time reversal T. The mass, spin, and lifetime of an an-
tiparticle are the same as those of a particle. Leptons interact via the weak and, if
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FIGURE 1.2: Illustration of the strong process rb → br. The Feyn-
man diagram, the associated color flow, and the two time-ordered
diagrams are shown from left to right. Figure taken from Ref. [2].

electrically charged, the electromagnetic force. Each of the negatively charged e, µ
and τ, is associated with a charge-neutral counterpart neutrino, νe, νµ and ντ, of al-
most vanishing mass. Quarks, on the other hand, have a non-integer electric charge,
which distinguishes them from the rest of the SM particles. They are divided into
the following families: up-down (ud), charm-strange (cs), and top-bottom (tb). Like
leptons, they interact via the weak and electromagnetic forces. However, as the only
color-charge-carrying elementary fermions, they also experience the strong interac-
tion. Due to the peculiarities of the strong force, which will be explained in the next
section, quarks are never observed in nature as isolated particles but only as color-
neutral states bound together by gluons, the hadrons. These subatomic particles are
either built from quarks of three different colors (qqq or q̄q̄q̄) or the combination of
a quark of one color with an anti-quark of the respective anti-color (qq̄). The latter
are called mesons, while the former are called baryons. The nucleons (N), which
are either protons (uud) and neutrons (udd) and the stable building blocks of ordi-
nary matter, are examples of such. However, there exists a much larger variety of
hadrons, composed of all possible flavor combinations of quarks and anti-quarks.
Their spectrum, as well as the residual interaction among them, are driven by the
strong force.

1.2 Quantum Chromodynamics

QCD is the theory of the strong interaction. It is formulated in terms of elementary
quark and gluon fields, whose interactions are governed by the principles of rela-
tivistic Quantum Field Theory (QFT) with a non-abelian gauge symmetry SU(3)color,
related to the color charges3 red (r), blue (b) and green (g). Each quark can be as-
signed to one of the respective color states, which changes when it emits or absorbs
a gluon. Gluons, on the other hand, exist in one out of eight possible states of color-
anti-color combinations, hence carrying the color difference in strong processes and
ensuring the required conservation of color charge. The quark-gluon interaction ver-
tex and associated color flow are shown exemplarily in Fig. 1.2. Since gluons them-
selves carry color, they can interact not only with quarks but also with one another,
allowing for three- and four-gluon vertices. They are depicted in Fig. 1.3, together
with the fundamental quark-gluon interaction vertex.

3In this context, color has nothing to do with the visible light spectrum and is only used to label the
three orthogonal states in the SU(3)color space.
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FIGURE 1.3: The three QCD vertices, which arise from the SU(3)color
local gauge invariance of the theory. Figure taken from Ref. [2].
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in terms of the momentum transfer of the interaction Q, which is
inversely proportional to the distance, compared to the running of
the coupling, which is computed using the PDG-averaged value
αs(m2

Z) = 0.1180± 0.0009 as input. Figure taken from [4].

The QCD Lagrangian is given by [3]

LQCD = ∑
f

q f
(
i /Dµ −m f

)
q f −

1
4

Ga
µνGµν

a . (1.1)

The first term accounts for the coupling between quarks and gluons via the gauge
covariant derivative Dµ = ∂µ + igAa

µ
λa
2 , where Aa

µ(x) are the gluon fields, λa the
Gell-Mann matrices and g the QCD coupling, related to the strong coupling con-
stant via g2 = αs/4π. The term is summed over the six flavors f of quarks with
current masses m f and described by the quark fields q f (x). The second term in-
corporates the gluon self-couplings via the gluonic field-strength tensor Ga

µν(x) =

∂µ Aa
ν − ∂ν Aa

µ − g f abd Ab
µ Ac

ν. The self-interaction of the force-carrying gluons, which
is unique to the strong interaction compared to the other forces, leads to an anti-
screening of the color charge at short distances and high energies, causing the inter-
action to weaken and the quarks to behave as quasi-free particles. This phenomenon
is also referred to as asymptotic freedom, and the corresponding small coupling con-
stant allows for a perturbative treatment of QCD. At large distances and low ener-
gies, on the other hand, αs is large, as can be seen in Fig. 1.4. Quarks and gluons are
confined in color-neutral hadrons. This is related to the energy stored in the gluon
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FIGURE 1.5: Simplistic illustration of the hadronization process. Fig-
ure taken from Ref. [2].

fields, which increases with the distance between the individual quarks in a quark-
anti-quark pair until it is energetically favorable to produce another qq̄ pair out of
the vacuum, initiating the process of hadronization, which eventually leads to the
formation of hadrons, as illustrated in Fig. 1.5.

Notably, hadrons are much heavier than the sum of the masses of their elemen-
tary constituents. This missing mass is dynamically generated by the strong in-
teraction among the confined quarks and gluons. It is related to the spontaneous
breaking of chiral symmetry, which is respected by the massless QCD Lagrangian4

but not the ground state of the system, the QCD vacuum. Since the latter is pop-
ulated by scalar quark-anti-quark pairs that mix left- and right-handed quarks as
qq = qLqR + qRqL [5], it is characterized by a non-zero vacuum expectation value
⟨0|qq|0⟩ ̸= 0, also called chiral condensate. The effects of spontaneous chiral symme-
try breaking are most evident in the large mass gap between chiral multiplets, which
share all quantum numbers besides parity, e.g., the ρ(770) and a1(1260) mesons.
Moreover, it leads to the appearance of spinless Nambu-Goldstone bosons [6–8],
which are identified as the eight pseudo-scalar mesons π±,π0, K±, K0, K0 and η. No-
tably, they are significantly smaller in mass than the rest of the hadrons.

Coming back to the discussion on the strong coupling constant, the low-energy
regime of color confinement is still not completely understood due to the complexity
of the quark-gluon dynamics at such scales. This prevents an analytic approach, al-
lowing only numerical solutions of QCD obtained through large-scale computations.
Alternatively, phenomenological models or effective field theories can be applied
where the interaction Lagrangians are formulated in terms of collective, hadronic
degrees of freedom. At such energy scales, the residual strong interaction between
hadrons becomes relevant, and measurements of the related hadronic observables
can provide valuable input for constraining the available theories.

1.3 Hadronic interactions

Although quarks and gluons are the fundamental degrees of freedom of QCD, they
are never observed in nature as distinguished particles but only as bound states held

4Chiral symmetry is explicitly broken when the non-vanishing quark masses are taken into account,
as left- and right-handed quark fields get mixed by the mass term in Eq. 1.1. However, the heavy c, b
and t quarks can be treated effectively as static in low-energy processes. This leaves the light quarks u, d
and s as the only active degrees of freedom whose masses are vanishing. Therefore, chiral symmetry
can still be seen as an approximate symmetry of the QCD Lagrangian.
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FIGURE 1.6: Phenomenological N–N potential as function of the dis-
tance r, given in units of the inverse pion mass µ−1 ≈ 1.5 fm. The
relevant regions characterizing the shape of the potential are high-
lighted and denoted by roman numbers. Figure taken from [9].

together by the strong force. On the subatomic level, i.e., in the non-perturbative
regime of low- and medium-energy physics, hadrons and hadronic interactions,
which are the residual long-range effect of the strong force on the quark level, be-
come relevant.

In particular, the N–N interaction, which is responsible for the formation of
atomic nuclei and, thus, of the matter that surrounds us, is a main interest of nu-
clear physics and has been extensively studied both experimentally and theoreti-
cally. However, interactions involving hadrons with valence-quark content beyond
u and d are also relevant. Strange hadronic matter could, for example, be formed
in high-density environments, such as the core region of neutron stars, and study-
ing interactions involving baryons with s-quark content, so-called hyperons (Y), can
provide essential information for understanding our universe.

Furthermore, the knowledge of hadronic interactions is crucial to predicting
and/or interpreting the hadronic spectrum. Several new exotic states have been dis-
covered in the last decades, especially in the charm sector, whose properties cannot
be described by the conventional constituent quark model. This initiated extensive
studies on their nature, especially in the context of low-energy QCD. Not only can
the measured mass and decay width of such resonances be modified by the interac-
tion between the final scattering states, but most of these exotic states are close to the
mass thresholds of pairs of conventional hadrons. They may, therefore, be molecular
or bound states (partially) composed of these pairs or their properties subject to the
effects of coupled-channel hadron-hadron interactions.

1.3.1 Theoretical Frameworks

Processes of interest to nuclear physics or low-energy hadronic physics occur on the
femtometer scale. This corresponds to a small momentum transfer Q and a large
coupling constant αs, which makes it impossible to apply pQCD. However, alterna-
tive approaches based on hadronic degrees of freedom have been proven efficient in
describing a wide range of low-energy phenomena.
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Indeed, in his pioneering work published in 1935, H. Yukawa was the first to de-
velop a theory of the N–N interaction, where the force between nucleons is mediated
by a massive boson [10], just as gluons mediate the strong force between quarks. A
few years later, in 1947, this exchange boson was finally discovered and identified
as pion after initially mistaking it for the muon [11]. Phenomenological approaches
based on microscopic one or more boson-exchange are still used today. However,
more complex potentials are employed, which can be divided into short-, interme-
diate, and long-range parts, each characterized by different exchange particles, de-
pending on their mass m ∝ 1/r. An example of such nuclear potential is illustrated
in Fig. 1.6. At large distances r > 2 fm, corresponding to the region denoted by I in
the plot, one-pion exchange leads to an attractive interaction in line with Yukawa’s
original approach. The intermediate attraction in region II (1 fm < r < 2 fm) is
mediated by 2π and/or heavier mesons, like the ρ, ω and σ. The repulsive core
at short ranges r < 1 fm, i.e., region III, which arises from Pauli-blocking at the
quark level, is unresolved at the low-energy scales of nuclear physics. It might,
however, be modeled using heavy vector-meson exchange. A prominent example
that accurately describes the N–N interaction is the Argonne ν18 potential, whose
40 adjustable parameters are determined in a direct fit to the Nijmegen pp and np
scattering database, low-energy nn scattering parameters, and the deuteron binding
energy [12]. Phenomenological approaches based on boson exchange have also been
applied to model interactions beyond N–N, such as N–Y [13–17] and Y–Y [18, 19],
but also in the charm sector [20, 21].

An alternative theoretical approach is provided by chiral perturbation theory
(χPT), which is the effective field theory of low-energy QCD. As such, it is a system-
atic and model-independent approximation method based on scale separation that
is able to predict physical phenomena within the low-energy domain without know-
ing or assuming the full details of the underlying physics. Its principles were first
outlined by S. Weinberg [22, 23]. The effective Lagrangian is consistent with the sym-
metries of low-energy QCD, in particular, the (broken) chiral symmetry. This distin-
guishes χPT from purely phenomenological models. Each term of the Lagrangian is
accompanied by a low-energy coupling constant (LEC), which is to be determined
empirically. Further, the terms are ordered by their importance via an expansion in
powers of Q/Λχ, where Q (soft scale) is given by Nambu-Goldstone boson masses,
i.e., mπ or mK and derivatives (equivalent to momentum). This guarantees that the
interactions of Nambu-Goldstone bosons vanish in the chiral limit (mπ → 0) and
zero momentum transfer (q → 0). Λχ ∼ 1 GeV/c2 is the chiral symmetry breaking
scale (hard scale) and of the size of vector meson masses. The hierarchy of nuclear
forces obtained from χPT is shown exemplarily in Fig. 1.7. Depending on the de-
sired accuracy, the relevant interaction diagrams are calculated up to a given order,
denoted by leading order (LO), next-to-leading-order (NLO), etc. A detailed discus-
sion on the principles of χPT is provided by Ref. [24]. However, similarly to the
phenomenological models, the theory is characterized by several free parameters,
the LECs, which have to be determined from fits to experimental data. Therefore, it
is essential that enough measurements on a specific interaction are available. Oth-
erwise, they have to be constrained by alternative inputs, such as simulations or
data from other hadronic interactions, which can impact the accuracy of the model.
While this is of no concern in the nuclear sector, where plenty of data is available,
the situation changes once one tries to apply it to other 2-body interactions involving
hadrons with valence-quark content beyond u and d, as the number of parameters
increases while data are scarce or non-existent.
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FIGURE 1.7: The hierarchy of Feynman diagrams contributing to the
nuclear forces based on Weinberg’s power counting scheme. The
solid lines represent nucleons, the dashed line pions, and the dots and
diamonds are different types of vertices. Figure taken from Ref. [24].
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This issue can be avoided by studying hadronic interactions from non-
perturbative first principle lattice QCD (LQCD) simulations, which are based on
the numerical evaluation of path integrals by using Monte Carlo sampling methods.
LQCD is a lattice gauge theory proposed by K. Wilson [25]. It is formulated on a
hyper-cubic lattice, with gluons and quarks on the links and the sites, respectively,
which is characterized by the lattice spacing a and the lattice volume L, as well as the
Euclidean time t. By extrapolating the results obtained in the simulations to the con-
tinuum limit a → 0 and the thermodynamic limit L → ∞, it is possible to compare
them with experimental data [26]. The big advantage of LQCD over the parameter-
dependent methods discussed earlier in this section is that hadronic interactions are
only controlled by the QCD coupling g and the quark masses. Studying them on
the lattice was first proposed by Lüscher [27, 28]. His formalism is based on two
hadrons confined in a L× L× L box with periodic boundary conditions, whose en-
ergy spectrum is characteristic of the force between them. If the lattice volume is
sufficiently larger than the interaction range (L ≫ R), a direct relation between the
energy spectrum and the elastic scattering phase shift can be derived. An alterna-
tive approach was developed by Ishii et al. [29] and further advanced within the
HAL QCD Collaboration, where the energy-independent non-local interaction po-
tential U(⃗r, r⃗′) is directly determined from the behavior of the equal-time Nambu-
Bethe-Salpeter (NBS) amplitude ψ(⃗r) in the internal region |⃗r| < R. Scattering phase
shifts and other physical observables can then be obtained from the LQCD potential
by solving the Schrödinger equation. This allows a broad application of the HAL
QCD formalism in nuclear physics. Further details can be found in Ref. [26, 30, 31].
Since low quark masses are computationally more expensive, most simulations in
the past have been carried out using non-physical values for quarks and, thus, for
all hadrons. However, ongoing technological and numerical advances are already
making it possible to perform simulations very close to, or even at, physical masses,
and the quality of their results will only improve in the future.

1.3.2 Experimental measurements

Phenomenological models and effective theories, as well as lattice calculations, need
empirical constraints, either to determine their free parameters or to validate their
predictions. In the following, some of the most commonly used experimental meth-
ods for studying hadronic interactions are examined.

Low-energy scattering experiments have been widely used to study both
baryon–baryon and meson–baryon interactions, providing over 8000 data points of
N–N reactions [32, 33]. However, such measurements become more challenging
once strangeness comes into play. While information on the K−–N interaction can
be obtained using secondary kaon beams [34, 35], only few measurements of N–Y
scattering are available, mainly involving Λ [36] and Σ hyperons [37, 38], due to
their short lifetime and hence unstable beams. Studies based on hypernuclei, which
are exotic systems where one or more nucleons are replaced hyperons, are easier
to realize [14, 39, 40]. In such experiments, the binding energy of the hyperon in-
side a specific nucleus is determined in a kinematic analysis of the decay products.
However, as the hyperon interacts with multiple neighboring nucleons, effects from
many-body interactions are present, and the data cannot be used directly to con-
strain the N–Y two-body interaction. Exotic atoms, i.e., atoms where an electron is
replaced by a negatively charged meson, on the other hand, can be used to study
meson–baryon interactions. By measuring the X-ray de-excitation spectrum of pi-
onc [41] and kaonic hydrogen [42], it is possible to determine the complex scattering
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length of the π−–p and K−–p interaction from the width and shift of the respective
energy level.

Over the past decade, the femtoscopy technique has become essential for study-
ing interactions between hadrons, especially those with s quark content, providing
valuable data with unprecedented statistical precision. The method is based on the
measurement of the correlation function of hadron pairs in momentum space, which
can be used to infer the two-body interaction potential. An extensive discussion of
the theory and experimental method can be found in chapter 2. The ALICE collab-
oration measured the residual strong interaction between several light-flavor and
strange hadrons, including p–p [43], p–p [44], p–K± [45], p–Λ [43, 46], p–Λ [44],
p–Σ0 [47], Λ–Λ [43, 48, 48], Λ–Λ [44], p–Ξ− [49, 50], p–Ω− [50], p–ϕ [51], and Λ–
K± [52]. Recently, also the first experimental result in the charm sector was obtained
by measuring the p–D− [53] correlation function. Furthermore, the femtoscopic tech-
nique has been extended to three-body interactions [54], providing measurements of
the p–p–p and p–p–Λ [55] as well as the p–p–K± [56] system.
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Chapter 2

A novel technique to access the
strong interaction

The femtoscopy method relates momentum correlations between particles produced
close to each other in momentum and position space to the final state interaction
between them, as well as their emission region.

It has its origins in intensity interferometry, which was developed in the early
1950s by Hanbury-Brown and Twiss [57], hence also referred to as HBT interferom-
etry, to determine the angular diameter of astrophysical radio sources. The method
is based on the correlation between the signal intensity Ii measured by two indepen-
dent i receivers at each end of a baseline d, and its relation to the spatial distribution
of the emitting source via

C(d⃗) =
⟨I1 I2⟩
⟨I1⟩⟨I2⟩

= 1 +
∣∣∣∣∫ d3rρ(⃗r)ei(⃗k1−⃗k2)·⃗r

∣∣∣∣2 , (2.1)

where k⃗i is the wave vector light seen in each detector and ρ(⃗r) the spatial distribu-
tion of the emission points. In particular, the integral whose absolute square value
enters in Eq. 2.1 is the Fourier transform of the source distribution.

The method was first used to determine the angular diameter of astrophysical
radio sources, but later, in 1956, it was also applied to the visual range [58, 59].
This caused controversy in the community at the time [60], which was resolved by
Purcell [61], who explained the approach in terms of quantum mechanics and the
relationship between spin, statistics, and the symmetry of a wave function.

In 1959 Goldhaber et al. [62] observed angular correlations for like-sign pion
pairs in pp annihilation, which, in contrast to unlike-sign pairs, could not be ex-
plained by predictions of the conventional Fermi statistical model. However, by
considering the interference of the production amplitudes due to the symmetriza-
tion requirement of quantum statistics (QS) for identical mesons, the data could be
described qualitatively [63]. The correlation effect was also found to be sensitive
to the size of the interaction volume in which the statistical mixing of states takes
place. Conceptually this approach is a simplified version of the HBT idea, applied
to high-energy particle physics.

The basics of modern femtoscopy were developed in the early 1970s by Kopy-
lov and Podgoretsky [64, 65], who suggested to study correlations as a function of
the separation of particles in momentum space and proposed mixing techniques
to construct an uncorrelated reference sample. The formalism has been refined by
Koonin [66], Pratt [67–69] and Lednicky [70–72], among others, taking into account
effects arising from final state interaction (FSI), which become relevant when the
particles are emitted close to each other.
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Over the past decades, femtoscopy has become a powerful precision tool in high
energy physics, linking the momentum correlations of two or more particles with
small relative momenta to QS and FSI, which includes both the strong and Coulomb
interactions, as well as the spatiotemporal properties of the emission region. Ini-
tially, it has been used mainly to study the characteristics of particle production at
the 1 fm = 10−15 m level, using pairs of known FSI. However, it also provides a
unique way to access the strong interaction if the emission process is well under-
stood. This is particularly interesting in the case of exotic particle pairs, for which
classical approaches such as scattering experiments are not feasible due to the lack
of stable particle beams and/or targets.

A detailed description of the femtoscopy framework, both theoretical and exper-
imental, is given in the following sections, while the last part of this chapter focuses
on the two-body interaction in terms of the scattering process. There, the scattering
parameters are introduced, which are used to quantify the residual strong interac-
tion and essential to interpret the measured correlation function.

2.1 Femtoscopy

Summarizing the short dive into the history of femtoscopy at the beginning of the
chapter, it was found that the relative momentum p⃗1 − p⃗2 of two particles, emitted
in close proximity with nearly equal momentum, is sensitive to the characteristics
of the emission region as well as the FSI, including the strong and Coulomb interac-
tion. In the case of identical particles, also QS, i.e., the symmetrization of the wave
function for each spin state, has to be taken into account.

A unique tool to access this information is the two-particle correlation function,
which is defined as the ratio of the conditional probability P( p⃗1, p⃗2) of simultane-
ously observing particles with momenta p⃗1 and p⃗2 to the probability of finding the
particles independently [67];

C( p⃗1, p⃗2) =
P( p⃗1, p⃗2)

P( p⃗1)P( p⃗2)
. (2.2)

In the absence of any correlation, the expression equals unity, as the two-particle
probability factorizes P( p⃗1, p⃗2) = P( p⃗1) · P( p⃗2). It is further possible to link the
observation probabilities to particle emission probabilities under the following main
assumptions [69, 71, 72]

1. The mean freeze-out phase space density is sufficiently small that only mutual
FSI and QS effects influence the correlation of particle pairs with small relative
momentum, and higher-order correlations can be neglected.

2. The particle emission is uncorrelated and independent.

3. The momentum dependence of the single-particle emission probabilities
Si(pi, xi) is assumed to be negligible when the particle four-momentum is var-
ied by the amount characteristic for correlations associated with QS and FSI.

These considerations lead to the following expressions

P( p⃗i) =
∫

d4xiSi(pi, xi) (2.3)

P( p⃗1, p⃗2) =
∫

d4x1d4x2S1(p1, x1)S2(p2, x2)|ψ(p1, x1, p2, x2)|2, (2.4)



2.1. Femtoscopy 13

where Si(pi, xi) describes the probability of emitting a particle with momentum pi
from a space-time point xi = (ti, r⃗i), hence, containing the all information in the
source. The Bethe-Salpeter amplitude ψ(p1, x1, p2, x2) accounts for the interaction
between two particles and |ψ(p1, x1, p2, x2)|2 is unity for non-interacting particles.
Assuming that the two-particle system propagates quasi-free and both particles
are emitted at equal times in the pair rest frame1 it reduces to ψ(p1, x1, p2, x2) →
ψ(⃗k∗, r⃗∗), where r⃗∗ = r⃗∗1 − r⃗∗2 is the relative distance between the production points
of the two particles and k⃗∗ = (m1 p⃗∗1 −m2 p⃗∗2)/(m1 + m2) their reduced relative mo-
mentum.

FIGURE 2.1: Illustration of the experimental and theoretical interpre-
tation of the correlation function combined. The two gray circles rep-
resent the colliding particles, the blue circles correspond to the par-
ticles produced in the collision, and the red circle is the emission
source S(⃗r∗). If two particles 1 and 2 (dark blue circles) are emit-
ted close to each other, at distance r⃗∗, with small relative momentum
k⃗∗ = (m2 p⃗∗1 − m2 p⃗∗2)/(m1 + m2), they experience momentum corre-
lations. These correlations arise from FSI, encoded in the two-particle
wave function ψ(⃗r∗, k⃗∗) and represented by the green arrows, as well
as QS in the case of identical particles.

Following these considerations and further simplifications, e.g. no explicit time
or momentum dependence of the source, Eq. 2.2 can be rewritten as a convolution of
the two-particle source function S(r∗) and the two-particle wave function ψ(k⃗∗, r⃗∗),
also referred to as Koonin-Pratt Equation [66, 68],

C(k∗) =
∫

d3r∗S(⃗r∗)|ψ(k⃗∗, r⃗∗)|2 k∗→∞−−−→ 1, (2.5)

thus providing a link between a measurable quantity, the correlation function, and
the particle emission and wave function. The latter is associated with the interaction
potential via the Schroedinger Equation (SE) and can be calculated numerically us-
ing the CATS framework [73], which was developed by Dr. Dimitar Mihaylov and
other members in the TUM group. In Femtoscopy, the wave function must satisfy
the outgoing boundary condition where the flux of the outgoing wave is normalized.
Figure 2.1 illustrates the femtoscopic principle of relating the experimentally mea-
sured correlation function to Eq. 2.5. At large k∗ the particles separate too quickly to
experience QS effects or any kind of FSI, resulting in a flat correlation function equal
to unity. The relative momentum range of k∗ < 200 MeV/c, where the particles have

1The pair rest frame, denoted by the asterisk, is defined as p⃗∗1 − p⃗∗2 = 0
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nearly equal momentum and can interact, is also referred to as the femtoscopic re-
gion. There, the correlation function is sensitive to possible effects related to the FSI
and QS and can deviate from unity.

Assuming a symmetric emission, the two-particle source function S(r⃗∗) is typi-
cally expressed as the convolution of two single-particle Gaussian sources of width
r0

SG(r∗) =
(
4πr2

0
)−3/2 · exp

(
− r∗2

4r2
0

)
. (2.6)

Integrating out the angular dependence results in the probability of emitting two
particles at a certain relative distance

SG
4π(r

∗) = 4πr∗2SG(r∗) =
r∗2

2
√

πr3
0
· exp

(
− r∗2

4r2
0

)
. (2.7)

However, in many physical situations, this approximation is not sufficient since the
particle samples from which the experimental correlation functions are built also
contain feed-down particles from resonance decays. In particular, those from short-
lived, strongly decaying resonances must be considered, as they cannot be removed
from the measured particle sample due to experimental limitations. Depending on
their lifetime, these resonances either lead to an enhancement of the Gaussian width
by adding contributions to the emission duration proportional to their lifetime or
introduce a long-range exponential tail [74]. How pronounced the latter is, depends
on the particle pair. Figure 2.2 illustrates this effect.

FIGURE 2.2: Illustration of the modification of the source size due to
a short-lived, strongly-decaying resonance (lilac circle) feeding into
one of the particles of interest (dark blue circles).

While a Gaussian profile is successful in the description of correlation functions
like p–p and p–Λ [43], in extreme cases like π–π, a Cauchy/Exponential source func-
tion [75] may be used to account for the excessive resonance tail [76–78]. Such an
approach, however, does not consider the resonances and their properties explic-
itly. An alternative is provided by the resonance source model (RMS). It is based on
a Gaussian core source from which all primordial particles are emitted and whose
width depends on the transverse mass of the pair, and is anchored to experimental
data. The effective enhancement of the source size related to feed-down contribu-
tions is simulated with EPOS, taking into account the relevant, pair-specific reso-
nances. The resulting source distribution, which is fully constrained from data or
simulations, can then be parameterized with a single Gaussian or the weighted sum
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of several Gaussian’s, depending on the extent of the exponential tail. The RSM is
discussed extensively in Sec. 3.3. It was successfully employed in several previous
femtoscopic analyses [44, 46, 47, 50, 53, 79] and is also used in those presented in this
thesis.

The size of the source depends not only on the specific particle pair but also on
the system in which it was produced. Typical values for a Gaussian emission source
in pp and p–Pb collisions at the LHC are between 1− 1.5 fm [43, 49], while for Pb–Pb
larger values of 3− 6 fm are found [80].

Due to the convolution of the source function with the wave function, the emis-
sion size influences the magnitude of the correlation signal at small k∗. This can be
understood from Fig. 2.3. The right plot shows a Gaussian source function for two
radii r0, as well as different Yukawa-type strong interaction potentials of the form

V(r∗) =
A
r∗

exp (−mπr∗), (2.8)

where A2 is the dimensionless measure for the potential strength and mπ is the mass
of the pion, the exchange particle of the nuclear force. The left plot shows the cor-
responding correlation functions. Notably, the repulsive potential leads to a correla-
tion signal below unity, while the attractive potential results in a correlation function
above 1. A larger source size significantly reduces the magnitude and range of the
correlation signal, as fewer particles are emitted within the range of the potential
and experience the strong FSI. If the attractive interaction is strong enough to sup-
port a bound state, this general picture does not hold anymore, and, depending on
the source size and characteristics of the potential, the correlation function can as-
sume values below unity in the full or partial k∗ range. Bound states are explicitly
discussed in Sec. 2.3.3.
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FIGURE 2.3: Correlation functions obtained for different Yukawa-
type potentials and Gaussian source radii are depicted on the left. The
respective potentials and Gaussian source functions are shown on the
right.

The effect of the emission size on the contributions from QS and the Coulomb
interaction is illustrated in Fig. 2.4, again using a Gaussian source parametrization.

2The values of A used for the potentials shown in Fig. 2.3 have no physical meaning and were
chosen at random to exemplary represent an attractive and repulsive interaction, as well as one that
could, in theory, support a bound state.
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FIGURE 2.4: The correlation function associated with QS effects is
depicted on the left for different Gaussian source radii. The right plot
shows the same for the Coulomb interaction.

The left panel shows the correlation signal from quantum statistics. As can be seen,

CBosons
QS

k∗→0−−−→ 2 in the case of identical bosons due to the symmetrization require-
ment of the wave function, while the anti-symmetrization of the wave function for

fermions results in CFermions
QS

k∗→0−−−→ 0.5. While the magnitude of the correlation is
unaffected by the source size, its range is reduced for a larger source by shifting the
signal to a smaller relative momenta. The right panel shows the correlation func-
tions associated with the Coulomb interaction. They are almost independent of the
size of the source, which only becomes relevant at very small k∗.

After the contributions from QS, the Coulomb and the strong interaction have
been shown individually for different source sizes, the full π–π and p–p correla-
tion functions and their components are shown in Fig. 2.5 for a Gaussian source of
r0 = 1 fm. In the case of pions, the strong interaction is negligible, and the corre-
lation signal, shown on the left, arises from a combination of the symmetrization
requirement of the wave function and the repulsive Coulomb interaction. The p–
p correlation function, shown on the right, is dominated by the strong interaction,
which is modeled using the Argonne v18 [12] nuclear potential. In the calculation of
the full correlation function, the Coulomb repulsion and the anti-symmetrization of
the wave function are also considered.

2.2 Experimental correlation function

Having explained the theoretical interpretation of the correlation function in the pre-
vious section, the experimental measurement is discussed in the following.

The probabilities in Eq. 2.2 can also be expressed in terms of the Lorentz-
invariant one and two-particle spectra [74], leading to the following expression for
the correlation function

C( p⃗1, p⃗2) =
E1E2d6N/(d3 p1d3 p2)

(E1d3N/d3 p1)(E2d3N/d3 p2)
. (2.9)
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FIGURE 2.5: The full correlation function as well as its individual con-
tributions is shown on the left for ππ, and on the right for pp pairs.

In practice, however, this formal definition of the correlation function is rarely used
in high-energy physics. Instead, the correlation between two particles is obtained
experimentally as

C(k∗) = N × Nsame(k∗)
Nmixed(k∗)

, (2.10)

where Nsame and Nmixed are the relative-momentum distributions of two particles
emitted in the same (mixed) event3, andN is a normalization constant, that ensures
Cexp = 1 at large k∗, where the femtoscopic signal is absent. The same event distribu-
tion is acquired from all possible pair combinations in single collisions. In contrast,
the mixed event distribution is obtained from mixing particles emitted in separate
collisions, which renders them uncorrelated. Hence, the latter does not include any
FSI effects. It reflects the phase space of the underlying event and serves as a refer-
ence sample. Due to experimental limitations, the raw correlation signal obtained
from Eq. 2.10 is not clean and can be decomposed as

Craw(k∗) = Cfemto(k∗)× Cnon−femto(k∗), (2.11)

depending on whether or not the final state interaction (FSI) among the recon-
structed particles is the underlying mechanism that leads to the measured correla-
tions in k∗, denoted as Cfemto(k∗) and Cnon-femto(k∗), respectively. Although the selec-
tion criteria are optimized to increase the primary fraction and purity of the candi-
dates, the samples contain a finite amount of secondary and misidentified particles.
The FSI among these particles will be different to that involving primary particles
only, and hence, results in a different correlation signal. In the case of secondaries,
the mother particle is the one involved in the interaction. The femtoscopic corre-
lation function is therefore further decomposed as Cfemto(k∗) = ∑i,j λi,j × Ci,j(k∗),
where Ci,j(k∗) arises from the FSI between the i-th and j-th component of the recon-
structed particle samples. Each contribution Ci,j(k∗) is weighted by a so-called λ
parameter, which is computed as λij = pi pj fi fj where pi,j and fi,j are the purities and
primary (secondary) fractions of the i-th and j-th component of the particle samples,
respectively. The individual correlation functions Ci,j(k∗) can be obtained in a data-
driven approach or modeled using Eq. 2.5. The different contributions to Cfemto(k∗)

3In the context of this thesis events correspond to individual collisions.
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FIGURE 2.6: Illustration of different contributions to the measured
femtoscopic correlation signal among two particles. The black arrows
represent the primary particles of interest, the blue arrow a resonance,
which decays into one of the particles of interest, hence representing
the feed-down contribution, and the red arrow corresponds to a fake
or misidentified particle.

are illustrated in Fig. 2.6. In particular, the contribution from the interaction of pri-
mary particles is also referred to as genuine while feed-down contributions refer to
those involving secondary particles from weak decays or longer-lived strong decays.
All short-lived, strongly-decaying resonances with ⟨cτ⟩ < 5 fm are absorbed in the
source function, as discussed in the previouse section.

The residual non-femtosopic background Cnon-femto(k∗) is multiplicative as it af-
fects all pairs, independently of their origin, i.e. whether or not they are built, for
example, from misidentified, primary or feed-down particles4. It can affect the raw
correlation function in the full k∗ range and arises from energy-momentum conser-
vation effects, biases related to the event mixing, as well as auto-correlations as-
sociated with the production of particles within jet-like structures. The latter, also
referred to as minijet background, is typically associated with initial hard processes
at Parton level [81], which lead to auto-correlated particle pairs that induce long-
range structures to the measured correlation function, also affecting the sensitive
femtoscopic region. The creation of minijets can be better understood in terms of
string fragmentation [82], which is based on the gluonic fields between quarks and
anti-quarks that are arranged as color flux tubes (strings) and give rise to a linearly
increasing energy as the quarks separate and the tube is stretched [83]. At some
point, it is energetically more favorable that the sting breaks, creating less energetic
(qq) pairs from the vacuum. This process continues until the energy is low enough
for the quarks to hadronize. If hadrons are produced by a single string, they are
collimated, leading to cone-like emission structures, the minijets. Cnon-femto(k∗) is
typically obtained from Monte Carlo simulated data where the FSI is absent and/or
a simple polynomial baseline, depending on how pronounced the minijet contribu-
tion is.

The genuine correlation function is the holy grail of any femtosopic analysis,
which aims to study the unknown residual strong interaction between a given par-
ticle pair. To isolate it, all other contributions to Cfemto(k∗), as well as the remaining
residual background not related to FSI, Cnon-femto(k∗), have to be understood.

4If the non-femtoscopic background is added with some weight parameter λnon−femto, leading
to Craw(k∗) = λnon−femtoCnon−femto(k∗) + (1− λnon−femto)Cfemto(k∗), instead of being multiplied, it
would mean that it only affects a fraction of pairs, which do not undergo any sort of FSI. As the non-
femtosopic background affects all particle pairs in addition to the pair-specific FSI, it is multiplied.
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2.3 The two-body interaction

With the femtoscopy framework now in place, the last part of this chapter focuses on
its connection to the FSI, in particular, the residual strong interaction. As already dis-
cussed, the correlation function directly depends on the two-particle wave function,
which is expressed in the relative coordinates k∗ and r∗ in the center-of-mass frame.
The wave function is hence obtained by solving the SE for the respective interaction
potential V(r∗), which has a finite range R, is spherically symmetric and invariant
under rotation. Considering that only small relative momenta are studied, the prob-
lem can be treated non-relativistically. Further, a steady state is assumed, as the in-
teraction between the particles is quick. Therefore, the wave function, which charac-
terizes the system within the potential range, is determined by the time-independent
SE

Eψ(r∗) = Hψ(r∗) :=

(
− h̄2∇2

2µ
+ V(r∗)

)
ψ(r∗), (2.12)

where µ = m1m2/(m1 + m2) is the reduced mass of the pair. The total energy is
given by E = h̄2k∗2

2µ and ψ(r∗) = ψ⃗k∗(r
∗, θ) depends only on the relative momentum

k⃗∗ and distance r∗ as well as the angle θ due to the symmetry of the potential.

2.3.1 Scattering theory

The interaction between two particles is equivalent to a scattering process, where the
initial state of the pair is transformed into a final state due to the action of the two-
body interaction potential. The following discussion is based on Ref. [84], which I
highly recommend for reading.

The initial state is described by an incident plane wave that moves towards a
scattering region. There, the particles interact and the pair transitions into the final
state, which at large distance is an outgoing spherical wave. The asymptotic wave
function is hence given as

ψ(r∗) −−−→
r∗→∞

N
(

eik⃗∗·r⃗∗ + f (θ)
eik∗r∗

r∗

)
, (2.13)

where N is a normalization constant and f (θ) is the scattering amplitude, which is
a measure of how much the incident wave is scattered. The process is illustrated in
Fig. 2.7. At large r∗, the exact solution of the SE has to match the asymptotic form of
the wave function.

Since angular momentum is conserved for potentials of the form V(r∗), it is con-
venient to employ partial wave expansion and decompose the wave function into com-
ponents of the angular momentum specified by the quantum number l. For a plane
wave, this leads to

eik⃗∗·r⃗∗ =
∞

∑
l=0

il(2l + 1)jl(k∗r∗)Pl cos (θ), (2.14)

where Pl cos(θ) are the Legendre polynomials and jl(k∗r∗) the spherical Bessel func-
tions, which can be expressed in terms of spherical Hankel functions h(1)l (k∗r∗) r→∞−−→
(−i)l+1 exp (ik∗r∗)/k∗r∗ and h(2)l (k∗r∗) r→∞−−→ (i)l+1 exp (−ik∗r∗)/k∗r∗ as

jl(k∗r∗) =
h(1)l (k∗r∗) + h(2)l (k∗r∗)

2
(2.15)
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FIGURE 2.7: Schematic picture of the scattering process involving
an incident plane wave and an outgoing spherical wave. The gray
shaded area illustrates the scattering region, characterized by a cen-
tral potential. The scattering amplitude f (⃗k, k⃗′), which indicates how
much of the incident wave is scattered, depends on the initial momen-
tum k⃗ and the final momentum k⃗′, with k = k′. Due to the symmetry
of the potential, f (⃗k, k⃗′) = f (θ), ultimately only depends on the scat-
tering angle θ.

Motivated by Eq. 2.14, the partial wave expansion of the full wave function is

ψ(r∗) = N
∞

∑
l=0

il(2l + 1)Rl(r∗)Pl cos(θ) = N
∞

∑
l=0

il(2l + 1)
ul(r∗)

r
Pl cos(θ), (2.16)

where ul(r∗) is the reduced radial wave function which satisfies the SE in spherical
coordinates, also called radial SE,

Eul(r∗) =

(
− h̄

2µ

d2

dr∗2
+

l(l + 1)h̄2

2µr∗2
+ Vl(r∗)

)
ul(r∗). (2.17)

This equation is ultimately solved numerically by frameworks like CATS, and the
wave function used to calculate the correlation function. Analogous to Eq. 2.15, the
following expression can be used for the radial wave function

Rl(r∗) =
ul(r∗)

r∗
= c(1)l h(1)l (k∗r∗) + c(2)l h(2)l (k∗r∗), (2.18)

which corresponds to jl(k∗r∗), if c(1)l = c(2)l = 1/2. For this specific choice of coeffi-
cients and N = 1, Eq. 2.16 reduces to the plane wave solution. Therefore, the ratio
of the coefficients can be used to quantify the impact of the scattering potential in
terms of the phase shift δl(k∗) and scattering matrix Sl(k∗)

c(1)l

c(2)l

= Sl(k∗) = e2iδl(k∗). (2.19)

In the asymptotic limit, Eq. 2.16 can be rewritten as

ψ(r∗) −−→
r→∞

N
∞

∑
l=0

(2l + 1)
ik∗r∗

c(2)l

[
e2iδl(k∗)eik∗r∗ − (−1)le−ik∗r∗

]
Pl cos(θ), (2.20)
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(A) Attractive potential with δ0 > 0. (B) Repulsive potential with δ0 < 0.

FIGURE 2.8: Illustration of the effect of the s-wave (l = 0) scattering
potential on the phase shift δ0 of the outgoing wave (black line) in
comparison to the free incoming wave (gray line).

by considering the behavior of the Hankel functions for r → ∞ and Eq. 2.19. By com-
paring this expression to Eq. 2.13, with the plane wave replaced with its asymptotic
form5, the scattering amplitude can be extracted as a function of the phase shift

f (θ) =
∞

∑
l=0

(2l + 1)
e2iδl(k∗) − 1

2ik∗
Pl cos(θ), (2.21)

where the fraction

fl(k∗) =
e2iδl(k∗) − 1

2ik∗
=

1
k cot (δl)− ik∗

(2.22)

is also referred to as partial wave amplitude and can be related to the scattering
matrix via

Sl(k∗) = 1 + 2ik∗ fl(k∗). (2.23)

To properly match the exact solution to the asymptotic form, the scattering am-
plitude and, hence, the phase shift of the wave function have to be evaluated. These
quantities provide information on the interaction. Physics-wise, the phase shift cor-
responds to the change in the phase of the outgoing wave function with respect to
the incident wave due to the scattering or interaction process. Figure 2.8 illustrates
the reduced radial wave function for different interaction potentials. The incoming
wave is shown in gray, while the black line corresponds to the scattered outgoing
wave in the case of an attractive potential on the left and a repulsive one on the
right. Outside the potential range R, the outgoing wave corresponds to the free
particle solution, and the observed phase shift is determined within r∗ < R; an at-
tractive potential leads to δl > 0 as it pulls the particles towards each other, while a
repulsive interaction pushes them away, leading to δl < 0.

2.3.2 Scattering parameters

The s-wave (l = 0) scattering parameters are a measure of the strong interaction,
commonly predicted by theory and measured in experiments. They are independent
of the shape of the potential at low energies. Hence, different potentials can be tuned
to result in the same scattering parameters, producing the same phase shift.

5Eq. 2.20 with N = 1 and c(2)l = 1/2
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In the low energy limit k∗ ≪ R, the particles cannot overcome the centrifugal
barrier, which is the repulsive l-dependent term in Eq. 2.17. Hence, partial waves
with l > 0 can be neglected, and the s-wave component of the solution is dominant,
for which the centrifugal barrier vanishes. The radial s-wave wave function is given
by Eq. 2.18

R0(r∗) =
u0(r∗)

r∗
= eiδ0

(
1

k∗r∗
sin (k∗r∗ + δ0)

)
. (2.24)

In the zero kinetic energy case, where k∗ ≈ 0, the radial SE, given by Eq. 2.17, reduces
to

u′′0 (r
∗ > R) = 0, (2.25)

outside the potential range, where V(r∗) = 0. A possible solution is

u0(r∗ > R) = N(r∗ + a0) ∝ (r∗ + a0), (2.26)

where a0 is the scattering length and N a normalization constant. Its logarithmic
derivative u′(r∗)/u(r∗) has to match the one of the reduced radial wave function
u(r∗) in Eq. 2.24 for k∗ → 0. This results in

lim
k∗→0

k∗ cot (δ0) =
1
a0

, (2.27)

for r∗ = 0. Finally, this implies the following for the s-wave scattering amplitude,
which is given by Eq. 2.22,

f0(k∗) = lim
k∗→0

1
k∗ cot (δ0)− ik∗

= a0. (2.28)

Following Eq. 2.26, the scattering length can be interpreted as the negative inter-
cept of the extrapolation of the reduced radial outside wave function. Figure 2.9
shows u(r∗) for the three different Yukawa-type potentials plotted in the left panel
of Fig. 2.3, as well as the extrapolation of Eq. 2.26 to r∗ < R. In the case of an attrac-
tive interaction, the scattering length is positive, as the intercept is on the negative
side of the r∗-axis. For a repulsive interaction, the opposite is observed, and the scat-
tering length is negative. In the case of a bound-state supporting attractive potential,
the intercept is on the positive side, hence, the scattering length is also negative. No-
tably, the sign convention of the scattering length used in femtoscopy is opposite to
the classical one.

Further, the scattering length is related to the low-energy differential cross sec-
tion via dσ/dΩ = | f0|2. Hence, the scattering cross section σ = 4πa2

0 can be inter-
preted as the area of a circle with radius 2a0 and the scattering length as effective size
of the target potential [85, 86].

For finite but small k∗R, the term k∗ cot (δ0) can be expressed in powers of k∗

lim
k∗→0

k∗ cot (δ0) =
1
a0

+
1
2

d0k∗2 +O(k∗4), (2.29)

where d0 is the effective range, which can be understood as the real range of the
scattering potential [87]. This expression is also referred to as effective range expansion
and implies the following for the scattering amplitude

f0(k∗) = lim
k∗→0

1
k∗ cot (δ0)− ik∗

≈
(

1
a0

+
1
2

d0k∗2
)−1

. (2.30)
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FIGURE 2.9: Reduced radial wave function u(r∗) for different po-
tentials as well as the extrapolation of the outside wave function,
given by Eq. 2.26. The intercept corresponds to the negative scatter-
ing length in the femtoscopic sign convention.
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FIGURE 2.10: The scattering amplitude and fit with the effective
range expansion, defined in Eq. 2.30, at low k∗.

Potential type a0 [fm] d0 [fm]
Attractive 3.21± 0.12 5.96± 0.16

Attractive + Bound state −6.16± 0.02 2.83± 0.26
Repulsive −0.98± 0.01 −5.14± 4.40

TABLE 2.1: Scattering parameters for different types of potentials.

This function is used to extract the s-wave scattering parameters of a given strong
interaction potential. Figure. 2.10 shows the scattering amplitude for the same
Yukawa-type potentials used previously in this chapter, as well as a fit with Eq. 2.30
at low k∗. The resulting scattering parameters are listed in Tab. 2.1.

So far, all examples discussed in this section were restricted to the real number
set. However, the potentials and scattering parameters are complex and can have a
non-negligible imaginary contribution, which accounts for inelastic scattering, de-
cay, or absorption processes.

2.3.3 Bound states and the scattering matrix

This last section focuses on bound states, which are especially relevant for the anal-
ysis presented in chapter 5. Following the discussion in the previous sections, a
two-body interaction that is attractive enough to support the formation of a bound
state is characterized by a negative scattering length a0 < 0. The corresponding cor-
relation function can take values below unity at low k∗, which is the typical behavior
expected for repulsive interaction potentials.

In general, two particles can form a bound state if the SE allows for a solution
with discrete energy E < 0. For r∗ > R, the radial SE is given by

u′′(r∗) = −2µE
h̄

u(r∗) = κ2u(r∗). (2.31)

A solution that also satisfies the condition that u(r∗ → ∞) is finite, is given by

u(r∗) ∝ exp (−κr∗). (2.32)
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The inside solution for a bound state with negative but small E is essentially the
same as for scattering with zero kinetic energy. Therefore, the logarithmic deriva-
tives of the corresponding outside solutions Eq. 2.32 and 2.26 have to match at
r∗ = R. Hence,

−κeiκ

eiκ

∣∣∣∣
r∗=R

=
1

r∗ + a

∣∣∣∣
r∗=R

. (2.33)

For R≪ a, it reduces to κ = 1/a and the binding energy is given by

EBE = −ℜ(E) =
h̄2κ2

2µ
≂ h̄2

2µa2 . (2.34)

As there is no incident wave in the case of a bound state, the ratio in Eq. 2.19
is infinite and S0(k∗) → ∞ leading to a pole in the scattering matrix. From the
relation given by Eq. 2.23 it can be seen that the pole appears if the denominator of
the scattering amplitude vanishes. From Eq. 2.22 and 2.27 one obtains

f0(k∗) =
1

1/a0 − ik∗
, (2.35)

resulting in a pole at k∗ = i/a0 = iκ. Using the effective range expansion Eq. 2.29
instead, one obtains

k∗ = iκ =
i

d0

(
1±

√
1 + 2

d0

a0

)
(2.36)

and ultimately a binding energy of

EBE ≂ h̄
2µd2

0

(
1−

√
1 + 2

d0

a0

)2

. (2.37)

This also restricts the relation between the scattering length and effective range to
d0 > −a0/2. Further, the position of the poles of the scattering matrix in the com-
plex momentum (k∗) and energy (E) plane can be used to identify the nature of
composite states. The different classifications are shown in Fig. 2.11. Bound and
quasibound states are located on the physical sheet of the energy plane, correspond-
ing to ℑ(k∗) > 0, and are characterized by ℜ(E) < 0. In the case of a bound state,
ℑ(E) = 0, as the pole in the scattering matrix appears at k∗ = iκ. Virtual states
and resonances, on the other hand, are located on the nonphysical energy sheet with
ℑ(k∗) < 0. Further, resonances have ℜ(E) > 0. The blue glowing line in the mo-
mentum plane, corresponding to real k∗ > 0, represents physical scattering states.

2.3.4 Coupled channels

Coupled channel dynamics emerge whenever particle pairs with similar mass share
the same quantum numbers and can transition from one system to the other on- and
off-shell. Depending on the coupling strength, these inelastic channels can have
a strong effect on the hadron–hadron interaction and the formation of bound or
molecular states as well as resonances, hence, altering the shape of the correlation
function. As shown in Ref. [89], below-threshold channels might induce an effective
attraction, shifting the correlation function upwards. Above-threshold channels, on
the other hand, can lead to a cusp structure close to their opening momentum in the



26 Chapter 2. A novel technique to access the strong interaction

FIGURE 2.11: The complex momentum (left) and energy plane (right),
related via E = k∗2/2µ. Figure adapted from a plot seen in Ref. [88].

rest frame of the final state particles, which is given by

k∗ =

√
∆2

i − (m1 ·m2)2

(m̃1 + m̃2)2 , (2.38)

where the masses mj of the particles forming the heavier pair are denoted by tilde
and ∆i =

1
2 · ((m̃1 + m̃2)2 − (m2

1 + m2
2))

6. Therefore, coupled channel dynamics can
be crucial to correctly interpreting correlation measurements. For a given pair i in
the final state, Eq. 2.5 can be rewritten as

C(k∗) =
∫

d3r∗Si(r∗)|ψi(k⃗∗, r⃗∗)|2 +
∫

d3r∗∑
j ̸=i

ωjSj(r∗)|ψj(k⃗∗, r⃗∗)|2, (2.39)

where the sum runs over all inelastic channels j, which couple to the final state. Their
contribution to the full correlation function is weighted by ωj, which is determined
by the population of the respective initial state. As the relevant coupled channels
are close in mass, Sj(r⃗∗) ≈ Si(r⃗∗). The wave functions are constrained by the out-
going boundary condition, where the outgoing wave of the measured channel i is
normalized and determined by the coupled-channel Schrödinger equation

H11 H12 . . . H1M
H21 H22 . . . H2M

...
...

. . .
...

HM1 HM2 . . . HMM




ψ1(k⃗∗, r⃗∗)
ψ2(k⃗∗, r⃗∗)

...
ψM(k⃗∗, r⃗∗)

 = E ·


ψ1(k⃗∗, r⃗∗)
ψ2(k⃗∗, r⃗∗)

...
ψM(k⃗∗, r⃗∗)

 , (2.40)

where the elements Hij of the Hamiltonian matrix give the transition from state i to
j. The diagonal terms account for elastic processes, while the off-diagonal elements
describe inelastic transitions. A detailed explanation of the formalism can be found
in Ref. [89]. Typically, only relevant channels close to the threshold that strongly

6This formula can also be used to determine the position of resonances, which decay into the final
state particle pair by replacing m̃1 + m̃2 with the mass M of the respective resonance.
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couple to the final state are considered in the calculation. Furthermore, decay ef-
fects related to lower-mass channels, that are not explicitly included within Eq. 2.40,
might be accounted for by introducing an imaginary part to the interaction potential.





29

Chapter 3

Experimental Setup

As discussed in the previous chapter, the method of femtoscopy offers a unique
possibility to study the interaction among particle pairs involving unstable, exotic
species. The Large Hadron Collider (LHC) provides the ideal experimental envi-
ronment for such studies due to the large collision energy and luminosity, which
results in a large data sample that includes a significant amount of rare and heavy
particles. The small emission region of ∼1 fm, created in pp collisions at the LHC,
is another benefit that allows the study of shallow final state interactions. Addition-
ally, the availability of larger colliding systems, such as heavy ions, makes it possible
to extend and deepen such studies.

Located at CERN in Geneva in the tunnel of the former Large Electron-Positron
collider, the LHC was successfully commissioned in 2010 with a main focus on the
Higgs boson, searching for dark matter as well as deepening the understanding of
the standard model of particle physics and beyond. While the former was discov-
ered in 2012 [90, 91], the four major experiments at the LHC, ALICE (A Large Ion
Collider Experiment), ATLAS (formerly known as A Toroidal LHC Apparatus), CMS
(Compact Muon Solenoid), and LHCb (The Large Hadron Collider beauty) have
provided results well beyond the original physics program.

Especially ALICE, on whose data this thesis is based, contributed to a better un-
derstanding of several QCD-related topics over the past two decades [92]. Not only
did it determine parameters of the quark-gluon plasma (QGP) by measuring, for ex-
ample, particle yields or momentum anisotropies in heavy-ion collisions and stud-
ied the evolution of such collisions starting from the initial state, but also inferred
observables related to QCD by investigating, among others, final state hadronic in-
teractions employing femtoscopic correlation techniques. For such studies, excellent
particle identification (PID) capabilities, especially at low and moderate transverse
momentum, are essential, which are unique to ALICE in comparison to the other
main experiments at the LHC.

The following sections of this chapter focus on the essential parts of the exper-
imental setup that provided data for the different studies presented in this work.
Technical details on the LHC can be found in Sec. 3.1, while ALICE is intensively
discussed in Sec. 3.2. The last Sec. 3.3 introduces the resonance-source model in
detail, which is directly anchored to ALICE data.

3.1 The Machine

The LHC [93], also referred to as the machine, is the most powerful accelerator so far
and is designed for a center-of-mass energy of

√
s = 14 TeV and an unprecedented

luminosity of L = 1034 cm−2s−1. The high beam intensities needed to achieve this
require the LHC to be a particle-particle collider, which can operate with different
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colliding systems, i.e., pp, p–Pb, and Pb–Pb. The counter-rotating hadron beams cir-
culate in two separate rings by means of superconducting twin-bore magnets inside
the tunnel of the former Large Electron-Positron collider (LEP), which has a circum-
ference of 26.7 km and is located at CERN, the European Organization for Nuclear
Research.

Due to an incident in one of the main dipole circuits during the first commis-
sioning in 2008 [94], it was decided to operate the LHC during its first data-taking
period, the Run-1, with a reduced center-of-mass energies of

√
s = 7− 8 TeV for

pp collisions. After a long shutdown, where parts of the accelerator were upgraded
to ensure safe operation at higher energies [95], the LHC Run-2 started in 2015 with
a center-of-mass energy of

√
s = 13 TeV. The collider reached and exceeded its

design luminosity by a factor of two during this second data-taking period, which
ended in 2018. Following another long shutdown, the upgraded LHC started oper-
ating again in 2022 with Run-3 and a collision energy of

√
s = 13.6 TeV, aiming for

longer luminosity levellings at L = 2× 1034 cm−2s−1 with respect to Run-2 [96]. The
integrated luminosity recorded by ALICE in pp collisions during the different runs
is listed in Tab. 3.1.

FIGURE 3.1: The CERN accelerator complex with the LHC as the last
building block of the injection chain, where protons are accelerated to
beam energies of up to 6.8 TeV. Figure taken from Ref. [97].

The large collision energies of the LHC can only be achieved due to a complex ac-
celerator system, which is depicted in Fig. 3.1. Extracted from a hydrogen source via
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Run year
√

s (TeV) Lint

1 [98] 2009-2013

0.9 ∼ 200 µb−1

2.76 ∼ 100 nb−1

7 ∼ 1.5 pb−1

8 ∼ 2.5 pb−1

2 [98]
2015,2017 5.02 ∼ 1.3 pb−1

2015-2017 13 ∼ 25 pb−1

3 [99]
2022

13.6
∼ 19.3 pb−1

2023 ∼ 9.7 pb−1

2024 ∼ 45.9 pb−1

TABLE 3.1: Integrated luminosity of pp collision data, collected by
ALICE during the different runs.

ionization, protons enter the proton injection chain at the linear accelerator Linac2,
which they leave at beam energies of 50 MeV. From there, the particles move through
the Proton Synchrotron Booster (PSB) into the Proton Synchrotron (PS), where they
are accelerated to energies of 1.4 GeV and 25 GeV, respectively. In the subsequent Su-
per Proton Synchrotron (SPS) the protons reach 450 GeV, before being injected into
the LHC. During the magnet ramp, they are accelerated to the final maximum en-
ergies required for collisions at the four interaction points (IP), where the produced
particles are measured by ALICE, ATLAS, CMS, and LHCb. The proton beams con-
sist of up to 2808 particle packages, so-called bunches, which are spaced by 25 ns
and have a maximum proton density of ∼ 1.15× 1011 each.

Lead and other heavy-ions, produced by the electron cyclotron resonance source
(ECR), follow a slightly different path upstream of the PS [100], starting with the
heavy-ion Linac3 linear accelerator. From there the ions are injected into the Low En-
ergy Ion Ring (LEIR) where they are accumulated and transformed into short, dense
bunches before merging with the proton injection chain. Finally, Pb–Pb collisions at√

sNN = 5.02 TeV were obtained at the LHC during Run-2, with luminosities of
L = 1027 cm−2s−1.

3.2 ALICE

The "dedicated heavy-ion experiment" of the LHC is designed to perform at high
particle multiplicities up to dNch/dη ≈ 8000 and cover a wide momentum range,
where excellent PID is required. Before Run-3, it operated at lower intensities and
readout rates than the high-luminosity LHC experiments ATLAS and CMS. During
the last long shutdown, the detector was upgraded, leading to readout rates com-
patible with those of the other experiments. However, as this thesis is based on
data measured during the Run-2, the focus will lie on the corresponding version of
the experimental apparatus. Section 3.2.1 concentrates on the detector and its main
sub-modules, while the data reconstruction and structure are described in Sec. 3.2.2.
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3.2.1 The Detector

The ALICE detector, which has the dimensions 16× 16× 26 m3 and weighs around
10,000 t, is located at IP2 of the LHC in France. It comprises 19 sub-modules, de-
picted schematically in Fig. 3.2. A detailed description of the apparatus and its per-
formance can be found in Ref. [101–104].

The central barrel part covers pseudorapidities1 of |η| < 0.9 and the full az-
imuth and is enclosed in a large solenoid magnet that delivers a magnetic field up
to B = 0.5 T parallel to the beam direction. It includes several detectors, which
are radially layered around the beam pipe, starting with the Inner Tracking Sys-
tem (ITS). The ITS is a six-layer silicon detector, which is used to reconstruct the
primary collision vertex, as well as tracking and PID. It is followed by a large, gas-
filled volume, the Time Projection Chamber (TPC). Together with the ITS it is the
main charged-particle tracker of ALICE. Progressing outwards, there is the Transi-
tion Radiation (TRD) and the Time of Flight (TOF) detector, which complement the
tracking at intermediate momenta and are used for electron and charged-particle
PID, respectively. They are followed by the photon spectrometer (PHOS) and the
electromagnetic calorimeters (EMCaL), which cover the space in the azimuth and
are used to measure jets, photons, neutral mesons, and electrons. Last, there is a
High Momentum Particle Identification Detector (HMPID), which extends PID to
larger momenta.

While the central barrel detectors measure hadrons, electrons, and photons,
muons are detected by means of a large dipole magnet and a set of forward detectors,
which cover a pseudorapidity region of −4.0 < η < −2.5. The Photon Multiplicity
Detector (PMD) and Forward Multiplicity Detector (FMD) are also located in the for-
ward direction and are used to measure photons and charged particles. Also, the V0,
T0, and two sets of Zero-Degree Calorimeters (ZDC) belong to this category. The for-
mer is used for trigger purposes and to characterize an event in terms of multiplicity
and centrality; The T0 detector provides information on the timing of the collision
as well as its position in beam direction; And the latter is employed to determine
the centrality of the collisions and to reject out-of-bunch interactions by detecting
spectator neutrons. Finally, the ACORDE scintillators on top of the scintillator are
used to trigger cosmic rays.

In the following paragraphs, more detailed information will be provided on the
ALICE detectors relevant to this work.

Trigger System

The ALICE trigger system is used to optimize the number of selected events and
pick the most interesting collisions to study. It consists of a hardware trigger, called
the Central Trigger Processor (CTP), and the software-based High-Level Trigger
(HLT) [101, 104].

The trigger decision of the CTP is based on information about the LHC bunch-
filling scheme to suppress background, as well as signals from various fast-
responding detectors, the most important of which is the V0. This detector consists
of two arrays of scintillators located on opposite sides of the nominal vertex (z=0)
and segmented into four rings in radial direction. While V0-A lies at z = 329 cm,
covering backward-pseudorapidities of−3.7 < η < −1.7, the 4 rings of V0-C are po-
sitioned within a range of z ∈ [−88,−86] cm, leading to a pseudorapidity-coverage

1The pseudorapidity η is defined as η = − ln [tan θ/2], with θ the polar angle. It is used to describe
the angle of a particle relative to the beam axis z.
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FIGURE 3.2: Schematic representation of the ALICE detector during
the LHC Run-2 data-taking period. Figure taken from Ref. [105].

of 2.8 < η < 5.1 [106] in forward direction. The main function of the detector system
is being a trigger source, however, it is also used to determine basic event character-
istics like charged-particle multiplicity and centrality via the V0 amplitude, which is
related to the energy deposit in the scintillators.

The HLT provides online processing to select interesting events and physics re-
gions as well as to reduce their size by means of compression algorithms that are
designed to preserve only relevant physics information.

Several trigger classes are available. The minimum-bias (MB) trigger is specifi-
cally designed to not introduce a physics bias on the recorded event while ensuring
good background rejection. Additionally, a set of rare triggers is available to study
special physics cases, which have a much lower rate. The high-multiplicity (HM)
trigger for pp collisions is especially interesting for this analysis, as it leads to a larger
number of reconstructed particle pairs per event. The triggered events are charac-
terized by on-average 30 charged particles emitted in the pseudorapidity range of
|η| < 0.5 and correspond to the 0.17% of events with the highest V0 amplitude and
at least one charged track in the range of |η| < 1 [50]. Additionally, it was observed
that there is enhanced production of particles with hidden and open strangeness as
well as charm in events with high particle multiplicities [107, 108].

Inner Tracking System

The ITS is used to determine the primary interaction vertex (PV) as well as the sec-
ondary decay vertices of, for example, charm and beauty hadrons with high preci-
sion. This is achieved by a low material budget and high spacial resolution both in
rϕ and z direction of up to 12 µm and 25 µm [101]. Moreover, it complements the
TPC in terms of tracking and PID in the low momentum region, below 200 MeV,
improving the resolution of the reconstructed tracks [101, 109].

The ITS surrounds the beam pipe and consists of 3 sets of silicon detectors,
each of which is composed of two cylindrical layers located at a radial distance of
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FIGURE 3.3: Schematic view of the ALICE ITS. Figure taken from
Ref. [101].

r = 3.9− 43.0 cm [101] from the beam axis. A schematic representation of the de-
tector is shown in Fig. 3.3. The position of the innermost layer is constrained by
the size of the beam pipe, while the outermost layer is placed such as to allow ef-
ficient track-matching with the TPC. Silicon-pixel detectors (SPD) are chosen as the
first two layers to cope with the high particle density in this region. In particular,
the first layer has a larger pseudorapidity coverage of |η| < 1.98 with respect to the
other ITS layers and central barrel detectors to provide a continuous coverage for
measurements of the charged-particle multiplicity together with the FMD. It is also
used as a first-level trigger. The two intermediate layers of the ITS consist of Silicon
Drift Detectors (SDD), while the two outer layers are equipped with double-sided
Silicon Micro-Strip Detectors (SSD). Both the SDD and SSD layers are used for PID
via ionization energy-loss dE/dx in the non-relativistic region. In order to cover the
full azimuth, the drift and strip detectors slightly overlap.

Time Projection Chamber

The TPC is the main charged-particle tracker of ALICE and provides essential in-
formation for PID and good momentum resolution over a large pT range, from 0.1
GeV/c to 100 GeV/c [101]. As a central barrel detector, it covers the full azimuth
and pseudorapidities of |η| < 0.9.

The TPC consists of a field cage, shaped like a hollow cylinder with an inner
radius of 85 cm and an outer radius of 250 cm, as well as a length of around 500 cm
in beam direction. Its axis is parallel to the magnetic field created by the solenoid
magnet. The field cage, depicted schematically in Fig. 3.4, encloses a volume of 90 m3

and is filled with a Ne–CO2–N2 gas mixture [101]. It creates a uniform electrostatic
field on either side of the central electrode, which is used to transport electrons from
ionization processes caused by charged particles passing through the volume to the
respective end plates, where the readout chambers are installed. Each end-plate
consists of 18 sectors, radially separated into an inner and outer readout chamber
(IROC and OROC, respectively), whose design is based on multi-wire proportional
chambers (MWPCs) with pad readout. They consist of a grid of anode wires running
in azimuthal direction above a pad plane, followed by a cathode-wire grid and a
gating grid. In the vicinity of the anode wire, the field strength increases and the
ionization electrons become themselves energetic enough to ionize the surrounding
gas, thereby creating an avalanche of electrons and positive ions. While the electrons
are immediately absorbed by the anode wire, the slower-drifting ions move towards
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FIGURE 3.4: The layout of the ALICE TPC. Figure taken from
Ref. [110]

the cathode grid where they are absorbed as well2. As the instantaneous current
induced by charge carriers on an electrode depends on their velocity [111, 112], the
signal is dominated by ions, which induce mirror charges on the pad plane. If the
signals induced on the cells of a given pad row exceed a certain threshold and fulfill
the necessary quality criteria, they are combined to form a so-called cluster.

The IROCs and OROCs consist of 63 and 96 pad rows, respectively, which re-
sults in approximately 560,000 readout channels. This ensures a low occupancy and
sufficient dE/dx and position resolution [110].

The particle trajectory in the TPC is reconstructed on the transverse plane from
the measured clusters, which can not exceed a total of 159, corresponding to the
number of pad-rows in a given TPC sector. By additionally considering timing in-
formation, the z-position can be determined, leading to a three-dimensional track.

Particle identification can be performed by simultaneously measuring the mo-
mentum p and the specific energy-loss dE/dx of a particle of charge ze due to col-
lisions with the drift gas molecules. While p can directly be determined from the
bending radius r of the track in the magnetic field B via r = p/Bze, the specific en-
ergy loss can be obtained from the charge associated with the individual clusters of
a track.

Further, the energy-loss is related to the particle velocity β via the Bethe Bloch
formula [114]

−dE
dx

=
4πnz2

mec2β

(
e2

4πϵ0

)2 [
ln
(

2mec2β2

I · (1− β2)

)
− β2

]
, (3.1)

where n is the electron number density and I the mean excitation level. Hence, the
particle’s species can be determined from its mass M = p/βγ by measuring the
momentum and energy loss associated with its track.

Figure 3.5 shows the specific energy loss of different species within the TPC as
a function of the momentum, together with a parameterization of the Bethe-Bloch

2This process can only happen while the gating grid is open for the duration of a drift-time interval
of ∼ 90 µs upon a trigger signal. Afterwards, the gating grid closes again and ensures that remaining
ions cannot drift back into the drift volume, causing severe perturbations of the field.
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FIGURE 3.5: The energy loss of particles in the TPC as a function of
the momentum p, measured in pp collisions at

√
s = 13 TeV. Figure

taken from Ref. [113].

formula [115]. The deviation between an experimental measurement and mass hy-
pothesis for particle species in terms of the detector resolution σ defines the so-called
nσ,i value [104]

nσ,TPC =
dE/dxmeasured − ⟨dE/dx⟩expected

σ
. (3.2)

The smaller this value is for a specific mass hypothesis, and the larger it is for the
other possibilities, the more likely it is that the particle is correctly identified.

Time of Flight

The TOF is a large area array used for tracking and PID in the intermediate mo-
mentum range up to 2.5 GeV/c [101]. It consists of 1593 Multigap Resistive Plate
Chambers (MRPC) stacks, which are embedded in a cylindrical shell that surrounds
the beam axis and has an inner radius of 370 cm and an outer one of 399 cm. It
covers the full azimuth and pseudorapidities |η| < 0.9 and has a total active area of
141 cm2.

The MRPCs are composed of two stacks, each of which consists of 6 glass plates,
separated by five gas-filled gaps of equal size [101]. The internal resistive plates
are electrically floating, while electrodes are placed on the surfaces of the outermost
plates of each stack. A high voltage is applied at these electrodes, which leads to
a high and uniform magnetic field over the full sensitive gaseous volume of the
detector, triggering an immediate electron avalanche from any ionization produced
by a traversing charged particle. While the avalanches are confined within the gaps,
they create fast signals to which the resistive plates are transparent. Therefore, the
induced signal on the external electrodes is the sum of the activities within all the
gaps, leading to a high efficiency.

The narrow gap-width of 250 µm leads to a good time resolution of around
80 ps [101] and a precise measurement of the arrival time tTOF of the particles, which
makes it suitable for time-of-flight based PID. For this, the event time tevent has to
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be known as well. Ideally, it is provided by the T0, which is part of the forward
detectors group of ALICE and consists of two arrays of Cherenkov counters located
close to the beam on both sides of the interaction point, covering pseudorapidities of
−3.28 < η < −2.97 and 4.61 < η < 4.92, respectively [101]. However, for a fraction
of events, no signal is observed, especially in pp collisions. If there are at least three
hits in the TOF, the event time is estimated using an algorithm that compares the
measured tTOF with the expected arrival times assuming a common tevent [116]. If
none of the previous methods is available, an average start time for the run is used.

From the measured time-of-flight, τ = tTOF − tevent, the mass M of the particle
can be determined via [103]

M =
p

βγ
= p

√
(cτ)2

L2 − 1, (3.3)

where L is the reconstructed length of the trajectory and p is the track momentum,
which has to be provided by another detector, e.g., the TPC. Figure 3.6 shows the
PID capabilities of the TOF; especially at low momentum, a good separation between
protons and kaons is obtained. The PID for a specific particle hypothesis is estimated
by [116]

nσ,TPC =
τ − texpected

σ
, (3.4)

where σ is the detector resolution.
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FIGURE 3.6: The velocity β, obtained with the TOF, as a function of
the TPC momentum. Figure taken from Ref. [117].

3.2.2 Data reconstruction and structure

The ALICE data flow starts with the detector readout and data recording based on
the decision provided by the ALICE trigger system. The raw data is then prepared
for track reconstruction by combining signals measured in the individual detectors
to clusters with specific positions, amplitudes, etc. [104].

Next, the preliminary vertex of the primary interaction is determined as the point
where the largest amount of tracklets, built from clusters in the two innermost layers
of the ITS, converge. Then, the track finding is performed by means of the Kalman-
filtering approach [118], starting from the outermost layers of the TPC, proceeding
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FIGURE 3.7: Illustration of a V0 ( K0
s → π+π−) reconstruction and

selection in blue, as well as the reconstruction of a cascade baryon
(Ξ− → Λ0π− → (pπ+)π−), decaying into a V0 and another charged
particle in green.

inwards, where the reconstructed tracks are matched with clusters in the ITS. As the
reconstruction efficiency of the TPC drops significantly for low pT, an ITS standalone
track-finding is performed with the clusters not used in the TPC-ITS matching. Next,
the tracks are refitted in the backward direction, using the previously found clusters.
When reaching the outermost layer of the TPC, they are matched to TRD tracklets,
followed by a matching to clusters in the TOF. The tracks are further propagated and
matched with signals in the EMCal, PHOS, and HMPID. Finally, a refit is performed
starting at the outer radius of the TPC. During all these steps, starting with the local
clusterization, calibration processes are performed to correct the data for detector
effects.

The global tracks found with TPC and ITS are used to determine the primary
vertex with a higher precision than with SPD tracklets alone.

The event reconstruction proceeds with finding secondary vertices from neutral
particle decays such as the K0

S, which is illustrated in blue in Fig. 3.7. This is done
by matching all opposite-sign tracks, which exceed a certain minimum distance to
the primary vertex (DCA1 and DCA2 in the figure), and calculating their point of
closest approach (PCA). Due to their decay topology, these particles are also called
V0 candidates and subject to further selections, such as the position of the PCA, the
combined distance of closest approach of the daughter tracks to the PCA (σvertex)
or the angle between the connection line of primary and secondary vertex, and the
total momentum vector of the pair p⃗pair, which is also referred to as pointing angle
θp.

The event reconstruction process is completed by the search for cascades, which
are charged resonances, decaying weakly into a V0 and another charged particle,
such as the Ξ−, illustrated in green in Fig. 3.7. This is done by matching a V0 can-
didate, whose invariant mass lies within a certain window, with another secondary
track, applying selections on their mutual distance at the PCA, which, in addition,
is required to lie outside of a specific cylindrical volume around the primary vertex.
More complex secondary vertices are reconstructed later during the analysis.

The information from the reconstruction process is stored in Event Summary
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Data (ESD) files, which are compressed to Analysis Object Data (AOD) files by dis-
carding information that is irrelevant for physics analyses, saving computing re-
sources. The analyses are performed by means of the AliRoot framework [119] on
the CERN computing grid.

3.2.3 Monte Carlo simulation

Full-scale Monte Carlo (MC) simulations of the ALICE data are available, where the
particles produced in the generated collisions are transported through the detector
material and reconstructed following the same algorithm as for raw data. These
simulations are anchored to specific data-taking periods in order to reproduce the
exact experimental conditions in the simulation.

ALICE provides multiple sets of such simulations. The ones used in this thesis
are produced by the event generator PYTHIA 8 [120] with the Monash-2013 tune,
while the transport through the detector material is simulated with GEANT 3 [121].
An additional selection on large charged-particle multiplicities is applied to emulate
the HM-triggered data sample.

Analyses involving heavy-flavor particles need a specific set of heavy-flavor en-
riched simulations (HF MC) to obtain a sample with sufficiently large statistics.
These simulations require at least one cc or bb pair to be present in each gener-
ated pp event. Additionally, the heavy-flavor particles are forced to decay in the
hadronic channel of interest for the analysis, which in this case is D+ → K−π+π+,
with a branching ratio of BR = (9.38± 0.15)% [122].

3.3 The resonance-source model

In order to study unknown residual FSI using the femtoscopy method via Eq. 2.5,
the particle emission has to be well understood, in particular, the effect of short-lived
strongly-decaying resonances.

This section focuses on the resonance-source model (RSM) [123], which is an-
chored to p–p correlation data, measured with ALICE in HM pp collisions at√

s = 13 TeV. It is based on the assumption that all primordial particles3 and reso-
nances are emitted at the same time from a common Gaussian core source. Further,
strongly decaying resonances with cτ ≲ ⟨5 fm⟩ are not expected to live long enough
to significantly modify the relative momentum via FSI with other particles.

By considering the different origins of the particles, the source of the two final
state particles forming the pair of interest can be decomposed as [123]

S(r∗) = ωP1P2 × SP1P2(r
∗) + ωP̃1P2

× SP̃1P2
(r∗) + ωP1 P̃2

× SP1 P̃2
(r∗) + ωP̃1 P̃2

× SP̃1 P̃2
(r∗),
(3.5)

where ωP̃1(2)
= 1−ωP1(2)

denotes the fraction of secondary particles P̃1(2) originating
from short-lived resonances and ωP1(2)

the fraction of primordial particles P1(2), both
anchored to the yields expected by the Statistical Hadronization model (SHM) [124].
Sij(r∗) denotes the corresponding sources. In particular, SP1P2(r

∗) is the Gaussian
core source, while the others include resonance contributions to one or both final
state particles. The P̃1P̃2 case is illustrated in Fig. 3.8. The emission points of the
primordial mothers are separated by r⃗∗core, while the final state particles are separated

3Primordial particles are directly created in the hadronization process, and do not stem from an
intermediate decay.
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ALI-PUB-483606

FIGURE 3.8: Illustration of the modification of r⃗∗core to r⃗∗ due to the
decay of resonances (gray disks), feeding into the final state particles
of interest (blue disks), which have momenta k⃗∗. The chosen coordi-
nate system is the rest frame of the daughters and marked with an
asterisk. Figure taken from Ref. [123].

Pair FSI
strong Coulomb QS

pp Argonne v18 [12]
√ √

pΛ χEFT at LO [127] and NLO [128] - -
π+π+ -

√ √

K+p χEFT [79, 129]
√

-

TABLE 3.2: Details on the FSI used to model the correlation functions
of the particle pairs that benchmark the RSM.

by r⃗∗, which is given by
r⃗∗ = r⃗∗core − s⃗∗res,1 + s⃗∗res,2, (3.6)

where s⃗∗res,1(2) is the distance traveled by each resonance. It is linked to the flight time
tres,1(2) of the individual resonance via

s⃗∗res,1(2) = β⃗∗res,1(2)γ
∗
res,1(2)tres,1(2) =

p⃗∗res,1(2)

Mres,1(2)
tres,1(2), (3.7)

where p⃗∗res,1(2) is the momentum and Mres,1(2) the mass of the respective resonance.
The flight time tres,1(2) is sampled from an exponential distribution based on the life-
time τres,1(2) of the resonance, which is obtained from its measured width [122]. In
the RSM, the average masses and lifetimes of the resonances feeding into the final
state particles predicted by the SHM are used in order to save computation time.
Finally, the source of final state particles S(r∗) is obtained from MC simulated colli-
sions and resonance decays with EPOS [125], following simple phase-space rules.

The RSM was then applied in the modeling of the experimental correlation
functions of several particle pairs for which the residual strong interaction is well
known [123, 126] in order to study the particle emitting core. The investigated pairs
are listed in Tab. 3.2 with details on the employed FSI. In the case of π+–π+, two dif-
ferent versions of the non-femtoscopic background were tested, namely polynomials
of first and second order.

These studies were performed mT-differentially on data measured by ALICE in
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HM pp collisions at
√

s = 13 TeV. The resulting rcore is shown in Fig. 3.9. In
the low-mT region, which can only be accessed with π+–π+ correlations, the core
radius saturates, while for larger values, a scaling is observed, which is common for
the investigated meson-meson, meson-baryon and baryon-baryon pairs. The data
points for p–Λ are not shown explicitly in the plot, but the pairs experience the
same rcore scaling [123]. The observed mT dependence of the particle emission size is
already known from HIC and is attributed to the collective expansion of the system.
However, the exact reason why the phenomenon is also present in pp collisions is
still under investigation. An independent and alternative study could relate it to the
radial expansion of the system [130].

ALI-PUB-566229

FIGURE 3.9: Radii of the Gaussian core source, extracted by fitting
the experimental correlation functions of different particle pairs and
transverse masses mT. The green band corresponds to the 3σ spread
of the parametrization of the mT scaling of p–p correlations. Figure
taken from Ref. [126].

The RMS is essential for femtoscopic analysis performed on pp data measured
with ALICE, as it can be used to obtain the effective source of any particle pair by
including the relevant resonances in the modeling as well as fixing rcore to the value
obtained from a parametrization of the p–p data, shown as green band in Fig. 3.9, for
the measured pair mT. By constraining the source, the model facilitates experimental
access to unknown hadronic interactions by means of the correlation function and
femtoscopy method.
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Chapter 4

Interaction between D+ and
light-flavor mesons

In the past decades, several new heavy hadron states with charm-quark content have
been discovered, some of which cannot easily be accommodated within the quark
model [131], like the extremely narrow scalar charm-strange meson D∗s0(2317) [132–
134], whose mass lies around 160 MeV/c2 below the prediction. This led to several
theories on its nature, some of which propose a tetra-quark state composed of cqsq
(anti)quarks [135–137]. As it’s mass is very close to the DK threshold, the D∗s0(2317)
could also be a hadronic molecule with a dominant D(∗)K component [138–142], or
an admixture of both [143, 144]. Alternatively, the structure can be explained by
coupled-channel effects among the cs state and the DK continuum [145–151]. To bet-
ter understand the nature of this exotic state, the D–K scattering has to be studied.
Similarly, the properties of the charm-light D∗0(2300) can be accessed by D–π scat-
tering to shed light on why its mass is close to that of its strange partner D∗s0(2317),
although it is expected to be smaller. The same applies to the axial charm-strange
Ds1(2460) and the non-strange D1(2430) meson, which also have surprisingly sim-
ilar masses. Several other heavier exotic hadrons with charm-quark content have
been discovered, such as the χc1(3872) [152], T+

cc [153, 154], Pc(4312), Pc(4440), and
Pc(4457) [146, 155, 156] states. Similar to the D∗s0(2317), these states can be inter-
preted as compact multiquark states [157–160], or DD

∗
, DD∗, or ΣcD, ΣcD

∗
molecu-

lar states due to their proximity to the two-hadron mass threshold, thereby extend-
ing beyond the heavy-light-flavor sector.

Besides to better understand the nature of exotic states, the knowledge of the
interaction between charm and light-flavor mesons is also relevant for the study
of ultrarelativistic heavy-ion collisions (HICs), where a color-confined state of mat-
ter, the quark-gluon plasma (QGP), is formed [161–165]. Charm quarks, which are
produced in the early stages of collisions in primary hard partonic scattering pro-
cesses, are ideal probes to infer the properties of the QGP, as they experience the full
time evolution of the hot and dense medium. During their propagation in the QGP,
they interact with its constituents by exchanging energy and momentum via elas-
tic [166–168] and inelastic processes [169, 170], leaving traces in observables such
as the pT-differential yields, the azimuthal anisotropy or the nuclear modification
factor RAA of heavy-flavour hadrons [171, 172]. However, these hadrons will inter-
act with other particles produced in the HIC, which are mainly light-flavor mesons,
leading to modifications of their momentum and angular distributions. In order to
disentangle such effects from those related to the QGP formation and correctly in-
terpret the data with the available models [173, 174], the interaction between charm
and light-flavor mesons, in particular pions and kaons, has to be understood and
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FIGURE 4.1: Illustration of the evolution of a heavy-ion collision with
focus on the production of charm quarks in the initial phase of the
collision, the subsequent hadronization to D+ mesons, and their FSI
with light-flavor mesons.

the scattering parameters determined. Figure 4.1 illustrates these processes at differ-
ent stages of the evolution of the HIC, starting with the initial collision at the origin
of the zt-plane. It is followed by the formation of the QGP, which expands while
cooling down until a transition to the hadron gas phase takes place, where hadrons
materialize out of quarks and gluons. After the hadronization, the particles can inter-
act inelastically until chemical freeze-out, where the particle composition is settled.
Elastic interactions, including rescattering, are, however, still allowed and cease at
kinetic freeze-out. After this, the particle momenta are fixed, and the free-streaming
hadrons propagate towards the detector.

On the theoretical side, scattering processes involving charm and light-flavour
mesons have been extensively studied in the framework of χPT [141, 175, 176].
However, scattering observables such as phase shifts have not yet been measured,
as the realization of such experiments is hindered by the extremely short lifetime
of hadrons containing heavier quarks. For the time being, the unknown parame-
ters of the theory have to be constrained by simulated LQCD data. In recent years,
however, femtoscopy has emerged as a unique method to study such interactions
experimentally. In particular, the measurement of the pD− correlation function [53]
marks its first application to the charm sector, demonstrating the feasibility of such
studies.

In the following, the first experimental results on the interaction of D+ mesons
with pions and kaons are presented for both the same- and opposite-charge config-
uration in pp collisions at

√
s = 13 TeV. In Sec. 4.1, the different steps of the data

analysis are discussed, with focus on the event and particle selection, followed by
Sec. 4.2, where the experimental correlation functions are presented. The decompo-
sition of the raw data is discussed in Sec. 4.3 and Sec. 4.4 focuses on the pair emission.
The final results are discussed in Sec. 4.5 and the summary and conclusion can be
found in Sec. 4.6. Details on the systematic uncertainties are given in the respective
sections.
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Selection criterion Value
Trigger HM
Physics selection default
Incomplete DAQ check
z vertex |vtxz| < 10 cm
Contributors to track vertex Ncontrib,track > 1
Contributors to SPD vertex Ncontrib,SPD > 0
Distance between track and SPD vertex dvtx,track−SPD < 0.5 cm
SPD vertex z resolution σSPD, z < 0.25 cm
Pile-up rejection AliVEvent::IsPileUpFromSPD()

AliEventUtils::
IsSPDClusterVsTrackletBG()

TABLE 4.1: Event selection criteria.

4.1 Data Analysis

The analysis is conducted on a data set obtained in pp collisions at
√

s = 13 TeV
with ALICE from 2015 to 2018, during the Run-2 data-taking period. The events
are selected employing the HM trigger, which is discussed in detail in Sec. 3.2.1. For
quality assurance, standard selections on the event properties are applied, which are
summarized in Tab. 4.1. The default physics selection rejects events of poor quality
and background from the interaction of beam protons with beam pipe material or
residual gas present in the pipe. To further ensure the quality of the selected events,
the check flag for incomplete data acquisition (DAQ) in AliRoot is required. The dis-
tance between the primary vertex reconstructed from at least one SPD tracklet with
a resolution below 0.25 cm in z-direction, and the primary vertex obtained from at
least two global tracks, which need both ITS and TPC clusters, has to be below 5 mm.
Uniform detector coverage is ensured by requiring the primary vertex to lie within
10 cm of the nominal interaction point along the beam direction. Additionally, in or-
der to reject pile-up events, only one primary vertex is allowed to be reconstructed
in the SPD. This results in approximately 9.1× 108 events available for the analysis
and the selection of possible pair candidates.

4.1.1 Particle selection

Light-flavor mesons

The selection criteria for pion and kaon candidates are summarized in Tab. 4.2.
Global tracks are used for pions, while TPC-only tracks are employed for kaons
to increase the yield of reconstructed particles. As shown in [104], the momentum
resolution of TPC-only tracks is comparable to that of globally reconstructed tracks
since the track fitting is constrained by the primary vertex, which is reconstructed in-
dependently. As a cross-check to assess any bias that may arise from this choice, the
D–K correlation functions are also studied using global tracks, leading to compatible
results within the uncertainties.

A selection on the reconstructed TPC clusters is applied to ensure a good track
quality and pT-resolution at large momenta as well as to remove fake tracks from
the sample. Tracks for both species are required to be reconstructed from more than
80 clusters in the TPC and have crossed at least 70 out of the total 159 pad rows.
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FIGURE 4.2: The top left plot shows hte distance of closest approach in
the xy-plane for pions. The blue line shows the distribution without
any DCA selection, the red one includes the selection on the DCA in
beam direction, |DCAz | <0.3 cm, whereas the black one additionally
includes |DCAxy | <0.3 cm, which corresponds to the full DCA se-
lection applied on the sample. The other histograms show the φ, η,
and pT distributions of pion candidates in red, which are needed to
construct the particle 4-vector.

Additionally, kaon candidates are rejected if the associated track shares clusters with
another one, and the ratio between the number of crossed rows and the number of
clusters that can potentially be found has to be larger than 0.8.

To minimize unwanted effects related to the detector acceptance, the light-flavor
candidates are selected within |η| < 0.8. A low transverse-momentum cutoff of
pT > 0.14 GeV/c for pions and pT > 0.15 GeV/c for kaons is applied to reduce the
number of candidates stemming from interactions with the detector material. An
upper limit of pT < 4 GeV/c is imposed to enhance the purity of the candidates,
as the separation power for different particle species in the TPC and TOF decreases
for large pT. To suppress contributions from weak decays or interactions with the
detector material, a selection on the distance of closest approach (DCA) of the tracks
to the primary vertex in both the transverse plane xy and z direction along the beam
axis is applied. For pions it is DCAxy,z < 0.3 cm, while for kaons it is DCAxy < 0.1 cm
and DCAz < 0.2 cm. The resulting DCAxy distribution is shown in the top left plot
of Fig. 4.2 and 4.3, for pions and kaons, respectively.

For particle identification (PID), information provided by the TPC and TOF de-
tectors is used. The selections are based on nσ, the number of standard devia-
tions of the measured to the expected signal for a specific particle hypothesis at a
given momentum, which is described in more detail in Sec. 3.2.1. Depending on
the momentum of the candidates and the separation power between different parti-
cles hypothesis in the detectors, a selection on nσ,TPC is sufficient, or the combined
nσ,comb =

√
(nσ,TPC)2 + (nσ,TOF)2 is used.
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FIGURE 4.3: The top left plot shows the distance of closest approach in
the xy-plane for kaons. The blue line shows the distribution without
any DCA selection, the red one includes the selection on the DCA in
beam direction, |DCAz | <0.3 cm, whereas the black one additionally
includes |DCAxy | <0.3 cm, which corresponds to the full DCA se-
lection applied on the sample. The other histograms show the φ, η,
and pT distributions for kaon candidates in red, which are needed to
construct the particle 4-vector.
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FIGURE 4.4: Particle identification for pions. For p < 0.5 GeV/c
the specific energy loss information provided by the TPC in form of
deviations from the theoretical expectation value is used (nσ). For
p > 0.5 GeV/c also, the time-of-flight information provided by the
TOF is employed. The left plot depicts nσ,TPC, while the right one
shows nσ,TOF, both as a function of the momentum measured in the
TPC, pTPC.
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FIGURE 4.5: Particle identification for kaons. The left plot depicts
nσ,TPC for kaons while the right one shows nσ,TOF, both as a function
of the momentum measured in the TPC, pTPC. They are both used for
particle identification.

As can be seen in Fig. 3.5, pions with p < 0.5 GeV/c can be well identified
from their energy-loss in the TPC with |nσ,TPC(π)| < 3. For larger momenta,
|nσ,comb(π)| < 3 is required, additionally relying on information on the TOF β. The
resulting nσ distributions in the TPC and TOF are shown in Fig. 4.4.

For kaon identification, a more complex set of selections is applied to increase
the yield while maintaining a sufficient purity of the sample. Two different identifi-
cation methods are used; Method 1 exclusively relies on the TPC, while Method 2 also
uses the TOF. In order to be accepted, a kaon candidate has to pass any of the two
methods. The selections are tuned to minimize contamination from other particle
species, in particular electrons (e±), protons (p), and pions (π), and are motivated
by the energy-loss curves of different particle species in the ALICE TPC, depicted in
Fig. 3.5, as well as the TOF β, shown in Fig. 3.6.

Method 1 is only applied for momenta p < 0.85 GeV/c, due to the worsening
kaon separation power of the TPC for larger momenta and requires |nσ,TPC(K)| < 3.
Additionally, the region p ∈ [0.5, 0.65] GeV/c, where the electron energy-loss curve
crosses the kaon curve, is excluded. A possible contamination from pions and
electrons is accounted for by requiring |nσ,TPC(π)| > 3 for p > 0.5 GeV/c and
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FIGURE 4.6: MC template fit results to the measured DCAxy distribu-
tion of K+ candidates with pT ∈ [1.02, 1.11] GeV/c shown on the left.
The same is shown for π+ candidates with pT ∈ [0.53, 0.72] GeV/c on
the right.

|nσ,TPC(e±)| > 3 for p > 0.3 GeV/c, which are the momentum regions where the
energy-loss curves of the two species approach the kaon curve, as can be seen in
Fig. 3.5. Method 2 uses the combined PID information of TPC and TOF, requiring
|nσ,comb(K)| < 3 for kaons in the full momentum region. For p > 1.2 GeV/c, where
the separation power between kaons and pions decreases in the TOF, a tighter se-
lection of |nσ,comb(K)| < 2 is applied, while additionally requiring |nσ,comb(π)| < 6.
Figure 4.5 displays the resulting distributions of nσ. The structure visible around
pTPC ∼ 0.8 GeV/c in the nσ,TPC histogram arises from the momentum-overlap of
Method 1 and Method 2.

The η, ϕ, and pT-distributions of the light-meson candidates, which are the quan-
tities needed to reconstruct the four-momentum, are displayed in Fig. 4.2 and 4.3
after the selections of Tab. 4.2 are applied.

Even though the selections are chosen such as to maximize the amount of pri-
mary particles1, additional contributions from weak decays or interactions with the
detector material are present in the light-flavor sample. Information on the origin of
the selected π and K is obtained by fitting MC templates of the DCA distributions
of the different contributions to the experimental data. These fits are performed for
several pT intervals and example plots are shown in Fig. 4.6. The resulting fractions
as a function of pT are presented in Fig. 4.7. As can be seen, the fractions only mildly
depend on the transverse momentum of the candidates and they are almost identical
between particles and antiparticles. Also, the dominant contribution to the sample
is primary particles, with > 99 %.

The purity of the selected particles is obtained from the ratio of correctly iden-
tified candidates to misidentified ones, using MC information on the true particle
species, and is shown in Fig. 4.8 for both kaons and pions. For kaons, it remains
high over the full pT range, while it drops for low-pT pions.

1According to ALICE definition [177], primary particles are either produced directly in the interac-
tion or in decays of particles with τ < 1 cm/c, excluding particles produced in interactions with the
material. By this definition, feed-down from strongly decaying resonances is also part of the primary
fraction.
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Selection criterion π selections K selections
Track-type Global tracks TPC-only tracks
Pseudorapidity |η| < 0.8 |η| < 0.8
Transverse momentum 0.14 < pT < 4.00 GeV/c 0.15 < pT < 4.00 GeV/c
TPC cluster nTPC > 80 nTPC > 80
Crossed TPC pad rows ncrossed > 70 ncrossed > 70
Tracks with shared clusters n.a. reject
Ratio crossed rows n.a. 0.8
DCA xy |DCAxy| < 0.3 cm |DCAxy| < 0.1 cm
DCA z |DCAz| < 0.3 cm |DCAz| < 0.2 cm

Particle identification

– |nσ,TPC(π)| < 3 for
pT < 0.5 GeV/c

– |nσ,comb(π)| < 3 for
pT > 0.5 GeV/c

Method 1 (TPC only
PID):
– p < 0.85 GeV/c
– p ̸∈ [0.5, 0.65] GeV/c
– |nσ,TPC(K)| < 3
– |nσ,TPC(e±)| > 3 for

p > 0.3 GeV/c
– |nσ,TPC(π)| > 3 for

p > 0.5 GeV/c
OR
Method 2 (TPC and TOF
combined PID):
– |nσ,comb(K)| < 3
– |nσ,comb(K)| < 2 and
|nσ,comb(π)| > 6 for
p > 1.2 GeV/c

TABLE 4.2: Light-flavor meson selection criteria.
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TABLE 4.3: Track selection criteria for the D+-meson daughters.

Selection criterion Value
Pseudorapidity |η| < 0.8
Transverse momentum pT > 0.3 GeV/c
Crossed TPC pad rows ncrossed > 70 (out of 159)
Findable TPC clusters ncrossed/nfindable > 0.8
χ2 per TPC cluster χ2/nclusters < 4
ITS hits at least two and at least one in the SPD layers
Particle identification |nσ,TPC(K/π)| < 3 OR |nσ,TOF(K/π)| < 3

TABLE 4.4: Preselections used for the reconstruction of D+ mesons,
which depend on the transverse-momentum of the candidates.

Selection criterion pT interval (GeV/c)
[1, 5] [5, 10]

σvertex (µm) < 400 < 600
Decay length (µm) > 300 > 300
cos θp > 0.85 > 0.75
cos θ

xy
p > 0.80 > 0.70

D+ mesons

The D+-meson selection follows the approach used in Ref. [53] and developed
within the heavy-flavor group of ALICE. The charm particles are reconstructed via
the D+ → K−π+π+ decay channel and its charge conjugate, which have a branch-
ing ratio of BR = 9.38± 0.16% [122]. In a first step, three correctly charged tracks,
which pass the loose preselections reported in Tab. 4.3, are combined to build a D+

candidate. These tracks are reconstructed with both the ITS and TPC, requiring a
minimum of two hits in the ITS, with at least one in the innermost layers, the SPS, to
ensure a good pointing resolution. Moreover, selections on the track quality in the
TPC are applied and tracks have to fulfill |η| < 0.8 and pT > 0.3 GeV/c. For particle
identification, TPC or TOF information is used, employing a cut of 3σ on the differ-
ence between the measured and expected signal for the daughter species. Triplets
are rejected if the oppositely charged track is not associated to a kaon candidate. Ad-
ditional preselections on the decay-vertex topology are applied, most of which have
already been introduced in the discussion on V0 candidates in Sec. 3.2.2. They are
listed in Tab. 4.4 and depend on the pT of the reconstructed D+-meson candidates.

The so obtained sample of D+-meson candidates includes three different types
of contributions

• The combinatorial background consists of uncorrelated pions and a kaons

• Prompt D+ mesons directly originate from the hadronization of a charm quark
(i.e. primary D+ mesons) or the decay of charmonium and excited open-charm
states, such as D∗ mesons.

• Non-prompt D+ mesons come from the decay of beauty hadrons, e.g. B mesons.

As the mean proper decay length of D+ mesons is cτ ≈ 300 µm, while the one of D∗

mesons is cτ ≈ 2000 fm, hence, negligible in comparison, it is the main contributor to
the displacement of the decay vertex of prompt D+ mesons. The mean proper decay
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FIGURE 4.9: Illustration of the decay topologies of the different con-
tributions to the D+-meson sample. Image by the courtesy of my
colleague D. Battistini.

length of beauty hadrons, on the other hand, is about cτ ≈ 500 µm, resulting in a
significantly larger displacement of the decay vertex of non-prompt D+ mesons with
respect to that of prompt candidates. The different decay-vertex topology, illustrated
in Fig. 4.9, can be used to distinguish not only between combinatorial background
and D+ mesons but also between the non-prompt and prompt contribution to the
sample.

A multi-class machine learning (ML) algorithm based on boosted decision trees
(BDT), provided by the XGBOOST library [178], is employed to efficiently categorize
the sample into contributions from the combinatorial background, as well as prompt
and non-prompt D+ mesons. It is based on weak learners (decision trees), which
classify the training data sample by recursively splitting it based on specific fea-
tures and attributes. In this analysis, different variables related to the decay-vertex
topology, such as the decay length, cos θp or σvertex, as well as PID information on the
daughter candidates are used. Combining many weak learners subsequently (boost-
ing) results in one strong classifier, which extends traditional cut-based (rectangular)
particle selection. The model is trained on a sample of prompt and non-prompt D+

mesons obtained from the HF MC simulations, while the one of the combinatorial
background is taken from a small fraction of the HM events used in the analysis,
selecting invariant-mass intervals outside the resonance peak region (sidebands).
The training is performed in different pT intervals2 and the hyper-parameters used
to configure the learning process during the training were chosen with a Bayesian
optimization procedure [179] with a 5-fold cross-validation [180] implemented in
the HIPE4ML package [181]. The model is tested on analogous but independent
datasets to those used for training. Figure 4.10 shows the resulting BDT output
scores, which represent the probability of belonging to one of the three classes of D+-
meson candidates, in two of the pT intervals used for training. As can be seen, there
is good agreement between the distributions obtained from applying the model to
training and test data, respectively. Moreover, the probability distribution is close to
unity for the respective true class, while the other two classes approach zero. The
shape of the combinatorial background distributions clearly differs from the others,
indicating that the algorithm is more efficient in separating the combinatorial back-
ground from the signal than in distinguishing between prompt and non-prompt D+

2The pT intervals range from pT ∈ [1, 10] GeV/c and have a width of 1 GeV/c except for the last
interval, which is twice as wide for statistical purposes. Hence, they are defined as [1, 2] GeV/c,
[2, 3] GeV/c, [3, 4] GeV/c, [4, 5] GeV/c, [5, 6] GeV/c, [6, 7] GeV/c, [7, 8] GeV/c and [8, 10] GeV/c,
respectively.
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FIGURE 4.10: Distributions of ML output scores for combinatorial
background candidates (top panels), prompt D+ mesons (middle pan-
els), and non-prompt D+ mesons (bottom panels), obtained from the
training and test samples in the pT ∈ [2, 3] GeV/c (left column) and
pT ∈ [8, 10] GeV/c (right column) intervals.

Further, the performance of the model can be assessed by considering the area
under the Receiver Operating Characteristic curve (ROC AUC), which plots the true
positive rate, corresponding to the signal selection efficiency, as a function of the
false positive rate, which is equivalent to the background selection efficiency. A
value of 1 indicates a perfect discrimination between two classes, while 0.5 corre-
sponds to a random classification. Figure 4.11 shows the ROC curves obtained from
the training sets for all possible pairs of classes of D+ mesons, trained in the pT in-
tervals pT ∈ [2, 3] GeV/c and pT ∈ [8, 10] GeV/c.

A scan of the BDT output scores for the background and the non-prompt D+

mesons is performed, and the expected statistical significance and signal-over-
background ratio, the efficiency for prompt and non-prompt D+ mesons, as well
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FIGURE 4.11: ROC curves for the models trained for D+ mesons in
the pT ∈ [2, 3] GeV/c (left panel) and pT ∈ [8, 10] GeV/c (right panel)
relative-momentum intervals.

pT interval (GeV/c) prob to be bkg < prob to be prompt >
[1, 2] 0.0025 0.30
[2, 3] 0.0025 0.30
[3, 4] 0.0030 0.30
[4, 5] 0.0080 0.30
[5, 6] 0.0100 0.30
[6, 7] 0.0250 0.30
[7, 8] 0.0300 0.30
[8, 10] 0.0200 0.30

TABLE 4.5: ML selection criteria applied in the different pT intervals
for the selection of prompt D+ mesons.

as the prompt and non-prompt fractions evaluated in order to find a set that en-
hances the contribution from prompt D+ mesons to the sample, while keeping a
high statistical significance. The resulting selections on the output scores are listed
in Tab. 4.5,

Finally, the model is applied to the data to select D+ candidates. The resulting
invariant-mass distribution is fitted in pT intervals of 200 MeV/c from 1 to 10 GeV/c,
using a Gaussian distribution for the signal and an exponential function for the com-
binatorial background. An example distribution and the fit result are shown in the
left panel of Fig. 4.13 for the pT interval pT ∈ [2, 3] GeV/c. Finally, the D+-meson
candidates are selected within 2σ(pT) around the mean value of the D+-meson mass
MD(pT), obtained from the fit. In each pT interval, the purity of the candidates is
calculated as the ratio S/(S + B) of the signal candidates S over the total raw yield,
which also includes the combinatorial background B, obtained from the fit-functions
within the D+ selection window. The resulting distribution is shown in Fig. 4.12. A
clear pT dependence is visible as the purity of D+ mesons with pT < 3 GeV/c drops
drastically. As the training of the ML model is performed in intervals of pT, a stag-
gered behavior can be observed, with jumps at the interval borders.
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FIGURE 4.13: The left panel shows the invariant-mass distribution
of D+ mesons, reconstructed from the decay D+ → K−π+π+ in the
pT ∈ [2, 3] GeV/c interval. The green solid line represents the total
fit function, composed of both signal (violet solid line) and combina-
torial background contributions (gray dotted line). The gray dashed
vertical lines correspond to the selection interval for D+-meson can-
didates. The red shaded area represents the prompt contribution to
the signal, which originates from charm quark hadronization, while
the blue shaded area represents the non-prompt contribution from
beauty-hadron decays. The extracted raw yield of the candidates is
shown in the right panel as a function of the BDT-based cut selection
for the same pT interval. It is obtained from the minimization proce-
dure used to determine the fraction of non-prompt D+ mesons in the
sample.

The remaining non-prompt contribution to the sample is estimated using a data-
driven procedure adopted from Ref. [182], which exploits the fact that the prompt
selection efficiencies change differently to the non-prompt ones when changing the
selection on the ML scores. For each selection i, the raw yield Yi of D+ candidates
can be extracted from the fit to the invariant-mass, as explained before, and can be
related to the corrected yields of prompt and non-prompt D+ mesons, denoted by
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Nprompt and Nnon-prompt, respectively, via

δi = Yi − (Acc× ϵ)prompt,i × Nprompt − (Acc× ϵ)non-prompt,i × Nnon-prompt, (4.1)

where (Acc× ϵ)prompt/non-prompt,i is the product of the acceptance and efficiency for
each selection and δi a residual that accounts for possible uncertainties in the equa-
tion. By performing a χ2 minimization of the overdetermined system of equations,
the corrected yields are obtained for each set of selections individually. More details
can be found in Ref. [182]. The right panel of Fig. 4.13 shows an example of a raw-
yield distribution as a function of the BDT-based selection used in the minimization
procedure for D+ mesons with a transverse momentum of 2 < pT < 3 GeV/c. When
moving from left to right, the BDT-based selection associated with the probability of
a candidate being a non-prompt D+ meson becomes stricter and the raw yield in the
last bin consists almost exclusively of non-prompt D+ mesons (blue shaded area)
with negligible contribution from prompt D+ mesons (red shaded area).
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FIGURE 4.14: Prompt and non-prompt fraction of D+-meson candi-
dates as a function of pT for the default set of selections.

The resulting pT-differential non-prompt fraction is shown in blue if Fig. 4.14.
Only a mild dependence on the transverse momentum is visible. The dominant
prompt component to the D+-meson sample, shown in red in the same figure, in-
cludes feed-down contributions from excited charm states, mainly D∗+ mesons,
via the D∗± → D± + π0 and D∗± → D± + γ decays, with branching ratios of
BR = (30.7± 0.5)% and BR = (1.6± 0.4)%, respectively [122].

Due to the short lifetime of such states, cτ ≈ 2000 fm, it is not possible to experi-
mentally separate them from the rest using the decay topology. Their contribution is
estimated from the pT-differential production cross sections of D+ and D∗+ mesons
measured in pp collisions at

√
s = 5.02 TeV [182, 183], shown as green and blue

points in the left panel of Fig. 4.15, following the procedure presented in Ref. [53].
The D∗+ data is extrapolated to pT = 0 GeV/c, by fitting it with a power-law func-
tion, represented by the blue line in the same figure. D∗+ mesons are then sampled
from this function and decayed via D∗± → D±+X using PYTHIA 8, which results in
the red distribution in the left panel of Fig. 4.15. Finally, the fraction as a function of
pT is obtained from the ratio between the experimental D+ production cross-section
and the simulated D+ ← D∗ cross-section and shown in the right panel of Fig. 4.15.
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panel shows the resulting fraction of D+ mesons originating from D∗+

decays as a function of pT.

TABLE 4.6: Total number of pairs in the full k∗ range as well as num-
ber of pairs with small relative momenta, where final state effects be-
come relevant.

Pair Total k∗ < 200 MeV/c
D+π+ ⊕D−π− 3.0× 106 2.0× 105

D+π− ⊕D−π+ 2.9× 106 2.1× 105

D+K+ ⊕D−K− 1.7× 105 1.9× 103

D+K− ⊕D−K+ 1.6× 105 2.2× 103

4.1.2 Pairing

The reconstructed D+ and light-flavor mesons are paired, and their relative momen-
tum k∗ is calculated in order to build the experimental raw correlation function.
Both the same- and opposite-charge combination is investigated in this analysis. As
the D+ candidates are reconstructed from their decay to charged pions and kaons,
it is essential not to pair mother- and daughter-particles to avoid auto-correlations.
Therefore, pairs are rejected if the track of a light-flavor meson candidate is also used
as a daughter track in the reconstruction of a D+ meson. The resulting number of
particle pairs available for building the correlation functions is displayed in Tab. 4.6.

4.2 The raw correlation function

As discussed extensively in Sec. 2.2, the experimental correlation function is ob-
tained from the ratio of the k∗ distribution of pairs emitted in the same collision,
Nsame(k∗), and a reference sample of uncorrelated pairs from different collisions,
Nmixed(k∗). Following Eq. 2.10, it is further multiplied by a normalization constant,
N , which ensures that C(k∗) = 1 for large k∗ values. It is chosen such that the mean
value of the correlation function is equal to one for k∗ ∈ [1.5, 2.0]GeV/c for DK
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FIGURE 4.16: The correlation function of DK (upper row panels) and
Dπ pairs and anti-pairs (lower row panels) are depicted for both the
opposite- (left column panels) and same-charge combination (right col-
umn panels), as well as their ratio.

pairs and k∗ ∈ [1.0, 1.5]GeV/c for Dπ pairs. These intervals correspond to kine-
matic regions, where the correlation functions are flat, and no femtoscopic signal
is present. The mixed-event distribution Nmixed(k∗) is obtained from event-mixing
techniques, pairing single particles from separate collisions. To avoid possible bias
due to acceptance effects of the detector system and to ensure the quality of the ref-
erence sample, only particles from events with similar multiplicity and z position
of the primary vertex are paired [184]. Further, Nmixed(k∗) is re-weighted in each
multiplicity bin in order to have the same statistical weight as Nsame(k∗). More in-
formation on the mixing can be found in Appendix B.1 and B.2. Furthermore, the
impact of the finite momentum resolution of the ALICE detector on the correlation
functions was investigated and found to be negligible. Therefore, no unfolding is
performed to correct for it. Details are provided in Appendix B.3.

The correlation functions of pairs and anti-pairs, evaluated in 50 MeV/c wide k∗

intervals, as well as their ratio, are shown in Fig. 4.16. As they are compatible within
the uncertainties, they are combined to enhance the statistical significance of the
results. In the following, same-charge D(∗)X refers to the combined D+X+ ⊕D−X−

pairs, while opposite-charge DX refers to D+X− ⊕D−X+, where X is a placeholder
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FIGURE 4.17: The raw opposite- (left column panels) and same-charge
(right column panels) D–K correlation functions with statistical (bars)
and systematic uncertainties (gray shaded boxes) depicted in the up-
per row panels, while the same is shown for D–π pairs in the lower row
panels.

for either K or π mesons. The resulting raw correlation functions for DK and Dπ

pairs in both charge combinations are shown in Fig. 4.17. The horizontal position of
each data point corresponds to the mean k∗ in the mixed-event distribution within
the respective relative-momentum interval, taking into account a possible shift with
respect to the bin center, which is most prominent in the low-k∗ region, where the
correlation is sensitive to the strong FSI interaction.

As can be seen from the plots, the correlation functions deviate from unity up
to k∗ ∼ 800 MeV/c, well outside the femtoscopic region where the signal from FSI
is expected. This is related to the presence of several background contributions to
the raw correlation signal, which mainly arise from non-femtoscopic contributions
but also the finite purity and primary fraction of the D+ and light-flavor mesons. In
order to study the residual strong interaction between D+ and light-flavor mesons,
the raw correlation function must first be decomposed into its constituent parts and
the genuine signal, which includes only primary light-flavor mesons and signal D+

mesons, extracted.
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TABLE 4.7: Variations of the kaon selection criteria.

Selection criterion Default Loose Tight
pT (GeV/c) 0.15 0.1 0.2
|η| 0.8 0.75 0.85
|nσ,comb(K)| < nthr

σ,comb
p < 1.2 GeV/c or |nσ,comb(K)| < 2 or
|nσ,comb(π)| > 6

nthr
σ,comb = 3 nthr

σ,comb = 3.3 nthr
σ,comb = 2.7

nCluster 80 70 90

TABLE 4.8: Variations of the pion selection criteria.

Selection criterion Default Loose Tight
pT (GeV/c) 0.14 0.12 0.15
|η| 0.8 0.7 0.9
|nσ,TPC(π)| < nthr

σ for pT < 0.5 GeV/c
|nσ,comb(π)| < nthr

σ for pT > 0.5 GeV/c
nthr
σ = 3 nthr

σ = 3.3 nthr
σ = 2.7

nCluster 80 70 90

Systematics

The choice of the selection criteria used to identify the light-flavor and D+-meson
candidates determines their single-particle properties. Therefore, it affects the dis-
tributions of pairs obtained from the same and mixed events and ultimately im-
pacts the raw correlation function. The corresponding systematic uncertainty is es-
timated by varying the selections for pions and kaons as reported in Tab. 4.8 and
4.7, respectively, as well as the selection on the BDT output score related to the
probability of a D+ being a background candidate, as reported in Tab. 4.9. These
variations are randomly combined into 20 sets to account for possible correlations,
and for each set, the raw correlation function is recomputed. The systematic uncer-
tainty of the individual data points is then obtained in a conservative manner via
[Cmax(k∗) − Cmin(k∗)]/

√
12, considering the full spread of the correlation function

values obtained from the different sets of selections. This leads to a relative system-
atic uncertainty below 3% in the case of DK pairs and below 1% in the case of Dπ

pairs.
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pT interval (GeV/c) Loose 1 Loose 2 Tight 1 Tight 2
[1, 2] 0.0026 0.0028 0.0024 0.0023
[2, 3] 0.0026 0.0028 0.0024 0.0023
[3, 4] 0.0032 0.0036 0.0029 0.0028
[4, 5] 0.0085 0.0088 0.0076 0.0072
[5, 6] 0.0105 0.0115 0.0095 0.0085
[6, 7] 0.0275 0.0300 0.0225 0.0200
[7, 8] 0.0325 0.0350 0.0275 0.0250
[8, 10] 0.0250 0.0300 0.0175 0.0150

TABLE 4.9: Variation of the upper limit of the probability of a D+

being a background candidate for the individual pT intervals, which
is part of the ML selection criteria.

4.3 Decomposition of the correlation function

Following the discussion in Sec. 2.2, the raw correlation functions can be decom-
posed as in Eq. 2.11, separating contributions related to FSI, which are part of
Cfemto(k∗), from the residual non-femtosopic background Cnon-femto(k∗). In order
to study the residual strong interaction among DK and Dπ pairs, the genuine cor-
relation function Cgen(k∗), which arises from the interaction of primary and signal
particles, has to be extracted from the raw data. This is, however, only possible if all
other contributions to Cfemto(k∗), as well as Cnon-femto(k∗), are well understood. The
former are individually discussed in Sec. 4.3.1, while the latter is studied in Sec. 4.3.2,
and the resulting decomposition of the correlation function is presented in Sec. 4.3.3.

4.3.1 Contributions from final state interaction

There are several other contributions to Cfemto(k∗), besides Cgen(k∗), due to the lim-
ited purity of the candidates used to construct the experimental correlation func-
tions, as well as the presence of feed-down particles in the sample. Each particle
combination leads to a different FSI and the resulting contributions are either di-
rectly obtained in a data-driven approach or modeled using the Koonin-Pratt for-
malism defined by Eq. 2.5. Furthermore, as discussed in Sec. 2.2, each component is
weighted by a λ parameter, which is calculated from the purity and relevant single
particle fractions, respectively.

The values used to determine these parameters are obtained by reweighing
the pT-differential distributions of the purities and fractions, shown in Sec. 4.1,
with the pT distribution of the single particles, which form DK and Dπ pairs with
k∗ < 200 MeV/c, hence, contribute to the correlation signal in the sensitive femto-
scopic region. The only exception are the light-flavor meson fractions obtained from
the DCA template fits, which are computed as average over the full pT range instead,
due to their mild dependence on the particle transverse momentum. The resulting
primary fractions of pions (kaons) are found to be 99.49 % (99.80 %), while the re-
maining 0.51 % (0.20 %) of the total yield is associated to weak decays of resonances
and contributions from interactions with the detector material. Following Ref. [126],
the so obtained primary fractions have to further be corrected for strongly decaying
resonances with ⟨cτ⟩ ≳ 5 fm3. The associated fractions fsec,strong cannot be accessed

3Resonances with a smaller decay length are absorbed in the particle emitting source, as it is as-
sumed that they do not live long enough to induce a significant correlation signal from FSI.
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DK Dπ

D+

p 71.5% 71%
fprimary = 1− fD∗←D − fnon−prompt ∼ 65.53% ∼ 65.50%

fD∗←D (27.35± 0.70)% (27.30± 0.60)%
fnon−prompt (7.15± 0.20)% (7.20± 0.20)%

K/π

p 98% 99%
fprimary = 1− fsec,weak+mat − fsec,strong ∼ 93.81% ∼ 87.55%

fsec,weak+mat 0.20% 0.51%
fsec,strong 5.99% 12.20%

TABLE 4.10: The pT-integrated values of the purity and fractions of
the light-flavor and D+-meson samples.

experimentally due to the short lifetime of the strongly decaying resonances. There-
fore, they are estimated with the THERMALFIST SHM [185]. For kaons, a value of
5.99 % is found, with ϕ meson decays as the main contributor. This results in a
corrected primary fraction of 93.81 %. A total of 12.20 % of pion candidates is associ-
ated with the decay of short-lived, strongly decaying resonances, mainly the ω and
η mesons [126], leading to a corrected primary fraction of 87.55 %.

The fractions and purities used to determine the λ parameters of the D–K and
D–π correlation functions are summarized in Tab. 4.10 and the corresponding λ pa-
rameters are listed in Tab. 4.11. As can be seen, the main contribution to the corre-
lation signal arises from the genuine FSI among primary particles, followed by the
one from fake D+ mesons from the combinatorial background as well as prompt D+

mesons from the decay of excited charm states, interacting with light-flavor mesons.
The other components of Cfemto(k∗) are either not expected to lead to correlations or
scaled by such a small λ parameter that any correlation signal is washed out. They
are approximated by a flat correlation function Ci,j(k∗) = 1 and include contribu-
tions from pairs involving non-primary or misidentified light-flavor mesons, as well
as non-prompt D(∗)+ mesons. The latter is discussed in Appendix B.4. The individ-
ual non-flat contributions to Cfemto(k∗) are discussed in detail in the following, with
the exception of Cgen(k∗), which is presented in Sec. 4.5.

Contribution from misidentified D+ mesons

Due to the limited purity of the reconstructed D+ mesons, which is about ∼ 71%,
contributions associated with the combinatorial background must be considered.
These include all pair combinations involving D̃ in Tab. 4.11 and contribute with a
total of ∼ 29% to Cfemto(k∗). Such correlation signals arise from residual two-body
interactions between the particles used to build fake D+ mesons and the light-flavor
candidates [54]. They are accessed in a data-driven approach, where candidates
outside the D+-meson reconstruction region in the invariant-mass distribution are
paired with π and K candidates, respectively. The sideband intervals are chosen
to be as close to the resonance region as possible while avoiding the tails of the
signal, in order to minimize kinematic effects while keeping the fake sample clear
from real D+ mesons. Therefore, the sidebands start at 5σD+ away from the nom-
inal mass of the D+ and extend for 200 MeV/c2 to the left and right, respectively,
where σD+ corresponds to the width of the Gaussian function describing the signal
and is determined by the fit to the pT-differential invariant-mass distribution, de-
picted in Fig. 4.18. The red shaded area corresponds to the region within which the
D+ candidates are selected, while the regions highlighted in gray correspond to the
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Pair λ (%) Treatment
m = K m = π

Dm 43.06 40.30 Gauss+Coulomb
Dmsec,weak+mat 0.09 0.23

FlatDmsec,strong 2.75 5.50
Dm̃ 0.94 0.47
Dnon−promptm 4.70 4.43

Flat
Dnon−promptmsec,weak+mat 0.01 0.03
Dnon−promptmsec,strong 0.30 0.60
Dnon−promptm̃ 0.10 0.05
DD←D∗m 17.98 16.80 Coulomb
DD←D∗msec,weak+mat 0.04 0.10

FlatDD←D∗msec,strong 1.15 2.29
DD←D∗m̃ 0.39 0.19
D̃m 26.20 25.14

Sideband
D̃msec,weak+mat 0.06 0.14
D̃msec,strong 1.67 3.43
D̃m̃ 0.57 0.29

TABLE 4.11: Individual components of the femtoscopic DK and Dπ
correlation functions and their relative contribution quantified by λ
parameters, as well as their treatment in the analysis. Particles de-
noted by a tilde correspond to misidentifications.

left and right sideband intervals. A contamination from D∗+ mesons is expected in
the right sideband sample due to the D∗+ → D0π+ and subsequent D0 → K−π+ de-
cays. Therefore, the interval [1.992, 2.028] MeV/c around the nominal D∗+ mass of
(2010.26± 0.05)MeV/c2 [122] is excluded.

The correlation functions obtained from the left and right sideband are normal-
ized in the same range as the correlation functions from the signal region and are
found to be compatible within the uncertainties for all pairs and charge combina-
tions, as can be seen in Fig. 4.19. To properly describe the combinatorial background
in the signal region, they are combined as

CSB(k∗) = wleft · Cleft(k∗) + (1− wleft) · Cright(k∗), (4.2)

where wleft = 0.51 corresponds to the pT-averaged relative amount of background
present in the left half of invariant mass interval used for the selection of D+-mesons
candidates. The value is obtained by integrating the function used to describe the
combinatorial background in the parametrization of the invariant mass distribution
within an interval of [MD+ − 2σD+ , MD+ ] in each pT interval and re-weighting the
resulting distribution with the pT distribution of the D+-meson background candi-
dates in the left sideband interval. The resulting correlation function is shown in
blue in Fig. 4.19.

As it is obtained from experimental data, CSB(k∗) is also a raw signal and, there-
fore, composed of a femtoscopic and non-femtoscopic contribution, as stated in
Eq. 2.11. This has to be taken into account in the modeling of the raw DK and Dπ

correlation functions.
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FIGURE 4.18: Invariant mass distribution as a function of the trans-
verse momentum. The region highlighted in red corresponds to the
2σD+ interval around the mass of the D+ meson and represents the
selection applied to reconstruct D+ candidates. The lower and up-
per regions highlighted in gray correspond to the left and right side-
bands, respectively. They start at 5σD+ away from the peak of the
D+ resonance. The region rejected in the right sideband due to the
contamination of D∗+ is not shown, as it lies outside of the depicted
invariant mass region.
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FIGURE 4.19: Correlation functions of the left (red) and right side-
band (green), as well as the weighted sum of the two (blue), for
opposite- (left column panels) and same-charge (right column panels) DK
pairs depicted in the upper row panels and for Dπ pairs in the lower row
panels.
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FIGURE 4.20: The left panel depicts the D∗–K correlation function
modeled using the Coulomb potential (solid line), as well as the
same correlation function after the transformation to the DK system
(dashed line) and additional re-weighting by λ = 17.98% (dotted
line), for same- (red) and opposite-charge (blue) pairs. The right panel
shows the momentum transformation matrix.

Contribution from excited charm states

A significant fraction of D+-meson candidates is produced in the decay of charm-
hadron resonances. In particular, contributions from D∗+ mesons make up ∼ 30%
of the sample, while feed-down from the decays of other excited charm states is
expected to be negligible, due to the small branching ratios [122]. Since D∗+ mesons
have a finite lifetime of cτ ≈ 2000 fm, they will interact with light-flavor mesons
before decaying into D+. This initial interaction leads to a correlation signal in the
final state, which is smeared according to the decay kinematics.

The genuine D∗–K and D∗–π correlation functions are modeled using the
Koonin-Pratt formalism, Eq. 2.5 with the effective source parametrization, discussed
in Sec 4.4. The wave function is obtained by solving the Schrödinger equation
with the CATS framework, taking into account only the Coulomb potential, as D∗+

mesons interact with light-flavor mesons mainly electromagnetically [186]. A brief
discussion of the associated experimental results is given in Sec. 4.5.3. The re-
sulting genuine correlation functions are shown as solid lines in the left panels of
Fig. 4.20 and 4.21 for DK and Dπ pairs. They are subsequently mapped into those of
(D∗+ → D+)K and (D∗+ → D+)π pairs via a transformation to the DK and Dπ mo-
mentum basis. This is done using GENBOD phase-space simulations [187] of the
D∗± → D±π0 decay. The resulting correlation functions are depicted as dashed lines
in the left panel of Fig. 4.21 and 4.20 and the transformation matrices are shown in
the right panel. The dotted lines in the left panel show the same correlation function
CD←D∗(k∗), properly scaled by the λ parameters, which are given by the DD←D∗m
pair contribution in Tab. 4.11. Notably, the overall magnitude of the correlation func-
tion is significantly reduced, even though the λ parameters of ∼ 17− 18% are seiz-
able.
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FIGURE 4.21: The left panel depicts the D∗–π correlation function
modeled using the Coulomb potential (solid line), as well as the
same correlation function after the transformation to the Dπ system
(dashed line) and additional re-weighting by λ = 16.80% (dotted
line), for same- (red) and opposite-charge (blue) pairs. The right panel
shows the momentum transformation matrix.

4.3.2 Residual contributions

The residual background Cnon-femto(k∗) consists of contributions from several dif-
ferent sources, which are not related to FSI. In the case of DK and Dπ pairs, the
dominant contribution comes from minijets, which induce long-range structures
to the raw correlation function at low to intermediate k∗ and also affect the sen-
sitive femtosopic region. Such minijet background has previously been observed
in other meson-meson [43, 188–191], but also meson-baryon [45, 51] and baryon-
antibaryon [44] femtoscopic analyses, while baryon-baryon pairs are unaffected.
This is consistent with the sting fragmentation picture introduced in Sec. 2.2 in the
context of minijets. As shown in Ref. [190, 191], the background is well reproduced
by MC simulated data4, where FSI is absent. In this analysis, the HF MC sample is
used due to the increased number of D+ mesons. However, to account for the correct
fractions of prompt and non-prompt D+ mesons found in nature, the contribution
has to be modeled as

CMC(k∗) = fnon-promptCD←b(k∗) + (1− fnon-prompt)CD←c(k∗), (4.3)

combining the correlation function CD←b(k∗), which only involves non-prompt D+

mesons originating from b quarks, with CD←c(k∗), which is build from prompt D+

mesons from the hadronisation of c quarks, using the non-prompt D+-meson frac-
tion given in Tab. 4.10 as weight. The resulting correlation functions are shown in
Fig. 4.22b and 4.22a. As a crosscheck, the analysis was also performed, using a cor-
relation function obtained from standard HM MC data as CMC(k∗), which already
includes the correct relative amount of prompt and non-prompt D+ mesons. The
final results were found to be independent of the choice of the MC simulation and
in agreement within the uncertainties. Hence, the correlation function from HF MC
is used, as it has higher statistical precision.

4The fragmentation in PYTHIA is based on the Lund string model [82, 192].
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FIGURE 4.22: Correlation functions obtained from the HF MC data
sample, used to describe the minijet background of the raw correla-
tion functions, for the same- (red) and opposite-charge configuration
(blue) of DK (left panel) and Dπ pairs (right panel).

CMC(k∗) is further multiplied by a free parameter N that accounts for a possible
bias due to the choice of the normalization range of the raw data. In the case of Dπ, a
baseline is added to the MC correlation function to better describe the enhancement
of Craw(k∗) at intermediate to large k∗, which is visible in Fig. 4.16 and most probably
related to energy-momentum conservation. A polynomial of the form p(k∗) = ak∗2

is chosen, which is 0 and flat at k∗ = 0 MeV/c, in order not to bias the shape of
the correlation function in the femtoscopic region, sensitive to the FSI. The baseline
introduces another free parameter a to the residual background of Dπ pairs.

The residual background is finally obtained as

Cnon-femto(k∗) =

{
N × CMC for DK

N ×
[
CMC + ak∗2

]
for Dπ,

(4.4)

where the free parameters are determined by a fit to the raw correlation function.

4.3.3 Modeling of the correlation function

In order to isolate the genuine correlation function Cgen(k∗) from the raw data, a
model is built according to Eq. 2.11, taking into account all background contributions
discussed in the previous sections

Craw(k∗) = λSBCSB(k∗) + Cnon-femto(k∗)
[
λgenCgen(k∗) + λD←D∗CD←D∗(k∗) + λflat

]
,

(4.5)

where CSB(k∗) arises from the combinatorial background of the reconstructed D+

mesons, Cnon-femto(k∗) accounts for residual correlations not associated to FSI and is
dominated by minijet background, CD←D∗(k∗) describes correlations involving D∗

mesons, feeding into the D+ sample, and λflat accounts for all the other femtoscopic
background contributions described by a flat correlation signal Cflat = 1. In partic-
ular, CSB(k∗) is derived from a data-driven method and is therefore not multiplied
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TABLE 4.12: Weight parameters of the components of the D–K and
D–π model correlation functions.

Parameter Value (%)
DK Dπ

λgen 43.06 40.30
λSB 28.50 29.00
λD←D∗ 17.98 16.80
λflat 10.46 12.72

by Cnon-femto(k∗) as it already includes residual contributions, not related to FSI. The
respective λ parameters are listed in Tab. 4.12, properly combining the individual
values given in Tab. 4.11. The free parameter(s) of the model describing the D–K
(D–π) raw signals are part of Cnon-femto(k∗), which dominated the intermediate k∗

region. They are determined by employing a background model, which only takes
into account the background contributions to the measured Craw(k∗) by imposing
Cgen(k∗) = 1 in Eq. 4.5. The background model is fitted to the raw data in the range
of k∗ ∈ [100, 600] MeV/c for Dπ pairs and k∗ ∈ [200, 400] MeV/c for DK pairs, where
no femtoscopic correlations from the genuine FSI are expected.

The fit results are depicted in Fig. 4.23 for the D–π and D–K raw correlation
functions. The violet bands depict the background model and the blue bands show
Cnon−femto(k∗), with parameters determined by the fit. The other fit-independent
contributions to the raw signal are shown as well, with the orange bands represent-
ing the combinatorial background CSB(k∗), and the red bands depicting the contri-
bution arising from the feed-down of D∗+ to D+, CD←D∗(k∗). The deviation between
the data and the background model at low k∗ is small, indicating a shallow contri-
bution from the genuine FSI. After the fit, the genuine correlation function can be
obtained by rearranging Eq. 4.5 in terms of Cgen(k∗) and removing all background
contributions from the raw data.

Systematics

The systematic uncertainties of the background model fit arise from the combined
systematic uncertainties of its components, the fit procedure, as well as the raw data,
each of which are estimated as follows;

• The systematic uncertainties of the raw correlation function as well as CSB(k∗)
are estimated by extracting the experimental correlation function for different
sets of selection criteria on the single D+ and light-flavor mesons, as discussed
in the part on systematics in Sec. 4.2.

• The systematic uncertainty of the model correlation function CD←D∗(k∗) is es-
timated by varying the effective source parameters within the uncertainties
given in Tab. 4.13.

• The uncertainties on the λ-parameters are dominated by those on the fraction
of non-prompt D+ mesons as well as prompt D+ mesons from the decay of
excited charm states, the purity of the D+ candidates, as well as the fraction
fsec,strong of light-flavor mesons. They are estimated by varying the D+-meson



4.3. Decomposition of the correlation function 71

0 200 400
)c (MeV/k* 

1

2

3

)
k*(

C 
 = 13 TeVsALICE pp 

0) > % INEL 0.17 − High-mult. (0
+K− D⊕ −K+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.18, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400
)c (MeV/k* 

1

2

3

)
k*(

C 

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

−K− D⊕ +K+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.18, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400
)c (MeV/k* 

1.0

1.2

1.4

1.6

)
k*(

C 

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

+π− D⊕ −π+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.17, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400
)c (MeV/k* 

1.0

1.2

1.4

1.6
)

k*(
C 

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

−π− D⊕ +π+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.17, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

FIGURE 4.23: Experimental D–K (upper row panels) and D–π (lower row
panels) raw correlation functions (Craw(k∗)) for opposite-charge (left
column panels) and same-charge (right column panels) pairs with statis-
tical (bars) and systematic uncertainties (gray shaded boxes), as well
as background contributions. The width of the bands corresponds to

the total uncertainty σtot =
√

σ2
stat + σ2

syst. The violet band in each
panel describes the total background, fitted to the data, and used to
extract the genuine correlation function from the raw signal. It con-
sists of several contributions, scaled by the appropriate λ parameter,
which are shown individually and unscaled in the same figure.

candidate fractions according to the uncertainties stated in Tab. 4.10, their pu-
rity by 2% [53] and fsec,strong, by 10%, following [126], to account for the uncer-
tainty related to the hadronic cocktail obtained from the SHM. This results in
a ∼ 10% variation of the λ-parameter values.

• The upper limit of the range used to perform the background model fit is var-
ied by±50 MeV/c in order to account for possible systematic effects related to
the fitting procedure.

The width of the curves in Fig. 4.23, which corresponds to the total uncertainty
σtot and includes statistical and systematic errors, is obtained from a combined ap-
plication of the bootstrap method and the systematic variations listed above. The
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background fit is performed repeatedly, each time randomly sampling the individ-
ual data points of the raw and sideband correlation functions from Gaussian distri-
butions, whose widths and means correspond to the statistical errors and values of
the points. If sufficient iterations (> 1000) are performed, a reliable distribution of
fit results is obtained, whose mean and standard deviation correspond to the default
fit result and statistical uncertainty σstat, respectively. By additionally including sys-
tematic variations in each iteration, σtot can be derived as the standard deviation of
the resulting distribution. Assuming that statistical and systematic uncertainties are

uncorrelated, i.e. σtot =
√

σ2
stat + σ2

syst, it is further possible to assess the systematic
uncertainties σsyst.

4.4 Source

In this section, the particle emitting source of DK and Dπ pairs, which is one of the
two ingredients of the Koonin-Pratt equation, defined in Eq. 2.5 and used to model
femtoscopic correlations, is determined. As discussed in Sec. 3.3, it is constrained
from the RSM [123], which is based on the hypothesis of a common emission source
of all primordial hadrons [126] and is anchored to p–p correlation data, collected by
ALICE in pp collisions at

√
s = 13 TeV.

The width of the Gaussian core rcore for DK and Dπ pairs is obtained from
parametrization of its mT-dependence, presented in Sec. 3.3, and the measured mT of
the reconstructed pairs with k∗ < 200 MeV/c. The values can be found in Tab. 4.13.

The effective source is then determined by considering the effect of short-lived,
strongly decaying resonances, feeding into the particles, which form the pairs of in-
terest, thereby enlarging the source size. They are characterized by ⟨cτ⟩ ≲ 5 fm,
which is much smaller than the typical distance at which decays of excited charm
and beauty hadrons into D+ mesons occur. Therefore, only resonances feeding into
the light-flavor mesons have to be considered, such as K∗0 and K∗±. These reso-
nances induce an exponential tail to the Gaussian core source and the resulting ef-
fective source distributions of DK and Dπ pairs obtained from the model are shown
as black dots in Fig. 4.24a and 4.24b. In order to properly account for the enhance-
ment at large r∗, the distribution is parametrized by two Gaussian sources of width
ri

eff and combined with weight w, leading to

Seff(r∗) = wSG
1 (r
∗) + (1− w)SG

2 (r
∗). (4.6)

The fit results are depicted as black solid lines in Fig. 4.24a and 4.24b, while the
red dashed lines depict the two Gaussian distributions, which constitute Seff(r∗).
The source parameters obtained from the fit are listed in Tab 4.13.

TABLE 4.13: The mT of the measured particle pairs and the corre-
sponding core radius rcore, as well as the parameters of the effective
source Seff(r∗), which is given by two Gaussian distributions of width
ri

eff and combined with a weight w.

Pair ⟨mT⟩ [GeV/c2 ] rcore [fm] w r1
eff [fm] r2

eff [fm]
D+K+ ⊕D−K− 2.68

0.81+0.08
−0.07 0.78+0.02

−0.01 0.86+0.09
−0.07 2.03+0.19

−0.12D+K− ⊕D−K+ 2.63
D+π+ ⊕D−π− 2.54

0.82+0.07
−0.07 0.66+0.03

−0.02 0.97+0.09
−0.08 2.52+0.36

−0.20D+π− ⊕D−π+ 2.55
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FIGURE 4.24: The effective DK and Dπ source distribution obtained
from the RSM and parametrized with Seff(r∗). The dashed lines rep-
resent the individual single Gaussian distributions that constituent
Seff(r∗).

Employing Seff(r∗) as source function in Eq. 2.5 ultimately leads to two correla-
tion functions with the respective Gaussian sources, SG

1 (r
∗) and SG

2 (r
∗), which are

properly combined by the weight w.

4.5 Results

The genuine correlation functions of DK and Dπ pairs for the same- and opposite-
charge configuration are presented in Fig. 4.26. They are extracted from the raw data,
following the procedure described in Sec. 4.3.3. In the femtoscopic region of k∗ <
200 MeV/c the genuine correlation functions are sensitive to both the Coulomb and
strong force. As can be seen from the plots, the correlation signals for all pairs and
charge combinations only slightly deviate from unity in the low k∗ region, indicating
a shallow FSI. Notably, an enhancement at low k∗ is visible for the opposite-charge
combinations, pointing to an attractive interaction, while for the same-charge pairs,
a depletion can be observed, indicating a repulsive interaction, as expected from the
Coulomb force.

The data is further used to obtain information on the strong interaction by ex-
tracting the scattering length from a fit and/or comparing it to predictions by the-
ory. This is done by means of model correlation functions, which are obtained from
the Koonin-Pratt equation (Eq. 2.5) using the parametrization of the effective source
Seff(r∗), presented in Sec. 4.4. The wave function is obtained by numerically solving
the Schrödinger equation, considering both the residual electromagnetic and strong
interaction. While the former is modeled using the well-understood Coulomb po-
tential, the latter is parametrized by a Gaussian potential5 of the form

V(r) = V0 exp (−m2
ρr2), (4.7)

5The scattering length is independent of the shape of the strong interaction potential at low en-
ergies. Therefore, a Gaussian potential is used in the modeling, as it is perhaps the most generic
phenomenological potential available.
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FIGURE 4.25: Genuine correlation functions with statistical (bars) and
systematic uncertainties (gray shaded boxes) of DK (upper row panels)
and Dπ pairs (lower row panels) for the opposite- (left column panels)
and same-charge (right column panels) combination.

where V0 is the variable potential strength and mρ is the parameter that controls
the range of the potential, which is fixed by the mass of the lightest exchangeable
meson, the ρ meson. The corresponding scattering parameters, which only depend
on the free parameter V0, can then be extracted by fitting the scattering amplitude of
the potential at low momentum using the effective range expansion, as explained in
detail in Sec. 2.3.2.

Since the strong interactions depends on the specific state of a system, it is classi-
fied by the relevant quantum numbers, in this case isospin I and strangeness S, lead-
ing to DK(I = 1, 0), with S = −1, DK(I = 0), with S = +1, and Dπ(I = 3/2, 1/2)
with S = 0, respectively. From an experimental point of view, however, the interac-
tions can only be studied based on the charge of the involved particles. While the
same-charge combination corresponds to a pure isospin state, the opposite-charge
combination is an admixture of two isospin states6. In the particular case of Dπ, the

6The same-charge DK correaltion function consists of the isospin DK(I = 1) contribution only,
while for the opposite-charge both the DK(I = 1) and DK(I = 0) ispspin states contribute with 50%
each. The some-charge Dπ correaltion function only consists of the isospin Dπ(I = 3/2) contribution,
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isospin state I = 3/2 is shared between the same- and opposite-charge configura-
tion, as the net strangeness of the system is zero. Moreover, for the opposite-charge
pairs, the coupled-channel source contribution of the D0π0 and the D0K0 channels
are accounted for and the correlation functions accessed by solving the coupled-
channel Schrödinger equation for two isospin components, which are combined
with the proper Clebsch-Gordan coefficients.

In the following sections, the D–K and D–π genuine correlation functions are
compared to the available theory predictions, and the scattering length of the D–π
strong interaction is extracted for the two isospin states I = 3/2 and I = 1/2, as the
data is statistically more precise than in the D–K case.

Systematics

As the genuine correlation function is extracted from the raw data by removing all
background contributions, using Eq. 4.5, its systematic uncertainty is obtained from
the propagates uncertainty of the individual contributions as well as the raw data.
Both have been discussed extensively in the previous Sec. 4.3.3. This leads to a rel-
ative systematic uncertainty below 1% for opposite-charge Dπ pairs, below 2% for
same-charge Dπ pairs, below 10% for same-charge DK pairs, and below 15% for
opposite-charge DK pairs, which is largest in the low k∗ region. The difference be-
tween the relative systematic uncertainty of the D–K and D–π genuine correlation
functions arises from the overall larger propagated uncertainty of the D–K raw cor-
relation functions, which is related to the variation of the kaon selection criteria.

4.5.1 Comparison to model predictions

The genuine correlation functions are compared to model correlation functions
based on the theoretical predictions available for the D–π and D–K scattering
length [193–197]. The calculations, which employ χPT to extrapolate the available
LQCD data to the physical mass, are briefly introduced in the following

• L. Liu et al. [193]: Lüscher’s finite volume technique is employed to calculate
the S-wave scattering lengths aDπ

0 (I = 3/2), aDK
0 (I = 0), and aDK

0 (I = 1) on the
lattice, which relates the scattering phase shift to the shift of the total energy
∆E of two interacting hadrons, confined within a finite box. The simulations
are performed at four different unphysical light quark masses and extrapo-
lated to the physical point by means of an expansion scheme based on SU(3)
unitarized χPT at NLO. The free low-energy constants (LECs) are determined
by a fit to the lattice data and also used to predict the scattering lengths of
the aDπ

0 (I = 1/2) and aDK
0 (I = 1) channels, for which no simulation was per-

formed. The results support a molecular nature of D∗s0(2317), with DK as the
major component.

• X. Y. Guo et al. [194]: The extrapolation of charm-meson masses is studied us-
ing a SU(3) chiral extrapolation scheme at N3LO with unitarisation in coupled
channels. The LECs are determined by a global fit to several sets of LQCD sim-
ulations of D+-meson masses and scattering observables from Ref. [193] and
others to impose additional constraints. Based on the fit results, the scattering
lengths of the channels Dπ(I = 3/2), DK(I = 1), and DK(I = 0) are predicted

while the opposite-charge is an admixture of the Dπ(I = 3/2) and Dπ(I = 1/2) states, contributing
with 66% and 33%, respectively.
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at physical mass. For the other relevant channels Dπ(I = 1/2) and DK(I = 1),
the scattering lengths are deduced from the phase shift predictions, published
in the paper, where the former is directly constrained by LQCD data.

• Z. H. Guo et al. [195]: Unitarized SU(3) χPT at NLO is employed to study
the scattering between light-flavor and D+ mesons. The free parameters of the
theory are constrained by fitting LQCD simulations of the finite-volume spec-
tra and scattering lengths of different channels, including the ones obtained
in Ref. [193]. A chiral extrapolation scheme is used to predict the scattering
lengths at the physical point. The calculation is performed on different sets of
data, denoted by Fit-1B and Fit-2B, respectively. While D∗s0(2317) is a bound
state in Fit-2B, the results of Fit-1B imply a virtual state.

• B. L. Huang et al. [196]: By fitting the LQCD simulation of scattering lengths
and D+-meson masses from Ref. [193], as well as using the lattice values of fπ

and fK, the LECs of a Lagrangian formulated within SU(3) heavy-meson χPT
at N3LO are determined. Two different formulations of the scattering length
are used in the fitting, the perturbative and the iterated, respectively. The lat-
ter is based on a Lippmann-Schwinger equation with a cutoff range scale to
obtain a finite result. Both approaches are used to predict the scattering length
at physical masses, and in the fit that employs the iterated formulation of the
scattering length, the LQCD simulation of aDK

0 (I = 0) [198] is included as
well. Notably, the values obtained from applying the perturbative method do
not seem to converge properly for the DK and DK systems, and in this the-
sis, results from the iterated method are used. The results support a physical
D∗s0(2317) bound state.

• J. M. Torres-Rincon et al. [197]: The correlation functions of Dπ and DK pairs
are calculated in both charge configurations. The two-particle wave function
is derived from an off-shell T-matrix calculation in a coupled-channel basis,
employing unitarized χPT at NLO. The corresponding LECs are taken from
Fit-2B in Ref. [195]. Within the framework, the D∗0(2300) and D∗s0(2317) states
are dynamically generated as double-pole structure and meson-meson bound
state, respectively. The lower pole of the former leads to a depletion in the
opposite-charge D–π correlation function at ∼ 240 MeV/c.

The scattering lengths predicted by these models are collected in Tab. 4.14
and 4.15. Besides in the DK(I = 0) channel, the values are rather small, especially
in comparison to the N–N scattering length of aNN

0 ∼ 16− 19 fm [199–201] in the 1S0
channel. Further, while most of the models predict similar scattering lengths, the
calculation of B. L. Huang et al. results in a much larger attraction in the DK(I = 0)
and arguably also the Dπ(I = 1/2) channel. It is performed in heavy-meson χPT,
which, in contrast to the other approaches, is not unitarized.

The authors of Ref. [197] have directly provided the correlation functions for the
different charge combinations in a private communication, using the effective source
parametrization presented in Sec. 4.4. The correlation functions for the other models
were calculated by Dr. Yuki Kamiya and built following the procedure explained in
the beginning of this section, i.e., tuning the strength V0 of the Gaussian potential
(Eq. 4.7) such as to reproduce the predicted scattering lengths [159].

The resulting theoretical correlation functions, which account for the strong in-
teraction between D+ and light-flavors mesons predicted by the various models, as
well as the Coulomb interaction, are compared to the measured genuine correlation
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TABLE 4.14: Scattering lengths of the available theoretical models for
the D–π interaction. The values are reported separately for the two
isospin states I = 1/2 and I = 3/2. Values denoted with ∗ are de-
duced from the published phase shifts.

Model a0 (fm)

Dπ(I = 3/2) Dπ(I = 1/2)

L. Liu et al. [193] −0.100± 0.002 0.37+0.03
−0.02

X. Y. Guo et al. [194] −0.11 0.33∗

Z. H. Guo et al. [195]
Fit-1B −0.101+0.005

−0.003 0.31+0.01
−0.01

Fit-2B −0.099+0.003
−0.004 0.34+0.00

−0.03

B. L. Huang et al. [196] −0.06± 0.02 0.61± 0.11
J. M. Torres-Rincon et al. [197] −0.101 0.423

functions in Fig. 4.26. The difference between the data and the predictions is quan-
tified by the number of standard deviations nσ and reported in the figure legends.
Each nσ is calculated from the p-value in the range of k∗ < 200 MeV/c, taking into
account the total uncertainty of both the data and the predictions.

As a reference, also the correlation function obtained from the Coulomb-only
hypothesis (gray curve) is shown in the figures and any deviation from the exper-
imental data is associated with the presence of a residual strong force among the
particles. It can be seen that the correlation functions of all the analyzed pairs are
adequately described by the Coulomb interaction alone, indicating a shallow strong
interaction between the D+ and light-flavor hadrons. The nσ = 2.72 reported for the
Coulomb-only hypothesis in the case of D+K− ⊕D−K+ pairs is related to the fluc-
tuating data point at k∗ ∼ 180 MeV/c. By only considering data points with smaller
k∗, the nσ value reduces to 1.76, indicating that the Coulomb interaction adequately
describes the measurement in the sensitive region.

The current statistical precision of the D–K data is not sufficient to distinguish
between the individual models of the residual strong interaction, as well as the

TABLE 4.15: Scattering lengths of the available theoretical models for
the D–K interactions. The values are reported separately for the dif-
ferent strangeness and isospin states, which are S = −1, correspond-
ing to DK, and S = +1, corresponding to DK, as well as I = 0, and
I = 1, respectively. The real and imaginary components are associ-
ated with elastic and inelastic processes. Values denoted with ∗ are
deduced from the published phase shifts.

Model a0 (fm)

DK(I = 1) DK(I = 1) DK(I = 0)
L. Liu et al. [193] 0.07± 0.03 + 0.17+0.02

−0.01i −0.20± 0.01 0.84+0.17
−0.22

X. Y. Guo et al. [194] −4.87 · 10−2∗ −0.22 0.46

Z. H. Guo et al. [195]
Fit-1B 0.06+0.05

−0.03 + 0.30+0.09
−0.05i −0.18+0.01

−0.01 0.96+1.44
−0.44

Fit-2B 0.05+0.04
−0.03 + 0.17+0.02

−0.03i −0.19+0.02
−0.02 0.68+0.17

−0.16

B. L. Huang et al. [196] −0.01± 0.03 −0.24± 0.02 1.81± 0.48
J. M. Torres-Rincon et al. [197] −0.027 + 0.083i −0.233 0.399
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Coulomb-only hypothesis. For the D+K+ ⊕D−K− system, no tension with theory
is observed, which is reflected by small nσ values. The overall larger deviations
reported for the D+K− ⊕ D−K+ system are again associated with the fluctuation
of the fourth data point. The D–π correlation functions, on the other hand, de-
viate significantly from the curves that account for the residual strong force and
are incompatible with all the available theoretical predictions, reflected by large
nσ values. The data clearly favor the Coulomb-only hypothesis. In the case of
D+π+⊕D−π− pairs, the deviation between data and models is not as pronounced as
for D+π− ⊕D−π+, where the predicted attraction is enhanced by seizable coupled-
channel effects mainly arising from the transition D+π− ↔ D0π0. However, also in
that case the Coulomb-only hypothesis is preferred. Since most of the models predict
very similar scattering parameters, the corresponding correlation functions are close
to each other or even overlap, resulting in comparable nσ values. An exception is the
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FIGURE 4.26: Measured genuine correlation functions in compari-
son to the theoretical model predictions (colored bands), listed in Ta-
bles 4.14 and 4.15, and the Coulomb-only hypothesis (gray band). The
width of the bands represents the uncertainty related to the source.
The number of standard deviations nσ is reported in the legend for
each model. The results are shown for DK (upper row panels) and
Dπ (lower row panels) pairs for the opposite- (left column panels) and
same-charge (right column panels) combinations.
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model correlation function obtained from the scattering parameters provided by B.
L. Huang et al.. Notably, the model performs worse with respect to the others in the
opposite-charge case, as it predicts larger scattering lengths for the Dπ(I = 1/2) and
DK(I = 0) channel, respectively. In the same-charge case, the opposite is observed,
and the slightly less repulsive model correlation function is closer to the data. It
should also be mentioned, that the model of J. M. Torres-Rincon et al. is the least
compatible with the data. This is, however, mostly related to the small uncertainties
of the predicted correlation functions, which are considered in the calculation of the
nσ reported in the figures. Moreover, it is the only model that reproduces the deple-
tion in the measured opposite-charge D–π correlation function at k∗ ∼ 240 MeV/c,
which is ascribed to the lower pole of the D∗0(2300) state. In summary, the D–K cor-
relation functions do not put constraints on the theory due to the limited statistics
of the data, while the D–π data is incompatible with the available predictions of the
residual strong interaction. All measurements are well described by the Coulomb
interaction.

4.5.2 Scattering length of the strong interaction

The D–π genuine correlation functions are used to extract the S-wave scattering
length a0 of the strong interaction for both isospin states I = 1/2 and I = 3/2.
The strong force is parametrized by the Gaussian potential, given in Eq. 4.7. As the
isospin I = 3/2 state is shared among both charge combinations, the corresponding
potential strength V I=3/2

0 is a common fit parameter of the two correlation functions.
A simultaneous χ2 minimization within k∗ < 250 MeV/c is performed to determine
V I=3/2

0 and V I=1/2
0 and the corresponding scattering lengths. The available param-

eter ranges are V1/2
0 ∈ [−2000, 5000] MeV and V3/2

0 ∈ [−3000, 4000] MeV, and the
step size is 100 MeV for both7. Figure 4.27 shows the correlation functions obtained
from the combined fit to the data as red bands. The corresponding χ2/ndf is 0.7
within k∗ < 250 MeV/c.

The scattering lengths of the Dπ system are found to be

aDπ
0 (I = 3/2) = (0.01± 0.02 (stat.)± 0.01 (syst.)) fm,

aDπ
0 (I = 1/2) = (0.02± 0.03 (stat.)± 0.01 (syst.)) fm.

(4.8)

The correlation between the two is shown in Fig. 4.28, where the dark (light) violet-
shaded area represents the confidence intervals for a 68% (95%) probability. Within
the uncertainties, the scattering lengths of the residual strong interaction between
D+ and light-flavor mesons are compatible with zero. They are further compared to
the theoretical values reported in Tab. 4.14. In the I = 1/2 channel, the deviation
between the fit result and the predictions by theory, which cover values between
∼ 0.3 and ∼ 0.6 fm, is significant. Depending on the model, 5− 13σ are obtained.
Tension with the predictions is also observed in the I = 3/2 channel, which is shared
between the same- and opposite-charge D–π correlation function. With deviations
of 2− 5σ, it is, however, smaller and less significant than in the I = 1/2 channel.

7The model correlaion functions for the different potnetial strenghts were calculated by Dr. Yuki
Kamiya.
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FIGURE 4.27: Comparison of the D–π genuine correlation functions
of opposite- (left panel) and same-charged (right panel) pairs with the
results of the χ2 minimization using a Gaussian potential to param-
eterize the strong interaction (violet band). The correlation functions
obtained from the Coulomb-only assumption are depicted as well
(gray band). The width of the bands corresponds to the total uncer-
tainty.
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FIGURE 4.28: Scattering length of the two Dπ isospin states, extracted
from a simultaneous χ2 minimization to the experimental correlation
functions. The dark (light) violet-shaded areas represent the result-
ing confidence intervals for a 68% (95%) probability. The dashed
lines correspond to the Coulomb-only hypothesis, which is charac-
terized by a vanishing scattering length. The available theory predic-
tions [193–197], listed in Tab. 4.14, are shown as comparison.

Systematics

The scattering lengths of the strong FSI of the Dπ system are extracted by fitting
model correlation functions to the data. To properly estimate the statistical uncer-
tainties σstat the bootstrap method is applied, which has already been introduced
in Sec. 4.3.3. By additionally accounting for the systematic uncertainty of Cgen(k∗)
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in the sampling of the data, varying the parameters of the effective source accord-
ing to the uncertainties reported in Table 4.13, as well as changing the fit range by
±50 MeV/c in each bootstrap iteration, the total error σtot is obtained. The system-
atic error σsyst is then derived by assuming that statistical and systematic uncertain-

ties are uncorrelated, i.e., σtot =
√

σ2
stat + σ2

syst. The uncertainty on the source repre-
sents the largest contribution to systematic uncertainties of the scattering length.

4.5.3 Consistency check with measurements involving D∗mesons

Form heavy-quark spin symmetry [202, 203], it is expected that the interaction of
light-flavor mesons with pseudoscalar (D+) or vector (D∗+) charm mesons is the
same at leading order. In Ref. [186], the correlation functions of D∗π and D∗K pairs
are studied in parallel to Dπ and DK, following the similar analysis procedure as
presented in this chapter. Equivalent results are obtained, however, with lower sta-
tistical precision. All genuine correlation functions involving D∗+ and light-flavor
mesons are compatible with the Coulomb-only hypothesis and the scattering lengths
of the D∗π system

aD∗π
0 (I = 3/2) = (0.05± 0.04 (stat.)± 0.02 (syst.)) fm,

aD∗π
0 (I = 1/2) = (−0.03± 0.05 (stat.)± 0.02 (syst.)) fm,

(4.9)

are consistent with the ones extracted for Dπ, given in Eq. 4.8. Furthermore, the
experimental results disagree with the only available values directly calculated
in this channel and predicted by the model of Z. W. Liu et al. [204], which are
aD∗π

0 (I = 3/2) = (−0.13− 0.00036i) fm and aD∗π
0 (I = 1/2) = (0.27− 0.00036i) fm,

respectively. Figure 4.29 shows the correlation between the scattering lengths for the
two isospin states obtained from the fit to the data, as well as those obtained in the
Dπ channel. The agreement between the two channels strengthens the experimental
results obtained for Dπ pairs.

4.5.4 Possible explanations for discrepancies between data and predic-
tions

The discrepancy between the experimental data and the predictions by theory in
the Dπ channel is puzzling. It could be diminished by a much larger effective
source size, which leads to a less pronounced correlation signal for a given inter-
action strength. However, there is no obvious motivation for assuming a breaking
of the universal mT scaling of the core radius [123, 126] for pairs that involving charm
mesons, especially as the resonance–source model was already successfully used in
the analysis of the experimental pD− correlation function [53]. However, it could
be that heavy-flavor particles hadronize earlier than light-flavor mesons, similar to
the early production of charm quarks in HIC that was mentioned in the introduction
of this chapter. A MC study, shown in Fig. 4.30, hints at such behavior. If the D+

meson is indeed produced prior to kaons and pions, it will propagate by a certain
amount before any FSI with light-flavor mesons can take place. This could lead to
modifications of the Dπ and DK source core radius, not accounted for in the RSM.

Alternatively, other complex structures not taken into account by the theory
models considered in this analysis could explain the deviations. In Ref. [205] the
molecular nature of the two axial resonances D1(2430) and D1(2420) are studied us-
ing a hidden gauge formalism and implementing unitarization in coupled channels.
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FIGURE 4.29: Scattering length of the two D∗π isospin states, ex-
tracted in Ref. [186] from a simultaneous χ2 minimization to the ex-
perimental correlation functions of. The dark (light) violet-shaded
area represents the resulting confidence interval for a 68% (95%) prob-
ability. The dashed lines correspond to the Coulomb-only hypothesis,
which is characterized by a vanishing scattering length. The available
theory prediction [204] is shown as a comparison. The 68% (95%) CL
from the fit to the D–π data is also depicted as the area enclosed by
the dark (light) red line.

FIGURE 4.30: The hadronization time distribution for several species,
studied with PYTHIA 8.307. Figure by the courtesy of F. Grosa.
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The scattering amplitude of D∗π and Dρ, which are part of the meson−baryon ba-
sis considered in the work, are determined by explicitly adding a bare quark-model
pole structure. By tuning the parameters of the pole such as to better accommodate
D1(2430) within the experimental observations [206, 207] (denoted as Model B in
their publication), a scattering length of aD∗π

0 (I = 1/2) = 0.1 fm is obtained, which
is much closer to the value of aDπ

0 (I = 1/2) = (0.02± 0.03 (stat.)± 0.01 (syst.)) fm
obtained for D–π in this chapter. Using arguments of heavy-quark spin symmetry,
the authors expect a similar scattering length for the Dπ system. Using a different set
of parameters, scattering lengths in agreement with theory predictions are obtained
(denoted as Model A in their publication). Such findings challenge the current un-
derstanding of the residual strong interaction among charm mesons and pions.

4.6 Conclusions

The residual strong interaction of D+ and the light-flavor π and K mesons is studied
using the femtoscopy technique, providing the first experimental results for these
channels. The correlation functions of same- and opposite-charge particle pairs are
measured in HM pp collisions at

√
s = 13 TeV using data collected by ALICE at

the LHC. The raw data is further corrected for background contributions, and the
genuine D–K and D–π correlation functions are compared to the available theoreti-
cal predictions of the strong interaction, also taking into account the Coulomb force,
shown in Fig. 4.26. Within the current limited statistical precision of the DK data,
no preference is observed between the different models and the Coulomb-only hy-
pothesis. In the case of Dπ, the data is more precise and suggests that the theoretical
predictions overestimate the residual strong interaction. The Coulomb interaction
alone is sufficient to describe the data. The Dπ correlation functions are further used
to determine the scattering length of the two isospin states I = 1/2 and I = 3/2
of the system by a simultaneous fit to the data of same- and opposite-charge pairs,
as both have contributions from the isospin I = 3/2 state. A Gaussian potential
with variable strength is used to parameterize the strong interaction for each state.
The scattering lengths, extracted from the scattering amplitude of the potential us-
ing the effective range expansion, are found to be small and compatible with zero.
Figure 4.28 shows the experiential values compared to the ones predicted by theory.
Especially in the I = 1/2 channel, a significant disagreement of > 5σ is observed.
These findings challenge the current understanding of the residual strong interac-
tions of D+ and pions, especially as similar experimental results were obtained in
the D∗π channel [186] using the same analysis method, which is expected by heavy-
quark spin symmetry.

The results are also relevant for the interpretation of heavy-ion observables re-
lated to D+ mesons, which are used to infer the properties of the QGP, as discussed
at the beginning of this chapter. Since the strong interaction is found to be shallow,
the rescattering of D+ with light-flavor mesons during the hadronic phase of the
system might also be smaller than expected.

Future studies using the large data set collected during the current LHC Run 3
data-taking period will make it possible to measure the correlation functions with
higher precision. This is especially relevant for studying the DK system. Addition-
ally, further studies regarding the emission of charm mesons might be useful, as
an earlier hadronization with respect to light-flavor mesons could affect the source
function of the pairs. A significant increase in the mean relative distance of the pairs
would wash out signals from FSI and lead to a more shallow correlation function
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compatible with the data. Larger data sets will also facilitate studying the correla-
tion functions of other particle pairs involving charm hadrons. This is essential, as
for now, there is no alternative experimental approach available to study the strong
interaction among pairs that include charm particles.
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Chapter 5

Spin-dependent p–ϕ interaction

Nucleons (N) and ϕ mesons (ss) do not have common flavor valence quarks. Hence,
the Pauli exclusion principle, which leads to a repulsive core in the N–N interaction
potential, does not apply. Furthermore, the diagram depicting the N–ϕ interaction
process is characterized by disconnected quark lines and can be separated into two
disconnected diagrams by removing the gluon lines. Therefore, the N–ϕ interaction
is expected to be suppressed because of the Okubo-Zweig-Iizuka (OZI) rule [208–
210]. However, the QCD van der Waals force, characterized by multigluon instead
of quark-exchange, could lead to a considerable attractive interaction [211–213]. At
long ranges, where the dominant degrees of freedom are the lightest hadronic states
and gluons hadronize into pions, the major contribution to the interaction between
the two particles is associated with the two pion exchange (TPE) [214–217]. Within
the constituent quark model, the attraction arises mainly from σ exchange [218],
which is a one-boson exchange and similar to the TPE [219]. Further, if inelastic
channels such as Nϕ → K∗Λ(K∗Σ) are taken into account, the interaction can pro-
ceed via OZI allowed couplings, e.g. via kaon exchange.

Precise knowledge of the p–ϕ interaction is of particular interest because of the
possible existence of a ϕ-mesic bound state with nucleons, which has been predicted
by various models [212, 213, 218, 220–225], however, never tested on data or ob-
served experimentally. First theoretical investigations followed a study on nuclear-
bound charmonium (cc) where an effective Yukawa-type potential was used to de-
scribe the QCD van der Waals force [226]. The potential parameters were estimated
by relating the vector-exchange parts of the high-energy hadron-nucleon scattering
amplitude in the forward direction to the vector contribution of the multigluon-
exchange potential at low energies. The same type of potential was used to model
the N–ϕ interaction and was found to be fully attractive and strong enough to bind
a ϕ meson onto a nucleon inside a nucleus, thus forming a bound state [213]. This
potential was used to model the N–ϕ interaction in later studies of A-body sys-
tems involving ϕ mesons and nucleons [212, 222], also resulting in a bound state. A
quasi-bound N–ϕ state was predicted in a study based on an extension of the con-
stituent quark model, where the coupling between the N–ϕ and Λ–K∗ channel was
taken into account and found to be considerable [218]. The model parameters were
obtained by a fit to the N–N scattering data. Similarly, a unitary coupled-channel
approach, anchored to the experimental scattering length of the p–ϕ interaction de-
termined by ALICE [51], leads to a two-pole structure in the scattering amplitude,
where one of the two poles could be associated with a possible pϕ bound state [225].

However, several other theoretical calculations of the N–ϕ interaction do not
support a bound state formation. Studies of the vector-meson–baryon interaction,
based on extensions of chiral Lagrangians, where vector mesons are accommodated
within a coupled channel unitary scheme [227–230], lead to dynamically generated
resonances, which mostly couple to the K∗–Σ and K∗–Λ channels, but no bound
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FIGURE 5.1: The spin-averaged, absolute value of the p–ϕ scattering
length obtained from the available theoretical calculations and sim-
ulations (listen in the left column of the legend) as well as measure-
ments (listen in the right column of the legend) in chronological order.
∗ The value is not directly provided in Ref. [213] but extracted from
the published potential via the effective range expansion of the corre-
sponding scattering amplitude, given by Eq. 2.30.
∗∗ The value depicted in the plot is the one estimated at physical
masses, for which no uncertainties are given in the Ref. [233].

states. For some of these resonances, the coupling to the pϕ channel is seizable [228].
A direct calculation of the spin-averaged N–ϕ scattering length within the frame-
work of the QCD sum rule resulted in a value of apϕ

0 = (0.15± 0.02) fm [231]. In
Ref. [232] the N–ϕ scattering amplitude was modeled by an effective Lagrangian
that combines chiral SU(3) dynamics with vector meson dominance (VMD)1 and a
scattering length of apϕ

0 = (0.01 − i · 0.08) fm was obtained [232]. The dominant
imaginary part is mainly associated with the inelastic channels N–ϕ → KΛ, KΣ in-
cluded in the calculation. From the Yukawa-type potential describing an attractive
QCD van der Waals force between ϕ and nucleons in Ref. [213], a scattering length
of apϕ

0 ≈ 2.37 fm is estimated. On the lattice, only the spin 3/2 channel of the N–ϕ in-
teraction is available for the moment since the spin 1/2 contribution shows signs of
open channels. A scattering length of apϕ

0 (s = 3/2) ≈ 1.25 fm was estimated for
physical masses [233]. Details of the LQCD simulation can be found in Sec 5.2.

1VMD is used to describe the interaction of energetic photons with hadronic matter, assuming that
a physical photon can fluctuate into a virtual vector meson that subsequently scatters elastically on the
target proton via multigluon exchange.

It is used to interpret the differential cross section of near-threshold vector meson V photoproduc-
tion, linking γp→ Vp to Vp→ Vp
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On the experimental side, only spin-averaged p–ϕ scattering parameters are
available. The LEPS collaboration measured the differential cross section of ϕ-meson
photoproduction from protons, using a beam of linearly polarized photons from the
threshold energy of Eγ = 1.57 GeV up to 2.37 GeV [234]. The data at the thresh-
old were found to be in qualitative agreement with the value calculated from the
scattering length of ∼ 0.15 fm predicted in Ref. [231] assuming VMD and using the
optical theorem [235]. Similarly, the total ϕ cross-section in γp→ ϕp reactions with
near-threshold photons of Eγ = 1.63− 2.82 GeV has been measured by the CLAS
collaboration. Again, the data were interpreted using the VMD model, and a scat-
tering length of |a0| = (0.063± 0.010) fm was obtained [236].

The most recent experimental result was obtained by the ALICE collaboration in
a measurement of the p–ϕ correlation function in pp collisions at

√
s = 13 TeV [51].

Details on the analysis procedure can be found in Sec. 5.1. The data were mod-
eled using the simplistic Lednický–Lyuboshits approach, which is explained in
Appendix A. A spin-averaged scattering length of apϕ

0 = (0.85 ± 0.34(stat.) ±
0.14(syst.) + i · 0.16 ± 0.10(stat.) ± 0.09(syst.)) fm was extracted. The scattering
length is much larger than the values obtained from ϕ-photoproduction measure-
ments. Possible explanations are given in Ref. [237]. The ϕ meson scattering off the
nucleon in ϕ-photoproduction is not at equilibrium, and the N–ϕ interaction may be
suppressed near the threshold as the ss pair in a point-like configuration lacks time
to form a complete ϕ wave function. Hence, the proton interacts with this smaller
"young", undressed ϕ meson. This effect is known as the young meson effect [238].
More recent studies of the VMD based on calculations with Dyson Schwinger equa-
tions found that conclusions based on VMD involving heavy mesons are unreli-
able [239]. This can be seen as a more formal alternative explanation of the young
meson effect. Finally, since the virtual ϕ mesons from the conversion of the inci-
dent photons are off-shell, it may be difficult to determine the scattering length phe-
nomenologically by using VMD [237].

Figure 5.1 depicts the scattering length of the p–ϕ interaction obtained from the
various aforementioned theoretical calculations and experimental measurements.
An additional study has been carried out to pin down the spin 1/2 component of
the p–ϕ interaction by a fit to the experimental correlation function published by
ALICE and constraining the spin 3/2 contribution from the published LQCD po-
tential. Details on the experimental input can be found in Sec. 5.1, while Sec. 5.2
focuses on the LQCD simulated potential of the spin 3/2 channel. The analysis and
the evaluation of the systematic uncertainties are discussed in Sec. 5.3 and Sec. 5.4,
respectively, and the results presented in Sec. 5.5, which precedes a final conclusion
in Sec. 5.6.

5.1 The experimental correlation function

The genuine p–ϕ correlation function, which is re-analyzed in this chapter, was ob-
tained as a result of my master thesis project [51, 240] from HM pp collision data at√

s = 13 TeV, collected by ALICE from 2016 to 2018 during the LHC Run-2.
Events are selected using the same cuts as listed in Tab. 4.1 and discussed in

detail in Sec. 4.1, which include the standard quality selections by ALICE. More-
over, to minimize the pronounced contribution from minijets, which have already
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been introduced in Sec. 2.2, and additional cut on the transverse sphericity 2 of
0.7 < ST < 1.0 is applied to select rather spherical events and reduce jet-like con-
tributions. The proton selection follows Ref. [43], and the resulting candidates have
a purity of 99%, with a primary fraction of 82%. The ϕ mesons are reconstructed
from their hadronic decay to charged kaons ϕ → K+K− with a branching ratio of
BR = (49.2± 0.5)% [122]. The selection of the kaon daughters is tuned to produce
a large ϕ sample while maintaining a high purity. Details on the selection criteria
can be found in Ref. [51]. Two oppositely charged daughter candidates are then
combined to calculate the K + K− invariant mass, where the ϕ candidates are se-
lected within a window of ±8 MeV/c2 around their nominal mass. The resulting
pT-integrated spectrum is depicted in Fig. 5.2. The purity and yield of the ϕ candi-
dates are extracted by fitting the resonance peak with a Voigt function (blue line),
which is the convolution of a relativistic Breit-Wigner and a Gaussian. The former
describes the natural line width and depends on the mass of the resonance Mϕ, while
the latter accounts for the detector resolution, given by its width σ. The combina-
torial K+K− background is described by a quadratic polynomial (red line), and the
result of the combined signal and background fit to the measured K + K− invariant
mass is shown in green. The extracted Mϕ = 1019.550± 0.002 MeV/c2 is consis-
tent with the literature value of Mϕ,PDG = (1019.461± 0.016) MeV [122] within the
detector resolution σ = 1.44 MeV/c2. By integrating the total fit function over the
ϕ selection interval, a yield of 5.8× 106 candidates is estimated. Similarly, the pu-
rity is obtained as S/(S + B), the ratio of signal candidates S over the total yield
S + B, which also includes the combinatorial background B. It is found to be 66%.
Further, the ϕ mesons are assumed to be 100% primary particles, as the amount of
secondaries is negligible [122].

The raw correlation function is obtained from Eq. 2.10 and normalized in the re-
gion k∗ ∈ [800, 1000] MeV/c. A total of 4.17× 104 pϕ and 3.61× 104 pϕ pairs with
k∗ < 200 MeV/c contribute to the respective Nsame distribution. Both correlation
functions are combined, as they are compatible within the uncertainties, and the re-
sulting raw correlation function is shown in the left panel of Fig. 5.3. Due to the
limited statistical precision, the correlation function is evaluated in rather large k∗

intervals of 40 MeV/c. Therefore, the k∗ value of each data point is determined by
the average ⟨k∗ ⟩ of the Nmixed distribution in the corresponding interval. The sys-
tematic uncertainties are obtained by simultaneously varying the selection criteria
of protons and kaons as well as the lower limit of sphericity. A detailed discussion
can be found in Ref. [240].

Following the discussion in Sec. 2.2, the raw p–ϕ correlation function is decom-
posed as

Craw(k∗) = λSBCSB(k∗) + Cnon−femto(k∗)
[
λgenCgen(k∗) + λflat

]
, (5.3)

2The event shape can be classified by its transverse sphericity ST, which is defined in terms of the
eigenvalues λ1 and λ2 of the transverse momentum matrix [241]

Sxy =
1

∑j pTj
∑

i

1
pTi

[
p2

xi
pxi pyi

pyi pxi p2
yi

.

]
(5.1)

The transverse sphericity is calculated as

ST =
2λ2

λ1 + λ2
, (5.2)

where λ1 > λ2. A spherical event is characterized by ST = 1.0, while ST = 0 corresponds to a jet-like
event.
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FIGURE 5.2: The K+K− invariant mass distribution is shown, to-
gether with the total fit to the data in green. The latter is composed
of a Voigt function (blue line), describing the signal, and a quadratic
polynomial (red), accounting for the background. The dotted lines
represent the Mϕ ± 8 MeV/c2 selection window, used to reconstruct
the ϕ candidates, and the dashed line marks the nominal ϕ mass.

where CSB(k∗) describes the contribution associated with the combinatorial K+K−

background that contaminates the yield of ϕ candidates, Cgen is the genuine contri-
bution from signal ϕ mesons and primary protons, λflat considers the negligible ef-
fects from weak decays feeding into protons and misidentified ones, that contribute
with a flat correlation signal Cflat(k∗) = 1, and Cnon−femto(k∗) describes the residual
non-femtoscopic background. The λ parameters listed in Tab. 5.1 are obtained from
the single-particle purity and fractions. Instead of using the pT-integrated ϕ purity
in the calculation, its distribution is reweighed with that of ϕ candidates forming
pairs with protons at low k∗ < 200 MeV/c, hence contributing to the correlation
signal. This leads to a significantly smaller value of 57% and results in λgen = 46.3%.

The similarity between Eq. 5.3 and Eq. 4.5, which describes the decomposition of
the D and light-flavor meson correlation functions discussed in chapter 4 is evident
and the process of extracting the genuine correlation function from the raw data also
closely follows the approach used in the charm analysis.

CSB(k∗) arises from fake ϕ mesons, i.e., Kaons from the combinatorial back-
ground, which interact with protons via the Coulomb and strong force. This con-
tribution is evaluated in a data-driven approach employing the sidebands of the
K+K− invariant mass, corresponding to the intervals 0.995 − 1.011 GeV/c2 and
1.028 − 1.044 GeV/c2 on both sides of the resonance, instead of the signal region
for the ϕ candidate selection. The resulting correlation functions are combined as a
weighted sum, where the weights correspond to the relative amount of background
present in each half of the interval used for ϕ selection, and parametrized with a
double Gaussian and a quadratic polynomial. A residual amount of 8.6% real ϕ
mesons is present in the sideband intervals due to the tail of the ϕ resonance, which
leads to a 7% contribution to the experimental CSB(k∗). This is accounted for in the
modeling by a rescaling of the λ parameters. The resulting correlation function is
depicted as orange band in the left panel of Fig. 5.3. Since CSB(k∗) is obtained from
data, it already includes the non-femtoscopic background and, hence, is separated
from the other contributions in Eq. 5.3.
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TABLE 5.1: Weight parameters of the individual components of the
p–ϕ correlation function.

Parameter Value (%)
λgen 46.3
λSB 43.3
λflat 10.4
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FIGURE 5.3: The left panel shows the raw p–ϕ correlation function
Craw(k∗) with statistical (bars) and systematic uncertainties (boxes).
The violet band describes the fitted total background, which consists
of several contributions, scaled by the appropriate λ parameter and
shown individually and unscaled in the same figure. The with of the

bands corresponds to the total uncertainty σtot =
√

σ2
stat + σ2

syst. The
total background is used to extract the genuine correlation function
from the raw data, which is shown in the right panel.

The non-femtoscopic background is decomposed as

Cnon−femto(k∗) = N ×
[
CMC(k∗) +

(
a + bk∗2

)]
, (5.4)

where N is a normalization constant and CMC(k∗) describes the dominant contri-
bution from the residual minijet background. Similarly to the charm and light-
flavor case discussed in Sec. 4.3.2, the latter is obtained from MC-generated events.
The additional second-order polynomial baseline accounts for further correlations
at large k∗ from energy-momentum conservation effects, which are not properly re-
produced by PYTHIA. The free parameters a, b and N of Eq. 5.3 are determined
by fitting the raw data with a background model (Eq. 5.3 with Cgen(k∗) = 1)
within k∗ ∈ [200, 800] MeV/c. The resulting total background, as well as the non-
femtoscopic background, are depicted as violet and blue bands in Fig. 5.3.

Finally, the genuine p–ϕ correlation function is extracted from the raw data by
subtracting all background contributions according to Eq. 5.3. It is shown in the
right panel of Fig. 5.3. At low k∗ a deviation from unity is visible, with a significance
of 4.7− 6.6 σ. For k∗ > 200 MeV/c, the genuine correlation function is flat.

The systematic uncertainty of the genuine correlation function is attributed to
the systematic error of the raw correlation function and the total background. The
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latter is estimated by varying the fit range and the order of the polynomial assumed
for the baseline and also considers the systematic error of the sideband correlation
function. A relative systematic uncertainty of 2.8% is found at low k∗.

The effective pϕ source is determined using the RSM, which is extensively dis-
cussed in Sec. 3.3 as well as Sec. 4.4, where it is applied to determine the DK and
Dπ emission. The measured mT of the pϕ pairs contributing to the correlation signal
in the femtoscopic region of k∗ < 200 MeV/c is ⟨mT⟩ = 1.66 GeV/c2. This corre-
sponds to a core radius of rcore = 0.98± 0.04 fm. The effective source distribution is
obtained by explicitly considering the strong decays feeding the proton candidates
and is parametrized by a Gaussian source function with reff = 1.08± 0.05 fm

5.2 The spin 3/2 channel

The HAL QCD collaboration has published the N–ϕ interaction potential for the
spin 3/2 channel, also denoted by 4S3/2

3 [233], whose coupling to the two-body
open channels Λ-K (2D3/2) and Σ-K (2D3/2) is kinematically suppressed due to the
difference in the orbital angular momentum state. Three or more particle decays are
also expected to be suppressed by the small phase space.

The calculation of the spin 3/2 potential is performed in a large volume of
L4 = 964 and small lattice spacing of a = 0.0846 fm, leading to La = 8.1 fm.
It is based on a (2+1)-flavor simulation with nearly physical quark masses, result-
ing in a slightly larger mπ = 146.4 MeV/c2 in comparison to the experimental
mπ = 139.6 MeV/c2 [122]. Also, the mass of the kaon is enhanced by around 6%,
while it is 3%(2%) larger for the ϕ (N). Therefore, the kinematic decay ϕ → KK is
forbidden. The potential, shown in Fig. 5.4, is calculated at different Euclidean times
t. No time dependence is observed as the potentials agree within the statistical un-
certainties of the LQCD simulation, indicating that elastic scattering states dominate
the interaction channel. The spin 3/2 potential is attractive in the full range, and
at a large distance, it is characterized by an attractive tail dominated by TPE. The
simulated LQCD potential can be parametrized by

A : V3/2(r∗) = ∑
i=1,2

aie−(r
∗/bi)

2
+ a3m4

π f (r∗, b3)
e−2mπr∗

r∗2
(5.5)

B : V3/2(r∗) = ∑
i=1,2,3

aie−(r
∗/bi)

2
, (5.6)

where ai and bi are free parameters and f (r∗, b3) is a form-factor. Function A is
motivated by the TPE tail, which has a strength ∝ m4

π [214] and is described by a
Yukawa-type potential squared. Function B serves as a comparison and has a purely
phenomenological Gaussian shape. Two types of form-factors are examined for fit
A, namely the Nijmegen- ferfc(r∗, b3) and Agronne-type fexp(r∗, b3), defined as

ferfc(r∗, b3) =

[
erfc

(
mπ

Λ
− Λr∗

2

)
− e2mπr∗erfc

(
mπ

Λ
− Λr∗

2

)]2

(5.7)

fexp(r∗, b3) =
[
1− e−(r

∗/b3)
2
]2

, (5.8)

3The channel notation is 2s+1LJ, where s is the total spin, L the orbital angular momentum and J the
total angular momentum.
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FIGURE 5.4: The left plot shows the N–ϕ interaction potential for
s = 3/2 as function of the distance r∗, calculated at different eu-
clidean times t. The right plot depicts the results of the fit with
model A using the two different types of form factors ferfc(r, b3) and
fexp(r, b3). The lower panel shows the number of standard deviations
nσ between data and the fit results Aexp and Aerfc, respectively. The
LQCD potential data are taken from Ref. [233].

mπ (MeV/c2) apϕ
0 (s = 3/2) (fm) dpϕ

0 (s = 3/2) (fm)

146.4 1.43± 0.23(stat.)+0.06
−0.36(syst.) 2.36± 0.10(stat.)+0.02

−0.48(syst.)
138.0 ∼ 1.25 ∼ 2.49

TABLE 5.2: The scattering parameters characterizing the N–ϕ inter-
action in the spin 3/2 channel for different pion masses.

where Λ = 2/b3 and erfc(x) =
∫ ∞

x e−z2
dz. All functions give an equally good

description of the LQCD simulated data, using the lattice pion mass of mπ =
146.4 MeV/c2 in the fit. The parameterization of the potential can be used to extract
physical observables, such as the phase shift, from which the scattering parameters
can be obtained from the effective range expansion, given by Eq. 2.29. The resulting
values are listed in Tab. 5.2, using t/a = 14 and Aerfc as defaults. The systematic un-
certainties are estimated from the different fit functions at different Euclidean times
t. An estimate at the physical mass is made by changing the pion mass to the phys-
ical value mπ ∼ 138.0 MeV/c2 for r > 1 fm, the region dominated by TPE, while
keeping the other potential parameters fixed. The resulting scattering parameters
are also listed in Tab. 5.2. As can be seen, the overall attraction is weaker at the phys-
ical mass, even though the TPE range increases, due to the m4

π dependence of the
TPE term in fit A.

The authors of Ref. [233] also investigated the spin 1/2 potential (2S1/2) of the
N–ϕ interaction. However, a clear t-dependence was observed, which is expected
from the S-wave decays into Λ-K (2S1/2) and Σ-K (2S1/2). Therefore, at the moment,
no reliable information can be obtained from lattice calculations, and other methods
have to be used to study the N–ϕ interaction in the spin 1/2.
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5.3 Pinning down the interaction in the spin 1/2

The spin-averaged experimental p–ϕ correlation function [51] presented in Sec. 5.1
and the LQCD spin 3/2 potential [233] discussed in Sec. 5.2 are combined to study
the interaction in the spin 1/2 channel, which is currently not accessible on the lat-
tice due to effects from open channels. Also, no other predictions by theory are
available. Hence, the spin 1/2 channel determined in this re-analysis is described
by a phenomenological potential, whose shape is based on the findings of the HAL
QCD collaboration [233].

5.3.1 Potential parametrization

As discussed in the previous section, the Nϕ(2S1/2) state can couple to the
ΛK(2S1/2) and ΣK(2S1/2) channels via S-wave fall apart-decays [233]. Such pro-
cesses introduce an imaginary part to the potential and can be described by the ex-
change of kaons. The TPE tail observed in the spin 3/2 potential at large distance
is expected to also be present in the spin 1/2 channel, as the exchange of two pions
in a scalar-isoscalar state is independent of the total spin of the system. Therefore,
the N–ϕ interaction potential describing the spin 1/2 channel should consist of a
long-range attractive TPE tail, a phenomenological term at short distances, and an
imaginary part described by a 2nd-order kaon exchange. Motivated by these con-
siderations as well as the parametrization of the LQCD spin 3/2 potential, given by
Eq. 5.5, the spin 1/2 potential of the N–ϕ interaction is modeled as

V1/2(r∗) = β

(
∑

i=1,2
aie−(r

∗/bi)
2

)
+ a3m4

π f (r∗; b3)
e−2mπr∗

r∗2
+ iγ

f (r∗; b3)

mK

e−2mKr∗

r∗2
, (5.9)

where the free parameters β and γ are determined by a fit to the experimental data.
The former can be any real number, and if positive, results in a short-range attrac-
tion, while a negative β corresponds to a short-range repulsion. The parameter γ is
restricted to negative values corresponding to absorption processes. All other pa-
rameters have already been introduced when discussing the parametrization of the
spin 3/2 potential in Sec. 5.2. The free parameters ai and bi are obtained from a
fit to the LQCD spin 3/2 potential and are shared between the two channels, and
f (r∗, b3) is a form factor. For β = 1 and γ = 0, Eq. 5.9 is equivalent to Eq. 5.5, used
to parameterize the spin 3/2 potential [233].

5.3.2 Fit to the data

The measured p–ϕ correlation function is a spin averaged observable. To pin down
the interaction in the spin 1/2 channel, the data is modeled as

C(β,γ)
model(k

∗) =
2
3

C3/2(k∗) +
1
3

C(β,γ)
1/2 (k∗) , (5.10)

where the dependence on the free parameters (β, γ) of the phenomenological poten-
tial, given by Eq. 5.9, are explicitly indicated. They are to be determined by a fit to the
data. The individual spin contributions are evaluated via the Koonin-Pratt formal-
ism Eq. 2.5, considering the potential parametrization Eq. 5.5 and Eq. 5.9 for spin 3/2
and 1/2, respectively. The particle emission is modeled by a Gaussian source with
an effective size of reff = 1.08± 0.05 fm, equivalent to the one found in the analysis
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Parameter Value
a1 [MeV] -392(10)
b1 [fm] 0.128(3)

a2 [MeV] -145(9)
b2 [fm] 0.284(7)

a3m4
π [MeV · fm2] -83(1)

b3 [fm] 0.582(6)

TABLE 5.3: Values and statistical uncertainties of the parameters of
the spin 3/2 potential parametrization, obtained by a fit to the lat-
tice simulation for the spin 3/2 channel at t/a = 12 [233]. They are
also used in the phenomenological potential, describing the spin 1/2
channel.

of the ALICE data [51]. The weights of the contributions in Eq. 5.10 correspond to
the respective spin multiplicity of the channel.

The potential parameters ai and bi, common for both spin channels, are deter-
mined by fitting the LQCD potential at t/a = 12, using Eq. 5.5 with the Argonne-
type form factor defined in Eq. 5.8. To be conservative, a smaller Euclidean time
is chosen over the default t/a = 14 in Ref. [233], as it corresponds to the least at-
tractive potential in the spin 3/2 channel, hence, also to the weakest potential in the
spin 1/2. The choice of the form factor is arbitrary, as it gives equivalent results to
the ones obtained with the Nijmegen-type, given by Eq. 5.7. A nonphysical pion
mass of mπ = 146.4 MeV/c2, corresponding to the settings of the LQCD simula-
tion, is used in the fit. The resulting parameter values are listed in Tab. 5.3, and the
fit result is depicted as green band in Fig. 5.5, together with the LQCD potential at
t/a = 12.

The spin 3/2 correlation function C3/2(k∗) is obtained by employing the CATS
framework [73] and changing the pion mass in the potential parametrization to its
physical value mπ ∼ 138 MeV/c2 in the full range, while keeping the other parame-
ters fixed. The resulting modified potential is shown as orange band in Fig. 5.5. As
can be seen, the potential is most affected by the mass change in the intermediate
range and is slightly less attractive overall.

The spin 1/2 contribution C(β,γ)
1/2 (k∗) is calculated for different β and γ parameters

of the complex spin 1/2 potential in steps of 0.1 and 0.2, respectively4. The resulting
full correlation functions C(β,γ)

model(k
∗) are compared to the data to determine the best-

fitting parameter combination in a χ2 minimization, with the χ2 defined as

χ2(β, γ) =
N

∑
j=1

Cdata(k∗j )− C(β,γ)
model(k

∗
j )

σdata(k∗j )

2

, (5.11)

where N = 5 is the number of data points in the femtoscopic region k∗ < 200 MeV/c,
and σdata(k∗j ) is the uncertainty of the j-th data point.

The resulting χ2 distribution is shown in Fig. 5.6, taking into account the statis-
tical uncertainties of the measured correlation function. The red lines correspond to
the 1-,2- and 3-σ contours with respect to the minimum χ2

min = 6.85 (nσ = 1.77) at
β = 6.9 and γ = 0.0, and the green dashed line shows the 99% CI.. Notably, the
β < 0 region, which corresponds to a repulsive core of ℜ(V1/2), is excluded by more

4The spin 1/2 correlaion functions C(β,γ)
1/2 (k∗) were calculated by Dr. Yuki Kamiya.
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FIGURE 5.5: The 4S3/2 potential of the N–ϕ interaction obtained from
LQCD simulations at t/a = 12, which are performed at nearly phys-
ical quark masses of mπ = 146.4 MeV/c2, with its statistical uncer-
tainties is shown as function of the hadron distance r. The green band
represents the fit result using the parametrization Aexp. An estimate
at physical mass is made by using mπ = 138 MeV/c2 in the fit func-
tion instead, while keeping the other parameters fixed and is shown
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FIGURE 5.6: The χ2 distribution in the (β, γ) plane, evaluated within
k∗ ∈ [0, 200] MeV/c considering the statistical uncertainties of the
data. The red lines correspond to the 1-, 2- and 3-σ contour with re-
spect to the minimum χ2

min = 6.85 (nσ = 1.77) at β = 6.9 and γ = 0.0,
and the green dashed line shows the 99% Cl.
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TABLE 5.4: Variations of the analysis inputs, used to estimate the sys-
tematic uncertainties of the p–ϕ interaction potential in 2S1/2 channel.

Input Default Variation 1 Variation 2
reff 1.08 1.13 1.03

4S3/2 potential from LQCD V(r)LQCD V(r)LQCD + σstat V(r)LQCD − σstat
t/a 12 13 14

χ2 evaluation range [0, 200] MeV/c [0, 250] MeV/c [0, 150] MeV/c

than 3σ in the largest part of the phase-space down to a region of γ ≈ −90 and
within 99% CI. in the full tested region.

5.4 Systematics

The systematic uncertainty on the 2S1/2 potential parameters is estimated by con-
sidering different sources of uncertainty at the various steps of the analysis. They
include the effective source size reff, the LQCD simulated potential for the spin 3/2
channel as well as the fit procedure used to determine the spin 1/2 potential. Both
the total uncertainty of the effective source size reff and the statistical uncertainty
of the lattice potential are accounted for by varying their values to their extremes
within the uncertainties. Different Euclidean times t/a = 12, 13, 14 of the 4S3/2 po-
tential are considered [233]. A possible bias from the fit procedure is estimated by
varying the upper limit of the interval used to evaluate the χ2 by±50 MeV/c, which
changes the number of degrees of freedom by ±1. The variations are summarized
in Tab. 5.4. The analysis is performed by changing one input at a time, and the best-
fitting β and γ values are extracted. To be conservative, the systematic errors are
estimated from the width of the resulting parameter distributions.

5.5 Results

The parameters of the 2S1/2 potential, determined by the minimum χ2 method
explained the previous Sec. 5.3, are found to be β = 6.9+0.9

−0.5(stat.)+0.2
−0.1(syst.) and

γ = 0.0+0.0
−3.6(stat.)+0.0

−1.8(syst.). The statistical uncertainty of the parameters is de-
termined by the 1-σ contour of the χ2 distribution, with respect to the minimum,
and the systematic uncertainties are obtained following the procedure discussed in
Sec. 5.4. The corresponding model correlation function is shown in blue in Fig. 5.8,
together with the individual spin contributions unscaled. A good agreement with
the data is obtained. Considering the total uncertainty on both data and model leads
to a χ2 = 3.44 and nσ = 0.98 within k∗ ∈ [0, 200] MeV/c. The real and imaginary
parts of the spin 1/2 potential are depicted in Fig. 5.7. It can be seen that the real part
is strongly attractive, making the imaginary part seem negligible in comparison. At
large distance, ℜ(V1/2) overlaps with the potential of the 4S3/2 channel, shown in
the same figure for comparison, since the TPE tail is common to both spin states.
Furthermore, the attractive core, which is part of the real 2S1/2 potential, is much
stronger than it is for spin 3/2 due to the large β.
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FIGURE 5.7: The parametrization of the N–ϕ lattice potential for
the 4S3/2 channel, estimated at physical masses (orange band), is
shown together with the real (light red band) and imaginary (dark
red band) part of the complex phenomenological potential for the
2S1/2 channel, determined by a fit to the experimental correlation
function. The width of the bands represent the total uncertainty

σtot =
√

σ2
stat + σ2

syst.

Multiplying the potentials by the Jacobian factor and comparing them with the
effective source function, as depicted in Fig. 5.9, shows that even though a vanish-
ing γ value best describes the data, a sizable ℑ(V1/2) can not be excluded. This is
particularly evident at distances r∗ ∼ 1 fm where a considerable amount of pϕ pairs
are emitted. Such non-vanishing imaginary contribution to the potential is expected
from the LQCD studies in the spin 1/2 channel, mentioned in Sec. 5.2, as well as
other theoretical calculations [228]. Furthermore, it becomes clear that the shape of
the potential at small r is not relevant since a negligible amount of pϕ pairs are emit-
ted at such distance. Therefore, the influence of the extreme core of ℜ(V1/2) on the
results is diminished.

The scattering length a0 and effective range d0 of the 2S1/2 channel, extracted
from the effective-range expansion of the scattering amplitude, given by Eq. 2.30,
are found to be

ℜ
(

apϕ
0 (s = 1/2)

)
= −1.54+0.53

−0.53(stat.)+0.16
−0.09(syst.) fm,

ℑ
(

apϕ
0 (s = 1/2)

)
= 0.00+0.35

−0.00(stat.)+0.16
−0.00(syst.) fm,

ℜ
(

dpϕ
0 (s = 1/2)

)
= +0.39+0.09

−0.09(stat.)+0.02
−0.03(syst.) fm,

ℑ
(

dpϕ
0 (s = 1/2)

)
= 0.00+0.00

−0.04(stat.)+0.00
−0.02(syst.) fm.

(5.12)

They are of the same order of magnitude as the scattering parameters of the 4S3/2
channel, obtained from the LQCD simulation [233], as well as the ones published
in the original analysis of the experimental p–ϕ correlation function [51]. However,
they are much larger than the ones obtained within the VMD model from ϕ-meson
photoproduction measurements by the CLAS and LEPS collaboration. All scattering
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FIGURE 5.8: The upper panel shows the experimental p–ϕ correla-
tion function with statistical (bars) and systematic uncertainties (gray
shaded boxed) and together with the spin averaged model correla-
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and 2S1/2 contributions (red band). The width of the bands corre-
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syst. The number of standard deviations nσ be-
tween Cmodel and data is shown in the lower panel.
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JP EB (MeV)

1
2
−

, 3
2
− 1.8 [213]

9.0 [225]
9.3(ϕn), 9.23(ϕp) [212]

9.47 [222]
1
2
−

1.0-3.0 [218]

3
2
− 6.0-9.0 [218]

1.6-10.1 [224]

TABLE 5.5: Predicted binding energies of a pϕ bound state with spin-
parity JP. Values obtained from spin-independent potentials apply
for both 1

2
−

and 3
2
−

.

length values and a possible explanation of the deviation are given in the introduc-
tion to this chapter.

In summary, the p–ϕ interaction in the spin 1/2 is characterized by an attrac-
tive interaction in the full range, excluding negative β values within 99% CI., as
well as ℜ(a0) < 0 and a correlation function below unity in the low k∗ range. This
information combined hints at the possible existence of a pϕ bound state. Details
leading to such a conclusion can be found in Sec. 2.3.3. Solving the Schrödinger
equation with Eq. 5.9 leads to an eigenenergy of E = −23.8+10.7

−32.2(stat.)+2.7
−2.8(syst.)−

i · 0.0+0.0
−16.4(stat.)+0.0

−6.6(syst.) MeV, indicating a quasi-bound state due to its position on
the complex energy plane. The binding energy EB corresponds to −ℜ(E), which
leads to EB = 12.8-56.1 MeV. Alternatively, the approximate formula Eq. 2.34 can be
used, which results in EB ≃ 10.7-120.5 MeV, considering the total uncertainty on the
scattering parameters.

These values are comparable to or even larger than previous model calculations,
which were mentioned in the introduction to this chapter and listed in Table 5.5. In
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the following, they are described in detail.

• The interaction between two color singlet hadrons with no common quarks
might be dominated by QCD van der Waals forces, mediated by gluon ex-
change. The corresponding attractive force, modeled by a Yukawa-type po-
tential following previous investigation of nuclear-bound quarkonium [226],
is strong enough to form a N–ϕ bound state inside the nucleus, with a binding
energy of EB = 1.8 MeV/c2 [213].

• A a unitary coupled-channel approach is used to calculate the N–ϕ scattering
length [225]. The value published by ALICE [51] can only be reproduced by
an attractive potential, which results in a two-pole structure in the scattering
amplitude. One pole is detected around 1970 MeV, above the pϕ threshold,
and is, hence, interpreted as resonance that could correspond to the N(1895)
or N(1875) [122]. The lower mass pole at around 1950 MeV can be associated
with a pϕ bound state with EB = 9 MeV.

• Using the phenomenological N–ϕ potential of Ref. [213], a variational method
is employed to estimate the binding energy of thee-body ϕNN systems [212].
E(ϕn)p = 10.03 MeV and E(ϕn)p = 17.45 MeV are obtained. Seizable binding
energies of 9.3 for n–ϕ and 9.23 MeV for p–ϕ are also reported in the two-body
case [212].

• In [222] a two-variable integro-differential equation is employed to study the
ϕ– and ϕ ϕ–nuclear systems. Similar to [212], the attractive two-body N–ϕ in-
teraction provided by [213] is used in the calculation and a binding energy of
9.47 MeV is found for N–ϕ , while much larger values up to EϕNN = 39.84 MeV
and EϕϕNN = 124.59 MeV are obtained for A-body systems.

• The extended SU(3) chiral quark model is used to dynamically study structures
of N–ϕ states with spin-parity JP = 3

2
− and JP = 1

2
−

, considering the channel
coupling of N–ϕ and ΛK∗ [218]. The N–ϕ interaction of both spin states is
found to be attractive in the medium range, resulting in a binding energy of
1-3 MeV for spin-1/2, while much larger values of 6-9 MeV are obtained for
spin-3/2.

• Employing the resonating-group method within the quark delocalization color
screening model, a bound state with JP = 3

2
− and mass between 1948.9 and

1957.4 MeV/c2 is found, whose main component is N–ϕ . The corresponding
binding energy is in the range of [1.6, 10.1] MeV [224].

The results obtained in this re-analysis of the p–ϕ correlation function might in-
spire direct searches for a pϕ bound state. Possible decay channels are ΛK+ or ΣK+,
both fall-apart decays in the S-wave. For now, experimental evidence is missing.
The recent ALICE measurement of the ΛK+ ⊕ΛK− correlation function [52], where
the pϕ bound state would appear as structure in the region k∗ ∈ [479, 517] MeV/c,
given the binding energy obtained in this work, shows no sign of its existence. How-
ever, the signal might be washed out, and/or other decay channels favored. Also,
no cusp at the opening of the pϕ channel is found at k∗ ∼ 529 MeV/c, indicating a
shallow coupling between the two channels. Details can be found in Appendix C.
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FIGURE 5.10: A modified version of the spin 1/2 potential without
the strongly attractive core (a1 = 0) is depicted in blue for the best-
fitting parameter combination (β = 10.4, γ = 0.0). Another version
without the TPE tail is shown in magenta for (β = 7.6, γ = 0.0),
which yields the best description of the data. The spin 3/2 and default
1/2 potential with (β = 6.9, γ = 0.0) is shown for comparison. All
potential parametrizations are obtained using mπ = 138 MeV/c2.

5.5.1 Cross-check with other potential shapes

To test the stability of the results, the same analysis is performed using the Nijmegen-
type form factor ferfc defined in Eq. 5.7 for both the spin 1/2 and 3/2 potential and
the physical pion mass only at r > 1.0 fm, as done in Ref. [233]. Even though the re-
sulting spin 1/2 scattering length is found to be in agreement with the one extracted
from the standard fit, listed in Eq. 5.12, and the β parameter is always significantly
larger than zero, the model does not well reproduce the data. The best-fitting pa-
rameter combination is β = 15.0 and γ = −0.2, corresponding to a scattering length
of apϕ

0 (s = 1/2) = (−1.62 + i · 0.02) fm. However, this variation of the model cor-
relation function can be excluded due to the large χ2

min = 21.6. Also, using only the
imaginary part of the spin 1/2 potential (β = 0) with standard settings, combined
with the default spin 3/2 potential parametrization, leads to a model correlation
function insufficient in describing the data, with χ2

min = 15.40 for γ = −6.6. Fur-
thermore, the sensitivity to the extremely attractive short-range part of the spin 1/2
potential is studied by setting a1 = 0 in Eq. 5.9, which reduces the potential strength
by about 60% in the region r∗ < 0.3 fm. The modified version (blue) is shown in
Fig. 5.10 together with the 4S3/2 (orange) and default 2S1/2 potential parametriza-
tion (red). A scattering length of apϕ

0 (s = 1/2) = (−1.56 + i · 0.00) fm, consis-
tent with those found from the standard fit, is found for β = 10.4 and γ = 0.0,
with χ2

min = 6.90, also compatible with the standard fit result. Finally, a simple
double-Gaussian form of the real part of the spin 1/2 potential is tested by set-
ting a3 = 0 in Eq. 5.9. Hence, ℜ(V1/2) is attractive or repulsive in the full r∗-
range, and the TPE tail, found in the spin 3/2 channel [233], is removed. The best-
fitting potential is characterized by β = 7.6 and γ = 0 with a χ2

min = 4.99 and
is depicted as well in Fig. 5.10 (magenta). The corresponding scattering length is
apϕ

0 (s = 1/2) = (−1.40 + i · 0.00) fm is consistent with the result obtained from the
standard fit with the TPE tail.
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These studies demonstrate the stability of the results and confirm the possible
existence of a pϕ bound state below the threshold.

5.6 Conclusions

The experimental p–ϕ correlation function [51], obtained from ALICE HM pp col-
lision data at

√
s = 13 TeV, is re-analyzed, constraining the spin 3/2 contribution

with a recently published LQCD potential [233]. This facilitates the study of the
unknown spin 1/2 channel of the p–ϕ interaction, which is currently inaccessible
on the lattice due to effects from open channels. A phenomenological complex po-
tential, whose shape is motivated by the LQCD simulation, is used for the unknown
contribution. The potential parameters are partially shared with the parametrization
of the spin 3/2 potential and fixed from a fit to the lattice data. The remaining free
parameters are determined by fitting the ALICE data with a model correlation func-
tion that correctly takes into account both the 1/2 and 3/2 spin contributions to the
p–ϕ interaction. Figure 5.8 shows the resulting model correlation functions for both
spin states individually, as well as combined, in comparison to the measurement.

The scattering parameters are calculated from the effective range expansion of
the scattering amplitude of the spin 1/2 potential. The scattering length is found to
be

apϕ
0 (s = 1/2) =

(
−1.54+0.53

−0.53(stat.)+0.16
−0.09(syst.) + i · 0.00+0.35

−0.00(stat.)+0.16
−0.00(syst.)

)
fm

and the effective range is

dpϕ
0 (s = 1/2) =

(
0.39+0.09

−0.09(stat.)+0.02
−0.03(syst.) + i · 0.00+0.00

−0.04(stat.)+0.00
−0.02(syst.)

)
fm.

The imaginary part of the potential is vanishing, however, within uncertainties, it
does not exclude the possibility of inelastic contributions expected by theory [228].
The real part of the spin 1/2 potential is attractive and strong enough to support
the formation of a pϕ bound state, as predicted by several previous theoretical cal-
culations [212, 213, 218, 222, 224, 225]. A binding energy in the range between 12.8
and 56.1 MeV is obtained. These results motivate a direct search for the pϕ bound
state and a lattice QCD simulations of the 2S1/2 channel. Additionally, calculations
that properly consider coupled channel effects, which can have a strong impact on
the p–ϕ FSI, are called for, such as the ones performed in Ref. [242]. However, the
results obtained in this study demonstrate the importance of correlation functions
for the study of bound and exotic states as an alternative to classical approaches,
such as invariant mass measurements, especially as they provide a powerful tool to
access information in the strange and charm sector.

In the future, the p–ϕ correlation function will be measured with higher statisti-
cal precision on data collected during the LHC Run-3. Figure 5.11 shows the ϕ reso-
nance, obtained from applying the same selections as in Ref. [51] on a subsample of
MB data from pp collisions at

√
s = 13.6 TeV, obtained during the 2022 period. The

limited data set of 3.2× 109 events results in a ϕ yield similar to that obtained with
the full Run-2 HM data. In addition, the first steps towards measuring the 3-body
ϕNN correlation function have been taken, with the development of a ϕNN trigger
in ALICE, which has been active during data acquisition since September 2024.
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Chapter 6

Summary

The work presented in this thesis concerns the study of hadronic interactions, espe-
cially the residual strong force among hadrons with valence quark content beyond
the light u and d quarks. While various theoretical predictions are available for such
systems, the measurements needed to constrain and test the models are limited.
Since classical scattering experiments with unstable hadrons have proven difficult
to impossible, the femtoscopy technique provides a unique tool to probe hadronic
final state interactions via correlations in momentum space. The technique is based
on the modification of the relative momentum of a pair of particles emitted close
to each other and with similar momentum, i.e., small relative momentum, which is
induced by the interaction between them. Since the measured correlation signal also
depends on the pair emission and is more pronounced if particles are emitted at a
short relative distance, colliding systems such as pp provide the ideal environment
for this kind of study. The corresponding small emission region of ∼ 1 fm makes it
possible to even obtain information on shallow interactions.

The first topic discussed in this thesis was the measurement of the correlation
function of light-flavor (π and K) and D+ mesons in pp collisions at

√
s = 13 TeV,

recorded with the ALICE detector at the LHC, which provides excellent particle
identification capabilities needed for these kinds of studies. The raw correlation
functions of same- and opposite-charge DK and Dπ pairs were corrected for all
known background contributions related to the finite purity and fraction of primary
signal particles to the single-particle samples, as well as auto-correlations from pairs
emitted in jet-like structures. The resulting genuine correlation functions provide
first experimental results in the charm sector, preceded only by the measurement
of the pD− correlation function [53]. They were compared to the available theoreti-
cal predictions of the strong interaction, which are all based on chiral effective field
theory and constrained by LQCD simulations. In the D–K case, the data lack the sta-
tistical precision to discriminate between the different models. The D–π correlation
functions, on the other hand, are well described by the Coulomb-only interaction
and are incompatible with the predictions of the residual strong interaction. More-
over, taking advantage of their relatively good statistical precision, the correlation
functions were also used to determine the scattering length of the Dπ(I = 1/2) and
Dπ(I = 3/2) channels, respectively. Since the latter contributes to both the same-
and opposite-charge combination, a simultaneous χ2 minimization was performed,
parameterizing each channel with a Gaussian-type potential of variable depth. The
scattering lengths were derived from the scattering amplitude of the resulting poten-
tials using the effective range expansion. They were found to be negligible in both
isospin channels, and a deviation of > 5σ from the predicted values was observed in
the I = 1/2 channel. As expected from heavy-quark spin symmetry, similar results
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were obtained in an analogous and independent analysis of the same- and opposite-
charge correlation functions involving D∗ and light-flavor mesons, strengthening
the experimental results on the D–K and D–π interaction presented in this thesis.
However, possible explanations for the discrepancy with theory were also explored,
including a much larger source size for pairs involving charm mesons in compar-
ison to only light-flavor particles, which would lead to a more shallow measured
femtoscopic signal for a given interaction strength. Nevertheless, the experimental
results challenge the current understanding of the interaction of charm and light-
flavor mesons and motivate more measurements in the sector as well as new theo-
retical approaches. Moreover, the data can be used to constrain the free parameters
of the available models, which are currently sloley derived from LQCD simulated
results.

The second topic of this thesis was the re-analysis of the p–ϕ correlation function
measured by ALICE in pp collisions at

√
s = 13 TeV and obtained as a result of

my master thesis. The spin 3/2 state of the p–ϕ interaction was constrained by the
corresponding simulated LQCD potential [233] in order to obtain information about
the spin 1/2 state of the interaction, which is currently inaccessible on the lattice
due to the effects from open channels. The simulated potential is characterized by
an attractive two-pion exchange tail at medium to large distances and an attractive
core. A similar shape was used for the real part of the complex phenomenological
interaction potential of the spin 1/2 state, consisting of a Gaussian core of variable
depth β ∈ R as well as an attractive two-pion exchange tail, identical to the one
observed in the spin 3/2 state. The imaginary part, which accounts for possible
inelastic contributions mediated by a 2nd-order kaon exchange, was parametrized
by a Yukawa-type potential scaled by γ < 0. Both spin contributions were properly
combined into a model correlation function and compared to the data in order to de-
termine the free parameters β and γ of the spin 1/2 potential in a χ2 minimization.
A strongly attractive Gaussian core, i.e., a fully attractive real part of the potential, as
well as a vanishing imaginary part of the potential were found to best describe the
measured correlation function. This potential is strong enough to support the for-
mation of a pϕ bound state, predicted by various theoretical models. The binding
energy was determined to be between 12.8 and 56.1 MeV. Furthermore, the stability
of the result was tested by applying several modifications to the spin 1/2 potential
shape, including the removal of the Gaussian core or the two-pion exchange tale,
respectively. Since ΛK+ is a possible decay channel of the bound state, the corre-
sponding correlation function was investigated in the relevant k∗ region, where the
bound state would appear as structure. However, no sign was found, motivating a
direct search for it in other channels, for example, by means of invariant-mass mea-
surements. Moreover, a LQCD simulation of the interaction potential in the 2S1/2
channel is called for.

The results of these works show the importance and relevance of femtoscopic
analyses in deriving information on the FSI of pairs that cannot be studied exper-
imentally by other means, even providing clues to the possible existence of exotic
states. Experimental correlation functions are essential to constrain and test the
available theoretical models and to help advance the field of hadronic physics. Es-
pecially in the charm sector, there is great potential as the statistical precision of the
data is improving and more exotic systems become accessible.
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Appendix A

The Lednický–Lyuboshits
approach

The Lednický–Lyuboshits approach [70] is an established and simplistic method to
derive the scattering parameters of the strong interaction analytically, assuming an
isotropic particle emission with a Gaussian profile. The s-wave scattering ampli-
tude f (k∗) that enters into the asymptotic wave function is expressed in terms of
the effective range expansion, Eq. 2.30, and the Koonin-Pratt Eq. 2.5 can be solved
analytically. For uncharged non-identical particles this results in

CLL(k∗) = 1 +
1
2

∣∣∣∣ f (k∗)
r0

∣∣∣∣2 (1− d0

2
√

πr0

)
+

2ℜ f (k∗)√
πr0

F1(2k∗r0)−
ℑ f (k∗)

r0
F2(2k∗r0),

(A.1)
where F1(2k∗r0) and F2(2k∗r0) denote analytical functions from the Gaussian ap-
proximation of the source and are defined as

F1(z) =
1
z

e−z2
∫ z

0
ex2

dx (A.2)

and
F2(z) =

1
z
(1− e−z2

). (A.3)

The term
(

1− d0
2
√

πr0

)
is a correction factor, that was introduced by Lednický in order

to account for small sources and enable the use of the model of outside HI physics.
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Appendix B

Additional material on the analysis
of the interaction
among D+ and light-flavor mesons

B.1 Event-mixing

The event-mixing, used to obtain Nmixed, is conducted only among events with sim-
ilar z position of the primary vertex and multiplicity [184], to avoid a possible bias
from acceptance effects of the detector system.

For the z vertex position, a bin width of 2 cm is chosen, and the multiplicity is
grouped in classes of [1− 4], [5− 8], [9− 12], [13− 16], [17− 20], [21− 24], [25−
28], [29− 32], [33− 36], [37− 40], [41− 44], [45− 48], [49− 52], [53− 56], [57−
60], [61− 64], [65− 72], [65− 72], [73− 76], [77− 80], [81− 84], [85− 88], [89−
92], [93− 96], [97− 100], [> 101]. The latter is estimated by using the reference mul-
tiplicity Ref08 |η| < 0.8, which is shown in the left panel of Fig. B.1. The distribution
of the z vertex position is shown on the right panel of the same figure.

B.2 Weighting of the mixed-event distribution

In order to account for the different multiplicity-dependence of the number of pairs
in the same- and mixed event, the mixed-event distributions are re-weighted in
each multiplicity bin to have the same statistical weight as the same-event distri-
bution. The top left panel of Figs. B.2, B.3, B.4 and B.5 shows the amount of D−K+,
D+K+, D−π+ and D+π+ pairs with k∗ ∈ [0.2, 0.9] GeV/c per multiplicity bin for
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FIGURE B.1: The left panel shows the reference multiplicity Ref08 in
|η| < 0.8. The right panel depicts the z-vertex distribution for HM pp
collisions. Both observables are used for the event mixing.
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FIGURE B.2: (Top left) Multiplicity distribution in mixed and same
event for the D−K+ correlation function before and after the re-
weighting, (top right) mixed event k∗ distribution before and after the
re-weighting, (bottom left) the resulting Dπ correlation function before
and after the re-weighting and (bottom right) the ratio of the two.

the same- (green) and mixed-event (red) distribution. The multiplicity distribution
of the mixed event after the re-weighting is shown in blue. As can be seen, they
are well in agreement. The top right panel of the same figures shows the effect on
the multiplicity-integrated mixed-event distribution, and the effect on the respective
correlation function is depicted in the bottom left panel. As can be seen from the ra-
tio between the two, shown in the bottom right panel, the effect for Dπ and DK is
negligible.

B.3 Detector effects

The experimental correlation function can be affected by the finite resolution of the
momentum measurement, especially in the sensitive femtoscopic region of k∗ <
200 MeV/c. The effect can be studied by comparing k∗Reco, the relative momentum of
pairs reconstructed within the ALICE detector, and the one obtained from the true
single-particle momenta at the collision vertex, k∗Gen, using HF MC generated data.
The resulting momentum-resolution matrices are shown exemplarily in Figs. B.6a
and B.7a for same-charge DK and Dπ pairs and are identical for opposite-charge
pairs. As can be seen, the distribution is symmetrical, and the entries accumulate
closely around the identity line. A potential impact of the finite momentum reso-
lution of the ALICE detector on the analysis is further investigated by transform-
ing a model correlation function to the reconstructed momentum basis using the
momentum-resolution matrices. Figure B.6b and B.7b show such correlation func-
tions of D+K+ ⊕D−K− and D+π+ ⊕D−π−, respectively. They are computed with
CATS [73] with (pink) and without (red) accounting for detector effects. The theory
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FIGURE B.3: (Top left) Multiplicity distribution in mixed and same
event for the D+K+ correlation function before and after the re-
weighting, (top right) mixed event k∗ distribution before and after the
re-weighting, (bottom left) the resulting Dπ correlation function before
and after the re-weighting and (bottom right) the ratio of the two.
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FIGURE B.4: (Top left) Multiplicity distribution in mixed and same
event for the D−π+ correlation function before and after the re-
weighting, (top right) mixed event k∗ distribution before and after the
re-weighting, (bottom left) the resulting Dπ correlation function before
and after the re-weighting and (bottom right) the ratio of the two.
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FIGURE B.5: (Top left) Multiplicity distribution in mixed and same
event for the D+π+ correlation function before and after the re-
weighting, (top right) mixed event k∗ distribution before and after the
re-weighting, (bottom left) the resulting Dπ correlation function before
and after the re-weighting and (bottom right) the ratio of the two.

curves are obtained using the scattering lengths predicted by the model of B. Huang
et al. [196], listed in Tab. 4.15 and 4.14. Only at small k∗ a deviation is visible. Such
small relative momenta, however, are not resolved by the data. Therefore, no further
correction is applied.

B.4 Contribution to the raw correlation functions from D
mesons from beauty decays

The correlation of primary light-flavor mesons with non-prompt D+ mesons is stud-
ied by employing the same approach used to determine the contribution from D+

mesons from D∗ decays, presented in Sec. 4.3.1. As no experimental data is available
on the Bπ and BK interaction, it is assumed to be dominated by the Coulomb force,
as found for D∗π and D∗K [186]. The decay kinematics of the B+ → D+ + X decay
is simulated and used to map the model BK and Bπ correlation functions into the
one of the daughter D+ and light-flavor mesons, respectively. The transformation
matrices are shown in the left panel of Fig. B.9 and B.8. As the available phase space
for the decay is much larger than in the D∗+ → D+ case, the information on the
interaction between beauty and light-flavor hadrons is lost, leading to a flat corre-
lation. This can be seen by comparing the solid lines in the right panel of the same
figure, which shows the genuine BK and Bπ correlation functions obtained from the
Coulomb interaction potential, to the correlation functions after the mapping to the
DK and Dπ system, which are depicted as dashed lines.
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Appendix C

The ΛK+correlation function

The ΛK− ⊕ ΛK+ and ΛK+ ⊕ ΛK− correlation functions were studied in HM trig-
gered pp collisions at

√
s = 13 TeV, measured by ALICE [52]. While the former pro-

vided crucial information on the properties and nature of the Ξ(1620) state, which
strongly couples to the measured pair, the latter, which I was directly involved in
analyzing, is particularly interesting to this thesis as possible decay channel of the
p–ϕ bound state.

The analysed events are selected using the same criteria as the ones given in
Tab. 4.1 and explained in detail in Sec. 4.1. Also, the kaon candidate selection is
equivalent to that in Sec. 4.1. The criteria are listed in Tab. 4.2 and result in a purity
of > 99% and the primary fraction is found to be∼ 94%. The Λ candidates are recon-
structed from the weak decay Λ → pπ− (BR = (63.9± 0.5)% [122]) and its charge
conjugate, characterized by a relatively long decay length of cτ = (7.89± 0.06) cm,
making them V0 candidates. The kinematic and topological selection criteria related
to the reconstruction of the Λ and Λ resonance follow Ref. [123] and are listed in
Tab. C.1. Each V0 is built from the invariant mass of two opposite charged tracks,
which are reconstructed globally due to the better spatial resolution and from at
least 70 clusters in the TPC. The daughter tracks are required to lie within a pseu-
dorapidity interval of |η| < 0.8 and have a minimum distance of closest approach
to the primary vertex of 0.05 cm. To reject Λ candidates with daughter tracks stem-
ming from pile-up events, either the time information of the TOF is used to identify
the bunch crossing in which the particle was produced, or the tracks need a hit in
the SPD or SSD layers of the ITS. A loose PID selection employing only information
provided by the TPC of |nσ,TPC(p, π)| < 5 is applied to maximize the efficiency. The
position and properties of the Λ decay vertex are restricted by several selection cri-
teria, which were already introduced in Sec. 3.2.2. Additionally, the reconstructed
Λ candidate need a transverse momentum pT > 0.3 GeV/c to reduce the contri-
bution of fake candidates and lie within 4 GeV/c2 around their nominal mass of
MΛ,PDG = (1115.683± 0.006) MeV/c2 [122]. Due to the rather wide PID selection
of the daughter tracks, residual pions contaminate the proton sample. When paired
with the charge-conjugate daughter pion, they lead to the misidentification of K0

S as
Λ candidates. This is accounted for by a cut in the invariant mass spectrum, obtained
under the π+–π− daughter hypothesis. The resulting invariant mass spectrum is
fitted with the sum of two Gaussian functions, which describe the signal S, and a
spline function with 6 knots, which emulate the combinatorial background B. A to-
tal yield of 99.1× 106 and 93.6× 106, and purities of 94.2% and 95.1% are obtained
for Λ and Λ, respectively. The purities are determined by the ratio S/(S + B). The
primary fraction of the sample is found to be 57.6%, while 23.2% of Λ candidates are
secondary particles from the weak decays of neutral and charged Ξ baryons. The
remaining 19.2% are associated with Σ0 particles. These fractions are determined
by following the procedure described in Ref. [46]. The raw correlation functions of
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Selection criterion Value
Daughter selection criteria

Track-type global tracks
Pseudorapidity |η| < 0.8
TPC cluster nTPC > 70
Distance of closest approach |DCA| > 0.05 cm
Particle identification |nσ,TPC(p, π)| < 5
Out-of-bunch pile-up removal Hit in ITS SPD or SSD or TOF timing

V0 selection criteria
Transverse momentum pT > 0.3 GeV/c
Λ decay vertex |ivertexΛ | < 100 cm with i = x, y, z
Transverse radius of the decay vertex 0.2 < rxy < 100 cm
DCA of daughter tracks at the decay vertex σvertex < 1.5 cm
Cosine of pointing angle ff cos θp > 0.99
K0 rejection 0.48 < Mπ+π− < 0.515 GeV/c2

Λ selection |Mpπ −MΛ,PDG| < 4 GeV/c2

TABLE C.1: Λ selection criteria.
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16 MeV/c wide k∗ intervals in the main panel. The sub-panel shows
the k∗ region of interest for a possible p–ϕ bound state decay in a finer
bin width of 4 MeV/c.
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Λ–K+ and Λ–K− are obtained from Eq. 2.10, choosing k∗ ∈ [240, 340] MeV/c as nor-
malization region. As they are compatible within the statistical uncertainties, they
are combined to ΛK+⊕ΛK−, with a total of 16.78× 107 pairs out of which 4.45× 106

contribute to the correlation signal in the femtoscopic region of k∗ < 200 MeV/c. The
systematic uncertainties of the raw data are estimated by simultaneously varying the
selection criteria of kaon and Λ candidates. Each set of variations and their individ-
ual amount is chosen to not induce a modification larger than ±10% to Nsame within
k∗ < 200 MeV/c in order to retain the statistical significance. This leads to a relative
systematic uncertainty of 2− 4% in the lower k∗ bins. The resulting ΛK+⊕ΛK− cor-
relation function is shown in Fig. C.1. The k∗ value of the data points shown in the
main panel is evaluated in intervals of 16 MeV/c width. The sub-panel shows the
region of k∗ ∈ [479, 517] MeV/c in finer binning. It corresponds to the k∗-interval,
where a p–ϕ bound state would appear as structure, given the binding energy of
12.8 to 56.1 MeV obtained from the analysis presented in Chapter 5. Even though
a finer bin width of 4 MeV/c is chosen, no signs of a p–ϕ bound state, decaying
into ΛK+ can be observed. The signal might, however, be washed out, and other
decay channels favored. Also, no cusp at the opening of the p–ϕ channel is found at
k∗ ∼ 529 MeV/c, indicating a shallow coupling between the two channels. All rel-
evant k∗ values related to the p–ϕ channel and bound state in the ΛK+ correlation
function can be obtained from Eq. 2.38.
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