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Zusamenfassung

Diese Arbeit beschäftigt sich mit der Untersuchung der Wechselwirkung zwischen Λ
Hyperonen und Protonen. Das Verständnis dieser Wechselwirkung ist elementar zur
Beschreibung verschiedener physikalischer Systeme z.B. von Neutronensternen. Der
Zusammenhang zwischen der Wechselwirkung von Hadronen und Eigenschaften des
Neutronensterns wird in der Einleitung näher erläutert. Die Methode, die zur Unter-
suchung derWechselwirkung von Protonen und ΛHyperonen verwendet wurde ist Fem-
toscopy. Femtoscopy basiert auf der Messung von Teilchenpaaren bei kleinen Rela-
tivimpulsen. Dadurch ist es experimentell möglich eine Zweiteilchen-Korrelationsfunktion
zu bilden. Dies wird in dieser Thesis zu Beginn näher erläutert. Durch verschiedene
Annahmen kann die experimentell bestimmte Zweiteilchen-Korrelationsfunktion mit
einem mathematischen Formalismus verglichen werden, der die Wechselwirkung der
Hadronpaare in Form von Streulängen und effektiven Radien beinhaltet. Somit kön-
nen verschiedene Vorhersagen von Theorien oder Modellen mit den gemessenen Daten
getestet werden. In dieser Arbeit wurden vor allem neueste Rechnungen einer chi-
ralen effektiven Feldtheorie berücksichtigt. Im ersten Teil dieser Thesis wurde eine
Studie der Zweiteilchen-Korrelationfunktionmit Proton-Proton und Proton-Λ Paaren am
HADES Experiment durchgeführt. Diese Paare wurden in Reaktionen von p+Nb bei
einer kinetischen Protonenergie von 3.5 GeV produziert. Zu Beginn wurden alle exper-
imentellen Korrelationsfunktionen für verschiedene Detektoreffekte korrigiert, wobei
der Effekt der endlichen Impulsauflösung von HADES und des sog. “Track mergings”
die signifikantesten Einflüsse darstellten. Durch Vergleich der experimentellen Daten
mit Modellrechnungen konnte die Quellgröße des Systems für Proton-Proton Paare bes-
timmt werden. Zusammen mit UrQMD Simulationen war es möglich die Quellgröße
für Proton-Λ Paare im Modell zu fixieren. Dies ermöglichte eine Reduktion des freien
Quellgröße Parameters. Dadurch basiert die theoretische Korrelationsfunktion nur auf
Parametern der Wechselwirkung. Es zeigt sich, dass die Proton-Λ Korrelationfunktion
sensitiv auf den Wert der Streuparameter reagiert. Um dies zu sehen wurden die “lead-
ing order” (LO) und “next-to-leading-order” (NLO) Parameter getestet, die sich in der
Vorhersage des totalen Wirkungsquerschnitts für kleine Impulse des Λ Hyperons stark
unterscheiden. Die vorhandene Paarstatistik war allerdings nicht ausreichend um eine
Separation zwischen beiden Parametersets vorzunehmen.
Im zweiten Teil dieser Arbeit wurde die Analyse für Kollisionen von Protonen bei einer
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Schwerpunktsenergie von 7 TeV wiederholt. Die Kollisionen wurden am Large Hadron
Collider durchgeführt und die Daten durch das ALICE Experiment aufgezeichnet. In
dieser Analyse wurde die Quellgröße durch einen simultanen Fit der Proton-Proton und
Proton-Λ Korrelationfunktionen bestimmt. Dabei wurde für die Wechselwirkung des
Proton-ΛPaars dieNLOParametrisierung verwendet. NachBeedndigung des Fits wurde
die LO Parametrisierung angenommen und mit dem Fitresultat für NLO verglichen um
einen möglichen Unterschied zu untersuchen. Auch hier zeigte sich, dass die Korrela-
tionfunktion sensitiv auf den Wert der Streuparameter reagiert. Allerdings reichte auch
in diesem Fall die vorhandene Paarstatistik nicht aus um eine definitive Unterscheidung
vorzunehmen.
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Preface

In this thesis the interaction of Λ Hyperons with protons is studied. This interaction is
important to understand various physical systems e.g. the behavior of neutron stars. The
connection of the hadron interaction and properties of neutron stars is discusses in more
details in the introduction of the thesis. The method with which the interaction is inves-
tigated is femtoscopy. It is based on the measurement of pairs at small relative momenta.
This allows to establish a two-particle correlation function. This is discussed in more
details at the beginning of the thesis. Making different approximations allows to com-
pare the experimental correlation function with one based on a mathmatical framework,
which includes the interaction parameter of the particle pair. This allows to test and com-
pare different predictions from theories or models. In this thesis recent calculations of a
chiral effective field theory is tested. In the first part of the thesis a study of a two-particle
correlation function of proton-proton and proton-Λ pairs at the HADES experiment is
performed. These pairs were produced in reaction of p+Nb, where the proton had a ki-
netic energy of 3.5 GeV. At the beginning, all experimental correlation function were
corrected for various detector effects. Here the finite momentum resolution of HADES
and the effect of “track merging” played the most significant role. A comparison of the
proton-proton correlation function with a model calculation allowed the extraction of the
source size of the system. This allowed together with help of UrQMD simulations to fix
the source size of proton-Λ. This reduced the free source size parameter of proton-Λ
and the theoretical correlation function depends then only on the parameters of the in-
teraction. It showed up that the theoretical correlation function is sensitive to the values
of the interaction parameter. To see this the parameter sets of “leading-order” (LO) and
“next-to-leading-order” (NLO) were tested. These two expansions differ quite signifi-
cantly in the predictions of the total cross section for small Λ momenta. The collected
pair statistics was not sufficient to distinguish between both predictions.
In the second part of the thesis the analysis was repeated in a collision system of protons
at a center of mass energy of 7 TeV. The collisions were recorded by the ALICE exper-
iment. In this analysis the source size parameter was determined by a simultaneous fit
of the proton-proton and proton-Λ correlation function. For the interaction of proton-Λ
pairs the NLO parameter set was chosen. After the fit was performed the LO parameters
were plugged in to the theoretical correlation function to explore possible differences.
It showed up, that the correlation function is sensitive to the values of the scattering pa-
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rameter. However, also there the collected pair statistics was not sufficient to draw a
definite conclusion.
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1
Introduction

Our current knowledge of the fundamental interactions between all observed particles
is incorporated in the Standard model of particle physics. This model is based on the
symmetry group 𝐺SM = 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 , where 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 corre-
sponds to the electroweak sector of the standard model governing weak and electromag-
netic interactions e.g. the binding of electrons on atomic nuclei. The standard model was
experimentally completed with the finding of the Higgs boson at the Large Hadron Col-
lider (LHC) [Aad+12; Cha+12], which is responsible for the generation of mass for the
fundamental constituents of the standard model[Hig64]. The 𝑆𝑈(3)𝐶 color symmetry
is the symmetry of quantum chromodynamics (QCD), the theory of strong interactions.
Since the symmetry is of non-Abelian nature QCD is very rich in phenomena and a re-
search field by itself. QCD is constructed on the basis of fermion fields, the quarks and
bosonic mediators of the strong force, the gluons. Gluons appear automatically in the
theory if a local gauge principle is required. The Lagrangian of QCD reads:

ℒ = ̄𝜓(𝑖𝛾𝜇𝐷𝜇 − 𝑚)𝜓 − 1
4𝐺𝜇𝜈𝑎𝐺𝜇𝜈𝑎 , (1.1)

where 𝜓 are the fermionic quark fields and 𝐺𝜇𝜈𝑎 is the tensor including the gluon fields.
The quarks are distinguished by their flavor, u=up, d=down, s=strange for the light
quarks. They come in three colors 𝑁𝐶 = 3 since they transform in the fundamental
representation of 𝑆𝑈(3)𝐶 . The mass term 𝑚 is the bare mass of the quarks. The indices
𝑎 are introduced by the color symmetry. Contrary to quantum electrodynamics (QED),
where only one photon is present the theory includes 𝑁2

𝐶 −1 = 8 gauge boson fields due
to the additional quantum number “color” and they transform under the adjoint repre-
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Chapter 1. Introduction

sentation of the symmetry group. The derivative 𝐷𝜇 is a covariant derivative and must
include the gluon fields due to the locality of the symmetry. This Lagrangian is consis-
tent with prinicples of renormalizability, but theoretically an additional term would be
allowed ∼ ̃𝐺𝜇𝜈𝑎𝐺𝜇𝜈𝑎, where one gluon tensor is contracted with the Levi-Civita symbol
𝜖𝜇𝜈𝜌𝜎. Such a term violates the combination of charge (C) and parity (P) CP symmetry.
It is fully allowed by all principles but seems not to be realized in nature and the small-
ness of this term is an open question. Especially, because the electroweak force does
violate CP symmetry. Contrary to QED, which is an Abelian theory, the gluon fields
𝐴𝑎

𝜇 include self-couplings:

𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝐴𝑎

𝜈 − 𝜕𝜈𝐴𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 , (1.2)

mediated by the term 𝑔𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐, where 𝑔 is the flavor independent coupling constant
and 𝑓𝑎𝑏𝑐 is the structure constant of 𝑆𝑈(3)𝐶 . Thus gluons can interact among themself
because they carry the gauge symmetry charge “color” and this has strong implications
on the resulting physics observables. This is very contrary to QED. In Eq. (1.1) one deals
with massless gauge bosons, thus a static local potential would look Coulomb like ∼ 1/𝑟
at small quark separations. The energy for breaking up a quark pair would be finite in
this case. However, quarks and gluons were never observed isolated in any experiment.
Something must prevent this and here the gluon self-interaction comes into play. A hint
is deduced at largemomenta transfers or short distances in a perturbative expansion of the
quantized Eq. (1.1). Higher order corrections lead to a running of the coupling constant
𝛼(𝑄) ≡ 𝑔(𝑄)2/(4𝜋). At large momenta the coupling between quarks becomes small
and for lower momenta it increases. This is a reflection of the non-Abelian nature of the
underlying symmetry of QCD. This prediction was confronted with many experimen-
tal measurements displayed in Fig. (1.1) [Bet07]. It is said that QCD is asymptotically
free, which means at large momenta or short distances quarks and gluons are effectively
free and a perturbative treatment of Eq. (1.1) is possible. Since the coupling constant
increases for smaller momenta 𝑄 quarks are confined into hadrons. These hadrons are
colorless and transform as singlet under 𝑆𝑈(3)𝐶 . Basically two classes of hadrons can
be distinguished, baryons, which are hadrons with three quarks inside and mesons con-
taining a quark anti-quark pair. However, any quark configuration which is color neutral
is allowed and experimental searches for hadrons containing four or more quarks are
ongoing [Aai+15; Aba+16]. The establishment of confinement as a rigor mathematical
proof is still an unsolved issue. It is a millenium problem awarded $1 million dollar for
its solution (together with the proof that the theory has a mass gap Δ > 0 and “chiral
symmetry breaking”) 1 by the ClayMathematics Institute. Due to “dimensional transmu-
tation” the dimensionless running coupling constant is connected with a dimensionful
mass scale Λ𝑄𝐶𝐷 ,an intrinsic scale of the theory. This mass scale sets the scale for the

1http://www.claymath.org/millennium-problems/yang%E2%80%93mills-and-mass-gap
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Figure 1.1: Running coupling from QCD compared to measurements. Taken from
[Bet07].

validness of perturbative techniques. It is of the order of Λ𝑄𝐶𝐷 ∼ 200 MeV, which is
the size of hadrons Λ−1

𝑄𝐶𝐷 ∼ 1 fm. For smaller momentum transfers, where a pertur-
bative treatment of QCD is not applicable anymore one has to rely on effective theories
or models. This is actually the scale of nuclear physics. In such theories the fundamen-
tal degrees of freedom, quarks and gluons, are integrated out into hadrons. The force
carrier between baryons is then mediated by mesons. If the masses in Eq. (1.1) vanish
then the Lagrangian is invariant under the chiral transformation 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅,
where 𝐿, 𝑅 stand for left and right handedness of the fields (for three light quark fla-
vors u,d,s). The left and right handed part of the fields can pe projected out with the
operator 𝑃𝑅/𝐿 = 1

2(1 ± 𝛾5). This symmetry is also adopted for the low energy limit
in the effective theories. According to Weinbergs proposal, one has to write down a
Lagrangian which is fully consistent with all symmetry principles of QCD [Wei79] for
the construction of effective theories. Chiral symmetry is broken spontaneously and ex-
plicitly. Explicitly, because the quarks have a finite mass. The spontaneous breakdown
of the symmetry leads to the appearance of Goldstone bosons, which are identified with
pions, kaons and the eta meson. Ideally, they would be massless by breaking a global
symmetry according to Goldstones theorem. The explicit symmetry breaking of QCD
makes the Goldstone boson massive. The consequence of the spontaneous breakdown
of chiral symmetry to the groundstate of QCD explains the mass of baryons. The mass
term in Eq. (1.1) is for the bare mass of the quarks and of the order of 5-10 MeV due to
the coupling to the Higgs field. But baryons containing quarks have masses of the order
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Chapter 1. Introduction

of 1 GeV. If the chiral symmetry is broken the quarks propagate through a chiral con-
densate. This leads to quarks dressed by their interactions leading to an increase in mass
which explains the mass of baryons. Since pions are approximate Goldstone bosons a
large mass gap between them and other hadrons exists e.g. to the mass of the 𝜌 meson.
This separation of scales suggests an expansion in the two scales 𝑄/Λ𝜒 where 𝑄 ∼ 𝑚𝜋
and Λ𝜒 ∼ 𝑚𝜌 [ME11], where Λ𝜒 is the chiral-symmetry breaking scale.
Another approach to solve Eq. (1.1) in the strongly coupled regime is a numerical treat-
ment of the Lagrangian on a discrete (Euclidean) space-time lattice. This is the approach
of lattice QCD. The grid is chosen with a finite spacing 𝑎. Obervables calculated on this
lattice are in the end extrapolated to the continuum by requiring 𝑎 → 0. An example
of the outcome of such a calculation is shown in Fig. 1.2 [Lus03]. It displays the spec-
troscopy of hadrons from a lattice QCD calculation as black points and the experimental
measurement as horizontal lines. They agree quite well. To summarize, at large mo-
mentum transfer QCD is a perturbative theory in terms of the strong coupling constant
𝛼𝑆, the relevant degrees of freedoms are quarks and gluons. For low energy, quarks and
gluons are confined to hadrons. Thanks to a separation of scales QCD is in this energy
regime an expansion in soft modes, set by the pion scale 𝑄 ∼ 𝑚𝜋 over hard modes Λ𝜒,
a scale where the chiral symmetry breaks down.
QCD is also explored in its thermodynamical properties. Basically two phase transi-

Figure 1.2: Comparison of predictions from lattice QCD (points) to experimental results
(horizontal lines). Taken from [Lus03].

tions immediately catch the eye. Firstly, since QCD is an asymptotically free theory for
large energies 𝑄 a phase separation between hadrons and free quarks and gluons seems

– 4 –



more than natural. Secondly, a feature of QCD at low energies is the spontaneously
broken QCD vacuum, which leads to the generation of non-perturbative quark masses.
Thus, if the system is heated up the quarks turn more and more into bare quarks and the
symmetry is restored. The breakup into quarks and gluons happens around the intrinsic
energy scale of QCD Λ𝑄𝐶𝐷. Thermodynamically, the system is governed by the matter
equation of state (EoS). The EoS interrelates thermodynamic variables, which describe
the system in the equilibrium state. To describe QCD matter the phases are explored
in terms of the temperature 𝑇 and chemical potential 𝜇𝐵. The phase diagram of QCD
matter is displayed in Fig. 1.3.
The phase diagram is explored experimentally by colliding two heavy ions at large en-
ergies. Facilities where experiments of this kind are conducted are the Large Hadron
Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC). The paradigm of such
collisions is, that due to the high energy the nucleons inside the nuclei are melting into
deconfined quarks and gluons during sthe collision and a quark gluon plasma state is
formed. This state cools down and hadronizes. The final hadron spectra are studied
e.g. for anisotropies in the azimuthal angle to constrain properties of the QGP like its
viscosity. RHIC with its beam energy scan is also searching for the critical point in the
phase diagram e.g. by indications of strong fluctuations of proton yields. Because of

Figure 1.3: Phase diagram of QCD in terms of the temperature 𝑇 and chemical potential
𝜇𝐵. Taken from [FH11].

the non-Abelian nature of QCD, the phase diagram is quite rich in structures. For small
chemical potentials 𝜇𝐵 → 0 and large temperatures 𝑇 ≫ Λ𝑄𝐶𝐷 quarks and gluons are
deconfined. Keeping 𝜇𝐵 fixed and decreasing the temperature one ends in the hadron
gas phase by a continuous cross over. The cross over temperature is of the order of
𝑇𝐶 = 170 MeV. This result was actually obtained by lattice-QCD simulations, which
uses as microscopic description the true QCD Lagrangian. Unfortunately, lattice-QCD
suffers from a sign problem for finite chemical potentials and is for this reason hard to
apply for finite baryon densities. Otherwise the whole phase diagram could be calculated
by first principles. One has to rely on effective model calculations for the other regions.
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Chapter 1. Introduction

At finite chemical potentials and temperatures the quark gluon and hadronic phase are
separated by a phase boundary, which is of first order. The phase boundary is concluded
with a critical point. At very large 𝜇𝐵 and moderate to low temperatures the quarks can
be correlated in Cooper pairs. This actually leads to a superconducting phase of quarks
in quark matter.

1.1 Neutron stars, equation of state, gravitational waves
In Fig. 1.3 the phase diagram of QCDmatter is shown. Neutron stars are very heavy and
compact objects and the temperature in the interior is rather low. This locates them on
a very different area of the QCD phase diagram compared to heavy-ion experiments of
LHC and RHIC and new insights into matter properties can be gained by studying this
objects. Recently, very heavy neutron stars were observed, PSR J0348+0432 and PSR
J1614–2230 [Dem+10; Ant+13], which have masses around twice the solar mass 𝑀⊙.
This actually sets very strict limits on the Equation of state for the neutron star matter
and appears a challenge for nuclear physics to describe such heavy stars. First of all, it
is interesting how the EoS is connected with the mass of the star. A relation of this kind
was established by Tolman, Oppenheimer and Volkoff (TOV) [OV39; Tol39]. The TOV
equation is derived for an isotropic matter distribution in hydrostatic equilibrium. The
hydrostatic equilibrium ensures that the configuration is constant in time. This means
that the matter inside the star counter balances its tendency to gravitationally collapse.
The TOV equation reads:

𝑑𝑝
𝑑𝑟 = −𝐺𝜖(𝑟)𝑚(𝑟)

𝑐2𝑟2 (1 + 𝑝(𝑟)
𝜖(𝑟) ) (1 + 4𝜋𝑟3𝑝(𝑟)

𝑚(𝑟)𝑐2 ) (1 − 2𝐺𝑚(𝑟)
𝑐2𝑟 )

−1
, (1.3)

where 𝑝(𝑟) is the pressure, 𝜖(𝑟) the energy density and 𝑚(𝑟) the mass:
𝑑𝑚
𝑑𝑟 = 4𝜋𝑟2𝜖(𝑟) . (1.4)

A relativistic treatment of gravity is necessary because neutron stars are rather small
objects. The Schwarzschild radius for a two solar mass object is:

𝑟 = 2𝐺𝑀
𝑐2 ≈ 6 km . (1.5)

The neutron star radii are of the order of 10 km, so rather close to the Schwarzschild
radius and close to a black hole configuration. Thus Newtonian mechanics is not a good
approximation anymore. The coupled equations are solved by the input of the EoS 𝑝(𝜖).
An example would be a polytropic equation of state, where the energy density is directly
connected to the pressure:

𝑝 = 𝐾𝜖𝛾 . (1.6)
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1.1. Neutron stars, equation of state, gravitational waves

Such an EoS would be realized e.g. for pure neutron matter. The maximal reachable
mass is around 𝑀 ≈ 0.7𝑀⊙ in this case. Thus, the Fermi pressure alone is able to
counterbalance significantly the gravitational force. However, to reach a star mass of
around two solar masses one can see the importance of interactions. An integration of the
TOV equation with a polytropic EoS of Eq. (1.6) is performed to visualize the influence
of the EoS to the neutron star properties. To do this the polytropic EoS is initialized with
three different values of the constant 𝐾. The larger the 𝐾 value becomes, the stronger
the internal pressure grows with density. For the calculations an index 𝛾 = 5/3 is
chosen, which is e.g. realized in a non-relativistic electron gas (without electromagnetic
interactions). The geometrized unit system 𝐺 = 𝑐 = 1 is used for the calculation. In
this units e.g. the mass of the sun is measured in km 𝑀⊙ = 1.48 km. To perform the
calculations a form of the energy density of the neutron star matter is needed, which is
deduced from the thermodynamic relation (𝑑𝑄 = 0):

𝑑𝑈 = −𝑝𝑑𝑉 → 𝑑 ( 𝜖
𝜌) = −𝑝𝑑 (1

𝜌) → 𝜖 = ( 𝑝
𝐾 )

1/𝛾
+ 𝑝

𝛾 − 1 , (1.7)

where the integration constant was set to one (and the EoS (1.6) used). With the known
energy density the mass of the star can be calculated. The calculation stops until the
pressure turns negative because then gravity wins and the star collapses. This defines
the maximum mass 𝑀 and radius 𝑅 of the star. In Fig. 1.4 the maximum mass ver-
sus the neutron star radius is shown. Also properties of the star in terms of the central
(𝑟 → 0) density 𝜌𝑐 or pressure 𝑝𝑐 are displayed (which are anyway connected via the
EoS). One can see the expected behavior. The largest value of 𝐾 produces the stiffest
EoS (blue lines). This also means that the star can withstand longer the gravitational
pressure until it collapses and more heavy stars can be described. The maximal masses
of the stars is reached for central (𝑟 → 0) densities around ≈ (1−2)𝜌0 for this EoS. Also
the energy density for the stiffest EoS is shown for the case of the largest mass configu-
ration, which is around 2.7𝑀⊙. It is largest in the centre of the star and decreases with
increasing radius. This was an exercise to show how the EoS influences neutron star
properties. This makes the neutron star an astrophysical laboratory for testing nuclear
models. A possibility would be e.g. that the constant 𝐾 is linked to some microscopic
model and if 𝐾 from this model is too small then the EoS is too soft to produce a two
solar mass neutron star. This makes it highly unlikely that this model describes the in-
terior of neutron stars. In the example of Eq. (1.6) the red EoS would be ruled out by
the measurement. In general a microscopic model with all relevant degrees of freedom
and interactions is constructed e.g. on the basis of mean field models [WCS12] or chi-
ral effective field theories [Krü+13]. From this model the EoS is deduced and put to
the TOV equation to get the mass radius relation of the star. Usually pure nucleonic
models are able to describe heavy stars [HW14]. A EoS must have a pressure larger
𝑝 > 150 MeV

fm3 at around five times nuclear saturation density [HW14]. A problem ap-
pears mostly whenever hyperons are included in the models. The reason is that in such
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Figure 1.4: Neutron star properties for the EoS of Eq. (1.6) with 𝛾 = 5/3. The energy
density 𝜖(𝑟) is calculated for the stiffest version of the EoS and the largest reachable
neutron star mass.

models it is rather likely that at a certain threshold density hyperons are produced. This
is achieved via decays of nucleons at the fermi surface and a new fermi sea is filled with
hyperons. Thus the degrees of freedom are reshuffled via an exchange of fast nucleons
to more heavy and slower hyperons. Without taking interactions into account the sys-
tem cannot react in the same way to an external force like in the pure nucleonic case.
Usually the EoS softens. The softening of the EoS is in most cases so strong that the
two solar mass barrier cannot be reached anymore. This reamains a puzzling situation
that whenever hyperons are produced the EoS is too soft to describe heavy stars. Many
attempts are made to overcome this puzzle or deliver other explanations of the star core
[Cha+13]. Some of them are now discussed. A promising candidate to get stiffer EoS is
the inclusion of three body forces among hyperons and nucleons. This was concluded by
a Quantum Monte Carlo simulation [Lon+15]. In this calculation a two-body Λ𝑁 and
a three body Λ𝑁𝑁 are included additionally to two- and three-body forces among the
nucleons. Two versions of Λ𝑁𝑁 three-body forces were tested which were constrained
to hypernuclei data and gave very similar results there. The outcome of the mass radius
relation for this model is shown in Fig. 1.5. If one takes only two-body interactions into
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1.1. Neutron stars, equation of state, gravitational waves

Figure 1.5: Results of a mass radius relation calculated on the basis of a Quantum
Monte Carlo simulation [Lon+15]. The red curve shows only the inclusion of two-body
foces whereas the other two curves include two different versions of three-body Λ𝑁𝑁
interactions.

account then the EoS softens so strong that the maximal mass is of the order of 0.5𝑀⊙.
The inclusion of three body forces Λ𝑁𝑁 stiffens the EoS and shifts the appearance of
hyperons to larger densities. The two versions of the three-body force give significantly
different results. For the blue curve hyperons appear at around 0.3fm−3 and the EoS is
stiffer compared to the pure two-body case but not stiff enough to describe the two heavy
stars. For the other version of the three-body force no hyperons appear for densities up
to 0.56 fm−3. This configuration follows the line of pure nucleonic matter and is able
to cross the threshold set by the measurements. Thus a solution of the hyperon puzzle
might be that the three-body Λ𝑁𝑁 force is so repulsive that hyperons don’t appear in
the density regime of neutron stars.
Another interesting approach comes from chiral effective field theory (EFT) and the
study of the density dependence of the two-body Λ𝑁 force [Hai+17]. For this they use
a G-matrix ansatz where they get out the single-particle Λ potential 𝑈Λ(𝑝Λ, 𝜌) at next-
to-leading order expansion. The next-to-leading order result describes already quite ac-
curately the Λ/Σ𝑝 scattering [Hai+13]. The results of this calculation are shown in Fig.
1.6. The green band is the result of a NLO calculation and the red band includes also
effects from a density dependent three-body Λ𝑁𝑁 force. It is interesting to observe that
around (1.5-2.5)𝜌0 the two-body interaction turns repulsive. As an implication such an
outcome would shift the appearance of hyperons to larger densities. The reason behind
this repulsion is understood by looking at the phaseshift of the Λ𝑝 3𝑆1 state and its cou-
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Figure 1.6: Single-particle potential 𝑈Λ(𝑝Λ = 0, 𝜌) for (a) nuclear matter and (b) neu-
tron matter. The dashed dotted curve (green band) shows the result from NLO calcula-
tions and the red band includes also effects from a density dependent three-body Λ𝑁𝑁
force. Taken from [Hai+17].

pling to the Σ𝑁 channel. This phasehift is shown on the left in Fig. 1.7 for three different
models which all include couplings to the Σ𝑁 channel. All models show different in-
fluences of this channel coupling. In the right plot the coupling is switched off. One can
see that then the NLO result turns more repulsive which suggests that the attraction in
the full calculation comes from the coupling to the Σ𝑁 channel. From hypernuclei mea-
surements it is argued that the coupling to Σ𝑁 is suppressed. This means that the more
repulsive NLO phaseshifts on the right govern the interaction in a nuclear medium. For
this reason the interaction turns repulsive at moderate densities. If this is true then it is
important to include also such couplings in the calculations of neutron star masses. This
might be also a reason why calculations which don’t include such a coupling like the
model based on Quantum Monte Carlo simulation discussed above might fail to repro-
duce large masses and have to introduce three body forces. Unfortunately, no phaseshift
data is available to constrain the coupling to the Σ𝑁 channel. A question which re-
mains is if other hyperons can take over the role of the Λ. Usually, the single-particle
potentials define the ordering of the hyperon appearance in a dense system. Thus, the
hyperons with the deepest potentials are produced first. If the Λ potential is repulsive
at moderate densities potentials the one for Ξ might be still attractive such that they are
produced instead of the Λ. The puzzle is still far away of being solved, but many new
ideas in the “baryonic sector” might point to its solution.
Another idea is to leave the pure baryonic case and allow for the appearance of decon-
fined quarks and gluons in the interior of neutron stars. Such a matter configuration can
usually cope with large star masses but has also problems of its own, which have to be
overcome [Cha+13]. This option will not be discussed further. Another possibility is to
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1.1. Neutron stars, equation of state, gravitational waves

Figure 1.7: Phaseshift of the Λ𝑝 3𝑆1 state for the NLOmodel as well as Jülich ’04 (blue
dashed) and NSC97f (black dashed). Taken from [Hai+17].

relate both concepts since both of them have some complementarities. Hadronic matter
compositions can describe quite compact stars but fail to produce large masses, whereas
quark stars can produce large masses [DLP14]. According to the authors a star might
accrete matter from a companion and hyperons form in the inner core of the star. If then
droplets of strange quark matter builds up in the interior they might “decay” into a quark
star because their gravitational mass is lower and thus energetically favored.
Whatever the solution of the hyperon puzzle might be new methods could help to con-
strain the parameter space further. A new epoch of understanding the evolution of the
universe started recently with the finding of gravitational waves. According to Einsteins
theory of general relativity a certain mass configuration e.g. two rotating stars can lead to
distortions of the space-time which propagate at the speed of light and can be detected on
earth. Recently, such gravitational waves were successfully measured by the LIGO Col-
laboration [Abb+16]. These waves stem from two spiraling black holes, which merged
to one supermassive black hole and around 3𝑀⊙ were radiated into gravitational waves.
The question that arises is if there is a chance that the waveform or frequency of the grav-
itational wave can tell us something about the EoS of neutron stars if a binary neutron
star system merges to on hypermassive neutron star. This question is adressed by sim-
ulations [Sek+11; Rad+16]. While neutron stars merge gravitational waves are emitted
and the effects of different EoS on the gravitational waves are studied. According to
[Sek+11] the frequency of gravitational waves for stars with a hyperon core increases
(by around 20%) compared to stars with pure nucleonic cores. A different simulation
suggested that gravitational waves from a merger with a hyperonic core have larger am-
plitudes [Rad+16] and the frequency is very similar for both possibilities. So there is
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still some tension in the understanding and additional work needed. But the good news
is that a difference seems to be present.

1.2 Hyperon-Nucleon interaction
The low energy data of the Λ𝑝 scattering in vacuum comes from CERN Saclay 81-
cm hydrogen bubble chamber experiments carried out in 1968 [Ale+68; Sec+68]. A
𝐾−𝑝 system at rest was created with a beam of negative kaons to study reactions where
the produced Λ scattered elastically on a proton. Following reactions were taken into
account for the production of Λ which might scatter elastically on a proton:

𝑖)𝐾− + 𝑝 → Λ + 𝜋0

𝑖𝑖)𝐾− + 𝑝 → Σ0 + 𝜋0, Σ0 → Λ + 𝛾
𝑖𝑖𝑖)𝐾− + 𝑝 → Σ− + 𝜋+, Σ− + 𝑝 → Λ + 𝑛
𝑖𝑣)𝐾− + 𝑝 → Σ− + 𝜋+, Σ− + 𝑝 → Σ0 + 𝑛, Σ0 → Λ + 𝛾

(1.8)

The reaction ii) is the primary source of Λ (70%) [Sec+68]. This reaction delivers Λ in
a momentum range between 90 to 250 MeV. For scattering processes closer to the pro-
duction threshold reaction iv) is responsible for. It delivers Λ with momenta between
0 to 130 MeV. The photographs were scanned for different hypotheses. Fig. 1.8 shows
a film which contains an elastic scattering event of Λ𝑝. The event fulfills two hypothe-
ses: Λ origins at point B and decays at C. Λ origins at A and scatters at B. One can
see on the film also the proton recoil. Around 100k Λ were measured and only 336 of
them fulfilled the elastic scattering hypothesis and were processed further in a weighting
procedure. From this data the total cross section was determined in six momentum inter-
vals between 120 and 330 MeV [Sec+68]. In [Ale+68] as similar number of events was
available for final analysis. Also there the total cross section was extracted in a very sim-
ilar interval of 120 and 320 MeV in six intervals. In both analyses the scattering angle
was rather isotropic in the considered energy range which suggests that the scattering
is dominated by the S-wave contribution. These analyses resulted basically in twelve
experimental data points in a momentum range ≈ 100 MeV away from the threshold. In
another analysis which was performed around 1971 another 11 experimental data points
at larger momenta between 300 and 1500 MeV were added to the total elastic cross
section [Kad+71]. These data points are basically available to constrain models. Since
there is data missing for 𝑝Λ → 0 the low energy scattering parameter cannot be precisely
determined [GHM16]. There is also no phaseshift analysis possible, which would con-
strain the interaction quite significantly like in the 𝑁𝑁 case. A recent calculation on the
basis of a chiral effective field theory expansion is displayed in Fig. 1.9 together with
the measurements from the bubble chamber experiments. One can see that the leading
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Figure 1.8: A film containing an elastic Λ𝑝 scattering event. Taken from [Sec+68].

order (green band) expansion fails to reproduce data points in the region 300-800 MeV
whereas the NLO expansion (red band) is in better agreement. Also for small momenta
the LO expansion scratches only the lower boundary of the error bars. This lower cross
section is naturally also reflected in different values for the scattering lengths [Hai+13].
Fig. 1.10 displays the phaseshift in the 1𝑆0 state from the same theoretical framework.
The striking difference between LO and NLO phaseshifts is the much earlier turning of
the phaseshift to a repulsive interaction around 600 MeV whereas the LO phaseshift is
still positive. For the 3𝑆1 both calculations are much more in agreement for momenta
up to 600 MeV. Thus, this repulsion in the 1𝑆0 state might be responsible for the smaller
total cross section of the NLO prediction and is for this reason more in agreement with
the data which seems to favor this repulsion. As explained above the more important
phaseshift is the 3𝑆1 state because of the Σ𝑁 mixing. Any information in this direction
would push the solution of the hyperon puzzle but phaseshifts for this baryon pair is ex-
perimentally hard to access. There are also some data points on the Σ𝑁 interaction but
overall the experimental knowledge about the interaction strengths in the hyperon sector
is quite scarce.
To describe theΛ𝑁 interaction in terms of Feynman diagrams one can start with consid-
ering the isospin of the involved constituents. The Λ is represented by an isospin singlet
state 𝐼 = 0. This means that the Λ𝑁 pair is represented in the isospin 𝐼Λ𝑁 = 1/2
isospin state. This rules out the possibility that they interchange only one pion due to
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Figure 1.9: A comparison of the mea-
surement of the elastic Λ𝑝 cross sec-
tion to calculations from an chiral ef-
fective field theory prediction. The
green band is for the leading order ex-
pansion whereas the red band repre-
sents the next-to-leading-order expan-
sion. Taken from [Hai+13].

Figure 1.10: Phaseshift calculations
from the effective field theory. No data
points are available for elastic Λ𝑝 scat-
tering. Taken from [Hai+13].

the conservation of isospin in strong interactions. For the lowest order interaction in-
volving pions already two pions must be exchanged. Quite interestingly, also a three
body force Λ𝑁𝑁 involves two pions, so one can speculate that the strength of the two
and three body force is of similar order. To describe the interaction with only one meson
exchange kaons are needed. Since they are more heavy than pions they might become
relevant at shorter distances. The relevant Feynman diagrams for the interaction are
displayed in Fig. 1.11. To model the interaction with a local interaction potential the

Figure 1.11: Feynman diagrams to describe the Λ𝑁 interaction. Taken from [GHM16].

following terms are considered [GHM16]:

𝑉Λ𝑁(𝑟) = 𝑉0(𝑟)+𝑉𝜎(𝑟)𝐬𝑁 ⋅𝐬Λ +𝑉Λ(𝑟)𝐥𝑁Λ ⋅𝐬Λ +𝑉𝑁(𝑟)𝐥𝑁Λ ⋅𝐬𝑁 +𝑉𝑇 (𝑟)𝑆12 , (1.9)
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where 𝑉0 includes the central spin averaged part of the interaction, 𝑉𝜎 the spin-spin
coupling which leads to different interaction strength in the singlet and triplet state, and
the other terms are responsible for spin-orbit couplings. The last term models a tensor
force. A realization of such a potential is the “Usmani” potential [BU88]. The form used
to calculate correlation functions includes only the spin averaged and spin-spin part. It
corresponds to the diagram of the two-pion exchange in Fig. 1.11:

𝑉Λ𝑁(𝑟) = 𝑉2𝜋 = 𝑉𝐶 − ( ̄𝑉 − 1
4𝝈Λ ⋅ 𝝈𝑁)𝑇 2

𝜋 , (1.10)

where 𝑉𝐶 is parametrized by a Woods-Saxon potential including a hard-core repulsion
for small distances and 𝑇𝜋 is the one-pion exchange tensor potential [BU88]. Since it is
used in femtoscopy it is interesting to explore its properties in terms of phaseshifts. This
is achieved by the solution of the Schrödinger equation with the potential above. The
result is displayed in Fig. 1.12. The phaseshifts in Fig. 1.12 reflect the typical behaviour
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Figure 1.12: Phaseshift of Usmani potential of the form given in Eq. (1.10)

of the Λ𝑁 interaction. First of all the interaction in the s-wave channel is attractive at
small momentum differences (which corresponds to small Λ laboratory momenta) and
is weaker in the spin-triplet state compared to the spin-singlet configuration. The 3𝑆1
phaseshift does not contain any couplings to Σ𝑁 in Eq. (1.10). Thus it is less complex
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than e.g. the phaseshift fromNLOpredictions displayed in Fig. 1.7. The phaseshifts turn
negativewhere the resolution𝜆 ∼ 1/𝑘∗ is large enough to resolve the hard-core repulsion
present in this potential. It is also interesting to compare the strength of the Λ𝑁 to the
𝑁𝑁 interaction. The 𝑁𝑁 scattering length in the 1𝑆0 state are 𝑎𝑛𝑛 = (−18.7±0.6) fm,
𝑎𝑝𝑝 = (−17.1±0.2) fm (Coulomb corrected) and 𝑎𝑛𝑝 = (−23.715±0.015) fm [Pae14].
The scattering length for the Usmani potential in Eq. 1.10 for the singlet state is 𝑎Λ𝑝 =
−2.66 fm [WP99]. There is roughly a factor seven between these values. Thus, the
interaction of Λ𝑁 is much weaker and does not support a Λ𝑁 bound state.

1.3 Motivation for this work
As we have seen, the Λ𝑝 interaction is important to understand several physical systems.
A hot topic is to find a way towards the solution of the hyperon puzzle in neutron stars.
In the Section above it was shown how the experimental data for the Λ𝑁 interaction
were collected with bubble chamber experiments at CERN. On the one hand side the
data on the total cross section is rather scarce. One the other side, due to the fact that
negative kaons and protons are studied at rest in these experiments the Λ𝑝 momenta start
roughly 100 MeV above the mass threshold. For this reason this project was started to
explore possibilities to investigate Λ𝑝 final state interactions with the femtoscopy tech-
nique. How femtoscopy exactly works will be explained later in this thesis. The ad-
vantage of femtoscopy is that it focuses on Λ𝑝 pairs, which are very small in momenta.
This is actually a complementary technique to scattering experiments. The goal is to
study within this thesis how much statistics is needed to constrain the interaction at low
momenta and to develop new techniques that may help to study also hyperon-nucleon
interactions of other kinds like Ξ𝑝.
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Basics of Femtoscopy

The pre-femtoscopy era was started in astronomy bymeasuring the (angular) size of stars
by Hanburry Brown and R. Q. Twiss, who constructed a two-particle correlator using
the principles of intensity interferometry. Their aim was to investigate possible correla-
tions between photons emitted from an astronomical object [BT56; HT56]. In particle
physics the method was independently established by Goldhaber 𝑒𝑡 𝑎𝑙. [Gol+60], which
studied the production of pions in antiproton-proton reactions and had to introduce a
symmetrization of the multiparticle wave function to describe the observed spectra. This
(anti)symmetrization of the total wave function is a basic principle of quantum mechan-
ics and influences particles which are located closely in phase-space. But not only quan-
tum statistics influences the final spectra, also final state interactions can play a role e.g.
if the particles are charged or if they are hadrons undergoing strong interactions. Fem-
toscopy normally focuses on the investigation of the size of the region the particles are
emitted from, which happens on the Femtometer scale (10−15 m). Such studies help to
understand the system properties in collisions of heavy-ions e.g. the collective behav-
ior of the produced hadrons due to the underlying physics. But since femtoscopy is also
based on final state interactions one can use the method to study strong final state interac-
tions of pairs where not much is known about the interaction and scattering experiments
are difficult to realize.

2.0.1 Mathematical framework
The two-particle correlation function is defined as a ratio of a coincidence yield𝑁(𝐩1, 𝐩2),
which describes the probability of finding a particle with a certain momentum 𝐩2 under
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the condition that a second particle with momentum 𝐩1 was already emitted. This yield
is compared to the product of the single-particle probabilities of finding such particles
in an event separately [HJ99]:

𝐶(𝐩1, 𝐩2) = 𝑁(𝐩1, 𝐩2)
𝑁(𝐩1)𝑁(𝐩2) = 𝐸1𝐸2𝑑𝑁/(𝑑3𝑝1𝑑3𝑝2)

(𝐸1𝑑𝑁/𝑑3𝑝1)(𝐸2𝑑𝑁/𝑑3𝑝2) . (2.1)

We have kept the energies 𝐸𝑖 in front of the yields to visualize that the equation is a
Lorentz scalar thus invariant under transformations. One can see immediately in this
equation that in absence of any correlations 𝑁(𝐩1, 𝐩2) = 𝑁(𝐩1)𝑁(𝐩2) the correlation
function is equal to unity, which serves as a baseline to check if correlations are present.
The link of Eq. 2.1 to calculable quantities is described in the pioneering paper of S.
Pratt for the case of having pions in the final state by starting from a quantummechanical
description using creation and destruction operators 𝑐†(𝐩), 𝑐(𝐩) acting on a vacuum state
[Pra84]. A generalized equation valid for any pair reads [Lis+05]:

𝐶(𝑃 , 𝑞) = ∫ 𝑑4𝑥𝑎𝑑4𝑥𝑏𝑠(𝑝𝑎, 𝑥𝑎)𝑠(𝑝𝑏, 𝑥𝑏)|𝜓(𝑞, 𝑟∗)|2
∫ 𝑑4𝑥𝑎𝑠(𝑝𝑎, 𝑥𝑎) ∫ 𝑑4𝑥𝑏𝑠(𝑝𝑏, 𝑥𝑏)

, (2.2)

where 𝑃 = 𝑝𝑎 + 𝑝𝑏 denotes the total and 𝑞 the relative 4-momentum of the pair. A
short remark on the relative momentum of the pair. Our argumentations are based on
[Lis+05] and here the relative momentum is defined as:

𝑞𝜇 = (𝑝𝑎 − 𝑝𝑏)𝜇

2 − (𝑝𝑎 − 𝑝𝑏) ⋅ 𝑃
2𝑃 2 𝑃 𝜇 . (2.3)

In this Equation the “reduced” relativemomentum is used this means it is multiplied with
1/2. The above Equation is equivalent to the momentum 𝑘 = 𝑘∗ = 𝑓𝑟𝑎𝑐12|𝐩∗

𝑎 − 𝐩∗
𝑏|,

where 𝐩∗
𝑎 + 𝐩∗

𝑏 = 0. Throughout this thesis we present all results in this “reduced”
momentum basis. The functions 𝑠(𝑝𝑖, 𝑥𝑖), 𝑖 = 1, 2 in Eq. (2.2) can be identified as
single-particle emission functions containing the probability of emitting a particle with
momentum 𝑝𝑖 = (𝐸𝑖, 𝐩𝑖) at the space-time point 𝑥𝑖 = (𝑡𝑖, 𝐱𝑖), 𝑖 = 1, 2. The func-
tion 𝜓(𝑞, 𝑟∗) coincides at this stage with the Bethe-Salpeter amplitude [Led09], which
depends explicitly on time. Eq. 2.2 can be further simplified by using the equal-time
approximation, which states that particles are emitted simultaneously in the pair rest
frame 𝑡∗

1 − 𝑡∗
2 = 0 (PRF: 𝐏 = 0) [Led09] valid if |𝑡∗| < 𝑚1,2𝐫∗2 1. With this assump-

tion the Bethe-Salpeter amplitude reduces to the stationary two-particle wave function
𝜓(𝑞, 𝑟∗) → 𝜓(𝐪, 𝐫∗) and any time integration does not act on 𝜓(𝐪, 𝐫∗) anymore. Other
approximations used in femtoscopy are described in [Lis+05; Led09]. Using this ap-
proximations one gets:

𝐶(𝐏, 𝐪) = ∫ 𝑑3𝑟∗|𝜓(𝐪, 𝐫∗)|2 ∫ 𝑑𝑡∗𝒮𝐏(𝑟∗) , (2.4)

1For theoretical equations we denote variables evaluated in the PRF with an asterisk.
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where the function 𝒮𝐏(𝑟∗) contains the distribution of the relative distances in the PRF.
Introducing properly normalized single-particle emission functions ̃𝑠(𝑥𝑖, 𝑝𝑖), 𝑖 = 1, 2
one can write the two-particle emission function in Eq. (2.4) as:

𝒮𝐏(𝑟∗) = ∫ 𝑑4𝑥𝑎𝑑4𝑥𝑏 ̃𝑠(𝑥𝑎, ̄𝑝𝑎) ̃𝑠(𝑥𝑏, ̄𝑝𝑏)𝛿(𝑟∗ − 𝑥𝑎 + 𝑥𝑏) . (2.5)

In a statistical language 𝒮𝐏(𝑟∗) is a probability density function (p.d.f.) of the random
variable 𝑟∗ = 𝑥𝑎 − 𝑥𝑏. It is constructed out of the single-particle p.d.f. ̃𝑠(𝑥𝑖, ̄𝑝𝑖), which
contain the individual production information of the particles and the delta-function
accomplishes the transformation to the new p.d.f.. In Eq. (2.5) the momenta ̄𝑝𝑖 =
𝑚𝑖/(𝑚1 +𝑚2)𝑃 are used, coming from the smoothness approximation, which says that
femtoscopy takes place around the total momentum 𝑃 and the difference between using
̄𝑝𝑖 instead of 𝑝1, 𝑝2 is negligible. The final source function containing the probability of

emitting a pair with a certain separation 𝐫∗ is simply given by using the time integrated
4D emission function:

𝑆𝐏(𝐫∗) = ∫ 𝑑𝑡∗𝒮𝐏(𝑟∗) . (2.6)

The source function in Eq. 2.6 contains the information how probable it is to emit a
certain pair with a spatial difference 𝐫∗. Since it corresponds to a probability, it is nor-
malized to unity:

∫ 𝑑3𝑟∗𝑆𝐏(𝐫∗) = 1. (2.7)

The final equation used in femtoscopy is derived by plugging Eq. (2.6) into Eq. (2.4):

𝐶(𝐏, 𝐪) = ∫ 𝑑3𝑟∗|𝜓(𝐪, 𝐫∗)|2𝑆𝐏(𝐫∗) . (2.8)

One can see in Eq. (2.8) that basically two ingredients are needed to calculate the cor-
relation function, the source function and the wave function. If the interaction is well
understood e.g. in case of charged particles then the wave function is well known too
and one can study in detail the source function. Since these two ingredients play an
important role we will explore them further.

2.0.2 The source function
A basic ingredient of (2.8) is the source function. We will show how one can construct it
using assumptions about the single-particle emitters. Assuming no explicit time andmo-
mentum dependence of the single-particle emitters and a spatial distribution following
a Gaussian profile with width 𝑟0, one obtains for the single particle emitters:

𝑠(𝑥𝑎, ̄𝑝𝑎) = 𝛿(𝑡∗) exp(−𝑥∗2 + 𝑦∗2 + 𝑧∗2

2𝑟2
0

) . (2.9)
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This single-particle emitters have to be transformed to the relative distance variable 𝐫∗:

𝑆(𝐫∗) ∼ ∫ 𝑑3𝑥∗ 𝑠(𝐫∗ − 𝐱∗)𝑠(𝐱∗) = ∫ 𝑑3𝑥∗ exp (−(𝐫∗ − 𝐱∗)2

2𝑟2
0

) exp (−𝐱∗2

2𝑟2
0
)

=
3

∏
𝑖=1

∫ 𝑑𝑥∗
𝑖 exp (−(𝐫∗

𝑖 − 𝐱∗
𝑖)2

2𝑟2
0

) exp (−𝐱∗2
𝑖

2𝑟2
0
) =

3
∏
𝑖=1

√𝜋𝑟0 exp (− 𝐫∗2
𝑖

4𝑟2
0
) .

(2.10)

The normalization for the source function is given by:

(∫ 𝑑3𝑥∗ exp (− 𝐫∗2
𝑖

2𝑟2
0
))

2
= (

√
2𝜋𝑟0)6 . (2.11)

This leads finally to the Gaussian two-particle source function very often used in fem-
toscopy:

𝑆𝐺(𝐫∗) =
exp(− 𝐫∗2

4𝑟2
0
)

(4𝜋𝑟2
0)3/2 . (2.12)

By using Eq. (2.12) one measures basically the width 𝑟0 of the single-particle emitters,
which is the width of the production probability of the individual Gaussians. We have
assumed that the width of the production probability is the same for both particles (i.e.
the particles are identical). But one could also assume different width e.g. in case of
non-identical particle pairs having different freeze-out conditions. This can be easily
accomplished by making the substitution 𝑟0 → (𝑟0,1 + 𝑟0,2)/2 in Eq. (2.12), where
the width 𝑟0,𝑖 describes the width of particle 𝑖. We will use the Gaussian profile for
analyzing the experimental data with one width parameter.
One could also analyze the data with a different assumption about the single-particle
emission function. To explore this further we assume that the single-particle emission
function has a Cauchy form and no correlations are present for the individual spatial
dimensions. Then the single particle emission function reads:

𝑠(𝑥𝑎, ̄𝑝𝑎) = 𝛿(𝑡∗)
3

∏
𝑖=1

1
𝑥∗2

𝑖 + (𝑟0
2 )2 . (2.13)

Repeating the same calculations as for the Gaussian source delivers for the the Cauchy-
type single-particle emitter:

𝑆𝐶(𝐫∗) = (𝑟0
𝜋 )

3 3
∏
𝑖=1

1
𝑥∗2

𝑖 + 𝑟2
0

. (2.14)
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In Eq. (2.14) it is seen that the convolution of two Cauchy functions is again a Cauchy
function, for every spatial coordinate in the PRF a separate function. Already at this
stage the observation is that a different assumption about the form of the single-particle
emitter can lead to completely different results, not only in how one treats the width of
the emitters also in the emission process of the pairs itself. To explore the difference
between a Gaussian and a Cauchy source further we analyze the source functions not in
cartesian but in spherical coordinates. Since we are using functions of random variables
we can use the transformation law for functions of random variables, which states that
starting from 𝑛 random variables 𝐱 = (𝑥1, ..., 𝑥𝑛) the function of new variables 𝑎𝑖(𝐱)
is given by [Cow98]:

𝑔(𝑎1, ..., 𝑎𝑛) = 𝑓(𝑥1, ..., 𝑥𝑛)|𝐽| , (2.15)

where |𝐽 | is the absolute value of the Jacobian determinant. The Jacobian determinant
for spherical coordinates is just |𝐽 | = 𝑟∗2 sin(Θ). This means the source function is in
general given in spherical coordinates by:

𝑆(𝑟∗, Θ, 𝜑) = 𝑟∗2 sin(Θ)𝑆(𝑟∗
𝑥(𝑟∗, Θ, 𝜑), 𝑟∗

𝑦(𝑟∗, Θ, 𝜑), 𝑟∗
𝑧(𝑟∗, Θ, 𝜑)) . (2.16)

Using this approach one gets for the two different source functions mentioned above:

𝑆(𝑟∗, Θ, 𝜑)𝐺 = 𝑟∗2 sin(Θ)
exp(− 𝑟∗2

4𝑟2
0
)

(4𝜋𝑟2
0)3/2 ,

𝑆(𝑟∗, Θ, 𝜑)𝐶 = (𝑟0
𝜋 )

3 𝑟∗2 sin(Θ)
(𝑟∗ sin(Θ) cos(𝜑))2 + 𝑟2

0

1
(𝑟∗ sin(Θ) sin(𝜑))2 + 𝑟2

0

1
(𝑟∗ cos(Θ))2 + 𝑟2

0
.

(2.17)

The transformed source functions in Eq. (2.17) are still three dimensional objects de-
pending now on two angles and the radial distance between the pairs. To investigate the
properties further it is useful to build the marginal p.d.f. by integrating out two of the
three variables. For the Gaussian case this is straightforward, for the Cauchy source this
is analytically challenging. For this reason we could either perform the integration nu-
merically or do a small Monte Carlo simulation. We checked both methods and present
the Monte Carlo study. We simulated single-particle random variables distributed ac-
cording to a Gaussian and a Cauchy profile both having a width of 𝑟0 = 1.5 fm and cal-
culated the relative distance and the corresponding angles for both choices. The results
are displayed in Fig. 2.1. One can see in Fig. 2.1 that the choice of the single-particle
emitters has a highly non-trivial influence on the emission of pairs, the most dramatic
difference is seen in the angle projections. The Gaussian 𝜑 distribution is completely
flat whereas the Cauchy one predicts certain peaks. The same is true in the Θ projec-
tion, where the Gaussian distribution follows the sin(Θ) curve coming from the Jacobian
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Figure 2.1: Projections of the source functions on 𝑟∗,Θ and 𝜑. The red distribution
corresponds to a Gaussian and the black to a Cauchy source choice. See text for more
details.

whereas the Cauchy curve shows a clustering of pairs around 𝜋/2. In the radial differ-
ence the pairs of a Cauchy source are much wider distributed. Such a different choice
of source functions would also result in a difference in the correlation function because
the Cauchy source emits particles in certain preferred directions. Thus it is not only the
radial direction which is affected by a different choice of single-particle emitters, the
whole source function behaves differently. Which kind of source is finally realized has
to be checked with experimental data. We calculated for the two different source choices
a Bose-Einstein correlation function (introduced in next subsection) as would be the case
for identical pion pairs. The result is displayed in Fig. 2.2. For comparison we calculated
also the correlation function if one neglect the angle correlations of the cauchy source.
One can see that the correlation function looks quite different for the same source size.

2.0.3 Typical correlation functions
In this section all possible femtoscopic sources of correlations and their implications on
the correlation function are discussed. Eq. (2.8) represents the main femtoscopy equa-
tion and also our starting point. Since we have also seen in Eq. (2.7) that the source
function is normalized to unity, we can rewrite Eq. (2.8) by subtracting from the corre-
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Figure 2.2: Bose-Einstein correlation function for a source size of 𝑟0=1.5 fm calcu-
lated for single-particle emitters having a Gaussian and Cauchy shape. The influence
on the correlation function is significant. For comparison also the correlation function
obtained neglecting the typical angular behavior included in a Cauchy source function
is displayed.

lation function the flat baseline:

𝑅(𝐏, 𝐪) = 𝐶(𝐏, 𝐪)−1 = ∫ 𝑑3𝑟∗(|𝜓(𝐪, 𝐫∗)|2−1)𝑆𝐏(𝐫∗) = ∫ 𝑑3𝑟∗𝐾(𝐪, 𝐫∗)𝑆𝐏(𝐫∗) ,
(2.18)

where 𝑅(𝐏, 𝐪) is just the correlation signal. Assuming that the source function shows
no additional angle dependence (like for a Gaussian source) one can write:

𝑅(𝐏, 𝐪) = ∫ 𝑑𝑟∗𝐾(𝑞, 𝑟∗)𝑆𝐏(𝐫∗) . (2.19)

and 𝐾(𝑞, 𝑟∗)) = 2𝜋𝑟∗2 ∫1
−1 𝑑 cos(Θ)(|𝜓(𝐪, 𝐫∗)|2 − 1) can be interpreted as integral ker-

nel. The specific representation of the kernel depends on the pair interaction. The fem-
toscopy Eq. (2.19) reads like an operator equation, where a specific kernel is acting on
the source function. For a given momentum 𝐪 it takes all possible 𝐫∗ pairs and maps
them onto a 𝑅(𝐪) value. If the kernel would have an inverse one would have an access
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to the source function directly without making any assumption on the functional form.
We don’t want to go into detail, examples of this technique of source imaging can be
found in [BD98; BD01].

Quantum statistics

A basic correlation signal which is widely used to study the source properties is based on
quantum statistics. If one has identical particles in a pair the total wave function must be
(anti)symmetrized depending if the particles are fermions or bosons. For two identical
bosons described by a plane wave the kernel reads:

𝐾(𝑞, 𝑟∗) = 2𝜋𝑟∗ sin(2𝑞𝑟∗)
𝑞 . (2.20)

For this case the kernel has the form that Eq. (2.18) acts as a Fourier transform of the
source function. The width of the source function 𝜎𝑟∗ is then inversely related to the
width of the measured correlation signal 𝜎∗

𝑟 ∼ 𝜎−1
𝐪 . Fig 2.3 shows the kernel for two

identical bosons and Fig 2.4 the resulting correlation function for two different source
sizes.

Figure 2.3: Kernel for two identi-
cal bosons.
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Figure 2.4: Correlation function for two identi-
cal bosons. The blue line is the quantum statis-
tics correlation function for a Gaussian source
size of 𝑟0 = 1.5 fm and the red one for a source
size of 𝑟0 = 3 fm.

2.0.4 Coulomb interaction
The asymptotic form 𝑟∗ → ∞ of the wave function for the Coulomb potential can be
derived [Lis+05; MM09; HJ99]. Since the static Coulomb potential decays like 𝑟∗−1
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even at infinity the potential strength cannot be neglected. The kernel in this case reads:

𝐾(𝑞, 𝑟∗) = 2𝜋𝑟∗2 ∫
1

−1
𝑑 cos(Θ)𝐺(𝐪) (∣1𝐹1( − 𝑖𝜂

𝑞 ; 1; 𝑖𝑞𝑟∗(1 − cos(Θ)))∣
2

− 1) ,

(2.21)

where 𝐺(𝐪) is the Gamov factor which is the probability of finding a pair at zero spatial
separation |𝜓(𝐫∗ → 0)|2, 1𝐹1(𝑎; 𝑏; 𝑧) is a hypergeometric function defined via a series
expansion and 𝜂 is the Bohr radius (𝜂𝜋 = 388 fm −1 for pions) [MM09]. Fig 2.5 shows
the kernel for two identical charged pions (neglecting quantum statistics) and Fig 2.6
the resulting correlation function for two different source sizes. Also only the Gamov
factor is plotted for comparison to demonstrate that this factor dominates the Coulomb
correlation function.

Figure 2.5: Kernel of the Coulomb
interaction.
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Figure 2.6: Coulomb correlation function. The
green dashed line shows just the Gamov factor.
The blue line is the Coulomb correlation func-
tion for a Gaussian source size of 𝑟0 = 1.5 fm
and the red one for a source size of 𝑟0 = 3 fm.

2.0.5 Strong interaction and the Lednicky model
Since we are mostly interested in the study of strong final state interactions we will
spend some effort to explain how a model is constructed with which such correlations
are modeled. For non-identical uncharged particles the asymptotic solution of the wave
function for the scattering problem can be written as [Daw78]:

𝜓(𝐪, 𝐫∗) = exp(−𝑖𝐪 ⋅ 𝐫∗) + 𝜙(𝑞, 𝑟∗) , (2.22)

where we have adopted the convention in femtoscopy 𝐪 → −𝐪 (which is related to
time reversal). The total wave function of the scattering problem can thus be divided
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in a plane wave and a scattered wave 𝜙. In a scattering experiment one would measure
only the scattered part of the wave function with a detector in the asymptotic region,
which is related to the cross section 𝑑𝜎 = |𝑟∗𝜙(𝑞, 𝑟∗)|2𝑑Ω. However, in femtoscopy
one measures not only the scattered part of the wave function but the absolute square of
it. This means also interference effects between the plane and the scattered part of the
wave function play a role. A derivation of a model for strong interactions for a source
function with a finite lifetime was first done by Lednicky and Lyuboshits [LL82]. We
will show the steps starting from a Gaussian source of the form given in Eq. (2.12). First
the scattered wave can be written in the asymptotic region as an outgoing spherical wave
modified by the scattering amplitude:

𝜙(𝑞, 𝑟∗) = 𝑓(Θ)exp(𝑖𝑞𝑟∗)
𝑟∗ , (2.23)

where 𝑓(Θ) is the scattering amplitude containing all the information about the interac-
tion. It can be written as [LL79]:

𝑓(Θ) = (𝑞 cot(𝛿(𝑞)) − 𝑖𝑞)−1 ≈ (𝑓−1
0 + 1

2𝑑0𝑞2 − 𝑖𝑞)
−1

, (2.24)

where 𝛿(𝑞) is the phaseshift between an undistorted and a scattered wave. Additionally,
we have adopted the effective range expansion, valid for momenta 𝑞 around the produc-
tion threshold of the pair. The effective range expansion introduces two new parameters,
the scattering length 𝑓0 = lim𝑞→0 𝑓(Θ) and the effective range of the potential 𝑑0. We
have used the sign convention in femtoscopy that an attractive potential leads to a pos-
itive scattering length 𝑓0 > 0. The square of the total wave function leads basically to
three contributions:

|𝜓(𝐪, 𝐫∗)|2 = | exp(−𝑖𝐪⋅𝐫∗)+𝜙(𝑞, 𝑟∗)|2 = 1⏟
plane wave

+ |𝜙(𝑞, 𝑟∗)|2⏟⏟⏟⏟⏟
scattered wave

+ 2ℜ(exp(−𝑖𝐪 ⋅ 𝐫∗)𝜙(𝑞, 𝑟∗)∗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
interference

(2.25)

Contrary to a scattering experiment, where one counts the number of interactions and
is thus sensitive to the scattered wave one needs in femtoscopy the full wave function.
This leads to the kernel:

𝐾(𝑞, 𝑟∗)| = 4𝜋𝑟∗ (2ℜ𝜙(𝑞, 𝑟∗)sin(𝑞𝑟∗)
𝑞 + 𝑟∗|𝜙(𝑞, 𝑟∗)|2) , (2.26)

where the real part of the scattered wave funtion is:

ℜ𝜙(𝑞, 𝑟∗) = 1
𝑟∗ (ℜ𝑓(Θ) cos(𝑞𝑟∗) − ℑ𝑓(Θ) sin(𝑞𝑟∗)) . (2.27)

– 26 –



Figure 2.7: Kernel of the strong in-
teraction.
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Figure 2.8: Strong interaction correlation func-
tion. The blue line is the strong interaction cor-
relation function for a Gaussian source size of
𝑟0 = 1.5 fm and the red one for a source size of
𝑟0 = 3 fm. They were calculated using 𝑓0 = 1.5
fm, 𝑑0 = 2 fm.

Fig 2.7 shows the kernel for the strong interaction and Fig 2.8 the resulting correlation
function (𝑓0 = 1.5 fm, 𝑑0 = 2 fm).
To obtain the Lednicky model the averaging over the kernel has to be performed

with a source function. The non-trivial averaging with the Gaussian source function of
Eq. (2.12) appears for the interference terms between the scattered and the plane wave:

8𝜋ℜ𝑓(Θ) ∫
∞

0
𝑑𝑟∗ cos(𝑞𝑟∗) sin(𝑞𝑟∗)

𝑞
exp(−𝑟∗2/4𝑟2

0)
(4𝜋𝑟2

0)3/2 ≡ 2ℜ𝑓(Θ)√𝜋𝑟0
𝐹1(2𝑞𝑟0) ,

8𝜋ℑ𝑓(Θ) ∫
∞

0
𝑑𝑟∗ sin2(𝑞𝑟∗)

𝑞
exp(−𝑟∗2/4𝑟2

0)
(4𝜋𝑟2

0)3/2 ≡ ℑ𝑓(Θ)
𝑟0

𝐹2(2𝑞𝑟0) ,

(2.28)

where the functions 𝐹1(𝑧) = 𝐷+(𝑧)/𝑧 and 𝐹2(𝑧) = (1 − exp(−𝑧2))/𝑧 are introduced
and 𝐷+(𝑧) = exp(−𝑧2) ∫𝑧

0 𝑑𝑡 exp(𝑡2) is the Dawson function. To perform the integra-
tion the incoming plane wave was aligned with the z-component of 𝐫∗. Two aspects have
to be discussed before writing down the full model. First, for a pair of fermions the inter-
actions usually depend on the total spin state of the pair. For this reason two interaction
kernels are introduced weighted by a factor 𝜌𝑆 (𝑆 = 0, 1). For an unpolarized emission
of the pair the factor is 𝜌0 = 1/4, 𝜌1 = 3/4. The second aspect deals with the form of
the wave function in Eq. (2.22) and will be discussed now in more details. Usually in
a scattering experiment one measures the pairs with a detector in the asymptotic region
𝑟∗ → ∞ and thus is only sensitive to properties of the wave function in its asymptotic
form. The asymptotic form of a scattering wave function deviates from the free one just
by a shift in phase 𝛿𝑙. In femtoscopy one integrates the square of the wave function over
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a source function according to Eq. (2.8). Thus pairs are also produced in a spatial range,
where the short range nuclear interaction potential is non-zero 𝑉 (𝑟∗) ≠ 0. In this region
the wave function deviates strongly from its asymptotic form. This has an influence on
the correlation function as will be discussed. We can define an angle average source
function which contains also the Jacobian determinant as:

̄𝑆(𝑟∗) = 4𝜋𝑟∗2𝑆(𝐫∗) , (2.29)

where it was assumed that the source function does not include any angle dependence.
The wave function square is weighted with this source function. In Fig. 2.9 this function
is displayed for a Gaussian source function having a size of 𝑟0 = 1.5 fm together with a
typical nuclear short range potential. The two shaded areas show that a fraction of pairs
is produced within the range of the nuclear potential. In this region the asymptotic form
of the wave function breaks down. When the breakdown exactly happens depends on the
energy of the pair 𝐸 = ℏ2𝑞2

2𝜇 . The “first part” of the Lednicky model is calculated with
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Figure 2.9: The black function represents a typical short range nuclear potential and
the red function corresponds to a pair distribution according to Eq. (2.29) for 𝑟0 =
1.5 fm. A fraction of pairs is produced within the range of the potential and the rest in
a region where it vanishes. This plot demonstrates that at some point the assumption of
the asymptotic form of the wave function breaks down if the potential strength becomes
non-negligible.

the assumption that the form of the wave function is applicable everywhere, also within
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the range of the nuclear potential. This can be explicitly seen in Eq. (2.28) where the
integration starts at zero. To correct for this effect, a subtraction has to be performed,
otherwise one would overestimate the correlation function since the amplitude of the pair
wave function within the nuclear potential is smaller than unity. Lednicky introduced
in his model a term, which takes exactly this correction into account. It has the form
[LL82]:

Δ𝐶(𝑞) = 4𝜋𝑆(𝑟∗ = 0)|𝑓(𝑞)|2 𝑑
𝑑𝑞2 𝑓(𝑞)−1 = 𝑑0|𝑓(𝑞)|2

4√𝜋𝑟3
0

, (2.30)

where 𝑑0 is the effective range of the interaction. A sketch of the derivation of this term
can be also found in [BGJ90]. It is actually based on arguments of the effective range
theory which was developed by H. Bethe [Bet49]. The correction term is evaluated at
zero pair separation 𝑆(𝑟∗ = 0) and depends on the details of the interaction via 𝑑0. This
formula is also only an approximation to the problem and might break down for small
source sizes. The whole Lednicky model is then the sum of the correlation function
with the asymptotic form of the wave function and the correction term for pairs which
are produced within the range of the interaction:

𝐶(𝑞)Lednicky = 𝐶(𝑞)asymptotic wave function − Δ𝐶(𝑞) . (2.31)

The total Lednicky model including the correction term reads [LL82]:

𝐶(𝑞) = 1+∑
𝑆

𝜌𝑆 ∣𝑓(Θ)𝑆

𝑟0
∣
2

(1 − 𝑑𝑆
0

2√𝜋𝑟0
)+2ℜ(𝑓(Θ)𝑆)√𝜋𝑟0

𝐹1(2𝑞𝑟0)−ℑ(𝑓(Θ)𝑆)
𝑟0

𝐹2(2𝑞𝑟0) .

(2.32)

This model is valid for non-identical pairs without Coulomb interaction. If a dominant
fraction of pairs is produced within the range of the interaction potential then at some
point one could be also sensitive to the detailed structure of the interaction potential it-
self. This possibility was investigated theoretically in [Gmi+86] for 𝑝 − 𝑝 pairs. An
experimental study of this kind for 𝑝 − 𝑝 pairs produced in 𝑒 + 𝐴 collisions was per-
formed in [Sta+04]. A dependency on the chosen interaction potential showed up for a
RMS value of the Gaussian source size of 𝑟rms < 2 fm (𝑟0 = 𝑟rms/

√
3). The source

size of pp collisions might be larger than in a 𝑒 + 𝐴 system. Since a dependence on the
chosen potential or better said the effect of the smallness of the source was never studied
for 𝑝-Λ pairs, an exploratory investigation is performed here. A short comment why
the correlation function could depend on the chosen potential. The spatial resolution
of the pair is given by the wavelength 𝜆 ∼ 𝑞−1. Any structure smaller than this wave-
length cannot be resolved. This means that if the wavelength is small enough, details
of the potential become visible. Since 𝑞 → 0 in femtoscopy, the wavelength is quite
large and the effective range expansion of the scattering amplitude becomes possible.
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In an usual scattering experiment at 𝑞 → 0 one would never have enough resolution to
observe details of the underlying short-range interaction, because of the just mentioned
arguments. This means that the exact functional form of the potentials is unimportant
as long as they predict the same scattering parameters. In femtoscopy the situation is a
bit different. The effective range expansion is used because of 𝑞 → 0, but if many pairs
are produced at small separations (small source size), a sensitivity on the potential could
be visible due to the fact that the wave function deviates strongly from the asymptotic
form. For small sources more weight is given exactly to these deviations. This is the
advantage compared to scattering experiments. In a scattering experiment one would
need energies > 250 MeV to observe e.g. the onset of the hard-core potential in the 1𝑆0
state for nucleon pairs, where the phaseshift turns negative [WSS95].
The first approach to study effects of small sources is based on the finite size of the emit-
ted hadrons. It was shown in theoretical studies e.g. [WFH99] that it makes no difference
if the emitted particles are emitted as plane waves or wave packages. The final radius is
then just a measure of the size of the source and the size of the wave packages, which is
indistinguishable in an experimental measurement. Thus the finite size of hadrons itself
described as wave packages plays actually no role. But it might be that the finite size has
an influence on the emission of pairs. This is discussed e.g. in [BFZ15] and a similar line
of thought is applied for 𝑝-Λ. The two hadrons can at some point overlap. It is then hard
to speak of two distinct hadrons anymore. This influences the source function since it
is usually described as a convolution of two independent particle emitters 𝑠(𝑥𝑎), 𝑠(𝑥𝑏).
The independence might break down if the emitters are close to each other. To take this
into account a new function 𝐷(𝑥𝑎 −𝑥𝑏) is introduced, which suppresses the emission of
pairs at some point thus depends only on the relative distance of the two emitters. One
has to perform the substitution:

𝑠(𝑥𝑎)𝑠(𝑥𝑏)𝛿(𝑟 − 𝑥𝑎 + 𝑥𝑏) → 𝑠(𝑥𝑎)𝑠(𝑥𝑏)𝐷(𝑥𝑎 − 𝑥𝑏)𝛿(𝑟 − 𝑥𝑎 + 𝑥𝑏) . (2.33)

The functional form of 𝐷(𝑥𝑎 − 𝑥𝑏) is chosen to be a Gaussian form:

𝐷(𝑥𝑎 − 𝑥𝑏) = 1 − exp(−(𝑥𝑎 − 𝑥𝑏)2/4𝑅2) , (2.34)

where the parameter 𝑅 is a length scale at which finite size effects of the hadrons may
play a role and the independent emission breaks down. The new normalized source
function reads:

𝑆(𝑟∗)small = 1
8𝜋3/2

1
𝑟3

0 − 𝜎3 𝐷(𝑟∗) exp(−𝑟∗2/4𝑟2
0) , (2.35)

where a combined length scale was introduced: 𝜎 = (𝑅−2 +𝑟−2
0 )−1/2. Since deviations

should show up at small 𝑅, a Taylor expansion might lead to more insights into the
problem. If doing so one gets as result to first order in 𝑅 around zero:

𝑆(𝑟∗)small ≈ 𝑆(𝑟∗)Gauss𝐷(𝑟∗) , (2.36)
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where 𝑆(𝑟∗)Gauss is the “standard” Gaussian source function. Since the function 𝐷(𝑟∗)
is also parametrized with a Gaussian form one can solve the integrals for the correlation
function analytically. Additionally, because of the form of Eq. (2.34) and (2.36) one can
see immediately that the new correlation function results in the Lednicky model and an
additional term due to the overlap of the two hadrons:

𝐶(𝑞)small = 𝐶(𝑞)Lednicky − 𝐶(𝑞)overlap . (2.37)

By defining a parameter 𝜉 ≡ 𝜎3/𝑟3
0 ∈ [0, 1], which measures the “smallness” of a

system. The overlap term has the form of the Lednicky Equation since the new source
function is again Gaussian. The same calculation steps as shown above are applied and
the result for the overlap correlation function in Eq. (2.37) reads:

𝐶(𝑞)overlap = 𝜉 (1 + 1
2 ∣𝑓(𝑞)

𝜎 ∣
2

+ 2ℜ𝑓(𝑞)√𝜋𝜎 𝐹1(2𝑞𝜎) − ℑ𝑓(𝑞)
𝜎 𝐹2(2𝑞𝜎)) . (2.38)

In principle one is able to quantify the effect of a small source at this stage. However,
there are basically two remarks which have to be made. First of all, the usual correction
term in Eq. (2.30) is evaluated at 𝑆(𝑟∗ = 0). But at 𝑟∗ = 0 there are no pairs produced
anymore with the new source parametrization of Eq. (2.36). Thus, this correction term
of Eq. (2.30) is zero. Instead the source function is now taking over this job by suppress-
ing the production of pairs at low distances and thus supresses the correlation strength
as can be seen in Eq. (2.37). One can say that the correction for pairs inside the range
of the nuclear potential is reshuffled. Either one neglects the finite size of the hadrons
and corrects for the form of the wave function with Eq. (2.30) or one takes always the
asymptotic form of the wave function and suppresses the emission of pairs at small sep-
arations and gets a new correction term with Eq. (2.38). The size of the corrections is
very similar. A completely consistent model would include a suppression of the pro-
duction of pairs at low separations and a correction for the non-asymptotic form of the
wave function in a consistent way. For this reason another path was chosen to quantify
the effect of the smallness of a source.
The second approach to study effects of small sources is based on a comparison of the
correlation function when the wave function is calculated with the Schrödinger Equation
and the Lednicky model. Lets have a look again on Eq. (2.8). In this equation the wave
function serves as a weight for the produced pairs. If it is calculated with the Schrödinger
equation including a realistic interaction potential, then the wave function includes au-
tomatically a suppression for pairs at small separations e.g. if the potential includes a
hard-core repulsion. How the Schrödinger equation is solved is explained in Appendix
A. For this study the Usmani potential is used [BU88], which predicts parameters for the
scattering length and effective range in the two spin configurations and are taken from
[WP99]. The values are reproduced by the code used for this analysis. They are plugged
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in to the Lednicky model to describe the strong interaction. The two correlation func-
tions are compared in Fig. 2.10 for a source radius of 𝑟0 = 3 fm and in Fig. 2.11 for a
source size value of 1.5 fm. One can see that the Lednicky model is still doing a good
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Figure 2.10: Comparison of the Lednicky
model and the full solution of the Schrodinger
Equation for a source radius of 𝑟0 = 3 fm.
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Figure 2.11: Comparison of the Lednicky
model and the full solution of the Schrodinger
Equation for a source radius of 𝑟0 = 1.5 fm.

job for small source radii which are expected in pp collisions. For this reason there is no
need to implement further corrections and it is used in the fitting procedure.
A final word on a possible connection of the correlation function and the total cross sec-
tion. The correlation function depends on the scattering amplitude and this amplitude is
connected to the cross section. Is it possible to transform from the “correlation basis” to
the “cross section basis”? To answer this question we have a look on the relation of the
scattering amplitude and the cross section. The absolute square of the scattering ampli-
tude and its imaginary part (via the optical theorem) are directly connected to the cross
section (we are only interested in s-wave scattering):

𝜎(𝑞) = 4𝜋|𝑓(Θ)|2

𝜎(𝑞) = 4𝜋
𝑞 ℑ(𝑓(Θ = 0)) .

(2.39)

The problem is the real part of the scattering amplitude, which has no direct interpreta-
tion, but if the imaginary and absolute square are fixed a relation to the real part shows
up:

|𝑓(𝑞)|2 = (ℜ𝑓(𝑞))2 + (ℑ𝑓(𝑞))2, → 𝑅𝑒𝑓(𝑞) = ±√|𝑓(𝑞)|2 − (ℑ𝑓(𝑞))2 . (2.40)
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With this equation one can rewrite the Lednicky model in the cross section basis:

𝐶(𝑞)−1 = 𝜎(𝑞) ( 1
8𝜋𝑟0

− 𝑞
4𝜋𝑟0

𝐹2(2𝑞𝑟0))± 2√𝜋𝑟0
√𝜎(𝑞)

4𝜋 (1 − 𝑞2

4𝜋𝜎(𝑞))𝐹1(2𝑞𝑟0) ,

(2.41)

where 𝜎(𝑞) is the total cross section close to the threshold. The correction term for pairs
within the range of the nuclear potential was not taken into account and also not different
spin states. The equation shows that there might be a decent chance to transform the
measured correlation function points to the cross section basis and enhance the number
of data points in the hyperon sector.

2.0.6 Resonance decays, energy conservation
The extreme case that a pair stems from a resonance decay imprints a strong correlation
on the pair. This can be seen by looking at a pair of identical particles. For this pair the
invariant relative momentum is given by:

𝑞 = √−(𝑝1 − 𝑝2)𝜇(𝑝1 − 𝑝2)𝜇 . (2.42)

But the particles are correlated by the mother of the resonance too:

𝑃𝑅 = 𝑝1 + 𝑝2 , (2.43)

where 𝑃𝑅 is the resonance momentum. Using both equations delivers for the invariant
relative momentum:

𝑞 = √𝑚2
𝑅 − 4𝑚2

1,2 , (2.44)

where 𝑚𝑅 is the mass of the resonance and 𝑚1,2 the mass of particle 1,2. This means
that 𝑞 is fixed by all the masses involved. If one would measure e.g. 𝜋+𝜋− correlations
the correlation function would show various peaks due to resonances decaying in such
pairs. The case of two particles stemming from a resonance decay is an example of a very
special case of energy conservation. Thus energy conservation can in general introduce
additional correlations not related to femtoscopy. They are mostly showing up for small
systems where not much particles are produced per event and a hint for such an effect is a
non-flat baseline. A detailed study of of energy conservation effects is given in [CL08],
where also a method is presented how to model non-flat baselines.
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2.0.7 Inelastic scattering
After a pair is emitted from a source it can undergoe strong final state interactions. This
can be of elastic nature enhancing or suppressing certain states depending on if the inter-
action is attractive or repulsive. But the pair can also undergo inelastic scattering which
leads to losses of pairs. An example is an emission of an Baryon-Antibaryon pair which
has total baryon number zero in the entrance channel. Thus the exit channel has also to
have total baryon number zero. This is easily achieved with oppositely charged (or neu-
tral) mesons in the final state having a lower lying pair mass (and fulfilling an allowed
isospin transition form the entrance to the exit channel):

𝐵 ̄𝐵′ → 𝑀+𝑀 ′,− . (2.45)

Such pairs undergoing inelastic scattering (often referred to as annihilation in femtoscopy)
are not reaching the detector, thus the correlation function is suppressed. The inelastic
scattering can be described theoretically by allowing the scattering length being a com-
plex quantity and the imaginary part describes the loss of pairs and the real part the
elastic transitions of the scattering process.

2.0.8 Combinations of correlation sources
The correlation signals above were discussed individually. There is also the possibility
that a pair of particles includes all three effects at the same time. A prominent example is
given by proton-proton correlations, where the antisymmetrization and Coulomb repul-
sion lead to a suppression of the correlation signal below unity and the attractive strong
interaction induces a bump structure at around 20 MeV/𝑐. This can be related to the
Bohr radius of protons which is for protons 𝜂 = 57.5 fm. The peak position is located
at 𝑞 ≈ 2𝜋/𝜂 ≈ 21 MeV/𝑐 [LL82]. The influence of quantum statistics would be that the
correlation function approaches 𝐶(𝑞 → 0) = 0.5. Coulomb repulsion leads to an addi-
tonal suppression such that 𝐶(𝑞 → 0) → 0. This means that two charged particles are
never in the same state not even at infinity due to the long-range behavior of Coulomb.
The proton-proton correlation function was firstly calculated by Koonin [Koo77]. Com-
bining all three sources was done in this case in a numerical way by the solution of the
Schrodinger equation including the Reid soft-core potential [Day81; Rei68]. An exam-
ple plot of proton-proton correlation functions is shown in Fig. 2.12 for source sizes of
𝑟0 = 1.5 fm and 𝑟0 = 3 fm.

2.0.9 Correlation function and bound states
Since the correlation function is sensitive to scattering parameter at 𝑞 → 0 one could in
principle also study effects of bound states on the correlation function. A bound state
would show up as a pole in the scattering amplitude in Eq. (2.24). Introducing a new
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Figure 2.12: Two example plots of proton-proton correlation functions for source sizes
of 𝑟0 = 1.5 fm (blue) and 𝑟0 = 3 fm (red). The proton-proton correlation function
includes Fermi-Dirac statistics and Coulomb repulsion, which lead to a suppression of
the correlation signal below unity for 𝑞 ≈ 0 as well as strong interaction which shows
up as a bump structure at 𝑞 ≈ 20 MeV/𝑐.

momentum scale 𝜅 = −𝑖𝑞 the bound state would lie on the positive imaginary axis
𝜅 > 0. Using the effective range expansion the condition for a pole in the scattering
amplitude reads (where we set for the moment 𝑓0 = −𝑎 to have a better comparison to
literature values):

𝜅2 − 2
𝑑0

𝜅 + 2
𝑑0𝑎 = 0 . (2.46)

This equation has two solutions, where we omit the one with (+) which would describe
a virtual state [LL79]. The bound state lies just below the energy continuum [LL79]:

𝜅 = 1
𝑑0

(1 − √1 − 2𝑑0
𝑎 ) , 𝑑0 > 0 . (2.47)

The binding energy of the bound state is given by:

𝐸𝐵 = ∣ℏ
2𝑞2

2𝜇 ∣ = ℏ2𝜅2

2𝜇 , (2.48)
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where 𝜇 is the reduced mass. If the scattering problem would be totally governed by the
scattering length |𝑎| ≫ |𝑑0| then 𝜅 would be dominated by the scattering length only
𝜅 ≈ 𝑎−1. One can see from this relation for a bound state (𝜅 > 0) one needs a positive
scattering length 𝑎 and the binding energy is then completely determined by it:

𝐸𝐵 = ℏ2

2𝜇
1
𝑎 (2.49)

This would be the case e.g. in the ultracold atoms regime [BDZ08] but for nuclear
physics 𝑎 ∼ 𝑑0, thus 𝑑0 is not negligible.

2.0.10 Construction of experimental correlation function
Up to now we discussed the theoretical framework of femtoscopy. The correlation func-
tion can be measured also experimentally. Looking at Eq. (2.1) the correlation function
is a comparison of a coincidence and an uncorrelated yield. The correlated yield is ex-
tracted by pairing the particles of interest in the same event. The uncorrelated yield is
extracted by using the technique of event mixing, where the particles of interest from
different events are paired which was for the first time proposed in [Kop74]. Such a
pairing is free of femtoscopic effects. The pairing was done as a function of the relative
momentum of the pairs in the PRF:

𝐶(𝑘∗) = 𝒩 𝑁𝑠𝑎𝑚𝑒(𝑘∗)
𝑁𝑚𝑖𝑥𝑒𝑑(𝑘∗) , (2.50)

where 𝑘∗ = 1
2 |𝐩∗

1 −𝐩∗
2| with 𝐩∗

1 +𝐩∗
2 = 0 1. Since the mixed event sample is not limited

by statistics onemixes enough pairs (around ten timesmore) such that the statistical error
of Eq. (2.50) is governed by the same event distribution only. For this reason a normal-
ization factor 𝒩 is introduced to normalize the correlation function to unity in a region
where no femtoscopic signal is present. Strictly speaking, Eq. (2.50) does not fully re-
produce the theoretical definition of Eq. (2.1) since the theoretical equation is valid for a
single event. Since the experimental correlation cannot be measured in a single event an
event average is build and one might neglect with this procedure some source function
fluctuations. This is briefly mentioned in [PSH13] but not further explored.

2.0.11 The out-side-long reference frame
The correlation function is sensitive on pairs which are emitted very homogeneously
from the source, which means the kinematics of the emitted particles is very similar.

1We started femtoscopy with the interest of 𝑝-Λ correlations, which was for the first time proposed
from theoretical side in [WP99]. Since the relative momentum is named 𝑘 in this publication we adopted
this labeling for the HADES analysis. Later on in the ALICE analysis we switched to the more common
labeling of 𝑘∗ instead of 𝑘 for the relative momentum.
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Such pairs have very low relative momenta in the PRF 𝑘 <≈ 150 MeV/𝑐 and depending
on the particle production multiplicity the statistics can be quite scarce in this region.
However, if the production multiplicity is large e.g. for pions then there exists the possi-
bility to perform a 3D analysis in the longitudinally-comoving-system (LCMS), which
rests along the beam direction 𝐏𝑧 = 0. The relative momentum vector is then decom-

side

out

long

Beam

Figure 2.13: Definition of the longitudinally-comoving-system. The “long” component
is aligned with the beam direction, “out” is parallel to the pair transverse momentum and
“side” perpendicular to the other two directions.

posed in its out-side-long (o-s-l) direction, where the “long” component points along the
beam direction, “out” is parallel to the total transverse momentum of the pair and “side”
perpendicular two the other two. A sketch of the system is shown in Fig. 2.13 showing
a source which emits a pair of particles. A nice description how to obtain the values of
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any 4-Vector 𝑉 in the LCMS is given in [Lis+05]:

𝑉𝑜𝑢𝑡 = 𝑃𝑥𝑉𝑥 + 𝑃𝑦𝑉𝑦
𝑃𝑇

,

𝑉𝑠𝑖𝑑𝑒 = 𝑃𝑥𝑉𝑦 − 𝑃𝑦𝑉𝑥
𝑃𝑇

,

𝑉𝑙𝑜𝑛𝑔 = 𝑃0𝑉𝑧 − 𝑃𝑧𝑉0
𝑀𝑇

,

(2.51)

where 𝑃𝑇 is the total transverse momentum and 𝑀𝑇 the total transverse mass of the pair.
To boost into the PRF one has to boost along the transverse momentum 𝐤𝑇 direction of
the pair, which modifies the “out” component of the 4-Vector. A discussion about the
radii in the LCMS and their physics interpretation can be also found in [Lis+05].

2.0.12 Pair statistics
It is interesting how the initial lab momenta of the particles influences the statistics at
low relative momenta where the correlation function is sensitive to. To study this we
simulate 106 events containing one proton pair per event with Gaussian momenta for
the protons for all momentum components. We defined the femtoscopy region as k∗

<150 MeV/𝑐. A result of how many protons are contained in this region as a function of
the Gaussian proton momentum width is given in Fig. 2.14. One can see the expected
trend that for particles which are on the average faster one produces less pairs ending up
in the femtoscopic region since its harder to find such low-relative momentum pairs and
the open available phase-space which can be populated is larger. The curve is highly
non-linear. To have a high statistics data sample one has to perform the femtoscopy
study where the average particle momentum is quite small. Additionally, there are many
other effects which play a role e.g. the pair multiplicity, acceptance, efficiency and so
on.
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Figure 2.14: Number of proton pairs in the femtoscopy region k∗ <150 MeV/𝑐 as a
function of the Gaussian momentum production width of the protons. The pair statistics
in the femtoscopic range is highly non-linear.
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3
The HADES detector at SIS18

The study of strong interactions delivers insight into the hadron-hardon interactions.
Such interactions are described by effective models and theories and a keypoint is the
understanding of the link between the fundamental chiral symmetry and the hadron prop-
erties. Chiral symmetry is broken spontaneously and explicitly due to the finite quark
masses. However, if hadrons are embedded in a strongly interacting environment their
mass is linked to this symmetry. At large temperatures and moderate densities this sym-
metry is expected to be partially restored. To have a strong influence of the medium on
the embedded hadrons it is useful to study hadrons which have a short lifetime. This
ensures that they have a larger probability to decay inside the medium. The light vector
mesons 𝜔, 𝜌 and 𝜙 provide such properties. They also have the advantage that they can
undergo electromagnetic decays into pairs of dileptons 𝑒+𝑒−, which are not affected by
strong interactions and deliver the information of the embedded mother particle undis-
torted towards the detector [Aga+09].
The High Acceptance Di-Electron Spectrometer (HADES) was designed to measure
such rare decays in fixed target reactions. It is located in Darmstadt, Germany, at the
GSI Helmholtzzentrum für Schwerionenforschung. The HADES heavy-ion program is
focused on beam energies of 1-2 AGeV achieved with the heavy-ion synchrotron Schw-
erIonen Synchrotron (SIS18). At these energies the compression duration of colliding
nuclei in heavy-ion reactions is comparable to the lifetime of light vector mesons. SIS18
delivers the beam for the experiments with energies between 1-2 𝐴 GeV for heavy-ions
and up to 4.5 GeV for protons. Secondary pion beams with momenta up to 2 GeV/𝑐
are also available at this facility. An expanded view of the HADES detector is shown in
Figure 3.1. It consists of six identical sectors defined by the superconducting coils ar-
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Figure 3.1: Setup of the HADES detector. The green line indicates the beam.

ranged symmetrically around the beam axis and optimized for dielectron measurements.
It covers around 85% of the azimuthal angle and the Θ range is from 15∘ to 85∘. This cor-
responds to a pseudo-rapidity range of 𝜂 ∈ [0.1, 2], where the pseudo-rapidity is defined
as:

𝜂 = − ln (tan(Θ
2 )) . (3.1)

Figure 3.2 illustrates the schematic layout of the detector system and all the important
detector parts. In the next Sections themost important parts of the detector are explained.
Since an analysis of the p+Nb reaction is presented in this thesis also some older com-
ponents are described. In 2009 HADES underwent an upgrade with an interchange of
some parts of the detector due to the upgrade on the hardware side.

3.0.13 The target
The fixed target is located in front of the RICH detector. Elementary reactions are studied
with a liquid hydrogen target, whereas for heavy-ion collisions or 𝜋/p+A reactions a
segmented solid state target was used. The start detector delivers the starting time of
the reaction. Unfortunately, in the p+Nb run no start detector was participating in the
data collection. Thus no direct time-of-flight measurement was accessible which could
contribute to the particle identification information.
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Figure 3.2: Side view of the HADES detector system and its detector components.

3.0.14 The RICH detector
For rare decays of vector mesons into dilepton pairs a good particle identification for
the decay products is necessary to clean the sample from hadron contamination. For
this purpose a Ring Imaging Cherenko (RICH) detector is used to identify electrons and
positrons in the momentum range 0.1 GeV/𝑐 < p < 1.5 GeV/𝑐. The detector contains as
radiator gas perfluorobutane (C4F10). This gas has a threshold for emitting Cherenkov
light of 𝛾𝑡ℎ𝑟𝑒𝑠ℎ = 18. Because of this large threshold the RICH detector is hadron
blind in the SIS18 energy regime since mainly electrons or positrons pass this kinematic
barrier. The produced Cherenkov light is reflected by a spherical symmetric low mass
carbon shell mirror and hits finally the photosensitive CsI cathodes of six Multi-Wire
Proportional Chambers (MWPC). The light is then finally focused to rings because of
the detector geometry in a way that the ring radius stays nearly constant. The information
of the ring position together with the reconstructed particle track is used to identify
electrons and positrons. A schematic layout of the RICH detector is shown in Figure
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3.3.

Figure 3.3: Schematic layout of the RICH detector. The Cherenkov light of the positron
is reflected at the mirror and focused to a ring on the readout pads.

3.0.15 The Multi-Wire-Drift Chambers
The HADES program aims to measure in-mediummodifications of particles. To achieve
this goal a good momentum reconstruction together with a sufficient spatial resolution of
the tracked particles and large detector acceptance is needed. Therefore, 24 trapezoidal
planar 𝑀ulitwire 𝐷rift 𝐶hambers MDC are placed symmetrically around the beam axis
in six identical sectors. Each sector contains four tracking planes (I-IV), two planes in
front (I-II) of the magnet and two behind (III-IV). This is illustrated in Figure 3.2. The
space between the planes II-III defines the active area of the chambers, where charged
particles are deflected thanks to the magnetic field. Each of the 24 MDCs are divided
into six anode wire frames (about 1100 tungsten wires per frame) oriented in six different
angles (±0∘, ±20∘, ±40∘) as displayed in Figure 3.4. This setup enlarges the spatial
resolution in polar direction. The MDC chambers are flushed with a counting gas. A
charged particle traversing the gas is ionizing it along the particle trajectory which forms
clusters. The produced electrons in the gas are accelerated towards the wires due to an
active electric field. The amount of electrons gets multiplied during the acceleration
stage by the avalanche effect. Finally, the cloud of electrons reaches the MDC wires and
introduces an electric signal, which is read out.
With this principle hit positions in the MDC layers (I-IV) are determined. The hit points
in MDC I and II are grouped together to an inner track segment and from MDC III and
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Figure 3.4: Schematic view of the drift chambers oriented at ±0∘, ±20∘, ±40∘.

IV to an outer one. The points in the inner and outer segment are connected with the
assumption of straight tracks, because they are in an almost free magnetic field region.
In the active area the particles are deflected and the momentum is determined solving its
equation of motion in the field region in a recursive way with the Runge-Kutta method.
The hit points are therefore used as initial conditions.

3.0.16 The Magnet

A charged particle entering a magnetic field region is deflected according to the Lorentz
force, whereas the total momentum stays constant. By measuring the deflection one is
able to obtain the momentum of the particle. To make use of this principle, the HADES
detector contains six superconducting magnets placed around the beam axis among the
drift chambers. The magnets create a strong inhomogeneous toroidal magnetic field with
strengths ranging from 𝐵 = 0.9 T up to 𝐵 = 3.6 T at the sector edge. The magnet was
built in such a way that the target region and the active volume of the RICH detector
is free of any magnetic field to not influence the particle reactions and identification of
electrons and positrons.
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3.0.17 The Time-of-flight detectors
The three time of flight detectors are part of the Multiplicity Electron Trigger Array
(META) system. Particles traversing the META system give an additional hit point
which is used for the tracking of the particles. The detector subsystems are in detail:

• TOF detector
The TOF detector covers a polar acceptance of 44∘ < Θ < 88∘ and follows the az-
imuthal six-fold symmetry of the whole HADES setup. Each one of the six detec-
tors consists of eight modules, and eachmodule is subdivided into eight scintillator
rods. A charged particle induces a photon emission in the scintillators measured
with Photo-Multiplier-Tubes PMT’s, which deliver the arrival time and also a sig-
nal height. The signal height is related to an energy loss, which can be used for
particle identification. The time resolution of the TOF detector was obtained by
using dileptons from C+C reactions and is of the order 𝜎TOF ≈ 150 ps. The TOF
detector is also capable of delivering a specific energy loss signal 𝑑𝐸/𝑑𝑥 which
is used for particle identification.

• TOFINO
The TOFINO detector has a polar acceptance of 18∘ < Θ < 45∘. It is a low gran-
ularity system divided into six sectors, each containing four scintillator paddles
with a trapezoidal form. The lower granularity increases the probability of double
hits. Its time resolution is worse than those of the TOF of about 𝜎TOFINO ≈ 420 ps.
As the TOF detector, also TOFINO provides a specific energy loss signal 𝑑𝐸/𝑑𝑥.

• Pre-Shower
The Pre-Shower is located just behind the TOFINO detector. It is used for dilepton
identification and based on the fact that electrons and positrons induce an electro-
magnetic shower in the converter material made out of lead.

• Resisitve Plate Chambers (RPC)
To achieve better time resolutions of about 𝜎RPC ≈ 100 ps, which leads to an im-
proved particle identification and to be able to work at SIS intensities of 2⋅107 Hz,
the new RPC wall ESTRELA (Electrically Shielded Timing RPC Ensemble for
Low Angles) was developed and exchanged for the TOFINO detector [Gil+07] in
an upgrade which started in 2009. It covers the low polar angle acceptance region
18∘ < Θ < 45∘ with 2𝜋 azimuthal coverage.

3.0.18 The Forward Wall
HADES started in 2007 to investigate proton deuteron reactions. A characteristic feature
of these reactions is that spectator nucleons move in forward direction at small polar
angles. The HADES spectrometer covers polar angles from 15∘ < Θ < 85∘, not able
to register these spectators. For this purpose, a forward wall scintillator hodoscope was
built. It consists of about 300 scintillating cells having a thickness of 2.54 cm each and
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are read out by photomultipliers [Lap+09]. It was placed 7 m downstream the target and
covers a polar acceptance of 0.33∘ < Θ < 7.17∘.

3.0.19 Trigger in the p+Nb run
As already mentioned, the HADES detector aims for detecting rare 𝑒+𝑒− pairs stemming
from decays of light vector mesons. To suppress hadronic channels and enhance final
states containing dileptons, an event filtering procedure (trigger system) is included in
the setup. It also helps to avoid overloading of the data acquisition system and of the
front-end electronics. The trigger system consists of two different trigger conditions:

• 𝐿𝑉 𝐿1 𝑇 𝑟𝑖𝑔𝑔𝑒𝑟 ∶
The TOF and TOFINO detectors (building the META system) determine the mul-
tiplicity M of an event. The first level trigger (LVL1) rejects events that do not
exceed an predefined multiplicity condition. In the p+Nb run a M3 trigger was
used registering only events with at least three hits in the META system.

• 𝐿𝑉 𝐿2 𝑇 𝑟𝑖𝑔𝑔𝑒𝑟 ∶
The second level trigger (LVL2) is meant to enhance the lepton fraction in the
data. During a run, data samples recorded by the corresponding detector parts
are evaluated by Image Processing Units (IPU) for possible lepton signatures like
RICH-rings. The Matching Unit (MU) connected to all IPUs correlates the sig-
natures and provides a trigger decision (e.g. at least one ring is needed to give a
positive trigger decision).

• 𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝐸𝑣𝑒𝑛𝑡𝑠
In this thesis hadronic reactions are analyzed thus the the LVL2 trigger decision is
not considered. To not introduce any trigger bias into the data sample a downscal-
ing of the minimum bias events was introduced. In the data acquisition process
the LVL2 trigger gives a positive signal if there is a sign for a leptonic event. Only
events with a positively LVL1 and LVL2 decisions are recorded except for a fixed
fraction of events independent of the second level trigger decision. These events
are called downscaled events. The amount of LVL1 events recorded without pay-
ing attention to the LVL2 trigger output is fixed by the downscaling factor DS. In
the p+Nb run DS was set to three which means that every third event was written
to tape. Downscaled events become denoted by a DS1 flag which can afterwards
be used to distinguish them from other events in the hadron analysis.

3.0.20 Analyzed files
The reconstructed signals of the tracked particles are stored in DST files, which are used
for the physics analysis. If e.g. some tracking procedures are updated new DSTs are
produced for the analysis. In the p+Nb analysis filtered microDSTs are analyzed. They
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were filtered for all relevant quantities like momenta, track quality parameters and the
track sorter 1 was run already through the files. The track sorter selects the best track
hypothesis in case many track hypothesis would fit through given hitpoints.

3.1 Particle identification
The MDCs provide besides the momentum determination also the information of the
energy loss of a particle. This quantity helps to determine the PID of charged hardons.
The principle of energy loss is that a charged particle which crosses a medium scatters in-
elastically with electrons that are bound in atoms in the medium. This scattering process
causes an energy loss of the traversing particle. At each collision process 𝑛 the particle
loses the energy 𝐸𝑛 − 𝐸0 and it collides with a rate (per unit length) of 𝑁𝜎 where 𝜎 is
the cross section. This motivates the following ansatz for the energy loss [Sak94]:

d𝐸
d𝑥 = 𝑁 ∑

𝑛
(𝐸𝑛 − 𝐸0) ∫ d𝜎

dΩ 𝑑𝑞. (3.2)

A full relativistic treatment was given by Bethe and Bloch in the famous Bethe-Bloch
formula [Bet30]:

−⟨d𝐸
d𝑥 ⟩ = 4𝜋𝑁𝐴𝑟2

𝑒𝑚𝑒𝑐2𝑧2 𝑍
𝐴

1
𝛽2 [ ln (2𝑚𝑒𝑐2𝛽2𝛾2𝑇𝑚𝑎𝑥

𝐼2 ) − 𝛽2 − 𝛿
2]. (3.3)

The factors in detail are:

𝑧 : charge of the incident particle
𝑍, 𝐴 : atomic and mass number of the traversed medium
𝑚𝑒 : rest mass of the electron
𝑟𝑒 : Bohr electron radius
𝑁𝐴 : Avogadro number
𝐼 : mean excitation potential of the material
𝛿 : density correction
𝑇𝑚𝑎𝑥 : maximum kinetic energy which can be transferred

Eq. (3.3) depends on the charge (𝑧⋅𝑒) and on themomentum (𝑝/𝑚 = 𝛾𝛽) of the particles.
With the dependence of the momentum on the mass different curves for different particle
species are expected. This allows to separate between the different hadron species if the

1http://web-docs.gsi.de/%7Ehalo/docs/hydra/classDocumentation/hydra-8.21/out/HPidTrackSorter.
html
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3.1. Particle identification

mass is different. In this analysis the energy loss of the MDC is always used. Addition-
ally, for 𝑝 − 𝑝 correlations also the specific energy loss of TOF and TOFINO is used
for particle identification. To minimize the loss of statistics in the anyway scarce statis-
tics 𝑝-Λ sample only the MDC is employed for PID for this pair. The specific energy
loss distributions for the three detectors as a function of the momentum of the tracks are
shown in Fig. 3.5. The black dashed lines show the used selection regions for protons
and negative pions.
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Figure 3.5: Specific energy loss distributions for MDC, TOF and TOFINO as a function
of the particles momentum. One can clearly see the different bands corresponding to
different particle species.
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4
Data analysis

In this chapter the femtoscopic analysis in the p+Nb system is presented. The experiment
was performed in September 2008 with beams from the SIS18 located at GSI. Protons
with a kinetic energy of 𝑇𝑝 = 3.5 GeV were incident on a 12-fold segmented niobium
target. Such a target configuration was chosen because it is a good compromise between
maximizing the number of in medium decays of 𝜌 and 𝜔 mesons and keeping the 𝛾
conversion probability low since the main aim of the experiment was to study virtual
photons stemming from the 𝜔 and 𝜌 mesons produced in cold nuclear matter. The target
was also used in other experiments e.g. in JLAB. Details of the run are listed in Tab. 4.1
and taken from [Lor12; Web11]:

Beam energy 3.5 GeV
Average intensity 2 × 106 s−1

Target 93
41Nb

Target diameter 𝑑 = 2.5 mm
Number of segments 12
Distance between segments Δ𝑧 = 4.5 mm
Thickness of segment 𝑡 = 0.45 mm
Interaction probability 2.8%
Downscaled Events 3.15 ⋅ 109

Table 4.1: Overview of the conditions of the p+Nb reaction.
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4.0.1 Protons and Lambda hyperons track selection
All tracks are required to have a good match of the track segment in the outter MDC
segment with a META hit point. Protons for the 𝑝 − 𝑝 analysis are selected with the
energy loss information from the MDC as well as TOF or TOFINO detectors. For the
𝑝-Λ pair only the MDC information is used for particle identification to not loose pairs
with additional selections. This leads to a slightly worse purity, which will be discussed
in Section 4.2.4. The Λ is a neutral strange baryon which decays weakly into pairs of
𝑝𝜋− with a branching ratio of ∼ 64% [Oli+14] and a lifetime of about 𝑐𝜏 = 7.9 cm in
the rest frame of the Λ. This finite lifetime allows to introduce topological cuts to reduce
sources of combinatorial background. Four combinatorial cut selections are employed:

• Distance of closest approach between the daughter tracks (𝐷𝐶𝐴𝑝𝜋−).
• Distance of closest approach of the daughter tracks to the primary vertex (𝐷𝐶𝐴𝑝, 𝐷𝐶𝐴𝜋−).
• A cut on the flight distance of the Λ, which is the distance between the primary

and decay vertex (𝑑(|𝑃𝑉 − 𝑆𝑉 |)).
• A selection on the pointing angle 𝛼 which is the angle between the vector which

points from the primary to the decay vertex and the Λ momentum vector.
A sketchof a Λ decay is presented in Fig. 4.1. The red arrow shows the momentum
vector of the Λ which is reconstructed with the daughter tracks. The black arrow shows
the vector connecting the primary and secondary vertices. The primary vertex must have
a smaller z-component then the decay vertex in a fixed target experiment. This is ensured
with the pointing angle selection because large opening angles between the two vectors
means that the Λ momentum vector points towards a positive z-direction whereas the
vector between the primary and decay vertex points in the opposite direction. The cuts
are chosen tomaximize the Λ purity defined as 𝒫 = 𝑆/(𝑆+𝐵) and not loosing toomuch
signal. They are found by a variation of values for every topological observable, which
are predefined in an array. To reduce the dimension of the parameter space the pointing
angle and the distance between the tracks is kept constant. For every combination the
invariant mass of 𝑝𝜋− is fitted to obtain the signal 𝑆 and background 𝐵. Fig. 4.2 shows
tested cut combinations (the z-value corresponds to a specific cut combination) and the
corresponding Λ signal and purity. The chosen cut values are indicated as black circles
and are listed in Tab. 4.2. In any future study it might be worth to develop an automatic
cut finding procedure, where the desired purity and/or fraction of signal loss is given to
a function which is then minimized. The corresponding invariant mass plots of 𝑝𝜋− for
the chosen cut selections are shown in Fig. 4.3, 4.4, 4.5.

4.1 Correlation functions
The correlation function is obtained by comparing the pair statistics in the relative mo-
mentum difference k representation from same event to a mixed event sample. The
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Primary
Vertex

Secondary
Vertex

Beam direction

Figure 4.1: Sketch of a Λ decay and the explanation of toplogical selection criteria.

Comb. 𝐷𝐶𝐴𝑝
[mm]

𝐷𝐶𝐴𝜋−

[mm]
d(|PV-
SV|)
[mm]

𝐷𝐶𝐴𝑝𝜋−

[mm]
Pointing
angle
[rad]

Purity
[%]

1 7 15 52 10 0.1 86.1
2 7 25 57 10 0.1 89.6
3 10 28 61 10 0.1 92.5

Table 4.2: Topological cut selections for the Λ hyperon to reduce combinatorial back-
ground. The corresponding purities are also listed.
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Figure 4.2: Purity as a function of the
remaining signal for different topolog-
ical cut selections. The black circles
show the selected cuts.
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Figure 4.5: 𝑝−𝜋− invariant mass spec-
trum for combination 3 of topological
cuts.

z-coordinate of the target is reconstructed in the events and it is required to lie within
-60 mm < z < 0 mm, where the target is located. Details about the target are given in
Tab. 4.1. For the event mixing the events are grouped in bins of the z-vertex of 6 mm
for 𝑝 − 𝑝 pairs and 10 mm for 𝑝-Λ. For 𝑝-Λ in event mixing two primary vertices from
the two different events are present. The primary vertex with the tracks from the two
events is recalculated to have one common primary vertex. This primary vertex is used
to calculate the topological observables. The events are binned in multiplicity 𝑀 with
a width of two tracks below 𝑀 < 9. Events with multiplicity 9 ≤ 𝑀 are put into one
mixing bin. The multiplicity was evaluated with hit points in the inner Segments, the
Shower and the TOF detector.
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4.2 Corrections
In this section all the applied corrections are discussed. The major correction is related
to cure the sample from track merging. Also the finite momentum resolution of HADES
plays a significant role on the correlation functions as will be shown.

4.2.1 Two track cuts
Femtoscopy is based on a measurement of a pair of particles with a small relative mo-
mentum. In order for a pair to fulfill this criteria 𝜙, 𝜃 and 𝑝T must be quite similar and
this means that the track trajectories of the particles in the pair are very similar. The
detector might have at some point problems to distinguish two distinct tracks due to the
finite detector granularity. Then two tracks are merged into one track. One refers to
this effect as close track efficiency (CT). This can happen in HADES e.g. if the pair
hits the same MDC wire at very similar points. If this merging happens very often then
many pairs at lowmomentum differences are missing. A problem appears when the ratio
with the mixed event sample is computed, where all tracks are distinct. Thus the track
merging process introduces an artificial correlation where solely the detector is respon-
sible for. The opposite effect can also happen and then one track is reconstructed as
two tracks. This can happen in HADES in case of double hits, e.g. that different track
hypotheses can describe the recorded hit points. To find the best track candidate is the
task of the track sorter on the software side of HADES 1. This is done at the DST level
and for the pNb system only microDSTs were accessible for the analysis. The track
sorter for the microDSTs production was already run over the DST sample but many
non-unique track hypotheses are not sorted out since the track sorter was initialized with
rather loose conditions. Such tracks have rather similar momentum and thus a small
momentum difference, which leads to fake positive correlations. Certain track quality
parameter are stored in the microDSTs. A requirement of a good match indicated by
a positive 𝜒2

META > 0 of the track segment in the outer MDC and a META hit point
helped to get rid of such fake tracks. The more severe problem is introduced by track
merging as will be shown. To investigate this effect the differences in the Δ𝜙 and ΔΘ
angles are explored for the 𝑝 − 𝑝 pair and the opening angle between the primary and
Λ daughter proton for 𝑝-Λ pairs. To get the proper Δ𝜙 observable in the same event
distribution one has to perform first a randomization of the tracks before calculating the
angle difference. HADES tabulates the tracks according to the six segments, which in-
troduces a bias in the angle difference showing up in an asymmetry in Δ𝜙. The mixed
event sample is automatically randomized and is perfectly symmetric.
The track merging phenomenon is now explored and it is shown that the HADES track-

1http://web-docs.gsi.de/%7Ehalo/docs/hydra/classDocumentation/hydra-8.21/out/HPidTrackSorter.
html

– 57 –

http://web-docs.gsi.de/%7Ehalo/docs/hydra/classDocumentation/hydra-8.21/out/HPidTrackSorter.html
http://web-docs.gsi.de/%7Ehalo/docs/hydra/classDocumentation/hydra-8.21/out/HPidTrackSorter.html


Chapter 4. Data analysis

ing is responsible for it. This can be seen in Fig. 4.6. The left plot shows the distribution
for 𝑝 − 𝑝 pairs generated from UrQMD simulations and filtered through the HADES
acceptance, which means after GEANT. The right plot includes also the the tracking of
the particles through the HADES apparatus. A hole appears in the middle of the right
plot. This is a clear sign that the tracking of the particles is responsible for the merg-
ing. Merged pairs are rejected by the requirement of a minimal cut on ΔΘ and Δ𝜙 in
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Figure 4.6: Angle correlations of (Δ𝜙,ΔΘ) for 𝑝 − 𝑝 pairs. The left plot shows 𝑝 − 𝑝
pairs after GEANT which filters the pairs for acceptance. The right plot includes also
the tracking which introduces a hole in the distribution.

the same event as well as in the mixed event sample. To find proper selection values
the effect of rejecting pairs at small angles is investigated with the experimental corre-
lation function for 𝑝 − 𝑝 pairs. The experimental correlation function for 𝑝 − 𝑝 pairs in
(Δ𝜙,ΔΘ) is shown in Fig. 4.7. One can see that for (Δ𝜙,ΔΘ) → (0, 0) the merging is
so strong that nearly no pair can be measured by the detector in this region. The region
where the merging happens is actually rather broad, which makes it hard to find selec-
tion criteria where all the merging is rejected without loosing too much or all pairs in
the interesting low momentum region. The efficiency to measure pairs which are close
together in space depends always on the pair under investigation. To demonstrate this
the angle differences are also calculated for pion pairs. This is illustrated in Fig. 4.8, 4.9,
4.10. For identical pion pairs it depends on the charge of the pair, since the acceptance
changes with the magnetic field. For unlike-sign pions the efficiency is shifted away
from the origin. This is a typical effect for non-identical pairs. The influence of cutting
out pairs at small angles is displayed in Fig. 4.11 for 𝑝 − 𝑝 pairs. One can clearly see
that the experimental correlation function is strongly influenced by the merging of pairs
by the HADES detector. The peak position at around 20 MeV/𝑐 goes up to larger values
when pairs at small angles are rejected and saturates when most pairs from merging are
cut out from the sample. As already said it is not directly clear which selection values
should be chosen since the merging is rather broad. It is decided that a medium range of
|ΔΘ| > 0.05 rad and |Δ𝜙| > 0.12 is a compromise between the rejection of the most
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Figure 4.7: Experimental correlation function in (Δ𝜙,ΔΘ) for 𝑝 − 𝑝 pairs.

severe merging region and keeping enough pairs left for the analysis. The baseline of
the correlation function is also not flat. A correction for this is to divide the measured
correlation function by a correlation function from UrQMD as will be shown in Section
4.2.2. Since the correlation function from UrQMD will be also influenced by the close
track efficiency any residual merging is corrected by this division. A variation of the
chosen cut parameters on the final result is taken into account as systematic uncertainty.
The effect of the chosen selection interval on the correlation function is displayed in Fig.
4.12 in the one-dimensional relative momentum basis as well as in three-dimensional
q𝑜,𝑠,𝑙 coordinates. One can see that for all coordinates the rejections of too close pairs
improves the correlation functions significantly. Also in simulations the merging ef-
fect is observed. To get the correlation function from simulations the UrQMD [Bas+98;
Ble+99] transport model is used for 𝑝−𝑝 pairs and GiBUU [Bus+12] as event generator
for 𝑝-Λ. GiBUU allows to tune production cross sections quite easily plus it can be run
in perturbative mode [Bus+12], which is faster to compute sufficient statistics. For the
production of strange baryons GiBUU relies on calculations of cross sections from the
Tsushima resonance model [Tsu+99]. This cross sections were tuned in an experimental
K0

S analysis [Aga+14b] performed by the HADES collaboration. They are parametrized
in the Tsushima model as follows [Tsu+99]:

𝜎 = 𝑎 ( 𝑠
𝑠0

− 1)
𝑏
(𝑠0

𝑠 )
𝑐

, (4.1)

where 𝑠 and 𝑠0 are the invariant collision and the threshold energy. All channels in-
volving a Λ/Σ0 in the production are scaled by a factor 100 × 𝑎. The relevant channels
contributing to the Λ production in GiBUUwith the corresponding values of scaled cross
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Figure 4.8: Experimental correlation
function in (Δ𝜙,ΔΘ) for 𝜋− −𝜋− pairs.
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Figure 4.9: Experimental correlation
function in (Δ𝜙,ΔΘ) for 𝜋+ −𝜋+ pairs.
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Figure 4.10: Experimental correlation
function in (Δ𝜙,ΔΘ) for 𝜋−−𝜋+ pairs..

sections are listed in Tab. 4.3. The two simulation samples from UrQMD and GiBUU
are sent through the whole analysis chain including acceptance and tracking efficiency.
The correlation functions from simulations are displayed in Fig. 4.13. One can also see
in the simulated correlation functions the strong merging effect for the 𝑝 − 𝑝 pair. The
suppression is so strong that at low k no pair can be measured anymore. For the 𝑝-Λ pair
the merging is not that strong compared to 𝑝−𝑝. The reason is that the secondary proton
is a bit displaced from the Λ direction due to the decay, which softens the merging effect
by the detector. This more flat merging signal was also observed in a 𝑝-Λ femtoscopy
analysis in Ar+KCl reactions at √𝑠NN=1.76 GeV [Aga+10] measured by HADES. For
𝑝 − 𝑝 the angle selection criteria, which were discussed above are used to reject close
pairs. In 𝑝-Λ a one-dimensional cut is investigated. In the decay Λ → 𝑝 + 𝜋 most of the
momentum is transferred to the proton. This means that the direction of the proton is
strongly correlated with the Λ direction. Thus, the merging appears between the primary
and the secondary proton in the 𝑝-Λ pair. With help of GiBUU simulations one observes
that a opening angle between these two protons of 5∘ = 0.09 rad is sufficient to get rid
of track merging.
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Figure 4.11: Experimental correlation 𝑝 − 𝑝 function with different cut selections on
(Δ𝜙,ΔΘ) to reject close pairs.

4.2.2 Long range correlations
In the best case the experimental correlation function contains only the femtoscopic cor-
relations. However, especially in smaller collision systems also other correlations can
show up. They are visible via a non-flat baseline at large relative momentum values,
where the femtoscopic correlations flatten out. The origin of such non-flat structures
can be addressed to correlations from energy and momentum conservation at smaller
energies or minijets and kinematic conservations at larger energies. In p+Nb reactions
one deals with a small collision system, which is reflected in the number of participants
of ⟨𝐴part⟩ = 2.5 [Aga+14a]. Thus the average multiplicity is also quite low ⟨𝑀⟩ ∼ 4.
For this reason it is not surprising that in such a small system event mixing cannot per-
fectly fulfill the kinematic constraints from energy and momentum conservation. Effects
of this kind were investigated in [CL08; Boc11; Cha09]. But even in larger systems the
baseline can be not flat due to collective effects like flow, which are also not present in
event mixing. However, their influence in heavy-ion collisions is usually much smaller.
To correct for such effects several strategies were developed in the femtoscopy field.
In the analysis presented here baselines from Monte Carlo simulations are investigated.
Since UrQMD and GiBUU were used for two track cuts, they are reused for the investi-
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Figure 4.12: Comparison of the 𝑝 − 𝑝 correlation function in the k and q𝑜,𝑠,𝑙 represen-
tation. The reduction of the merging effect is clearly visible.

gation of non-flat baseline structures. Most transport models like UrQMD and GiBUU
don’t contain femtoscopic effects. Thus any correlations visible from these models can
be traced back to correlations from e.g. energy and momentum conservation. This addi-
tional correlations are displayed in Fig. 4.14. One can see that for 𝑝−𝑝 as well as 𝑝-Λ the
baseline is not flat and rises when going to larger relative momenta. This non-flatness
could also have an influence on the lower momentum region. For this region a correc-
tion procedure is applied. The correlation function corrected for close track efficiency
is divided by the correlation function describing the LRC:

𝐶F(𝑘) = 𝐶(𝑘)measured
𝐶(𝑘)LRC

, (4.2)

where 𝐶(𝑘)measured is the experimental correlation suffering from LRC and 𝐶(𝑘)LRC is
the correlation function which includes only LRC. Two different approaches are chosen
to obtain the latter. For the 𝑝−𝑝 pair the UrQMD correlation function is directly used for
𝐶(𝑘)LRC since the statistics is quite large. This also helps to reject any residual merging
effects as discussed in the previous Section. A very similar ansatz to model LRC was
exploited in a femtoscopy analysis of identical neutral Kaons measured by ALICE in pp
collisions [Abe+06]. To model LRC for the 𝑝-Λ pair a different path is chosen since the
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Reaction 𝑎 [mb]
𝑝𝑝 → 𝑝Λ𝐾+ 187.9
𝑝𝑛 → 𝑛Λ𝐾+ 140.6
𝑝𝑝 → 𝑝Σ0𝐾+ 532.1
𝑝𝑛 → 𝑝Σ0𝐾+ 131.55
Δ+𝑛 → Δ0Λ𝐾+ 31.2
Δ+𝑝 → Δ+Λ𝐾+ 291.7
Δ+𝑛 → Δ0Σ0𝐾+ 111.2
Δ+𝑝 → Δ+Σ0𝐾+ 1062.0

Table 4.3: Channels in GiBUU that are responsible for the Λ production. The corre-
sponding (scaled) cross section factor is displayed.

statistics in these simulations is lower. A polynomial function is sufficient to describe
the baseline:

𝐶LRC(𝑘) = 1 + 𝑎𝑘 + 𝑏𝑘2 , (4.3)

where 𝑎, 𝑏 are coefficients determined by a fit to the baseline outside of the femtoscopic
region in the range 𝑘 ∈ [250, 600] MeV/𝑐 to the simulated as well as to the experimental
correlation function. This was done to exploit possible effects at low relative momentum
between the two baselines. But no significant difference is observed as shown on the
bottom of Fig. 4.14. The dashed line represents a fit of Eq. (4.3) to the experimental
correlation function whereas the solid line represents a fit to the correlation function
from GiBUU.

4.2.3 Momentum Resolution
HADES measures the produced particles with a finite momentum resolution of about
2-6%. At the collision vertex particles are emitted with ideal unsmeared momenta 𝐩1,
𝐩2. This perfect momenta set the scale for the final state interactions between the par-
ticles and the ideal correlation function is based on them 𝐶(𝐩1, 𝐩2) = 𝐶(𝑘). In the
experiment the smeared momenta are used 𝐶(𝐩′

1, 𝐩′
2) = 𝐶(𝑘′), which deviate from the

ideal momenta. To account for this effect a correction factor is introduced [Ada+05]:

𝐾(𝑘) ≡ 𝐶(𝑘)ideal
𝐶(𝑘′)smeared

= 𝐶(𝑘)real
𝐶(𝑘′)F

, (4.4)

where the “ideal” correlation function is the one without detector resolution and the
“smeared” is affected by momentum resolutions. 𝐶𝐹 (𝑘) is the measured correlation
function. Thus, to get back the “real” correlation function one has to obtain the ratio
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Figure 4.13: Correlation functions for 𝑝 − 𝑝 (top) and 𝑝-Λ (bottom) obtained from
UrQMD and GiBUU (see text). One can see that a minimal cut on angles between the
particles cures the track merging.

of the “smeared” and “ideal” correlation function. To get this ratio a simulation sample
from UrQMD is used. This sample is processed through the whole analysis chain thus
includes also the momentum resolution introduced by the track reconstruction. For ev-
ery track which enters the analysis also the input momentum can be accessed. To not
include any other correlations mixed event samples are used. They contain also proper
pair statistics following a 𝑘2 distribution. The samples are weigthed with a femtoscopic
weight which is calculated with the ideal momentum:

𝐶(𝑘)ideal = 𝐵(𝑘, 𝑤(𝑘))
𝐵(𝑘) , (4.5)

where 𝐵(𝑘) is a mixed event sample and 𝑤(𝑘) the femtoscopic weight. The weights
are calculated from CRAB using as input a Gaussian source from a random number
generator. Since “ideal” is just a labelling of the momenta in Eq. (4.5) the correlation
function is invariant if all momenta are switched to the smeared momenta 𝑘 → 𝑘′, also
for the weight. The momentum resolution comes into play when the weight is calculated
with the “ideal” momenta but the smeared momentum is weighted. This is actually what
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Figure 4.14: Effects of LRC on the correlation function. Top: 𝑝−𝑝 pairs where UrQMD
is used to describe the baseline. Bottom: 𝑝-Λ pairs where Eq. 4.3 is used to describe
LRC. The experimental (dashed) as well as the simulation (solid) correlation function is
fitted in 𝑘 ∈ [250, 600] MeV/𝑐 to check for any differences at low k.

happens in the experiment:

𝐶(𝑘)smeared = 𝐵(𝑘′, 𝑤(𝑘))
𝐵(𝑘′) . (4.6)

One can think of a histogram where the correct weight enter in the wrong bin of the his-
togram due to the finite resolution. It has the effect that the correlation function broadens.
This is displayed on the right of Fig. 4.16 for 𝑝 − 𝑝 pairs. Figure 4.15 shows the resolu-
tion matrix for the input and reconstructed momenta differences. They are correlated but
a finite width is present, which is the resolution. The effect of the momentum resolution
is also evaluated for the k𝑜,𝑠,𝑙 representation. This is displayed in Fig. 4.17. Also there
a significant influence on the measurement can be observed. The resolution matrix for
𝑝-Λ is displayed in Fig. 4.18 and the effect of the smearing in Fig. 4.19. The corrected
experimental correlation functions 𝐶unsmeared(𝑘) = 𝐶real(𝑘) = 𝐾(𝑘)×𝐶F(𝑘) for 𝑝−𝑝
and 𝑝-Λ are displayed in Fig. 4.20. One can see that the momentum resolution has a
sizeable effect for 𝑝 − 𝑝 pairs. The restored correlation function is much more peaked
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Figure 4.16: Right: Correlation func-
tion from simulation for 𝑝−𝑝. The open
circles show the unsmeared correlation
function and the blue triangles the effect
of the momentum resolution.

and and also less broad. The behavior of the momentum resolution depends clearly on
the functional form of the correlation function. The 𝑝 − 𝑝 form is in general rather com-
plex, thus a small deviation in the relative momentum Δ𝑘 leads to a strong change in
Δ𝐶. If the unsmeared ideal correlation function 𝐶(𝑘) is reconstructed at a slightly dif-
ferent momentum 𝑘′ the change is strongly pronounced. The 𝑝-Λ correlation function
is a smoother function. The finite resolution has a different effect even when the reso-
lution matrix is very similar. A final word on the method. It uses as input already an
assumption about the correlation function. Thus it needs an assumption about the source
function and the interaction. The source radii are varied and changes are included in the
systematic error. In future it is better to use a model in which the fit function is propa-
gated through the resolution matrix and then compared to the data. For every interaction
the resolution is then separately taken into account. However, in the method presented
here the ratio of Eq. (4.4) is rather insensitive to any parameter choices.

4.2.4 Purity and residual Correlations
Particles are measured with a finite purity with the detector setup. If the purity is rather
large one measures basically only the pairs of interest. The misidentified pairs don’t
contribute to the correlation signal and just dilutes it. To restore the complete signal and
correct for the misidentified pairs a purity correction has to be performed. It is based
on the fact that only the femtoscopic signal is diluted, thus one subtracts from the true
correlation function the baseline, reweights the femtoscopic signal and adds the baseline
to it [Lis+05]. This leads to a diluted correlation function. Mathematically it reads:

𝐶(𝑘)pur,uncorr = 𝜆(𝐶(𝑘)pur,corr − 1) + 1 , (4.7)
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Figure 4.17: Effect of the momentum resolution for k𝑜,𝑠,𝑙 projections.

where 𝐶(𝑘)pur,uncorr is the purity uncorrected correlation function like it is measured
in the experiment and 𝐶(𝑘)pur,corr is the “true” correlation function for perfect purity.
Thus, this equation can be converted for𝐶(𝑘)pur,corr. The exercise which is left is then to
determine the parameter 𝜆. It is the product of the pair purity and the fraction of directly
produced pairs assumed in many analyses e.g. [Ada+06; Ant+11] and also by analyses
developed in HADES [Aga+10; Aga+11]. The pair purity is simply the product of the
single-particle purities and the fraction of directly produced pairs is the product of the
single-particle fractions:

𝜆 = Pur𝑏Pur𝑏 ,
Pur𝑖 = 𝒫𝑖𝑓𝑖 ,

(4.8)

where 𝒫 is the single-particle purity and 𝑓 is the fraction of directly produced particles
in the sample. The single particle purity in case of Λ is directly given by the fit of the
invariant mass spectra shown in Tab. 4.2. The proton purity is determined by UrQMD
where the tracks entering the analysis via all experimental selections are checked for the
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for the momentum differences k. The x-
axis shows the input momenta and the
y-axis the reconstructed momenta.
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tion from simulation for 𝑝-Λ. The open
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correct PID. The protons for the 𝑝-Λ pair are only selected with theMDC specific energy
loss, which results in a slightly worse purity of about 2%.
The effect of feed-down from higher lying resonances can introduce residual correla-
tions. The weakly decaying resonance transferrs its momentum mostly to the daughter
baryon and the initial correlation is transformed to the daughter pair. Due to kinematic
limitations of the observed reaction it is ruled out that e.g. two protons stem from a Λ
decay ΛΛ → 𝑝Λ𝑝Λ. The produced particles are always quite baryon rich since all initial
particles consist of baryons. The fraction of protons coming from a Λ decay is estimated
with UrQMD to about 0.003. This feed-down can be neglected and all protons are pri-
mary protons. The main source of Λ feed-down is coming from Σ0. The Σ0 hyperon
decays electromagnetically almost exclusively in a Λ, 𝛾 pair already at the primary ver-
tex. There is no chance to distinguish between direct Λ and ΛΣ0 experimentally. The
fraction Λ from Σ0 is determined from a statistical model analysis performed in p+Nb
reactions [Aga+16]. It calculates on basis of measured multiplicities thermdodynamic
quantities. This model predicts the ratio Λ/(Λ+Σ0) = 0.82. A variation of this of 10%
is taken into account as systematic uncertainty in the final parameter. Experimentally,
the 𝑝 − Σ0 interaction was studied in reactions of 𝑝𝑝 → 𝑝𝐾+Σ0/Λ at different excess
energies by the COSY-TOF Collaboration [Abd+10]. The cross section for including a
Σ0 was perfectly in agreement with a phasespace parametrization whereas for the de-
scription for the Λ channel also final state interactions had to be taken into account. This
shows that the 𝑝 − Σ0 interaction seems to be quite weak. For this reason it is not taken
into account as residual correlation. The initial correlation is anyway hard to model
[Sta+07], because of different isospin configurations of the pair system and couplings to
other channels. A summary of the single particle purities and the 𝜆 parameter are shown
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Figure 4.20: Effect of the correction for momentum resolution the measured experi-
mental correlation functions of 𝑝 − 𝑝 (top) and 𝑝-Λ (bottom).

in Tab. 4.4 (combination 1 is the default parameter set of the analysis).

4.3 Comparison to transport model predictions
With femtoscopy the size of the emission region is measured by comparing it to a model,
which includes an assumption about the source function. A transport model can provide
besides the kinematic information of the particles also the coordinates of the last inter-
action point. This spatial coordinate is exactly the quantity which enters the calculation
of the source function. Thus the source function can be reconstructed from transport

Particle Pair Pur𝑎 Pur𝑏 𝜆
𝑝 − 𝑝 0.99 0.99 0.98
𝑝-Λ 0.86 ×0.82 0.97 0.68

Table 4.4: Purity parameter used to correct the correlation functions for purity.
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model simulations and if one trusts the predictions it can be used to constrain the source
function used to describe the experimental data. This reduces the number of free pa-
rameters in the interpretation of the correlation function and allows to test the scattering
parameters that govern the interaction more precisely. Since UrQMD worked already
perfectly to describe the LRC as discussed before, it is natural to use it further to constrain
the source function. One has to keep in mind that UrQMD is a semi-classical transport
model, so it does not include any quantum meachanical treatments of the emitted pairs.
For this reason one needs an additional software which is able to compute final state in-
teractions based on the kinematic and spatio-temporal output of the transport model. In
this analysis the publicly available Correlation After Burner CRAB [Pra17], is used to
compute these final state interactions. It solves the Schrödinger equation numerically to
obtain the wave function. The ansatz for the wave function in CRAB is motivated by the
asymptotic solution of the radial wavefunction in a partial wave basis, see e.g. [Daw78]:

𝑅𝑙(𝑟) ∼ 𝑢(+)
𝑙 (𝑟) − 𝑆𝑙𝑢(−)

𝑙 (𝑟) , (4.9)

where 𝑢(±)
𝑙 are the incoming and outgoing waves of the scattering process. The outgoing

wave is modified by the scattering potential. This information is included in the unitary
scattering matrix which contains the phaseshift 𝑆𝑙 = exp(𝑖2𝛿𝑙). At 𝑟 → ∞ the func-
tions 𝑢(±)

𝑙 match with plane waves and the only difference to a non scattered wave is
the shift in phases of the outgoing wave. The phaseshift and the incoming and outgoing
waves are computed by CRAB. The ansatz in Eq. (4.9) is actually questionable for small
separations 𝑟 → 0 since in this case the phaseshift between the incoming and outgoing
wave function might not be sufficient to describe the deviation. At small separations
the wave function is inside the strong interaction potential and the phaseshift builds up
when the wave function propagates outside of the strong potential. For this reason it is
questionable to use it for very small source sizes like pp or even smaller systems and a
development of a new model was triggered within this thesis [Mih]. The influence of
small sources is discussed in section 2.0.5 where the construction of the Lednicky model
is explained.
To test UrQMD a simulation was performed at seven different impact parameter in a
range of 𝑏 = 1 − 7 fm to include also the tails of the Nb nucleus. CRAB needs also the
information how probable such an event is. For this the probability of having an empty
events is used to compute it since in. After a UrQMD simulation was performed the
model prints the number of events in which no collision took place. At larger impact
parameter it is more likely that the proton misses the nucleus compared to central colli-
sions where more or less in every event a reaction takes place.
UrQMD uses for the scattering of the produced particles parametrizations of cross sec-
tions. For the hyperon-nucleon scattering and corresponding resonances it relies on cal-
culations of the additive quark model (AQM) [Gou83]. This parametrization of the cross
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section is independent of the energy between the particles. The experimental 𝑝-Λ cross
section extracted from hyperon-nucleon scattering data shows a rising for lower incom-
ing Λ lab momenta [Ale+68; Sec+68]. Within this work the UrQMD 𝑝-Λ scattering
parametrization was adapted according to the scattering data. The scattering data is dis-
played in Fig. 4.21 together with the standard AQM model predictions and two other
parametrizations. The two different parametrizations are motivated by a chiral effective
field theory calculation at leading order and next-to-leading order [Hai+13] to check
for systematic effects on the outcome. Following functions are found to describe the
calculated cross sections of [Hai+13] at the two expansions:

𝜎(𝑝)LO = { 247.86 − 0.688𝑝 + 49.56410−5𝑝2 𝑝 < 0.6 GeV/𝑐
14.4𝑝−0.12 𝑝 > 0.6 GeV/𝑐 (4.10)

𝜎(𝑝)NLO = { 203.56 exp(−14.47𝑝2) + 253.88 exp(−76.19𝑝2) 𝑝 < 0.4 GeV/𝑐
14.4𝑝−0.12 𝑝 > 0.4 GeV/𝑐

(4.11)

One can see in Fig. 4.21 that the AQM predicts the order of magnitude of the cross sec-
tion correct but the rising of the cross section at lower Λ momenta is not included. This
is only included by the NLO parametrization of Eq. (4.11). The different parametriza-
tions of LO and NLO are tested in the extractions of the freeze-out coordinates. The
influence is negligible. For the extraction of freeze-out coordinates kinematic selections
are employed. Since the femtoscopic signal is located at small relative momenta only
pairs which fulfill 𝑘 < 30 MeV/𝑐 are taken into account. The source function depends
also on the total momentum. The center of mass of the pair is moving with 𝐏 and emits
the pairs around this center of mass movement 𝐏 ± 𝐤. Pairs with larger |𝐏| might stem
from a different underlying process than particles with lower values. As an example, in
heavy-ion collisions pairs with large total momentum might be strongly influenced by
flow effects. This actually suggests to also use a gating in |𝐏| [Led; Bro]. Only pairs
which have very similar 𝐏 are used to reconstruct the source. For every component a
maximal deviation of 100 MeV/𝑐 is allowed. Additionally, the HADES acceptance is
taken into account by using only particles which fly in the region Θ ∈ [15∘, 85∘] with a
positive z-momentum component 𝑝𝑧 > 0. The predicted freeze-out coordinates in the
out-side-long coordinate system from UrQMD with the discussed selections are shown
in Fig. 4.22 for 𝑝 − 𝑝 and in Fig. 4.23 for 𝑝-Λ. Already at this stage it seems that the
width of the 𝑝-Λ correlation function is a bit smaller compared to 𝑝 − 𝑝. To quantify
this the coordinates are transformed into the PRF (indicated by asterisk) also in out-
side-long representation. Basically the out-component is affected by the boost. The
one-dimensional radius is then defined as the sum of the components:

𝑟∗
inv = √𝑟∗2

out + 𝑟∗2
side + 𝑟∗2

long . (4.12)
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Figure 4.21: Cross section for 𝑝-Λ scattering. The AQM is part of the standard UrQMD
model. The LO and NLO expansions are motivated by [Hai+13].

This equation gives strictly speaking the projection of the full source function onto the
𝑟∗

inv component. Usually, one fills a histogram with this variable and divides it by the
Jacobian ∼ 𝑟∗2 [Sha+15]. In case of a perfect Gaussian source one retrieves the full
Gaussian source because it contains no special angular dependence. Actually, the full
source information is included in the out-side-long representation. To avoid the weight-
ing with 1/𝑟∗2 the source is investigated directly in the out-side-long basis in the PRF.
In [Kis10] it was shown that one can define an average radius by:

𝑟∗
av = √𝑟∗2

out + 𝑟∗2
side + 𝑟∗2

long
3 , (4.13)

which connects the 1D and 3D radii. The goal is to fit the out, side and long projections
for 𝑝-Λ and 𝑝−𝑝 pairs of UrQMD separately and extract the width in all three directions.
With Eq. (4.13) the average radius for both pairs is then calculated. This can be used to
define a scaling between both parameters. Since the 𝑝 − 𝑝 radius can be extracted from
the experimental measurement one can use the scaling of the radii from UrQMD to fix
the 𝑝-Λ radius. This allows to investiagate solely the scattering parameter.
Since all models use Gaussian descriptions for the source and the distributions look
pretty Gaussian from UrQMD, a Gaussian parametrization is used to extract the width
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in the region 𝑟𝑖 ∈ [−10, 10] fm:

𝑑𝑁/𝑑𝑟∗
𝑜,𝑠,𝑙 ∼ exp(−𝑟∗2/2𝜎∗2

𝑜,𝑠,𝑙) . (4.14)

The width of this Equation is related to the radii via 𝜎𝑜,𝑠,𝑙 =
√

2𝑟∗
𝑜,𝑠,𝑙 because a two-

particle quantity is described. The fit of the out-side-long projections is shown in Fig.
4.24. The curves for 𝑝-Λ in Fig. Fig. 4.24 are scaled to fit on the same histogram due to
the lower statistics of this pair. One can see that the width parameter of the projections
is a bit smaller for 𝑝-Λ. The fits are repeated for the LO parametrization in exactly the
same way. The extracted average radii for the NLO case are 𝑟𝑎𝑣,𝑝𝑝 = 2.15 fm and
𝑟𝑎𝑣,𝑝Λ = 1.76 fm which are compatible with the radii obtained from the fitting. The
ratio of the width is finally obtained using Eq.(4.13) to be:

• 𝑅𝐹𝐿𝑂 = 𝑟𝑎𝑣,𝑝𝑝
𝑟𝑎𝑣,𝑝Λ

= 1.179 ,
• 𝑅𝐹𝑁𝐿𝑂 = 𝑟𝑎𝑣,𝑝𝑝

𝑟𝑎𝑣,𝑝Λ
= 1.184 .

This ratios are used in the next Section to fix the radius of the 𝑝-Λ correlation function
via the measurement of the experimental 𝑝 − 𝑝 radius 𝑟0,𝑝𝑝. The source relation is then

𝑟0,𝑝Λ = 𝑟0,𝑝𝑝
𝑅𝐹 , 𝛿𝑟0,𝑝Λ = ∣𝛿𝑟0,𝑝𝑝

𝑅𝐹 ∣ . (4.15)

In a last step the coordinates are put to CRAB that it calculates the correlation functions
with a impact parameter gating discussed above. CRAB allows also to perform a boost
into the LCMS, which is then used to calculate projections of the 3D correlation function
on the out-side-long axes in this frame. The definition of this frame is shown in section
2.0.11. Exactly the same projection intervals of 𝑘𝑜,𝑠,𝑙 < 20 MeV/𝑐 are used for the
projections like in the experimental data. The results of the comparison are displayed
in Fig. 4.25.

4.4 Experimental results
4.4.1 Source size extraction
First the Gaussian source sizes for both pairs are extracted by comparing it to femto-
scopic models. For 𝑝 − 𝑝 a model is used, which was developed to describe 𝑝 − 𝑝 and
nuclear correlations [Kot+99]. It calculates the Schrödinger Equation numerically with
the Reid potential. For partial waves 𝑙 = 0, 1 the nuclear modification of partial waves
is taken into account. For 𝑙 > 1 only Coulomb waves are summed up. The function is
minimized using a 𝜒2 minimization implemented with TMinuit 1, which is part of the
ROOT framework. The theoretical 𝑝-Λ correlation is compared to the Lednicky model
of Eq. (2.32). For the Lednicky model an analytic form exists. This allows to use it
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in a TF1 𝜒2 minimization. Results of the fits are shown in Fig. 4.26. For 𝑝 − 𝑝 pairs
a source size of 𝑟0,𝑝𝑝 = 2.02 ± 0.01(stat)+0.11

−0.12(sys) fm is extracted. The systematic
errors are obtained by a variation of the two track cuts to reject merging, the correction
of the momentum resolution of 20%, a change of the normalization and a change of the
interaction potential of the triplet state. All errors are summed up quadratically assum-
ing its independence. The 𝑝 − 𝑝 source sizes are also extracted as a function of the total
transverse momentum 𝑘𝑇 = 1

2 |𝐩𝑇 ,1 − 𝐩𝑇 ,2| in three bins in 𝑘𝑇 ∈ [175, 750] MeV/𝑐.
One can see in Fig. 4.27 that the source size drops slightly (on the order of 10%) as
a function of the transverse momentum. In heavy-ion collisions such a drop is usually
addressed to a collective expansion of the particle emitting system. This induces corre-
lations among spatial and kinematic coordinates. Also for smaller systems a dependence
of the source size as a function of the transverse momentum is measured [Nig+16] (and
references therein). In ALICE for pp collisions at 7 TeV also a decreasing of the source
size with larger transverse for large multiplicity events is observed, for pion as well as
kaon pairs [Aam+11; Abe+13; Abe+12]. If this is a sign of any collectivity is still un-
der debate. In this analysis the decrease is not addressed to any collective effect. In
the momentum region where the pairs are produced the Nucleon-Nucleon cross section
drops as a function of momentum [Oli+14]. Thus rescattering becomes less probable
with the nucleons inside the nucleus and the protons freeze-out earlier when going to
larger 𝑘𝑇 . A very similar interpretation was made in [Sta+04], where 𝑝 − 𝑝 correlations
from e(4.46 GeV)+A were measured.
The extracted 𝑝-Λ source size by fitting the Lednicky model to the experimental corre-
lation function is 𝑟0,𝑝Λ = 1.62 ± 0.02(stat)+0.19

−0.18(sys) fm. The systematic errors were
evaluated by a variation of the correction for momentum resolution, close track rejection,
purity correction, normalization of the baseline, the chosen interaction, and the contribu-
tion from Σ0 feed-down. The 𝑝-Λ source size is smaller compared to the one obtained
in 𝑝 − 𝑝 correlations. A similar finding is obtained for the Ar+KCl collision system
[Aga+10]. It might be that the Λ has a smaller interaction probability with nucleons in
this energy regime due to the smaller cross section. A comparison of the elastic 𝑝-Λ
cross section together with the total cross section of 𝑝 − 𝑝 and 𝑝 − 𝑛 [Oli+14] is shown
in Figure 4.28. One can see that indeed the NN cross section is larger compared to 𝑝-Λ.
The extracted source sizes can be compared to other measurements. For the 𝑝-Λ radius
only measurements from A+A collisions are published. The one-dimensional radius
for 𝑝 − 𝑝 pairs were extracted mainly at SPS energies in p+A reactions by the WA80
and NA44 Collaborations. WA80 measured 𝑝 − 𝑝 pairs in p+Au,Ag,Cu,C reactions
at 200 AGeV [Awe+95]. NA44 in p+Pb collisions at 450 GeV/𝑐 [Bog+99]. Also at
Fermilab H2-Ne bubble chamber experiments radii for 𝑝 − 𝑝 were extracted in p+Ne
reactions [Azi+84]. They are of the order of 2 − 6 fm but because of the old data its
hard to evaluate them. The radii measurements of this thesis are compared to results of

1https://root.cern.ch/doc/master/classTMinuit.html
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large and medium size nuclei, where the source is of the size of the Nb nucleus. This is
shown in Fig. 4.29. One can see in this Figure that the energy gap is rather large between
HADES and the other measurements. There might be an energy dependence between
the radii but more data would be needed to clarify this.

4.4.2 Test of scattering parameter
To fix the source radius for 𝑝-Λ the reduction factors of Section 4.3 are used. The goal
is to investigate the sensitivity of the correlation function 𝐶(𝑘) to scattering parameters,
which are predicted from a chiral effective field theory expansion [Hai+13]. The param-
eters are taken at a cutoff value of 600 MeV. The scattering length of the two expansions
lead to completely different total cross sections, whereas the total cross section of NLO
describes the scattering data much better. It is investigated with the correlation function
if a similar trend is also there observed. The radius for the 𝑝-Λ correlation function is
fixed with help of Eq. 4.15. The result of the correlation function with the fixed ra-
dius and the two different scattering sets of LO and NLO is presented in Fig. 4.30. The
bands are related to the total statistical and systematic uncertainty which enters Eq. 4.15.
Before discussing the result a remark on Fig. 4.30. It is based on the Lednicky model
which includes a correction term for the wave function in the range of the nuclear po-
tential, which is described by Eq. 2.30. In Fig. 4.30 this correction term was initialized
with 1/𝜋 instead of 1/√𝜋. The fully correct Lednicky model is shown in Fig. 4.31.

One can see that the correlation function develops a sensitivity on the chosen scat-
tering parameter and prevails with the correct description of the Lednicky model. The
behavior of the cross section is also reflected in the correlation function. However, the
statistics is not enough to draw any definite conclusion. An increase of a factor 10 in
pairs would lead to a sensitivity that would allow for the discrimination between the re-
sults. HADES will be upgraded with a forward detector which increases the acceptance
at low angles below Θ < 18∘. Additionally, an electromagnetic calorimeter will be in-
stalled. This will enable also to reconstruct Σ0 by the detection of the daughter photon.
This opens also the possibility to study the 𝑝 − Σ0 correlation function.
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Figure 4.22: Freeze-out coordinates in the out-side-long basis for 𝑝 − 𝑝
pairs from UrQMD.
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Figure 4.23: Freeze-out coordinates in the out-side-long basis for 𝑝-Λ pairs
from UrQMD.
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Figure 4.24: The projections in out-side-long direction in the PRF for 𝑝−𝑝 (open circles)
and𝑝-Λ (blue triangles) pairs from UrQMD. The 𝑝-Λ values are scaled to fit on the same
plot. The width in every direction is obtained by fitting to it a Gaussian function (solid
𝑝 − 𝑝, dashed 𝑝-Λ).
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Figure 4.25: Comparison of fully corrected experimental 𝑝 − 𝑝 correlations (open cir-
cles) to predictions of CRAB (red lines) which use UrQMD as input. The plot at the top
is the one-dimensional correlation function. The other three are projections of the 3D
correlation function in the LCMS.
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Figure 4.26: Model comparison of the 𝑝−𝑝
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to extract the source size.
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Figure 4.30: Influence of different sets of scattering parameter on the correlation func-
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Figure 4.31: Influence of different sets of scattering parameter on the correlation func-
tion. The LO and NLO scattering length at a cutoff value of 600 MeV are taken from
[Hai+13]. This figure includes the fully correct Lednicky model. See text for details.
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5
The ALICE detector at the LHC

To study the production of heavy particles like the Higgs or predicted supersymmetric
particles which are supposed to exist at the TeV scale, a powerful machine is necessary.
Also for investigations ofmatter under extreme conditions created in heavy-ion collisions
one has to deposit a lot of energy in a small volume. For this reasons the Large Hadron
Collider (LHC) was built. It is a two-ring-superconducting-hadron accelerator which
was installed in the existing 26.7 km tunnel that was constructed for the CERN LEP
(Large Electron-Positron Collider) machine [EB08].
A Large Ion Collider Experiment (ALICE) is one of the four major experiments (ALICE,
ATLAS, CMS, LHCb) operating at the LHC and situated at interaction point IP2. It
is optimized for the study of QCD matter created in high-energy heavy-ion collisions,
where it is believed that right after the collision hadrons are not the relevant degrees
of freedom anymore but deconfined quarks and gluons. General features of ALICE are
its high detector granularity, a low transverse momentum threshold 𝑝T ≈ 0.15 GeV/𝑐
and a good capability for particle identification up to 20 GeV/𝑐 [Abe+14b]. The ALICE
global reference system is defined as follows: the 𝑧 axis is aligned with the beam line, the
𝑥 axis in the LHC plane pointing to the center of the accelerator, and the 𝑦 axis points
upward. The detector setup with its individual components is shown in Fig. 5.1. It
consists of a central barrel part, which aims to measure hadrons, electrons, and photons
and a forward muon spectrometer [Aam+08]. The central part covers a polar region
between 45∘ < Θ < 135∘ (|𝜂| < 0.9) and is embedded in a large solenoid magnet
providing a magnetic field of 𝐵 = 0.5 T. Here thethe quantity 𝜂 is introduced, which is
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Figure 5.1: The ALICE detector with its individual components [Aam+08].

known as pseudo-rapidity and connected to the polar angle:

𝜂 = − ln (tan (Θ
2 )) . (5.1)

The most inner component of the central barrel is the Inner Tracking System (ITS) con-
sisting of six planes of high-resolution silicon pixel (SPD), drift (SDD), and strip (SSD)
detectors. The ITS is surrounded by a cylindrical Time-Projection Chamber (TPC)
followed by three particle identification arrays of Time-of-Flight (TOF) arrays, Ring
Cherenkov (HMPID) and Transition Radiation (TRD) detectors. This detectors have a
full azimuthal coverage. For photon measurements the central barrel is equipped with
two electromagnetic calorimeters (PHOS and EMCal). Additionally to the mentioned
detector components ALICE includes several smaller components at smaller polar an-
gles (ZDC, PMD, FMD, T0, V0) installed for global event characterization and trig-
gering. The specific coverages of each detector can be found in [Aam+08]. We will
describe the detector parts which played a major role in the analysis.

5.0.3 The Inner Tracking System - ITS
The main task of the Inner Tracking System (ITS) is to provide a precise vertex and
track reconstruction. The whole setup has a cylindrical shape and is located around the
interaction region covering a pseudo-rapidity region of |𝜂| < 0.9. It is a silicon tracker
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consisting of six layers, with an inner radius starting at 3.9 cm and an outer radius of
43.0 cm [Aam+10]. The two innermost layers contain Silicon Pixel Detectors (SPD), the
two intermediate layers Silicon Drift Detectors (SDD), and the two two outermost layers
are equipped with Silicon Strip Detectors (SSD). Fig. 5.2 shows the structure of the ITS
with its six layers. With the ITS an improved angle, momentum, and position resolution

Figure 5.2: The structure of the Inner Tracking System (ITS) with its six layers SPD
(two innermost), SDD (two intermediate), SDD (two outermost) [Aam+10].

is achieved for tracks which were reconstructed in the Time-Projection Chamber (TPC).
Another achievement is the capability to identify in a precise way secondary vertices
from the decay of hyperons and heavy flavored hadrons and to reconstruct the interaction
vertex with a resolution better than 100 𝜇m [Aam+10]. It also fills the acceptance for
e.g. very slow particles which are too slow to reach the TPC and would be otherwise
lost.

5.0.4 The Time-Projection Chamber - TPC
The Time-Projection Chamber (TPC) is the main device for charged particle identifi-
cation and tracking in the central barrel of ALICE [Alm+10]. It consists of a hollow
cylinder which surrounds the Inner Tracking System and is aligned with the beams from
the LHC. The inner radius of the TPC starts at about 85 cm and the outer radius is about
250 cm. The extent along the beam direction is 500 cm [Alm+10]. It covers the full
azimuthal angle and a pseudo-rapidity range of |𝜂| < 0.9. It was designed to cope with
at that time predicted charged particle densities of up to 𝑑𝑁ch/𝑑𝜂 = 8000 for central
Pb-Pb collisions at a center-of-mass energy of 5.5 TeV. The detector is filled with a
counting gas in the inner part of the cylinder in which an axial electric field is operat-
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ing at 400 V/cm. The setup of the electrostatic field is realized in the field cage which
defines the uniform field in the gas volume and ensures a smooth transport for the ion-
ization electrons from the point of creation to the endplates. The field cage is shown in
Fig. 5.3. The working principle of the TPC is that charged particles which traverse the

Figure 5.3: The TPC field cage in 3D view [Alm+10].

TPC ionize the gas and the ionization electrons drift, due to the influence of the electric
field, towards the endplates of the cylinder where the arrival point is measured. Together
with a determination of the arrival time the full trajectory of the traversing charged par-
ticles can be determined. The maximum interaction rate for the TPC is 8 kHz for Pb-Pb
collisions. After the Long shutdown 2 (LS2) the expected LHC luminosity will increase
to about 50 kHz. To cope with this increase in interaction rate an upgrade of the TPC is
necessary e.g. to prevent ions from drifting back into the TPC drift volume. This mo-
tivates to use for an upgraded version of the TPC GEMs for the new readout chambers
[13].
The particle identification in the TPC can be done over a wide momentum range. It is
established by measuring simultaneously the specific energy loss (𝑑𝐸/𝑑𝑥), charge, and
the momentum of every charged particle which traverse the TPC gas. The energy loss
is parametrized by a function [Alm+10]:

𝑓(𝛽𝛾) = 𝑃1
𝛽𝑃4

(𝑃2 − 𝛽𝑃4 − ln(𝑃3 + 1
(𝛽𝛾)𝑃5

)) , (5.2)

where 𝛽 is the velocity of the particle, 𝛾 the Lorentz factor and 𝑃1−5 are fit parameters. A
performance plot showing the specific energy loss of charged particles vs its momentum
is displayed in Fig. 5.4 for pp collisions at 7 TeV. One can see that the largest separation
between the particles is achieved for momenta below 𝑝 ≈ 1 GeV/𝑐. Then the different
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bands start to overlap and an additional PID information is necessary to distinguish be-
tween the individual particle species.
To include the resolution in the PID description one defines the deviation from the mea-
sured specific energy loss value from the expected value in steps of the width of the
curve:

𝑛𝜎𝑑𝐸/𝑑𝑥 = (𝑑𝐸/𝑑𝑥)measured − (𝑑𝐸/𝑑𝑥)expected
𝜎𝑑𝐸/𝑑𝑥

. (5.3)

This allows to use always the same resolution for PID selections.

Figure 5.4: The specific energy
loss of charged particles versus the
particle momentum. One can see
a separation for particles for mo-
menta up to 1 GeV/𝑐.
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cles versus their momenta. Differ-
ent bands develop for the different
particle species.

5.0.5 The Time-Of-Flight detector - TOF
TheTime-Of-Flight (TOF) detector consists ofMultigapResistive Plate Chambers (MRPC)
starting at a radius of 370 cm and ending at a radius of 399 cm. It covers the full az-
imuthal angle range and a pseudo-rapidity region of |𝜂| < 0.9. The time resolution was
determined for pions in a momentum region around 1 GeV/𝑐 for 0 − 70 % Pb-Pb colli-
sions to 80 ps [Abe+14b]. With the TOF the PID can be improved for particles in the
intermediate momentum region which can reach up to 2.5 GeV/𝑐 for pions and up to
4 GeV/𝑐 for kaons and protons. The start time for the TOF is provided by the T0 de-
tectors. The PID in TOF can be established by measuring the particles velocity 𝛽. The
velocity is related to the momentum of the particle:

𝛽 = 𝐩2

𝐸(𝐩) = 𝐩2

√𝐩2 + 𝑚2
. (5.4)
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By plotting the velocity 𝛽 as a function of the momentum (measured by an independent
detector) of a charged particle, a mass ordering of bands should be established according
to Eq. (5.4). An example plot is shown in Fig. 5.4 for pp collisions at 7 TeV, where the
velocity is provided by the TOF detector and the momentum by the TPC. One can clearly
see different bands corresponding to the different particle species.
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6
Data analysis

In this chapter the femtoscopic analysis performed for the ALICE experiment and the
methods used to obtain and correct the correlation functions are presented. Minimum
bias events of pp collisions at a center-of-mass energy of 7 TeV are analyzed. The min-
imum bias trigger MBand and MBor were used for all pp data taking, where the MBor
required signals in V0 and SPD, and MBand signals in V0A and V0C [Abe+14b]. In
the data taking period 2010 around 825 ⋅ 106 pp events at this energy were recorded
[Abe+14b]. A summary of the analyzed system and data sample is given in Tab. 6.1.
The analyis is performed over Analysed Object Data (AOD). The newest production is
AOD147. However, according to PID experts no tender (additional offline PID cali-

Property Value
Collision system pp
Center-of-mass-energy 7 TeV
Data taking period 2010
Trigger Minimum bias
Analyzed periods AOD137 for LHC10b and LHC10c,

AOD135 for LHC10d and LHC10e
Reconstruction pass pass2
Number of events passing selections 245 M

Table 6.1: Summary about the analyzed collision system.
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bration) was used for this period and should not be used for any PID related analysis 1.
For this reason the production AOD135/137 where the PID calibration was applied is
analyzed.

6.1 Event selection
Events have to fulfill certain quality properties. First of all, events are selected close to
the central collision point by requiring that the 𝑧 position of the primary vertex deviates
maximally by 10 cm from this point. To reject pile-up events methods developed by
experts 2 are used. They are checking e.g. if in an event several primary vertices exist.
Summarizing all employed event selections:

• Trigger: selection of minimum bias events (kMB).
• Magnetic field and primary vertex: 𝐵 > 1 mT and check if primary vertex is

available in event.
• Primary vertex contributors: at least two tracks should contribute to the primary

vertex 𝑁contributors > 1.
• Primary vertex 𝑧 coordinate: events should lie close around the central collision

point |𝑧| < 10 cm.
• Number of tracklets (in central barrel): >0 for a pseudo-rapidity range |𝜂| < 0.8,

at least one tracklet should be available since it is used for multiplicity estimation
3.

• Reject pile-up: method from experts which checks e.g. for multiple vertices. 4

6.2 Track selection
6.2.1 Proton candidates
After the events pass the quality selection criteria listed above the tracks contained in
the events are checked for several criteria. After passing a dedicated track selection pro-
cedure they are used for the femtoscopy analysis. In the Pb-Pb analysis it was seen that
two tracks close together in angle space ((Δ𝜂, Δ𝜑)) can share the same cluster in the
SPD. This leads to biases if one uses tracks from the global tracking scheme (ITS+TPC)

1https://twiki.cern.ch/twiki/bin/viewauth/ALICE/PWGPPAODTrackCuts
2http://aliroot-docs.web.cern.ch/aliroot-docs/AliAnalysisUtils.html
3The number of SPD tracklets is calculated in every event. Not the reference multiplicity is used.
4http://aliroot-docs.web.cern.ch/aliroot-docs/AliAnalysisUtils.html. Theminimum contributors to the

pile-up SPD vertices was set to three.
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6.2. Track selection

[BB15]. This problem can be overcome by using TPC-only tracks avoiding the ITS in-
formation in the track reconstruction. For this reason also in the pp analysis TPC-only
tracks are used as standard tracking scheme. They are classified by the Filterbit 7 or 128
(27 = 128). In femtoscopy one is interested in a sample containing dominantly primary
tracks that stem from the point of last interaction and carry the source information. This
can be achieved by selecting tracks close to the primary vertex both in the 𝑥𝑦-plane and
𝑧-direction. The fraction of primary particles with the chosen selection criteria will be
shown later. Since the analysis is done with TPC-only tracks, one expects that the mo-
mentum resolution is worse since the ITS is not included in the Kalman filter employed
for the track reconstruction. However, by selecting TPC-only tracks constrained to the
primary vertex the resolution is comparable to (ITS+TPC) fitted tracks, as it is shown
in the performance paper of ALICE [Abe+14b]. A drawback of TPC-only tracks is that
they don’t contain any PID information anymore. For this reason one has to find for the
TPC-only track the corresponding global track. This can be achieved by a mapping of
the track Ids by using the relation: 𝐼𝐷global = −𝐼𝐷TPC − 1. A powerful mapping
routine was developed in the PhD thesis of H. Beck for the 𝑝-Λ analysis in Pb-Pb colli-
sions at √𝑠NN=2.76 TeV. It avoids to have an additional loop in the track loop to find
the corresponding global track. This mapping is also adopted for the pp analysis. For a
detailed discussion of the method we refer to [BB15].
In the AOD137/AOD135 data files some pre-defined track cuts are already employed 1.
At the physics level, the pre-defined selections constrain the tracks loosely to the primary
vertex with values for the distance of closest approach to the primary vertex chosen as
𝐷𝐶𝐴𝑥𝑦 < 2.4 cm and 𝐷𝐶𝐴𝑧 < 3.2 cm. On the tracking level, the minimum number
of TPC cluster is set to 70 and the maximally allowed 𝜒2 per cluster is set to 4. Kink
daughter tracks are also rejected.
According to TPC experts2, for TPC related analyses one can achieve a good 𝑝T reso-
lution at large momenta with a selection criteria on the number of crossed rows and on
the ratio of number of crossed rows over findable clusters. This selection is employed in
this analyis. Additionally, primary tracks are rejected which share cluster in the TPC.
A lower 𝑝T threshold is chosen for protons since in the low region 𝑝T (𝑝T ≈0.5 GeV/𝑐)
the fraction of protons knocked out from detector material grows [Ada+16]. A large
𝑝T (𝑝T ≈4.05 GeV/𝑐) cutoff is necessary since there the purity of protons drops below
80%, which will be shown later in this thesis. This high-momentum region is not that
important since the majority of the protons are produced around 1 GeV/𝑐. For the PID
information the 𝑛𝜎 prescription introduced in the previous Section is used. For mo-
menta below 𝑝TPC <0.75 GeV/𝑐 only the PID selection from the TPC is applied. For
momenta 𝑝TPC >0.75 GeV/𝑐 the signals from TPC and TOF are combined since the
TPC has not enough separation power to distinguish between protons and other species

1https://twiki.cern.ch/twiki/bin/view/ALICE/AddTaskInfoAOD135(7)
2http://svn.cern.ch/guest/AliRoot/trunk/TPC/doc/Definitions/Definitions.pdf
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Chapter 6. Data analysis

anymore. The combination of TPC and TOF signals is done by employing a circular
selection criteria 𝑛𝜎combined ≡ √(𝑛𝜎TPC)2 + (𝑛𝜎TOF)2. The two selection criteria
are displayed in Fig. 6.1. This selection method was introduced and approved for the
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Figure 6.1: Proton selection criteria. Below 0.75 GeV/𝑐 only the TPC is used. For
momenta above this threshold the TPC signal is combined with the one from the TOF.

𝑝 − 𝑝 correlation function obtained in Pb-Pb collisions at √𝑠NN=2.76 TeV [Ada+15b].
Additionally, if the proton fulfills the 𝑛𝜎 selection criteria it is compared to the 𝑛𝜎 value
of kaons, electrons and pions. If the 𝑛𝜎 value of one of the other candidates is smaller
the proton hypothesis and thus the track is rejected. In summary, all track cuts used for
the (primary) proton selection are the following:

• Filterbit selection 128: TPC-only tracks constrained to primary vertex.
• Minimum number of TPC cluster >80: Ensure good track quality.
• Minimum number of crossed rows >70: good 𝑝T resolution at large momenta 1.
• Minimum number of crossed rows over findable cluster >0.83: remove fake tracks

1.
1Described by experts in http://svn.cern.ch/guest/AliRoot/trunk/TPC/doc/Definitions/Definitions.pdf
1Described by experts in http://svn.cern.ch/guest/AliRoot/trunk/TPC/doc/Definitions/Definitions.pdf
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• Rejection of tracks which share TPC cluster.
• Distance of closest approach to primary vertex |DCA𝑥𝑦| < 0.1 cm, |DCA𝑧| <

0.2 cm: to enhance the selection of primary protons emitted from collision point
(motivated from [Abb+13]).

• Minimum transversemomentum 𝑝T >0.5GeV/𝑐: to enlarge the fraction of directly
produced protons and reduce protons coming from material.

• Maximum transverse momentum 𝑝T <4.05 GeV/𝑐: since at this point the purity
of the protons starts to drop below 80%.

• PID for lower momenta, 𝑝TPC <0.75 GeV/𝑐: because in this region the TPC
has a large separation power to distinguish between protons and other species,
|𝑛𝜎TPC|<3.

• PID for larger momenta, 𝑝TPC >0.75 GeV/𝑐: in this region the TPC signal is
combined with the TOF signal since the specific-energy loss bands of the TPC
start to overlap with other species, 𝑛𝜎combined ≡ √(𝑛𝜎TPC)2 + (𝑛𝜎TOF)2<3.

• n𝜎 comparison: the 𝑛𝜎 values of the identified proton is checked for the 𝑛𝜎 hy-
pothesis of being a kaon, pion, electron. If the 𝑛𝜎 value of being another candidate
is smaller than the track is rejected.

6.2.2 V0 candidates
Λ and K0

S are charge neutral particles that decay into a pair of oppositely charged parti-
cles. The latter share themomentum of themother particle. Since the decay topology has
often a V-type shape they are called V0s. The method of ALICE to find V0s is described
in [Cor+06] and will be shortly explained here. In a first step all secondary tracks are se-
lected. Secondary tracks are defined as tracks which have a minimum impact parameter
with respect to the primary vertex (separate values for the positive and negative track).
Then all the positively charged secondary tracks are combined with a negatively charged
partner. Pair combinations are rejected if the distance of closest approach between such
a pair exceeds a certain value. The point of the closest approach of a secondary pair
defines the secondary vertex and only such vertices are kept that lie inside a pre-defined
fiducial volume. In a last step the V0 momentum is calculated. To get this information
the daughter tracks are extrapolated to the point of closest approach and then the sum of
the two daughter momenta defines the V0 mother momentum. This momentum vector
should be aligned with the vector pointing from the primary vertex to the secondary V0
vertex if the V0 was produced at the primary collision vertex. Taking the cosine of the
angle between the two vectors allows to introduce another selection criteria and reduce
combinatorial background. A sketch showing the finding procedure of V0s is displayed
in Fig. 6.2. In the analyzed data sample some topological pre-selections on the impact
parameter and the distance of closest approach are already present. These are listed be-
low. Additionally, a selection criteria on the minimal flight distance in the 𝑥𝑦-plane is
employed as a pre-selection. In this analysis, a cut on the maximum flight distance in the
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Figure 6.2: Sketch of a V0 decay and its vertex selection taken from [Cor+06]. Only
V0 vertices inside a fiducial volume are kept and the daughter tracks have to have some
minimum impact paramter to the primary vertex. The distance of closest approach of
the daughter tracks should not exceed a maximum value.

𝑥𝑦-plane and a selection on the V0 decay vertex is introduced. The values of the cuts
are checked with Monte Carlo samples which show that in the rejected region nearly
only background is present. In summary, the following selections are done for the V0
topology:

• V0 decay vertex |𝑥𝑖|<100 cm, 𝑖=x,y,z: tracks that cannot be reconstructed to the
V0 decay vertex are basically background.

• Impact parameter of daughter tracks to primary vertex: DCA(|𝑝/𝜋−, 𝑃𝑉 |)>0.05 cm.
• Distance of closest approach of daughter tracks at V0 decay point: DCA(|𝑝, 𝜋−|)<1.5 cm.
• Cosine of pointing angle: cos(𝛼) > 0.99, 𝛼∠( ⃗𝑃𝑉 𝑆𝑉 , ⃗𝑃Λ).

The PID of the daughter tracks is obtained only with the specific energy loss of the TPC
to not decrease the efficiency by requiring an additional detector signal. The daughter
tracks are selected by a broad 𝑛𝜎TPC < 5 cut. With this pre-selection there is also a
finite probability to identify positive pions, stemming fromK0

S decays instead of protons.
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For this reason the hypothesis that the proton could also be positive pion is checked. If
the 𝜋+𝜋− invariant mass lies inside the K0

S region the V0 candidate is rejected. The
𝑝 − K𝑆

0 correlation function was measured at AGS energies and is in agreement with
unity within the error bars [Chu+02]. In pp collisions at LHC energies it can be strongly
affected by non-femtoscopic mini-jet background. This is hinted in [BF14], where the
𝑝 − K𝑆

0 correlation function is obtained in p-Pb collisions at √𝑠NN=5.02 TeV. Even if
the relative momentum variable is improperly calculated for a non-identical pair, the cor-
relation function shows non-flat or even dip structures. There exist a possibility that this
broad mini-jet correlation signal survives a transformation into the 𝑝-Λ system, where
only the mass hypothesis is changed. This effect is studied by means of a Toy Monte
Carlo study and shown in Fig. 6.3. In this simulation the initial momenta follow a Gaus-
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Figure 6.3: Results from a Toy Monte Carlo study. Left: Matrix presenting the corre-
lation between k∗ of an initial momentum 𝑝 − K𝑆

0 transformed to 𝑝-Λ. Right: A broad
simulated mini-jet background present in 𝑝 − K𝑆

0 survives the transformation to the 𝑝-Λ
momentum basis.

sian distribution with a spread of 0.5 GeV/𝑐 for each particle. A correlation matrix of
the k∗ momenta is obtained by calculating the relative momentum for 𝑝 − K𝑆

0 pairs and
𝑝-Λ (by using the momenta of the K0but the mass of the Λ). The correlation matrix is
displayed on the left side of Fig. 6.3. The simulated broad mini-jet background included
for 𝑝 − K𝑆

0 pairs survives also the transformation from the 𝑝 − K𝑆
0 momentum basis to

𝑝-Λ because of its broadness. In principle, it can be used as a method to describe the
mini-jet background in a certain channel by determining it with with an independent pair
and transforming it to the pair of interest. Thus the mini-jet background would be fixed
and the femtoscopy signal can be measured on top of it. An exploratory study of this
kind was performed by the ATLAS collaboration with pion pairs [col15]. Finally, the
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full list of V0 kinematic and track cuts is listed below:

• V0 finder/reconstruction: offline
• V0 must have two daughter tracks
• V0 charge must be zero
• V0 transverse radius: 0.2 cm< 𝑟𝑥𝑦<100 cm
• Minimum number of TPC cluster for daughter tracks >70
• Minimum transverse momentum of V0: 𝑝T >0.3 GeV/𝑐
• Maximal pseudo-rapidity range of daughter tracks |𝜂|<0.8
• K0s rejection: 0.48 GeV/𝑐2 < m𝜋+𝜋− < 0.515 GeV/𝑐2

• PID of daughter tracks: |𝑛𝜎TPC|<5
• Selection window of Λ candidates: |𝑚𝑝𝜋− − 𝑚Λ,PDG| < 4 MeV/𝑐2

The integrated Λ and Λ̄ signal together with the invariant mass selection cuts are shown
in Fig. 6.4. To obtain the Λ purity the Λ invariant mass peaks are fitted as a function of
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Figure 6.4: Invariant mass distribution of 𝑝𝜋− ( ̄𝑝𝜋+) to obtain the Λ (Λ̄) signal and the
selection width used in the analysis.

𝑝T. The fitfunction is chosen as a sum of two Gaussian functions for the signal region
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and a second order polynomial for the combinatorial background. The two Gaussian
functions are combined in the form:

𝑓(𝑥) = 𝐴 (𝛼Gauss1(𝑥)) + (1 − 𝛼)Gauss2(𝑥))) , (6.1)

where Gauss(𝑥) are the Gaussian functions, 𝐴 an amplitude to be scaled to the peak
position and 𝛼 ∈ [0, 1] the relative contribution of the two Gaussians. The two variances
and means of the Gaussians are combined in the following way:

𝜎combined = 𝛼𝜎1 + (1 − 𝛼)𝜎2 , 𝜇combined = 𝜇1 + 𝜇2
2 , (6.2)

where 𝜎𝑖,𝜇𝑖 is the variance, mean of the Gauss 𝑖. The resulting means and variances are
displayed in Fig. 6.5. One can see that the width reflects the momentum resolution of
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Figure 6.5: The resulting mean and variance of the Λ signal as a function of 𝑝T.

ALICE. At intermediate 𝑝T of ∼ 1 GeV/𝑐 it is best and grows for very low and high 𝑝T.
With the chosen selection criteria around 6M Λ are left for analysis.

6.3 Correlation functions
To obtain the correlation functions the event mixing technique is employed for estab-
lishing an uncorrelated pair yield which is given by Eq. (2.50). Only events with similar
𝑧 vertex positions and multiplicity are mixed, which ensures similar acceptance effects
and underlying event activities. The binwidth for the 𝑧 vertex position is 2 cm. The
multiplicity is estimated by counting the number of SPD tracklets in the central barrel
in a pseudo-rapidity region of |𝜂| < 0.8. The event multiplicity is grouped in classes of
[1−4], [5−8], [9−12], [13−16], [17−20], [21−24], [25−28], [29−32], [33−36], [37−
40], [41 − 60], [61 − 80], [> 80]. The corresponding distributions for the 𝑧 vertex and
multiplicity are displayed in Fig. 6.6. To avoid any contribution of auto-correlations, all
V0 candidates are checked for shared daughter tracks. If V0s share daughter tracks the
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Figure 6.6: Left: Number of SPD tracklets in |𝜂| < 0.8 used for determining the multi-
plicity of pp events. Right: 𝑧 vertex distribution for pp collisions. Both observables are
used for event mixing.

V0 with the larger cosine pointing angle is kept and the other one is rejected from the
sample. If a primary proton and a V0 daughter share the same track the V0 candidate
is rejected. In the next sections the results of raw and uncorrected correlation func-
tions are displayed. Since the correlation functions for (Anti)baryon-(Anti)baryon and
Antibaryon-Baryon pairs show very different behaviours they are discussed separately.

6.3.1 Baryon-Antibaryon correlations
In this section results for Baryon-Antibaryon correlation functions are presented. All
of them are normalized in the interval k∗ ∈ [1,1.5] GeV/𝑐. Before showing the corre-
lation functions a method is introduced with which correlation functions are added in
this analysis. The sum is done on the level of the correlation functions itself using the
least squares method. If one wants to combine a number of measurements, where all
measured values 𝑦𝑖 will scatter around a true value 𝜆, the solution for the least squares
estimator is [Cow98]:

�̂� =
∑𝑖 𝑦𝑖/𝜎2

𝑖
∑𝑖 1/𝜎2

𝑖
, 𝑉 [�̂�] = 1

∑𝑖 1/𝜎2
𝑖

, (6.3)
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where 𝑉 [�̂�] is the variance of �̂�. Thus, the measurements are combined by weighting
them with the statistical errors. This prescription is also applied to combine the correla-
tion functions of particle and antiparticle pairs.
First pairs containing baryons without strangeness are presented beginning with the ̄𝑝−𝑝
correlation function shown in Fig. 6.7. For the ̄𝑝 − 𝑝 correlation function a mini-jet in-
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Figure 6.7: Left: Correlation function of ̄𝑝 − 𝑝 pairs. A strong contribution from mini-
jets is visible, showig up as a broad correlation signal starting at k∗ ∼1 GeV/𝑐. Right:
Same correlation function zoomed to small relative momenta. One can see a correlation
signal having femtoscopic signatures on top of the mini-jet background.

duced background is visible as a broad correlation signal starting already at k∗ ∼1GeV/𝑐.
This seems to be typical for pairs of Antibaryon-Baryon pairs, which will be seen later.
By going to lower values of k∗ there is an indication of an additional signal visible at
around 200 MeV/𝑐 having its origin in a femtoscopic source sitting on top of the mini-
jet background. To make it more visible a new baseline is introduced in the zoomed
version shown on the right of Fig. 6.7. Assuming that the shape of the mini-jet con-
tribution below k∗ =200 MeV/𝑐 stays roughly constant one can see a depletion of pairs
and a minimum of the correlation function at a k∗ value of about 50 MeV/𝑐. This is
an indication for an onset of inelastic scattering processes with the possible reactions
𝑝 ̄𝑝 → 𝜋+𝜋−, 𝜋0𝜋0. The rising of the correlation function for k∗ → 0 is an indication for
the Coulomb attraction of the oppositely charged pair.
The contribution of the mini-jet background is investigated also for other pair combi-
nations including strangeness. The result for the sum of ̄𝑝 − Λ and 𝑝 − Λ̄ is shown in
Fig. 6.8 (the pairs have opposite strangeness but since it is exactly the total antiparticle
pair they are summed up). Also for this pair the mini-jet contribution is very obvi-
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ous. A zoomed version of the plot is given on the right of Fig. 6.8. Again a loss of
pairs is visible, pointing to a process of inelastical scattering. Possible reactions which
lead to pair losses are ̄𝑝Λ → 𝜋0𝐾−, 𝑝Λ̄ → 𝜋0𝐾+. The last pair which studied is a
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Figure 6.8: Left: Correlation function of the sum of ̄𝑝 − Λ and 𝑝 − Λ̄ pairs. Also for
this pair a strong contribution from mini-jets is visible, showig up as a broad correlation
signal starting at k∗ ∼1 GeV/𝑐. Right: Same correlation function zoomed to small rela-
tive momenta. One can see a correlation signal having femtoscopic signatures on top of
the mini-jet background.

strangeness neutral pair composite of particles carrying strangeness, the Λ̄ − Λ corre-
lation function shown in Fig. 6.9. This pair shows no exception and is not free of the
mini-jet background. Having also total baryon number zero in the entrance channel it
can easily decay into meson pairs or for this case also in a pair of ̄𝑝 − 𝑝. Thus, there
is a coupling to the channel presented in Fig. 6.7. This additional channel might intro-
duce an additional loss of pairs. Comparing the relative 𝑝 − Λ̄ suppression to tne new
baseline at the lowest k∗ value Δ(𝐶(𝑘∗ → 0))�̄�Λ ≈ 1.4 − 0.9 = 0.5 with the one of
Δ(𝐶(𝑘∗ → 0))Λ̄Λ ≈ 1.8−0.2 = 1.6, one can see that the suppression is stronger for the
Λ̄−Λ channel. This is just a hint and would need much further detailed investigations. A
further uncertainty is the unknown shape of the mini-jet background in this momentum
region, which could behave differently in both channels.
The question which remains is what is the origin of the strong mini-jet contribution that
shows up in the Antibaryon-Baryon correlations in pp collisions. There are basically
two different possible scenarios that are schematically depicted Fig. 6.10. In the first
scenario one parton hadronizes into a bunch of hadrons and they carry a strong kine-
matic correlation like a pair stemming from a resonance decay. In the second scenario
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Figure 6.9: Left: The Λ̄−Λ correlation function. Also for this pair a strong contribution
frommini-jets is visible, showig up as a broad correlation signal starting at k∗ ∼1 GeV/𝑐.
Right: Same correlation function zoomed to small relative momenta. One can see a
correlation signal having femtoscopic signatures on top of the mini-jet background.

the pair is produced from different partons which carry a residual correlation from the
underlying event. The influence of the hadronization process is tested with Pythia simu-
lations for ̄𝑝 − 𝑝 pairs, where one can check the particle history. The hadron production
path in the collision history is followed until the first parton of the collision is reached.
It is excluded that the proton and antiproton in the pair stem from this parton and the
correlation function for this case is calculated. The result is displayed in Fig. 6.11. On
the left hand side the transverse momentum of the first parton of the collision is shown.
This parton is responsible for the (anti)proton production after some possible interme-
diate steps. One can see that the transverse momentum, thus the energy can be quite
large >50 GeV/𝑐 which would be sufficiently large to produce many baryons in a jet.
On the right of Fig. 6.11 two different correlation functions are shown. The black dots
represents the raw ̄𝑝 − 𝑝 correlation function from Pythia simulations. The red squares
represent the correlation function with the exclusion that the pair shares in its collision
history the same parton as mother. One can see that this has a dramatic influence on
the correlation function. It becomes more or less flat and a bit tilted. It seems that the
left scenario in Fig. 6.10 is responsible for the mini-jet background that a single parton
fragments into a bunsh of baryons including a pair of ̄𝑝 − 𝑝. From statistics point of
view around 50% of ̄𝑝 − 𝑝 pairs have the same parton as mother whereas for 𝑝 − 𝑝 pairs
only 10% have this history. This could maybe linked to baryon number conservation
because for ̄𝑝 − 𝑝 pairs the total baryon number is zero but for 𝑝 − 𝑝 pairs one has to
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Hadronization

Baryon-Antibaryon pair

Hadronization

Baryon-Antibaryon pair

Figure 6.10: Two different scenarios which can lead to a mini-jet contribution in the
correlation function. Left: The parton fragments into bunch of hadrons containing the
Baryon-Antibaryon pair. Such a process shows a strong kinematic correlation like a pair
coming from a resonance decay. Right: The pair stems from two different partons after
hadronization.

produce additionally two antibaryons to counterbalance the baryon number. This is just
a preliminary study and much more work is needed to have a better understanding of
the processes involved. In th end, such correlations may help to better understand the
underlying particle productions of baryons and their corresponding antiparticle.

6.3.2 Baryon-Baryon correlations
In this section results for Baryon-Baryon correlation functions are presented. All of them
are normalized in the interval k∗ ∈ [0.4,0.6] GeV/𝑐. The pair combinations from above
are taken and the antibaryon replaced with a baryon. This pairs are later also used to
compare them to models to extract physical quantities. For this reason they are investi-
gated more in detail. The correlation functions of 𝑝 −𝑝, 𝑝-Λ and Λ−Λ are displayed on
the top in Fig. 6.12 separately for the Baryon-Baryon and Antibaryon-Antibaryon case.
On the bottom of the plot the ratio between Baryon-Baryon and Antibaryon-Antibaryon
pairs are shown to explore if they show any difference. One can see that the ratios are
equal to unity within the error bars, as expected. It is remarkable that these pairs show
no sign of any mini-jet contribution. There is just the femtoscopy signal at low relative
momentum visible but not the braod background as in the case with pairs involving one
antibaryon. This hints to the fact that baryon number conservation indeed prevents the
possibility that two baryons are located in a jet like structure.
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Figure 6.11: Left: Parton transverse momentum in Pythia. Right: Black dots represent
the full ̄𝑝 − 𝑝 correlation function from Pythia. The red squares show the correlation
function obtained by requiring that the ̄𝑝 − 𝑝 pair stem from different partons.

For 𝑝 − 𝑝 and 𝑝-Λ pairs the femtoscopic signal looks like expected. The interplay of
Coulomb and the attractive strong interaction together with Fermi-Dirac statistics leads
to the complex shape of the 𝑝 − 𝑝 correlation function. For the 𝑝-Λ case the attractive
interaction implies a positive correlation signal. The strength of the Λ − Λ interaction
is not well established. A femtoscopic correlation function was measured by the STAR
collaboration [Ada+15c] in Au+Au collisions at √𝑠NN=200 GeV. They extracted val-
ues for the scattering parameters by comparing it to a femtoscopic model which in-
cludes also the strong interaction. Their measured scattering length is slightly negative
𝑎0 = −1.10 ± 0.37+2.09

−0.08 fm [Ada+15c]. Many models on the star STAR Λ − Λ correla-
tion function were tested by an independent group [MFO15]. It was shown there that the
interaction is still far from being understood by the measurement of the correlation func-
tion. An additional study of the ALICE collaboration in Pb-Pb collisions will contribute
with more data [SH17] to clarify the situation. Also the measured correlation function
in pp collisions of this and future analyses will help to better constrain the interaction.

6.4 Linear decomposition of correlation functions
A correlation function is in the very ideal case just the measure of a correlation between
a pair of interest, for example of a primary proton 𝑝 and another baryon e.g. Λ. However,
basically twomechanism can distort the measurement. First, with the experimental tech-
niques and the experimental setup one is not able to measure with a 100% probability the
particles of interest due to particle misidentifications. A proton might be misidentified
as a pion, which means on top of the wanted 𝑝-Λ one adds 𝜋− − Λ correlations. If this
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Figure 6.12: Baryon-Baryon and Antibaryon-Antibaryon correlation functions on the
top and the corresponding ratios on the bottom. Left: (Anti)proton-(Anti)proton, Mid-
dle: (Anti)proton-(Anti)Lambda, Right: (Anti)Lambda-(Anti)Lambda.

happens seldomly, the primary pair will dominate over such small impurities. A second
distortion can be introduced by weakly decaying resonances. An example would be a
Λ originating from a decay of Ξ → Λ𝜋. The primary 𝑝 − Ξ correlation is then partly
transformed to the resulting 𝑝-Λ Ξ pair contributing to the primary 𝑝-Λ signal.
The question is how one can cook up a model which is able to separate all the individ-
ual components contributing to a measured correlation signal. Lets start with an easy
example to clarify the method. One might be interested in the correlation function of
𝑝 − 𝐴 pairs but due to some experimental limitations also pairs of 𝑝 − 𝐵 are included
in the sample, where 𝐵 is a “background” particle and 𝐴 the baryon of interest. In this
example protons are not affected by distortions. Both pairs enter in the following way
the experimental correlation function (for simplicity we drop the normalization constant
and the k∗ dependence):

𝐶(𝑝𝐴 + 𝑝𝐵) = 𝑁(𝑝𝐴 + 𝑝𝐵)
𝑁𝑚𝑖𝑥(𝑝𝐴 + 𝑝𝐵) . (6.4)

If all selection criterias are optimized then experimentally one cannot do more. But
theoretically nothing prevents one to decompose the individual contributions 𝑁(𝑝𝐴 +
𝑝𝐵) = 𝑁(𝑝𝐴) + 𝑁(𝑝𝐵) further. Thus the experimental correlation function is a sum
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of two individual correlation functions:

𝐶(𝑝𝐴+𝑝𝐵) = (1 + 𝑁𝑚𝑖𝑥(𝑝𝐵)
𝑁𝑚𝑖𝑥(𝑝𝐴))

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜆1

𝑁(𝑝𝐴)
𝑁𝑚𝑖𝑥(𝑝𝐴)⏟⏟⏟⏟⏟

𝐶(𝑝𝐴)

+ (1 + 𝑁𝑚𝑖𝑥(𝑝𝐴)
𝑁𝑚𝑖𝑥(𝑝𝐵))

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜆2

𝑁(𝑝𝐵)
𝑁𝑚𝑖𝑥(𝑝𝐵)⏟⏟⏟⏟⏟

𝐶(𝑝𝐵)

.

(6.5)

One can see from this equation that the separation works in the way that the correspond-
ing correlation functions 𝐶(𝑝𝐴), 𝐶(𝑝𝐵) are weighted with 𝜆 parameters and these pa-
rameters are completely determined by the involved mixed event samples. The working
principle is visualized with 𝑝-Λ correlations from Pythia simulations, where also impu-
rities are present. If one identifies Λ hyperons, usually a small fraction of combinatorial
background consisting of 𝑝𝜋− pairs not originating from Λ decays remains. This is dis-
played on panel a) of Fig. 6.13. The 𝐴 = Λ baryons are shown by the blue shaded area
and the combinatorial background baryons 𝐵 = 𝑝𝜋− are highlighted as black area. In
this example 𝑝 − 𝐴 =𝑝-Λ is the pair of interest and the background pair is the correla-
tion with the combinatorial background 𝑝 − 𝐵 =𝑝 − 𝑝𝜋−. Since Pythia simulations are
usually free from femtosopy signals the following functions are used to parametrize the
pair correlations:

𝐶(𝑝𝐴) = 1 + exp(−(𝑟0𝑄𝑖𝑛𝑣)2) ,
𝐶(𝑝𝐵) = 1 + exp(−𝑟0𝑄𝑖𝑛𝑣) .

(6.6)

Additionally, for the background correlation function a rectangular “resonance peak” in
the region k∗ ∈ [0.4, 0.6] GeV/𝑐 is included to have a clear reference for the contribu-
tion by the background pair to the total correlation function. The individual correlation
functions for the signal and background pairs are displayed in panel b) and c) of Fig.
6.13. Pancel d) in the same Figure shows the two 𝜆 parameters, where 𝜆1 (black dots)
dominates and 𝜆2 (red squares) is just a small perturbation. This is the expected be-
havior since the signal dominates over the combinatorial background in the simulation.
Panel e) of Fig. 6.13 shows the total correlation function. The black dots represent the
correlation function using directly the total sample of the two pairs like it is done in
the experimental correlation function of Eq. 6.4. The red squares show the correlation
function from the weighting prescription of Eq. 6.5 by constructing first the individual
correlation functions 𝐶(𝑝𝐴), 𝐶(𝑝𝐵), weighting them with the 𝜆 parameters and sum-
ming them up. The two results agree exactly, which shows that the method works. It
is not limited to only two pairs and can be generalized straightforwardly. Before doing
so, attention is paid on how a correlation function with impurities would look like, since
in most if not all analyses they are neglected as a source of residual correlations. All
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Figure 6.13: Decomposition of the individual correlation signals. The Λ signal is di-
vided in signal (blue shaded) and background (black shaded) contributions. The signal
correlation function is denoted as 𝑝−𝐴 and the background function as 𝑝−𝐵. With the
summation of the individual correlation functions weighted with the 𝜆 parameter one
gets back the red squares of 𝐶(𝑝𝐴 + 𝑝𝐵). The black dots of 𝐶(𝑝𝐴 + 𝑝𝐵) represent the
total correlation function like it would be obtained in the experiment.

possible combinations in case of an identical particle pair including the contributions by
impurities are:

𝐶(total)
= 𝜆primary,primary𝐶(primary − primary)
+ 𝜆primary,impurity𝐶(primary − impurity)
+ 𝜆impurity,impurity𝐶(impurity − impurity) .

(6.7)

From this equation one can see that impurities can lead to two additional correlation func-
tions. An example would be the analysis of 𝐾+𝐾+ pairs where one charged Kaon can
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easily be misidentified as a 𝜋+. The 𝐾+𝜋+ pair is strongly influenced by the Coulomb
interaction and can be a source of residual correlations. If such residual correlatoins
are present and a purity correction of the measured total correlation is performed by
converting Eq. 6.7 (assuming 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 − 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 is negligible):

𝐶(purity corrected) = 𝐶(total) − 1
𝜆primary,primary

+ 1 =

= 𝐶(primary, primary) + 𝜆primary,impurity
𝜆primary,primary

(𝐶(primary − impurity) − 1) ,

(6.8)

then the correlation function is corrected for primary pair impurities but also the residual
correlation component gets enhanced. For the simplification of the equation the steps
which results in Eq. 6.11 were used, which will be explained in a moment. Comparing
the experimental measurement at this point to a model not including this source of resid-
ual correlations might result in a distortion of the extracted values. This is visualized in a
ToyMonte Carlo study, which shows the influence of such residual correlations and thus
the importance of having high particle purities. In this Monte Carlo simulation particles
are produced with a Gaussian momentum source of variance 0.5 GeV/𝑐. With a large
probability these particles are identified as pions and with a small probability misidenti-
fied as kaons. The primary correlation signal of the pions are modeled as Bose-Einstein
correlations (with chaoticity parameter 𝜆 = 1, which means 𝐶(𝑘∗ = 0) = 2. The
Coulomb interaction is neglected) with a Gaussian source size of 𝑟0=3 fm. For the
impurity correlations the Gamov factor is used to introduce (residual) Coulomb correla-
tions like they are present between charged particles. In Fig. 6.14 the primary correlation
function and the purity corrected correlation function of Eq. (6.8) are displayed in case
of high pion purities (Purity=0.99). One can see that for high purities the prescription of
Eq. (6.14) works very well because residual correlations are negligible. For lower pu-
rities (Purity=0.93) the residual correlation terms in Eq. (6.7) start to play a significant
role. This is displayed in Fig. 6.15, where the purity corrected correlation function does
not recover the primary correlation function anymore. Not only the height but also the
shape changes compared to the primary correlation function. This is because the residual
component of the total correlation function introduces a non-flat structure. Comparing
the data at this stage with a model one need a proper inclusion of the residual correla-
tions. The remaining question is, how one can calculate the 𝜆 parameters, which weight
the invidivual contributions. Up to now they were known since only simulations were
considered. But in the experiment they are apriori unknown and one has to find a way
to calculate them. Is it just the product of the single particle purities assumed in many
analysis e.g. [Ada+15b; Ada+15c; Abe+06]? Or is it the product of the pair purity
and the fraction of primary pairs, in case one has to deal with impurities and feed-down
contributions at the same time assumed e.g. in [Ada+06; Ant+11] (and applied in the
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Figure 6.14: The black curve is the cor-
relation function in which one is inter-
ested. For high purities (Purity=0.99)
the residual correlations are small and
one retrieves the correlation function of
interest.
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Figure 6.15: For lower purities (Pu-
rity=0.93) residual correlations from
impurities start to play a role. The two
correlation functions do not coincide
anymore.

first part of the thesis in the HADES analysis)? Especially important is the question if
such receipts are valid for all 𝜆 parameters of the correlation function or only for the one
involving primary pairs? To answer these questions the formalism for two pairs in Eq.
(6.5) is generalized. If one wants to measure the correlation function of 𝐴 − 𝐵 pairs,
which are part of a total sample of many other contributing pairs 𝑋 − 𝑌 , then the total
experimental correlation function for the pair 𝐴 − 𝐵 has the form:

𝐶(𝐴𝐵) =
∑𝑋𝑌 𝑁(𝑋𝑌 )

∑𝑋𝑌 𝑁𝑚𝑖𝑥(𝑋𝑌 ) = ∑
𝑋𝑌

𝜆𝑋𝑌 𝐶(𝑋𝑌 ) , (6.9)

where the sum runs over all pairs 𝑋 − 𝑌 including 𝐴 − 𝐵. The individual correlation
functions 𝐶(𝛼𝛽) are weighted with the 𝜆 parameter:

𝜆𝛼𝛽 = 𝑁𝑚𝑖𝑥(𝛼𝛽)
∑𝑋𝑌 𝑁𝑚𝑖𝑥(𝑋𝑌 ) . (6.10)

The 𝜆 parameter fulfill a unitarity relation ∑𝑋𝑌 𝜆𝑋𝑌 = 1. With this relation the su-
perposition of the correlation function in Eq. (6.9) can be rewritten by adding just zero
0 = ∑𝑋𝑌 (𝜆𝑋𝑌 − 𝜆𝑋𝑌 ) to it:

𝐶(𝐴𝐵) = 1 + ∑
𝑋𝑌

𝜆𝑋𝑌 (𝐶(𝑋𝑌 ) − 1) . (6.11)
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From this equation one can immediately see that an uncorrelated pair 𝐶(𝑋𝑌 ) = 1 does
not contribute to the total correlation function, as expected. At this point one could
use a Monte Carlo simulation and determine from its output the mixed event samples
for all relevant species. This would automatically include a k∗ dependency in the 𝜆
parameter. To not rely fully on a chosen event generator a different method is chosen. In
the experiment one has a handle over single-particle quantities like the purity of a certain
particle species. Since the tracks are selected by this single-particle quantities they must
also control the properties of the pair sample. Thus, the goal is to link measurable single-
particle quantities directly to the 𝜆 parameter. Since the 𝜆 parameters are determined by
ratios of mixed event samples, the event mixing procedure is studied in more details. In
a femtoscopy code one is analyzing pairs in a currently open event e.g. event number
ten. Afterwards this event is mixed with a number of previous events, lets say with four
events. This leads to event combinations 10-9, 10-8, 10-7, 10-6. Thus if one is analyzing
𝑝 − 𝐴 correlations the resulting mixed event pair combinatorics reads (dropping the k∗

dependence):

𝑁10
𝑝

9
∑
𝑖=6

𝑁 𝑖
𝐴 , (6.12)

where𝑁10
𝑝 is the number of protons in event number 10 and𝑁 𝑖

𝐴 the number of𝐴 baryons
in the (previous) event number 𝑖. The generalization is the following: if 𝐴 − 𝐵 pairs
are analyzed at event position 𝑗 and the mixing pool has a depth 𝑚 (number of previous
events), then the total number of 𝐴 − 𝐵 pairs is obtained by summing over all events:

𝑁𝑒𝑣𝑡𝑠
∑
𝑗=1

𝑁 𝑗
𝐴

𝑗−1
∑

𝑖=𝑗−𝑚
𝑁 𝑖

𝐵 , (6.13)

where 𝑁𝑒𝑣𝑡𝑠 is the total number of analyzed events. The arithmetic mean of the number
of baryons 𝐵 averaged over 𝑚 events at event position 𝑗 is:

⟨𝑁 𝑗
𝐵⟩ = 1

𝑚
𝑗−1
∑

𝑖=𝑗−𝑚
𝑁 𝑖

𝐵 . (6.14)

Thus Eq. (6.13) simplifies to:

𝑚
𝑁𝑒𝑣𝑡𝑠
∑
𝑗=1

𝑁 𝑗
𝐴 ⟨𝑁 𝑗

𝐵⟩ . (6.15)

If the mixing depth 𝑚 is large enough and nothing special happens during the time of
data taking (e.g. that at some point baryons 𝐴 or 𝐵 are not produced/detected anymore)
then the average over the 𝐵 baryons should not depend on the event index 𝑗 and one can
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write ⟨𝑁 𝑗
𝐵⟩ ≈ ⟨𝑁𝐵⟩ (independent of event position one has to perform the average).

Then the sum of Eq. (6.15) can be further simplified:

𝑚
𝑁𝑒𝑣𝑡𝑠
∑
𝑗=1

𝑁 𝑗
𝐴 ⟨𝑁 𝑗

𝐵⟩ ≈ 𝑚 ⟨𝑁𝐵⟩
𝑁𝑒𝑣𝑡𝑠
∑
𝑗=1

𝑁 𝑗
𝐴 = 𝑚𝑁𝑒𝑣𝑡𝑠 ⟨𝑁𝐴⟩ ⟨𝑁𝐵⟩ , (6.16)

where the average number of 𝐴 baryons calculated over the whole statistics ⟨𝑁𝐴⟩ =
1/𝑁𝑒𝑣𝑡𝑠 ∑𝑁𝑒𝑣𝑡𝑠

𝑖 𝑁 𝑖
𝐴 is introduced. Thus a mixed event sample can be written as:

𝑁𝑚𝑖𝑥(𝐴𝐵) = 𝑚𝑁𝑒𝑣𝑡𝑠 ⟨𝑁𝐴⟩ ⟨𝑁𝐵⟩ . (6.17)

This matches also nicely with the definition of the correlation function as a ratio of a
event pair average over the product of single-particle averages:

𝐶(𝐴𝐵) = 𝑁(𝐴𝐵)
𝑁𝑚𝑖𝑥(𝐴𝐵) =

∑𝑁𝑒𝑣𝑡𝑠
𝑖=1 𝑁 𝑖

𝐴𝑁 𝑖
𝐵

𝑚𝑁𝑒𝑣𝑡𝑠 ⟨𝑁𝐴⟩ ⟨𝑁𝐵⟩ = 1
𝑚

⟨𝑁𝐴𝑁𝐵⟩
⟨𝑁𝐴⟩ ⟨𝑁𝐵⟩ . (6.18)

One can realize at this point also an approximation made implicitly when using event
mixing. The definition of the experimental correlation function is actually a measure
over event averaged yields. But with the event mixing technique only two out of three
quantities in Eq. (6.18) are averaged over all events. At this point one has an expression
for an event mixing distribution. Now they have to be related to single-particle quantities.
To see how this works it is easier to go back to the specific example above of having only
two pairs in the analysis, which is shown in Eq. (6.5). The 𝜆 parameter of pair 𝑝 − 𝐴
reads:

𝜆𝑝𝐴 = 𝑁𝑚𝑖𝑥(𝑝𝐴)
𝑁𝑚𝑖𝑥(𝑝𝐴) + 𝑁𝑚𝑖𝑥(𝑝𝐵) = (1 + 𝑁𝑚𝑖𝑥(𝑝𝐵)

𝑁𝑚𝑖𝑥(𝑝𝐴))
−1

= (1 + ⟨𝐵⟩
⟨𝐴⟩)

−1
(6.19)

where the relation of Eq. (6.17) was used. One can see that in the 𝜆 parameter only
ratios of mixed event samples enter, thus the constants in Eq. (6.17) drop out and a ratio
of two single-particle averages remain. The result of this ratio depends on the nature of
the “background” baryon 𝐵. If it is a baryon ̃𝐴 that was wrongly identified as baryon 𝐴,
then the ratio is related to the purity 𝒫:

⟨𝐵⟩
⟨𝐴⟩ =

⟨ ̃𝐴⟩
⟨𝐴⟩ = 𝒫−1 − 1 . (6.20)

If 𝐵 is a baryon 𝐴𝑋 which means it is a daughter baryon from a higher lying resonance
𝑋, then one can write:

⟨𝐵⟩
⟨𝐴⟩ = ⟨𝐴𝑋⟩ / ⟨𝑁𝑡𝑜𝑡⟩

⟨𝐴⟩ / ⟨𝑁𝑡𝑜𝑡⟩
≈ 𝑓𝑋

𝑓𝐴
, (6.21)
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where the total number of baryons𝑁𝑡𝑜𝑡 = 𝑁𝐴+𝑁𝐵 is introduced. 𝑓𝑋,𝐴 are the fractions
of baryons 𝐴𝑋 and of directly produced baryons 𝐴, where 𝐴𝑋 means 𝐴 is a daughter
of a resonance 𝑋. Since 𝑓𝑋 + 𝑓𝐴 = 1 one can see that Eq. (6.20) and Eq. (6.21) are
symmetric, just the interpretation is different.
A visualization of the decomposition of the correlation function given in Eq. (6.7) is
displayed in Fig. 6.16. It shows that the number of primary pairs decreases constantly as

Primary-PrimaryImpurity-Impurity

Primary-Impurity

Figure 6.16: Decomposition of the correlation function given in Eq. (6.7) as a function
of the single-particle Purity.

𝒫2 and the number of impurity pairs builds up such that all contributions sum up to unity.
For large purities 𝒫 > 0.8 the correlation function with both particles misidentified does
not play any role. At purities around 𝒫 = 0.7 the fraction of pairs where one particle
is misidentified starts to become larger than the fraction of primary pairs. Latest at this
point one should stop to do femtosocpy. In this plot one can see the importance of the
single-particle purity to suppress correlations from other sources.
In a last step a Toy Monte Carlo study is performed to calculate the 𝜆 parameters of
the correlation function given in Eq. (6.7). The 𝜆 parameter from the simulation are
compared with the method discussed above using the input purity and Eq. (6.19,6.20).
To have for all three 𝜆 parameter sizeable values an input purity of 𝒫 = 0.8 is chosen.
The comparison is presented in Fig. 6.17.
One can see that the results agree quite well and that there exists a relationship between

𝜆 parameter and single-particle purity/fraction.
At this stage it is useful to look at the most general form of the 𝜆 parameter in case of
different pair combinations. For simplicity the brackets for event averages are dropped.
Eq. (6.10) can be divided into terms dealing with purity and terms including feed-down:
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Figure 6.17: Comparison of the two methods to evaluate the 𝜆 parameter. The 𝜆 param-
eters presented as marker are the parameter using directly their definition. The dotted
line shows the parameter by relating them to the single-particle purity 𝒫 = 0.8.

𝜆𝛼𝛽 = ( ̃𝛼𝛽 + 𝛼 ̃𝛽 + ̃𝛼 ̃𝛽
𝛼𝛽 +

∑𝑋𝑌 𝑋𝑌
𝛼𝛽 )

−1

= ( ̃𝛼𝛽 + 𝛼 ̃𝛽 + ̃𝛼 ̃𝛽
𝛼𝛽 + (𝑓𝛼𝑓𝛽)−1)

−1

,

(6.22)

where the fractions 𝑓𝛼, 𝑓𝛽 of 𝛼,𝛽 particles in the sample are introduced. In principle five
different cases of 𝜆 parameter are possible. Defining ̄𝑃𝑋 ≡ 𝒫−1

𝑋 − 1, they read:
• Both particles are direct particles, 𝛼 = 𝐴, 𝛽 = 𝐵:

𝜆𝐴𝐵 = ((𝒫𝐴𝒫𝐵)−1 + (𝑓𝐴𝑓𝐵)−1 − 1)−1 . (6.23)
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• Particle A is from resonance X, B direct: 𝛼 = 𝐴𝑋, 𝛽 = 𝐵:

𝜆𝐴𝑥𝐵 = ( 𝑓𝐴
𝑓𝐴𝑥

((𝒫𝐴𝒫𝐵)−1 − 1) + (𝑓𝐴𝑥𝑓𝐵)−1)
−1

. (6.24)

• Particle A is from resonance X, B from resonancy Y: 𝛼 = 𝐴𝑋, 𝛽 = 𝐵𝑌 :

𝜆𝐴𝑥𝐵𝑌
= ( 𝑓𝐴𝑓𝐵

𝑓𝐴𝑥𝑓𝐴𝑦
((𝒫𝐴𝒫𝐵)−1 − 1) + (𝑓𝐴𝑥𝑓𝐵𝑦)−1)

−1
. (6.25)

• Particle A is misidentified, B direct: 𝛼 = ̃𝐴, 𝛽 = 𝐵:

𝜆 ̃𝐴𝐵 = (1 + ̄𝑃 −1
𝐴 ̄𝑃𝐵 + ̄𝑃𝐵 + ( ̄𝑃𝐴𝑓𝐴𝑓𝐵)−1)−1 . (6.26)

• Both particles are misidentified: 𝛼 = ̃𝐴, 𝛽 = �̃�:

𝜆 ̃𝐴�̃� = (1 + ̄𝑃 −1
𝐴 + ̄𝑃 −1

𝐵 + ( ̄𝑃𝐴 ̄𝑃𝐵𝑓𝐴𝑓𝐵)−1)−1 . (6.27)
One can nicely see in case of vanishing feed-down fractions 𝑓𝑋 = 0 that the 𝜆 parameter
for direct pairs scales with the purity of the sample 𝜆𝐴𝐵 = 𝒫2. This is often used in
femtoscopy to correct for purity and recovered here. Since there is a symmetry between
𝑓 and 𝒫 the 𝜆 parameter scales also with the fraction of directly produced particles
𝜆 = 𝑓2 for perfect purity 𝒫 = 1. For combinations of both contributions, thus with
finite purity and feed-down the parameter does not factorize as often assumed. If one
analyses identical pairs then one has contributions 𝐴𝑋𝐴 but also 𝐴𝐴𝑋. Since there is no
difference between the two terms (𝐴𝑋𝐴 = 𝐴𝐴𝑋), such 𝜆 parameter must be multiplied
by two. The great advantage of the method is its simplicity. One has just to determine a
couple of parameter and they fix all individual contributions at the same time.
As a final word, the presented method can be applied whenever a separation is necessary.
It is in principle also applicable in case of having jet-like structures in a two-particle
correlation function. The correlation function for this case reads:

𝐶(𝑘∗)exp = 1 + 𝜆nJet,nJet(𝐶(nJet, nJet) − 1)
+ 𝜆nJet,Jet(𝐶(nJet, Jet) − 1)
+ 𝜆Jet,Jet(𝐶(Jet, Jet) − 1) ,

(6.28)
where (n)Jet denotes that a particle is (not) part of a jet. The assumption of a factorization
is actually also in this case not justified. If jet-like structures are visible e.g. [Abe+13]
it is often compared to a simulation model which does not include femtoscopic effects
but can model these jet correlations (assuming nJet-Jet is negligible):

𝐶(𝑘∗)sim = 1 + 𝜆Jet,Jet(𝐶(Jet, Jet) − 1) . (6.29)
Instead of a factorization it might be better to use this prediction and fit it additive to Eq.
(6.28).
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6.4.1 Decomposition of the proton-proton correlation function
In this section the previously discussed decomposition method is applied to the 𝑝 − 𝑝
correlation function. A proton from misidentification is labeled as ̃𝑝 and a proton from
a resonance decay as 𝑝𝑋. The following pair contributions are taken into account:

{𝑝𝑝} = 𝑝𝑝 + 𝑝Λ𝑝 + 𝑝Λ𝑝Λ + 𝑝Σ+𝑝 + 𝑝Σ+𝑝Σ+ + 𝑝Λ𝑝Σ+ + ̃𝑝𝑝 + ̃𝑝 ̃𝑝 . (6.30)

Any two step resonance decays e.g. Ξ → Λ𝜋 → 𝑝𝜋𝜋 are not included. They are
explicitely considered in the feed-down contribution of the 𝑝-Λ equation and would oth-
erwise lead to a double counting of the residual correlations.
To calculate the 𝜆 parameter the purity of protons and the fraction of primary protons
and their feed-down fractions must be determined. These information are obtained as a
function of the transverse momentum 𝑝T. The 𝑝T averages are calculated by weighting
themwith the production probability 𝑑𝑁/𝑑𝑝T of the particles, where the weight is taken
from the 𝑑𝑁/𝑑𝑝T spectrum:

⟨𝐴⟩ =
∑𝑖 𝑤𝑖𝐴𝑖
∑𝑖 𝑤𝑖

, 𝑤𝑖 ∈ {𝑑𝑁/𝑑𝑝T} . (6.31)

With thismethod the regionwheremost of the particles are produced is strongerweighted.
The fraction of primaries could be directly obtained from aMonte Carlo generator. How-
ever, the common generators underestimate the fraction of contaminations [Cho12]. For
this reason a more data driven method is employed. The strategy is to divide the Monte
Carlo predictions into templates of three parts of proton sources: protons directly pro-
duced from the reaction, from weakly decaying resonances and from detector material.
A good discrimination of all three contributions is achieved by using the 𝐷𝐶𝐴xy impact
parameter. Since primary protons are produced at the collision point their distance to
the primary vertex is rather small and thus tends to peak around zero in this observable.
Secondary protons have a broader distribution due to their origin of a decayed resonance
and material protons are distributed more or less flat over all 𝐷𝐶𝐴xy values. All three
templates are adjusted with help of the ROOT routine 𝑇 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑖𝑡𝑡𝑒𝑟 1. The fit range
was chosen to be |𝐷𝐶𝐴xy| < 2.4 cm. The template fits over the full range of 𝑝T is shown
in Fig. 6.18. Since the different contributions are hardly visible an example plot of a fit
performed in the second lowest 𝑝T bin (0.68<𝑝T <0.86 GeV/𝑐) is shown in Fig. 6.19.
The material budget plays a role for small 𝑝T values but decreases with increasing 𝑝T.
Due to this reason it is taken out for higher 𝑝T bins to increase the stability of the fit.
The resulting number of primary protons averaged over 𝑝T is 87% and the other 13%
is addressed to weakly decaying resonances. The contribution of protons from material
is negligible. The 13% feed-down component must be decomposed in the contributing

1https://root.cern.ch/doc/master/classTFractionFitter.html
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Figure 6.18: Adjusted Monte Carlo Templates from Pythia to the experimental data in
the full 𝑝T range.

resonances, which was done with help of Pythia. According to this model there are two
sources of feed-down resonances the Σ+ (30%) and Λ (70%). Their contributions stay
constant over the whole 𝑝T range. This is displayed in Fig. 6.20. With this information
the values for the feed-down fractions to protons is given by:

𝑓Σ+ = 13% × 30% = 3.9%
𝑓Λ = 13% × 70% = 9.1% .

(6.32)

All fractions sum to unity ∑𝑖 𝑓𝑖 = 1 as needed. The purity of the sample is obtained
also from Pythia simulations by calculating 𝒫 = 𝑆/(𝑆 + 𝐵). Due to the fact that most
protons are produced in a region where the TPC has enough separation power the purity
is expected to be rather large. This can be seen in Fig. 6.21. The purity at large 𝑝T drops
below 80% but this region is not strongly weighted since in this region not many protons
are produced. The summary of the 𝑝T averaged quantities are shown in Fig. 6.21. With
all needed values known the individual contributions to the total correlation function are
presented in Tab. 6.2.
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Figure 6.19: Adjusted Monte Carlo Templates from Pythia to the experimental data.
Due to the shape of the templates one has a good discrimination of the origin of the
protons.

6.4.2 Decomposition of the proton-Lambda correlation function
The method for the decomposition of the 𝑝-Λ correlation function is very similar to the
one of the 𝑝−𝑝 pair except that one has to introduce more quantities since one is dealing
with a non-identical particle pair and both particles can have different purities and feed-
down fractions. Like in the 𝑝−𝑝 case �̃� labels mis-identified 𝑋 particles. The following
pair combinations are taken into account:

{𝑝Λ} = 𝑝Λ + 𝑝ΛΞ− + 𝑝ΛΞ0 + 𝑝ΛΣ0 + 𝑝ΛΛ + 𝑝ΛΛΞ−

+ 𝑝ΛΛΞ0 + 𝑝ΛΛΣ0 + 𝑝Σ+Λ + 𝑝Σ+ΛΞ− + 𝑝Σ+ΛΞ0 + 𝑝Σ+ΛΣ0

+ ̃𝑝Λ + 𝑝Λ̃ + ̃𝑝Λ̃
(6.33)

The purity is calculated with the relation 𝒫Λ = 𝑆/(𝑆+𝐵) from fits of the invariant mass
spectra. For the fraction of feed-down also a template fit is performed with the cosine
pointing angle for separation. The templates are divided in direct, feed-down, material
and combinatorial background Λ contributions. The results of the fits are shown in Fig.
6.22. An example template fit is shown in Fig. 6.23. To obain 𝑝T average values, the
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Figure 6.20: Percentage of feed-down to protons from Σ+ and Λ as a function of 𝑝T.

production probability 𝑑𝑁/𝑑𝑝T is again employed to weight 𝑝T regions stronger where
more Λ are produced. The results for the purity and feed-down fractions is shown in Fig.
6.24. The Σ0 hyperon decays electromagnetically almost exclusively into Λ𝛾 [Oli+14].
Thus it has a very short lifetime and cannot be rejected from the sample. Another source
of feed-down are long living weakly decaying resonances. All sources have to be deter-
mined. According to the template fit method around 73% of the Λ are directly produced
in the collision and 23% originate from weakly decaying resonances. Similar values are
extracted in [Abb+13]. The rest is addressed to combinatorial background and material
Λ. The impurity and material budget have to be subtracted from the sample, thus the
fraction of primary and secondary Λ is rescaled by 1 − 𝑓Λ,background − 𝑓Λ,material. The
corrected values are then 𝑓Λ,primary = 77% and 𝑓Λ,secondary = 23%. Like in the proton
case the relative feed-down composition of this 23% has to be calculated. Again Pythia
simulations are used to extract them. The main feed-down contributions are originat-
ing from Ξ0 (48%) and Ξ− (49%) resonances. The rest is addressed to Σ0. It makes
sense that the Ξ contributions are equal since there is no special mechanism preferring
one of the two Ξ. The Σ0 fraction is just on the percent level, thus it will be addressed
separately. The contribution of Ξ is set to 50%, thus its fractions are:

𝑓Ξ0,− = 23% × 50% ≈ 12% . (6.34)
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Figure 6.21: The fractions of protons as a function of 𝑝T obtained from the template
fitting method. The purity is extracted from Pythia. The averages of the quantities are
obtained by using the production probability 𝑑𝑁/𝑑𝑝T of protons.

The Σ0 contribution can be related to ispospin symmetry. The Λ is represented in an
isospin singlet state, whereas the Σ0 belongs to an isospin triplet representation. Thus
if the energy in the reaction is large enough there exists the possibility to excite three
different Σ states but only one Λ state. Thus the cross section ratio of the Σ0 to Λ is
expected to be 𝑅Σ0/Λ = 𝜎Σ0/𝜎Λ = 1/3 at large energies. This typical 33% effect is
summarized in [Van06] of collision energies up to RHIC energies for various colliding
systems. In an analysis in pp collisions at 7 TeV the ratio is determined to be 𝑅Σ0/Λ =
0.380 ± 0.098 1, thus consistent with the ratio of 1/3 which will be used in this analysis.
The fraction of directly produced Λ and Σ0 is known from the template fit and since the

1https://aliceinfo.cern.ch/Notes/node/562
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Pair Percentage %
𝑝𝑝 75
𝑝Λ𝑝 16
𝑝Λ𝑝Λ 1
𝑝Σ+𝑝 6
𝑝Σ+𝑝Σ+ 0
𝑝Σ+𝑝Λ 0
̃𝑝𝑝 2
̃𝑝 ̃𝑝 0

Table 6.2: The 𝜆 values for the individual components of 𝑝 − 𝑝 correlation function.

ratio of both contributions is also fixed one can determine the fraction of Σ0:

𝑓Λ + 𝑓Σ0 ≡ 𝐹 = 73%, 𝑅Σ0/Λ = 𝑓Σ0

𝑓Λ
= 0.33

↷ 𝑓Σ0 = 𝐹
𝑅Σ0/Λ

1 + 𝑅Σ0/Λ
= 19%, 𝑓Λ = 𝐹 − 𝑓Σ0 = 58% .

(6.35)

With this calculations all needed information are collected to evaluate the 𝜆 parameter
for the 𝑝-Λ pair. The results are shown in Tab. 6.3.

6.4.3 Decomposition of the Lambda-Lambda correlation function
For theΛ−Λ correlation function the following pair contributions are taken into account:

{ΛΛ} = ΛΛ + ΛΛΣ0 + ΛΣ0ΛΣ0 + ΛΛΞ0+
ΛΞ0ΛΞ0 + ΛΛΞ− + ΛΞ−ΛΞ− + ΛΣ0ΛΞ0+
ΛΣ0ΛΞ− + ΛΞ0ΛΞ− + Λ̃Λ + Λ̃Λ̃

(6.36)

To calculate the individual pair fractions no new information for the fractions are needed.
Everything was already determined for the 𝑝-Λ correlation function and the feed-down
fractions can directly be reused again. The result of the individual pair fractions is shown
in Tab. 6.4. One can see in this table that the pair fractions involving Σ0 and Ξ have a
significant contribution.
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Pair Percentage %
𝑝Λ 49
𝑝ΛΞ− 10
𝑝ΛΞ0 10
𝑝ΛΣ0 16
𝑝ΛΛ 5
𝑝ΛΛΞ− 1
𝑝ΛΛΞ0 1
𝑝ΛΛΣ0 2
𝑝Σ+Λ 0
𝑝Σ+ΛΞ− 0
𝑝Σ+ΛΞ0 1
𝑝Σ+ΛΣ0 2
̃𝑝Λ 1

𝑝Λ̃ 2
̃𝑝Λ̃ 0

Table 6.3: The 𝜆 values for the individual components of the proton-Λ correlation func-
tion.

Pair Percentage %
ΛΛ 32
ΛΛΣ0 21
ΛΣ0ΛΣ0 3
ΛΛΞ0 13
ΛΞ0ΛΞ0 2
ΛΛΞ− 13
ΛΞ−ΛΞ− 2
ΛΣ0ΛΞ0 4
ΛΣ0ΛΞ− 4
ΛΞ0ΛΞ− 3
Λ̃Λ 3
Λ̃Λ̃ 0

Table 6.4: The 𝜆 values for the individual components of the Λ-Λ correlation function.
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Figure 6.22: Template fit to the cosine pointing angle in the full 𝑝T interval.

6.5 Corrections
In this section all applied corrections are discussed. The main corrections involve the
finite momentum resolution of ALICE, the inclusion of residual correlations and the
treatment of non-femtoscopic correlations.

6.5.1 Residual Correlations
In case of Baryon-Baryon correlations one or both baryons could stem from a long-lived
resonance. An example would be that initially a 𝑝 − Ξ pair is produced and the Ξ → Λ𝜋
decays on the way to the detector. The decay event does only partly deplete the primary
𝑝 − Ξ femtoscopic signal and part of it is distributed among the resulting 𝑝-Λ pair. This
kind of residual correlations contribute to the total correlation function as was shown in
the last Section. A theoretical investigation of this effect was firstly done in [Wan99]
for residual correlations from 𝑝-Λ imposed on 𝑝 − 𝑝 pairs. In high energy experiments
the effect can be significant since many higher lying resonances are excited. The impor-
tance of residual correlations was firstly realized in the STAR 𝑝 − Λ̄ analysis [Ada+06],
where the resulting source size of 𝑝−Λ̄ was much different compared to the 𝑝-Λ system.
After a re-analysis including residual correlations, the source sizes of both pairs were of
similar size [KZS14; Sha+15]. This highlights the influence of including them prop-
erly. However, the importance is more pronounced for Antibaryon-Baryon pairs since
they tend to have dip structures due to inelastic scattering processes. Such dip structures
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Figure 6.23: Template fit to the cosine pointing angle in a 𝑝T interval.

remain also after the decay. For Baryon-Baryon pairs the initial correlation signals are
mostly flattened out due to the decay.
To model residual correlations, the initial correlation function has to be calculated and
then transformed to the new momentum basis. This was proposed in [KZS14]. To de-
termine the residual correlation induced by a pair 𝑝 − 𝐵 on 𝑝 − 𝐴 (𝐵 → 𝐴𝐵 + ...) the
equation reads:

𝐶(𝑘∗
𝑝𝐴)𝑝𝐵→𝑝𝐴 =

∑𝑘∗
𝑝𝐵

𝐶𝑝𝐵(𝑘∗
𝑝𝐵)𝑀(𝑘∗

𝑝𝐴, 𝑘∗
𝑝𝐵)

∑𝑘∗
𝑝𝐵

𝑀(𝑘∗
𝑝𝐴, 𝑘∗

𝑝𝐵) , (6.37)

where 𝑀(𝑘∗
𝑝𝐴, 𝑘∗

𝑝𝐵) is the matrix which includes the correlation between the momenta
𝑘∗

𝑝𝐴 and 𝑘∗
𝑝𝐵 and 𝐶𝑝𝐵(𝑘∗

𝑝𝐵) is the correlation function of the pair 𝑝 − 𝐵. The matrix
𝑀(𝑘∗

𝑝𝐴, 𝑘∗
𝑝𝐵) shows usually a high level of correlation between the momenta since most

of the momentum of long living weakly decaying resonances is shared by the daughter
baryon. The matrices are calculated using the simple event generator GENBOD 1. It
simulates kinematically allowed events according to phase-space distributions and cal-
culates the corresponding probability that such events occur. With this generator one
can simulate in a very short time enough statistics for the corresponding transformation
matrices. The momenta of the particles are sampled by an uniform distribution in a mo-
mentum range 𝑝𝑥,𝑦,𝑧 ∈ [−5, 5] GeV/𝑐. With the initial sampled momenta the initial k∗

momentum of the pair is calculated. The four-momentum of the pair is then given to
GENBOD, which simulates the decay. The resulting matrices from this simulation are
displayed in Fig. 6.25 for the decay 𝑝-Λ →𝑝 − 𝑝 and (𝑝 − Σ0, 𝑝 − Ξ−) → 𝑝Λ. One can

1https://root.cern.ch/doc/v608/classTGenPhaseSpace.html
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Figure 6.24: The fractions of Λ as a function of 𝑝T obtained from a template fitting
method. The purity is extracted by fitting the Λ invariant mass peaks. The averages of
the quantities are evaluated by using the production probability 𝑑𝑁/𝑑𝑝T of Λ.

see that the k∗ momenta are quite correlated. After the decay only the resulting baryon
pair is taken into account for the k∗ calculation. Thus the missing meson momentum is
responsible for the width of the k∗ distribution.
The remaining task is to calculate the initial correlation functions. For the 𝑝 − 𝑝 chan-
nel only the feed-down from the 𝑝-Λ correlation function is considered. It is taken into
account by fitting the 𝑝-Λ experimental correlation function and then transforming it to
the 𝑝 − 𝑝 momentum basis. For the 𝑝-Λ residual correlations the 𝑝 − Σ0, 𝑝 − Ξ− and
Λ − Λ pairs are taken into account. However, since it was presented in Fig. 6.12 that
the Λ − Λ correlation function is quite flat it is also assumed to be consistent with unity
and thus uncorrelated. The 𝑝 − Σ0 correlation function is taken from calculations of
[Sta+07]. Since Σ hyperons are represented in an isopin triplet configuration the 𝑝 −Σ0

pair can have two isospin configurations. For every 𝑝 − Σ0 isospin state two spin states
are possible. Additionally, there exists an inelastic channel 𝑝Σ0 → 𝑝Λ such that the
scattering length must include also an inelastic part. Above the 𝑝Σ0 pair the 𝑛Σ+ pair
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Figure 6.25: Transformation matrix 𝑀 for 𝑝-Λ decaying into pairs of 𝑝 − 𝑝 (left) and
𝑝 − Σ0 (middle) 𝑝 − Ξ− (right) decaying in pairs of 𝑝-Λ.

Isopin 𝐼 𝑎𝑆=0
𝐼 [fm ] 𝑎𝑆=1

𝐼 [fm ] 𝑑𝑆=0
𝐼 [fm ] 𝑑𝑆=1

𝐼 [fm ]
1/2 -1.1 -1.1+𝑖4.3 -1.5 -2.2-𝑖2.4
3/2 2.51 -0.73 4.92 -1.22

Table 6.5: Scattering parameters to model 𝑝Σ0 correlations. Taken from [Sta+07].

is located in mass, which couples to 𝑝Σ0 inelastically. All this effects are modeled in
[Sta+07]. It is adapted for this analysis. The correlation function is a sum of the two
contributions 𝑝Σ0 → 𝑝Σ0 and 𝑛Σ+ → 𝑝Σ0:

𝐶(𝑘∗) = ⟨|𝜓𝑆,𝑝Σ0→𝑝Σ0

−𝐤∗ (𝐫∗)|2⟩ + ⟨|𝜓𝑆,𝑛Σ+→𝑝Σ0

−𝐤∗ (𝐫∗)|2⟩ , (6.38)

where the brackets ⟨⟩ denote the averaging over the space-time configuration with the
source function. One can see that the main difference in Eq. (6.38) to 𝑝-Λ is the addi-
tional inelastic term. The values used for the 𝑝Σ0 correlation function is given in Tab.
6.5. One can see that the number of parameters is more than doubled compared to the 𝑝-
Λ case and most of them are unknown. Similar arguments hold for the 𝑝−Ξ− case. Also
for this pair inelastic channels are present like 𝑝Ξ− → ΛΛ, 𝑛Ξ0, Σ0Λ and two isospin
states with two spin states for each isospin value respectively. A theoretical treatment
of the elastic channels can be found in [HMP16]. Additionally, this pair is affected by
Coulomb attraction. Thus it is very hard to model. However, the Ξ− → Λ𝜋 decay prod-
ucts in this channel are charged and therefore accessible by ALICE. It is tried to measure
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the 𝑝Ξ correlation function in pp collisions and parametrize it with a phenomenological
function:

𝐶(𝑘∗)𝑝Ξ− = 1 + exp(−𝑘∗𝑟0)
𝑘∗𝑟0

. (6.39)

This function has some rising for low k∗ which mimics a Coulomb attraction. In this
case 𝑟0 is just a parameter to scale the function to the data and has no physical meaning.
Its value is 𝑟0 = 3.88 fm. All initial correlation functions taken into account and their
functional shape after the decay are displayed in Fig. 6.26.
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Figure 6.26: Initial correlation functions displayed as red solid lines. The black dashed
lines are the residual correlations. Top left: 𝑝-Λ → 𝑝 − 𝑝, Top right: 𝑝 − Ξ− → 𝑝-Λ.
Bottom left: 𝑝 − Σ0 → 𝑝-Λ.

6.5.2 Finite momentum resolution
The particles are measured with a finite momentum resolution which has an influence
on the measured correlation signal. The single-particle momentum can be writte in the
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form:

𝑝𝜇 =
⎛⎜⎜⎜⎜
⎝

𝐸
𝑝T cos(𝜑)
𝑝T sin(𝜑)
𝑝T sinh(𝜂)

⎞⎟⎟⎟⎟
⎠

. (6.40)

One can see that the momentum resolution depends on the resolution of the single-
particle 𝑝T as well as the resolutions of the angles 𝜑 and Θ. Since in femtoscopy the
differences of the vectors are contracted 𝑄inv = √−(𝑝1 − 𝑝2) ⋅ (𝑝1 − 𝑝2) (for non-
identical particles an additional term must be included) all resolutions combine in a
non-trivial way to the resolution of the relative momentum. Since one has control over
single particle resolutions they are obtained from Pythia simulations in this analysis and
compared to published ALICE results, if available. For the inverse 𝑝T resolution, AL-
ICE published their results for the p-Pb system [Abe+14b] at √𝑠NN=5.02 TeV, which
is displayed in Fig. 6.27. The default track selection in this thesis corresponds to TPC-

Figure 6.27: Momentum resolution of the p-Pb system at √𝑠NN=5.02 TeV for different
track candidates.

only tracks constrained to the primary vertex, which corresponds to the red points in Fig.
6.27. The resolution is a more vivid observable compared to the inverse resolution and
both observables are directly linked by the Equation [Abe+14b]:

𝜎𝑝T

𝑝T
= 𝑝T 𝜎1/𝑝T

. (6.41)
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The published results are compared with resolutions obtained from Pythia simulations,
where the tracks are propagated to the whole ALICE framework. The resolutions are
computed by fitting a Gaussian model to the difference of the generated and recon-
structed values in bins of 𝑝T. The result for the 𝑝T, 𝜑 and Θ resolutions obtained from
these fits are displayed in Fig. 6.28. One can see that the 𝑝T resolution is below 1% at
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Figure 6.28: Momentum and angle resolutions of the pp system obtained from Pythia
simulations.

transverse momenta around 1 GeV/𝑐 and stays below 1.5% in the 𝑝T range considered in
this analysis. The angle resolution is worse at the lower 𝑝T threshold but decreases with
increasing 𝑝T. Since most of the considered particles are produced at around 1 GeV/𝑐,
the transverse momentum resolution is at its minimum and one has a medium angle res-
olution in this range.
Since a total correlation function is separated into feed-down and impurity fractions,
theoretically two separate resolution matrices are needed. Since the contribution from
impurities can be neglected only the resolution matrix for the feed-down contribution is
calculated. It is again extracted from Pythia simulations using event mixing to increase
the statistics. For the particles the PDG code is prompted since impurities are separated
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as mentioned before. The result of the resolution matrices for the relative momenta k∗

of 𝑝 − 𝑝 and 𝑝-Λ pairs is shown in Fig. 6.29. The influence of the finite momentum
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Figure 6.29: Top: Resolution matrices for 𝑝-Λ and 𝑝 − 𝑝. Bottom: Influence of the
momentum resolution on the correlation functions.

resolution on the 𝑝-Λ pair is negligible and has a moderate influence on the 𝑝 − 𝑝 corre-
lation function. The resolution effect will be taken into account when the experimental
data is compared to model calculations in the fitting procedure by smearing the model
with help of Eq. (6.37). The transformation matrix 𝑀 is then equal to the resolution
matrix and the initial unsmeared correlation function is transformed to the reconstructed
momentum basis.

6.5.3 Pair selection criteria
Femtoscopy relies on a measurement of the momentum difference of two particles. The
correlation signal is visible for small differences. This requires that the tracks of both
particles are quite collinear and thus affected by various detector effects. Two of them
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are track merging, which means two tracks are reconstructed as one track or track split-
ting, where one track is reconstructed as two tracks by the detector. Both effects lead
to artificial correlations and one has to get rid of them. To check for possible effects
of the detector the investigation is done in differences of the angles. Since in ALICE
the particles are emitted inside of the magnetic field their differences in 𝜑 (and 𝜂 for
non-identical particles) can be different at the collision point and in the TPC where the
merging is happening. Since tracks are bended in the magnetic field on a circular trajec-
tory the correction of 𝜑 is:

𝜑∗ = 𝜑 + arcsin (0.3𝑅𝐵𝑒
2𝑝T

1
Tm) , (6.42)

where 𝐵 is the strength of the magnetic field, 𝑅 the radial distance from the collision
point, 𝑒 the charge of the particle and 𝑝T its transverse momentum. The angle differences
for 𝑝−𝑝 pairs from Pythia simulations is shown in Fig. 6.30 for nine different radii in the
TPC. The corresponding distributions are divided by its mixed event samples. No clear
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Figure 6.30: Correlation function for 𝑝−𝑝 in 𝜑∗, 𝜂 representation for Pythia simulations
at different radii of the TPC. Merging or splitting would be visible at the origin (0,0).
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sign for merging is visible which would be indicated by a loss of pairs for small angle
separations. The angle correlation function looks quite flat. For this reason no explicit
selection criteria are introduced.

6.5.4 Non-femtoscopic background
If only the femtoscopic signal is present then it is located in a region 𝑘∗ < 𝑘∗

femto, where
𝑘∗

femto depends on the system size and is of the order of 100 MeV/𝑐. For sufficiently large
momentum differences the correlation signal should vanish thus 𝐶(𝑘∗ > 𝑘∗femto) → 1.
However, in most analysis additional correlation signals are present. They have their
origin in energy-momentum-conservation, mini-jets, flow and other sources. The effect
of mini-jet induced background was observed for pions in pp [Aam+11] as well as p-Pb
collisions [Ada+15a]. However, the same correlation functions were also described in a
formalism developed for signals induced solely by energy and momentum conservation
[Boc11]. Whatever the reason for the non-femtoscopic effect is, it seems that higher
order correlations e.g. a three pion cumulant can suppress such distortions significantly
[Abe+14a].
In general such non-femtoscopic structures aremore pronounced in small systems, where
the multiplicity is low. In this analysis the baseline is also not flat for large k∗ and a small
tilt of the baseline is visible. To have a better fit performance this tilting is included by
describing the baseline with a linear function:

𝐶(𝑘∗)non−femto = 𝑎𝑘∗ + 𝑏 , (6.43)

where 𝑎, 𝑏 are just fit parameters. The non-femtoscopic structure is taken into account
in the total fit function:

𝐶(𝑘∗) = 𝐶(𝑘∗)femto × 𝐶(𝑘∗)non−femto . (6.44)

The fit parameters are obtained in the range 𝑘∗ ∈ [0.12, 0.42] GeV/𝑐 for 𝑝 − 𝑝 pairs and
𝑘∗ ∈ [0.2, 0.5] GeV/𝑐 for the 𝑝-Λ and Λ − Λ system. The result of the baseline fits of all
three systems with Eq. (6.43) is shown in Fig. 6.31.

6.6 Systematic uncertainties
In this Section the sensitivity of the correlation functions on the chosen selection criteria
is explored. First the sensitivity of the correlation functions on the proton selection is
tested by varying the proton selection criteria:

• Influence of the primary proton selection with the 𝐷𝐶𝐴𝑥𝑦 selection
• Influence of the proton PID selection
• Influence of the proton track acceptance
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Figure 6.31: Baseline fit (red dashed line) otained in a non-femtoscopic k∗ region with
Eq. (6.43).

• Influence of the chosen Filterbit
• Influence of the mixing depth

Then the sensitivity of the V0 selection:
• Influence of the cosine pointing angle
• Influence of the number of TPC cluster of V0 daughter
• Influence of the invariant mass selection width
• Influence of the track acceptance of V0 daughter tracks

A table including all systematic uncertainties can be found in Tab. 6.6. The error on
the correlation function is obtained with a 𝑝𝑜𝑙2 fit to the ratio of the default correlation
function to the one obtained by the cut variation. Whenever a cut variation delivered two
systematic uncertainties the larger one is taken into account. In the end all systematic
uncertainties from the cut variations are summed up quadratically, assuming they are
independent. A change in the 𝐷𝐶𝐴𝑥𝑦 selection is not taken into account as systematic
error. The 𝐷𝐶𝐴𝑥𝑦 selection has a strong influence on the selection of primary protons.
Thus if the value is changed the correlation function is diluted (enhanced) by selecting
more secondaries (primaries). This should be recaptured by a change in the 𝜆 value. If
the result deviates strongly it should be taken into account for the fit results.

6.7 Experimental results
In this Section, the experimental correlation function is compared to femtoscopic mod-
els. The goal is to investigate if the theoretical 𝑝-Λ correlation function shows some
sensitivity on the set of scattering parameters which are plugged in from theory predic-
tions. The theoretical correlation functions are weighted with the 𝜆 parameter discussed
in the previous Sections. The total fit function is multiplied with the baseline tilting in-
troduced in Sec. 6.5.4 and a total normalization 𝒩 of the whole correlation function.
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Variation p-p p-Λ Λ-Λ
DCA𝑥𝑦,DCA𝑧 5% 2% -
n𝜎𝑝𝑟𝑜𝑡𝑜𝑛 - - -
|𝜂|𝑝𝑟𝑜𝑡𝑜𝑛 5% 1% -
Tracking (Filterbit) 4% - -
lower 𝑝𝑇 proton 3% - -
mixing depth - - -
Cosine pointing
angle V0

- - 4%

# TPC cluster V0
(daughters)

- - -

InvMass V0 selec-
tion width

- - -

|𝜂|𝑉 0 daugther - 2% 1%
lower 𝑝𝑇 V0 - - -

Table 6.6: Effect of variations of different selection criteria on the correlation function
in percent.

The latter is needed since the baseline is not flat. The 𝑝−𝑝 and 𝑝-Λ correlation functions
are fitted simultaneously by using a combined 𝜒2:

𝜒2
𝑡𝑜𝑡 = 𝜒2

𝑝𝑝 + 𝜒2
𝑝Λ . (6.45)

In the Appendix B a different Equation for minimization is presented. The fit routine is
set up by using the 𝑇 𝑀𝑖𝑛𝑢𝑖𝑡1 package of ROOT. The fitrange is 𝑘∗ ∈ [0, 0.12] GeV/𝑐
for 𝑝 − 𝑝 and 𝑘∗ ∈ [0, 0.2] GeV/𝑐 for 𝑝-Λ. A short remark about a possible transverse
mass (𝑚T) scaling in the pp system, where 𝑚T is the combination of the transverse
momentum 𝑘T = 1

2 |𝐩T,1 + 𝐩T,2| and the rest mass:

𝑚T = √𝑘2
T + 𝑚2

0 . (6.46)

Usually, a scaling of source radii with the transverse mass of the pair, thus a decreasing
of the source size with increasing transverse mass indicates the presence of radial flow
in the system. Such a collective effect was observed e.g. by ALICE [Ada+15b] in Pb-Pb
collisions at √𝑠NN=2.76 TeV. There seems to be also a weak 𝑚T scaling present for
meson pairs in pp collisions at 7 TeV [Abe+13; Abe+12], at least for large multiplicity
events. If the radius of 𝑝 − 𝑝 and 𝑝-Λ are fitted simultaneously the average transverse

1https://root.cern.ch/doc/master/classTMinuit.html
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mass should have similar values. The average transverse mass for pairs lying in the fem-
toscopy region 𝑘∗ < 150 MeV/𝑐 for 𝑝-Λ pairs is ⟨𝑚T⟩ = 1.45 GeV/𝑐2 and for 𝑝−𝑝 pairs
⟨𝑚T⟩ = 1.27 GeV/𝑐2. One can see that there is a small difference but much smaller than
the scales on which 𝑚T scaling happens for meson pairs [Abe+13; Abe+12].
The fitting procedure is the following: The 𝑝 − 𝑝 correlation function is fitted with help
of the Schrodinger Equation and the 𝑝-Λ correlation function with help of the Lednicky
model using scattering parameters of the next-to-leading order expansion of a chiral
effective field theory at a cutoff scale of Λ = 600 MeV [Hai+13]. After the fit has
converged the leading order values from the same calculation at the same cutoff scale
[Hai+13] are also plugged in. Then the difference is explored and checked if one of
the two solutions fits better to the data. The result of this investigation is presented in
Fig. 6.16. Slightly different 𝜆 values for the preliminary ALICE results are used. The
reason for this is that the calculation framework of the 𝜆 parameter was updated and also
the determination of the single-particle fractions slightly changed. For the 𝜆 parame-
ter calculation the general framework was not developed and not all combinations of
residual correlations could be taken into account. With the new framework all different
contributions were summed up. The old values for the preliminary result were:

• 𝜆𝑝𝑝 = 0.76, 𝜆𝑝𝑝Λ
= 0.16

• 𝜆𝑝Λ = 0.53, 𝜆𝑝ΛΞ− = 0.10, 𝜆𝑝ΛΣ0 = 0.17
The new and updated values are:

• 𝜆𝑝𝑝 = 0.75, 𝜆𝑝𝑝Λ
= 0.16

• 𝜆𝑝Λ = 0.49, 𝜆𝑝ΛΞ− = 0.10, 𝜆𝑝ΛΣ0 = 0.16
A fit performed with the updated 𝜆 values does not change the result dramatically. This
is shown in Fig. 6.33. One can see in Fig. 6.32 that the theoretical correlation function
shows a sensitivity towards the input parameter. Especially for k∗ → 0, both solutions
differ quite significantly. This is expected since the scattering length for both solutions
also differ strongly and they dominate the scattering amplitude for very low momenta.
The limiting factor to distinguish both predictions is the available pair statistics in the 𝑝-
Λ channel. With much more statistics it would be possible to have more k∗ bins and the
statistical uncertainty for every k∗ bin decreased. For an estimation of the amount of the
additional statistics needed the first k∗ bin of the 𝑝-Λ correlation function is taken into
account. This bin shows the largest separation and if this bin accumulates enough pairs
than all the other bins as well. The separation between LO and NLO in the first k∗ bin in
the correlation function is Δ𝐶(𝑘∗)1 = 0.2. One would need in the current measurement
at least half of the error bar that the error bar is of the order of the separation. To achieve
this roughly 6-7 times the current pair statistics is needed. Then one could in principle
distinguish the shape of the correlation function as well as the value, e.g. by doing a
P-value evaluation. At the moment the statistics of the RUN1 dataset is too scarce to
rule out any parameters. However, it shows the applicability of the method. Especially
in the low momentum region femtoscopy is able to perform measurements, where no
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Figure 6.32: Simultaneous fit of the 𝑝 − 𝑝 and 𝑝-Λ pair, where the NLO expansion (red
line) is used for the scattering parameter. After the fit is performed the LO parameter set
(green line) is plugged in.

data points for the total cross section of 𝑝-Λ pairs are available.
Finally the comparison to other ALICE result of pp collisions at 7 TeV is done. This
measurement is the first measurement with Baryon pairs. The other femtoscopic analysis
were donewith neutral [Abe+12] and charged [Abe+13] kaon pairs. Also a pion analysis
was performed [Aam+11]. Sincemesons are quite abundantly produced at LHC energies
for them a differential binning in transverse mass andmultiplicity was possible. The radii
are shown in Fig. 6.34 together with the radius of this analysis (with statistical errors
only). From this Figure it is seen that the radius of the baryon pairs is larger than the
radius of the meson pairs at the same transverse mass. Contrary to Pb-Pb collisions
the underlying source distribution of pp collisions is not well established. In Pb-Pb one
produces one fireball which emits the particles. All hadrons stop interacting roughly
at the same freeze-out scale. Thus, the radii follow a scaling with transverse mass and
are the same withing the errors [Ada+15b]. For pp collisions one might be much more
sensitive to the underlying production mechanisms which lead to different radii for all
the pairs. Additionally, the charged kaon pairs in the lowest multiplicity class 1-11 also
don’t coincide with the pairs of pions in the same multiplicity bin. This supports the
argument that the pp collision system is much harder to interpret in terms of a scaling of
transverse mass and a description with only one source value.
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Figure 6.33: Simultaneous fit of the 𝑝 − 𝑝 and 𝑝-Λ pair with updated 𝜆 parameter,
where the NLO expansion (red line) is used for the scattering parameter. After the fit is
performed the LO parameter set (green line) is plugged in.

6.7.1 The Lambda-Lambda correlation function and the relation to
bound states

The strenght and even the type (repulsive or attractive) of the Λ − Λ interaction is not
settled when models are compared to the correlation function. Discussions about this
topic are presented in [MFO15; Ada+15c]. In a next-to-leading order calculation in
chiral effective field theory the scattering length is slightly attractive with a value of
𝑎 = −0.66 fm at a cutoff scale Λ=600 MeV [HMP16]. As a reminder, a negative
scattering length is in the femtoscopy framework positive 𝑓0 = −𝑎. First a model cal-
culation with the Lednicky model taking into account the effect of quantum statistics is
performed to investigate the shape of the correlation function in pp collisions, where we
deal with source sizes of the order of 1.3 fm. For comparison also the correlation func-
tion for a larger source size 𝑟0 = 3 fm is plotted as achieved in Au-Au/Pb-Pb collisions.
For the strong interaction parameter the mean values from the STAR analysis are used
[Ada+15c] (𝑓0 = −0.11 fm). The 𝜆 parameter is taken from Tab. 6.4. The results are
displayed in Fig. 6.35. One can see in this Figure that the larger source size leads to a
depletion of pairs at very small k∗. The smaller source size as achieved in pp collisions
leads to a even stronger suppression of the correlation function. For the smaller source
size also the effect of taking only quantum statistics into account is shown. In the ex-
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Figure 6.34: Comparison of radii obtained in the pp collision system at 7 TeV. The black
point is the radius obtained in this analysis from 𝑝 − 𝑝 and 𝑝-Λ pairs.

perimental correlation function in pp collisions a more flat structure is observed, which
is not in agreement with the theoretical prediction of Fig. 6.35. But one may have to
take into account several significant contributions from feed-down contributions which
are not included in the caclulation of Fig. 6.35. They might change the shape of the
correlation function. A deeper analysis of the Λ − Λ correlation function is needed and
might lead to insights of the nature of the strong interaction between this pair.
Certain models predict positive scattering length 𝑎, which would allow bound states of
Λ − Λ. In this section it is explored how a bound state would characterize itself in the
correlation function. A summary of Λ − Λ interaction parameters predicted from model
calculations is given in [MFO15]. There are basically four models which provide pos-
itive scattering length: ND46, ND48, NF42, NF44. The values of these models and
the corresponding binding energies are presented in Tab. 6.7. The binding energies are
calculated with the formula:

𝐸𝐵 = (ℏ𝑐)2

𝑚Λ
𝜅2, 𝜅 = 1

𝑑0
(1 − √1 − 2𝑑0

𝑎 ) . (6.47)

From Tab. 6.7 it is seen that two models (ND42, NF42) predict a rather strongly bound
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Figure 6.35: The Λ − Λ correlation function for two different source sizes. For the
smaller source size the quantum statistics only correlation function is plotted only for
comparison.

state, even stronger than the binding energy of the deuteron (𝐸𝐵 = 2.2 MeV). Two
models (ND48, NF44) prefer a rather shallow binding. The question is how this large
differences are reflected if they are plugged in to a model for the correlation function. To
clarify this, the Lednicky model is used including the term for quantum statistics for the
identical fermions and assuming a source size of 𝑟0 = 1.3 fm, similar to the source sizes
of 𝑝 −𝑝 and 𝑝-Λ. A correction for momentum resolution and residual correlations is not
included, which would act with the same strength on all four models. The 𝜆 parameter
is taken from Tab. 6.4. The result for all four models of Tab. 6.7 is presented in Fig.
6.36. In Fig. 6.36 it is seen that the models which predict shallow bound states peak at
low k∗, whereas models allowing strongly bound states develop a more flat correlation
signal. Thus it seems to be the case that if Λ − Λ develops a bound state it must be
strongly bound to be in agreement with the experimental data. The physics behind the
two scenarios can be understood as follows. One has two single-particle sources which
emit Λ hyperons. On the way to the detector there are two competing effects, elastic
scattering and the formation of bound states. If a model allows strongly bound states
the formation of bound states dominates the elastic scattering and no separate Λ − Λ
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Model Scattering length
𝑎 [fm ]

effective range
𝑟eff [fm ]

Binding energy 𝐸𝐵
[MeV]

ND46 4.621 1.300 2.37
ND48 14.394 1.633 0.19
NF42 3.659 0.957 3.68
NF44 23.956 1.258 0.06

Table 6.7: Scattering length and effective ranges and the corresponding binding energies
of models that predict bound states. The values for the scattering parameters are taken
from [MFO15].

pairs are detected anymore. The correlation signal decreases. For shallow bound states
the formation of a Λ − Λ bound state is less probable and the elastic scattering is more
pronounced. The correlation signal is stronger.

6.7.2 EPOS predictions for the source function
In this thesis only Gaussian source functions are used. It would be interesting to see
what kind of source comes out from a dynamical model for pp collisions at 7 TeV. For
this purpose the EPOS model is used [Pie+15]. It is a Monte Carlo generator especially
designed for minimum bias hadronic interactions, applicable to small systems like pp
but also heavy-ion collisions can be simulated.
The EPOS generator delivers freeze-out coordinates of the produced particles. It is ei-
ther the point of the freeze-out surface if it comes from the fluid or the last interaction
point if the particle rescatters [Wer]. EPOS simulates in some reference frame and all
coordinates have to be boosted to the pair rest frame. In the same reference frame where
EPOS produces the particles additionally Gaussian and Cauchy freeze-out coordinates
with source sizes of 𝑟0,𝐺 = 1.5 fm and 𝑟0,𝐶 = 0.5 fm are sampled with a freeze-out
time set to zero. This helps to compare the freeze-out coordinates of EPOS to a per-
fect Gaussian and Cauchy source and interpret the produced source values of the EPOS
model. Only the 𝑝 − 𝑝 coordinates are shown but 𝑝-Λ pairs behaves rather similar. The
source is investigated in the out-side-long pair rest frame in cartesian as well as spher-
ical coordinates in the femtoscopic momentum region k∗ < 0.1 GeV/𝑐. The result for
the cartesian coordinates is displayed in Fig. 6.37. One can see that the EPOS coordi-
nates (black dots) tend to peak around the origin. This is also slightly captured by the
Cauchy source with a width of 𝑟0,𝐶 = 0.5 fm, but this source even peaks stronger. The
Gaussian source coordinates are wider in space. If one would use the EPOS model for
the calculation of the correlation function it would pronounce the region of small pair
separations. In 𝑝 − 𝑝 correlations this is the region of the repulsive hard-core.
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Figure 6.36: Comparison of the influence of the scattering parameters of Tab. 6.7 on
the theoretical Λ − Λ correlation function.

The differences between the source types is better visible in spherical coordinates. Since
one boosts from the reference frame where EPOS simulates the coordinates to the pair
rest frame the boost might influence the observables. This is especially true for the 𝜑
angle. An initial flat distribution can show structures after the boost is performed. The
Θ and 𝑟∗ distributions do only slightly change. How strong the influence of the boost
is depends on the width of the momenta, which define the 𝛽 values. Thus, for source
comparisons only the Θ and 𝑟∗ distributions are considered and 𝜑 is shown for com-
pleteness. The result is shown in Fig. 6.38. One can see that the peak structures of Fig.
6.37 is transformed to a narrow 𝑟∗ structure, which is also partly captured by the Cauchy
source. The Gaussian source function predicts a broader structure. A characteristics of
the Cauchy source is the clustering of pairs around 𝜋/2 in the Θ projection. The Gaus-
sian source shows only the trivial correlation sin(Θ) originating from the Jacobian and
EPOS follows this distribution too. This shows that EPOS does not produce a Cauchy
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Figure 6.37: Comparison of freeze-out coordinates for 𝑝 − 𝑝 pairs predicted by the
EPOS model compared to coordinates sampled from a Gaussian and Cauchy p.d.f. The
coordinates are shown in cartesian coordinates.

like source even if it looks like the case in the 𝑟∗ projection or in 𝑟∗
𝑜,𝑠,𝑙 coordinates. The

𝜑 distribution is the same for all three sources but strongly influenced by the boost as
mentioned already.
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7
Outlook

7.1 Imaging - Fixing the source
Femtoscopy is mainly considered for the extraction of the size of a system at freeze-out.
However, in most of the cases a Gaussian source shape is assumed, which introduces
automatically some model dependence on the extracted parameter values. Thus, if the
source is not of Gaussian shape but the Gaussian shape is assumed in the fitting step the
extracted scattering parameter are wrong. An example of how much a Gaussian source
can deviate from the “true“ source is shown in Fig. 7.1 for 𝑝 − 𝑝 correlations, which is
taken from [Ver+02]. The ”true“ source is in this case the source which is obtained from
an imaging technique and the Gaussian source is obtained by fitting the correlation func-
tion with a Gaussian source shape. One can see that both source shapes disagree quite
significantly. The imaging technique is applicable whenever the interaction is known,
which is the case for 𝑝 − 𝑝 pairs. The femtoscopy equation is inverted to get back from
the experimental measurement the source function. A short explanation of the imaging
technique is given here to clarify its working principle. It is based on arguments from
[BD01]. Since the source function is normalized to unity the femtoscopy equation can
be written as (for an angle independent source):

𝑅(𝑞) = 4𝜋 ∫ 𝑑𝑟𝑟2𝐾(𝑞, 𝑟)𝑆(𝑟) , (7.1)

where 𝐾(𝑞, 𝑟) = 1
2 ∫1

−1 𝑑(cos(Θ))𝐾(𝐪, 𝐫) is the angle averaged kernel and 𝑆(𝑟) is the
source function. Actually, Eq. (7.1) includes also an approximation, namely that 𝑆(𝐫) is
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Figure 7.1: The Gaussian source which was fitted to the experimental data is compared
to the source extracted from Imaging. Taken from [Ver+02].

angle independent and the whole angle dependence is included in the wave function. As
it was shown in this thesis this is actually true for a Gaussian but not for a Cauchy source
function. One can discretize Eq. (7.1) in q- and r-space (e.g. having a finite binning):

𝑅𝑖 = ∑
𝑗

𝐾𝑖𝑗𝑆𝑗 (7.2)

where 𝑖 is the index in q-space (q bins) and 𝑗 in r-space (r bins). If the source is expanded
in basis functions 𝐵𝑗(𝑟):

𝑆(𝑟) = ∑
𝑗

𝑐𝑗𝐵𝑗(𝑟) , (7.3)

where 𝑐𝑗 are free parameters, then Eq. 7.2 can be rewritten as:

𝑅𝑖 = �̃�𝑖𝑗𝑐𝑗 , (7.4)

where the basis functions were put into a new kernel matrix �̃�. Thus formally Eq. (7.4)
is nothing else then a matrix multiplication:

𝐑 = �̃� ⋅ 𝐜 . (7.5)
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Thus for this Equation one can calculate the 𝜒2:

𝜒2 = (𝐑 − �̃� ⋅ 𝐜)T(Δ2𝑅)−1(𝐑 − �̃� ⋅ 𝐜) , (7.6)

where Δ2𝑅 is the error of the experimental correlation function. Formally, the solution
for the parameter vector 𝐜, which minimizes the 𝜒2 is given by:

𝐜 = Δ2𝑆 ⋅ �̃�T(Δ2𝑅)−1 ⋅ 𝐑 , (7.7)

where Δ2𝑆 is the error of the extracted source. Besides using this equation one can
also perform an explicit numerical minimization. The whole problem breaks actually
down to an matrix inversion. The inversion problem is quite challenging since e.g. the
Kernel can be singular [Bro98]. Progress has been made in selecting proper basis func-
tions [BD01] with B-Splines. Imaging was also started in this thesis with a very similar
strategy like in [BD01], but the framework is far away from being established. Only
the usage of such a framework will be explained. One could in principle use a pair
of baryons where the interaction is well established to extract the source function. A
pair which provides such properties would be again 𝑝 − 𝑝. In pp collisions the source
functions might be roughly the same for the baryon pairs, just the weighting with the
𝜆 parameter is different. Thus it might be possible to use the extracted 𝑝 − 𝑝 source
function directly in the femtoscopy equation of 𝑝-Λ. Actually, then there would be no
free parameter left regarding the source size. One could then solely concentrate on the
pair interaction and plug in scattering parameters and test them. If the source function is
known, one might also try to find out the Kernel function directly from the femtoscopy
equation. This would provide the Kernel of the interaction, thus the square of the pair
wave function. This would deliver the interaction in a least model independent way.
Source images were extracted for 𝑝 − 𝑝, 𝑝-Λ and 𝜋−𝜋− correlations in Au-Au collisions
at √𝑠NN=6 GeV [Chu+03]. The correlation functions and the corresponding source
functions from the imaging equations are displayed in Fig. 7.2. One can see that for all
pairs the size and shape of the source function is different. The source is in this case
strongly influenced by secondary decays. For pp collisions at the TeV scale no such
study was performed and it would be interesting to see how it evolves. One could image
the sources of the 𝑝−𝑝 and 𝑝-Λ pair and compare them to investigate if they differ much.
If not then a fixing of the 𝑝-Λ source function with the extracted 𝑝 − 𝑝 one is justified.

7.2 Femtoscopy in two spatial dimensions
It might be also interesting to perform a femtoscopy measurement in only two spatial
dimensions. To do this one has to select particles e.g. pions which fly in a very narrow
pseudo-rapidity range e.g. defined with respect to the reaction plane. This would en-
sure that both particles are confined to the 𝜑-plane. Then one might be selecting only a
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Figure 7.2: Correlation functions for 𝑝−𝑝, 𝑝-Λ and 𝜋−𝜋− and the corresponding source
images. Taken from [Chu+03].

”matter slice“ from a heavy-ion collisions which might help to constrain transport coeffi-
cients further. If only the Bose-Einstein enhancement is taken into account as correlation
source (for Coulomb in two dimensions the potential changes to a logarithmic form) then
the two particles can be described by plane waves and the squared wave function reads:

|𝜓(𝐪)|2 = 1 + cos(𝐪 ⋅ 𝐫∗) . (7.8)

A Gaussian source function in two dimensions reads:

𝑆(𝑟∗) =
exp(− 𝑟∗2

4𝑟2
0
)

4𝜋𝑟2
0

. (7.9)

This leads finally to the Bose-Einstein correlation function:

𝐶(𝑞) = 1 + ∫ 𝑑𝜑𝑑𝑟∗𝑟∗ cos(𝐪 ⋅ 𝐫∗)𝑆(𝑟∗) = 1 + exp(−𝑟2
0𝑞2) (7.10)

Thus it is actually the same form like in 3D. The parameter 𝑟0 is now a measure of the
width of the source in two dimensions.
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A
Solution of the Schrodinger Equation

The Schrodinger Equation in three dimensions can be separated in a radial and angular
part. The radial Schrodinger equation reads [Daw78]:

( 𝑑2

𝑑𝑟2 − 𝑙(𝑙 + 1)
𝑟2 + 𝑘2) 𝑅𝑙(𝑟) = 2𝜇𝑉 (𝑟)

ℏ2 𝑅𝑙(𝑟) , (A.1)

where 𝑙 is the angular momentum, 𝜇 the reducedmass and 𝑅𝑙(𝑟) the radial wave function
connected to the wave function via:

𝜓(𝑟) = (𝑘𝑟)−1 ∑
𝑙

(2𝑙 + 1)𝑖𝑙𝑅𝑙(𝑟)𝑃𝑙(cos(Θ)) . (A.2)

For convenience we introduced the dimensionless parameter 𝜌 ≡ 𝑘𝑟 with which the
Schrodinger equation can be rewritten:

( 𝑑2

𝑑𝜌2 − 2𝜇
ℏ2𝑘2 𝑉 (𝜌/𝑘) − 𝑙(𝑙 + 1)

𝜌2 + 1) 𝑅𝑙(𝜌) = 0 . (A.3)

The solution of Eq. (A.3) for the free case (𝑉 (𝑟) = 0) is given in terms of spherical
Bessel functions, substituting 𝑅𝑙(𝜌) → 𝜌𝑗𝑙(𝜌) in Eq. (A.2). The expansion of the
spherical Bessel function for 𝜌 ≫ 𝑙 reads:

𝜌𝑙(𝜌) ≡ 𝜌𝑗𝑙(𝜌) ≈ sin(𝜌− 𝑙𝜋
2 ) = 𝑖

2 (exp ( − 𝑖(𝜌 − 𝑙𝜋
2 )) − exp (𝑖(𝜌 − 𝑙𝜋

2 ))) . (A.4)
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One can see that the free wave is described by an undistorted incoming wave and an
undistorted outgoing wave. The scattering process can only change the outgoing wave,
thus one can write in the asymptotic region for the radial wave function:

𝑅𝑙(𝜌) = 𝑖
2 (exp ( − 𝑖(𝜌 − 𝑙𝜋

2 )) − 𝑆𝑙 exp (𝑖(𝜌 − 𝑙𝜋
2 ))) , 𝜌 ≫ 𝑙 , (A.5)

where the diagonal elements of the scattering matrix 𝑆𝑙 are introduced. For elastic scat-
tering it can be written as:

𝑆𝑙 = exp(2𝑖𝛿𝑙) . (A.6)

If one plugs Eq. (A.5) in Eq. (A.2) one retrieves the representation of an undistorted
plane wave and a scattered spherical symmetric wave:

𝜓(𝜌) = exp(𝑖𝑘𝑧) + 𝑓(Θ)exp(𝑖𝜌)
𝑟 , (A.7)

with the scattering amplitude:

𝑓(Θ) = 𝑖
2𝑘 ∑

𝑙
(2𝑙 + 1)(1 − 𝑆𝑙)𝑃𝑙(cos(Θ)) . (A.8)

At this point we collected the necessary knowledge to calculate the wave function from
the Schrodinger equation. Since the correlation function deviates usually at the threshold
𝑘∗ → 0 from unity, s-wave scattering dominates, thus only 𝑙 = 0 waves contribute to
the scattering amplitude. Since a free wave converges quite slowly to the exact solution,
many waves have to be summed up. To overcome this problem we project out only the
scattered wave from the total wave function in Eq. (A.7).

𝜙(𝜌) ≡ 𝑓(Θ)exp(𝑖𝜌)
𝑟 = 𝜓(𝜌) − exp(𝑖𝑘𝑧) . (A.9)

In the correlation function the full wave function square enters |𝜓|2, where we integrate
out the plane wave part. Defining 𝑢(𝜌) = 𝜌𝜙(𝜌) the remaining equation for the correla-
tion function reads:

𝐶(𝑘) = 4𝜋 ∑
𝑆

𝜌𝑆 ∫
∞

0

𝑑𝜌
𝑘3 𝑆(𝜌/𝑘) (𝜌2 + 2ℜ𝑢(𝜌) sin(𝜌) + |𝑢(𝜌)|2) , (A.10)

where 𝑆(𝑟) is the source function.
At this point one can solve the whole problem on the computer. We define a numeri-
cal derivative as the difference quotient between a point 𝑖 and a point 𝑖 + 1 which are
separated by a distance Δ:

𝑑𝑦
𝑑Δ ≈ 𝑦(𝑖 + 1) − 𝑦(𝑖)

Δ . (A.11)
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With this prescription one can also determine the second derivative:

𝑑2𝑦
𝑑Δ2 ≈ 𝑦(𝑖 + 1) + 𝑦(𝑖 − 1) − 2𝑦(𝑖)

Δ2 → 𝑦(𝑖+1) = 𝑑2𝑦
𝑑Δ2 Δ2−𝑦(𝑖−1)+2𝑦(𝑖) . (A.12)

Thus by knowing the solution of two past points 𝑦(𝑖) and 𝑦(𝑖 − 1) one can calculate
the next point 𝑦(𝑖 + 1) do some update and calculate the next point etc. We solved the
Schrodinger Equation in the following way:

• Start with an incoming plane wave in the asymptotic region
• Propagate this wave towards 𝜌 → 0 with the potential switched on and off at the

same time
• At 𝜌 → 0 extract the phaseshift by comparing the free and the scattered wave
• Start again in the asymptotic region with the full wave function
• Calculate at every point 𝜌 the scattered part of the wave function and thus the

correlation integral
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B
Probability density function for

two-particle correlation functions

In this Section the underlying p.d.f. for two-particle correlation functions will be shown.
The correlation function is defined as a ration of same event to mixed event samples
𝐶(𝑞) = 𝐴(𝑞)

𝐵(𝑞) . The ratio is done for every q-bin separately. The p.d.f. in the individual
q-bins is distributed according to a Poisson distribution in the samples 𝐴(𝑞), 𝐵(𝑞) with
two different means 𝜇, 𝜈:

𝑃(𝐴) = 𝜇𝐴

𝐴! exp(−𝜇) ,

𝑃 (𝐵) = 𝜈𝑁

𝐵! exp(−𝜈) ,
(B.1)

where𝐴, 𝐵 are the counts in the q-bins of the samples𝐴(𝑞), 𝐵(𝑞). Since the two samples
are statistically independent, the joint p.d.f. can be written as:

𝑃(𝐴, 𝐵) = 𝑃(𝐴) ⋅ 𝑃 (𝐵) = 𝜇𝐴

𝐴! exp(−𝜇)𝜈𝐵

𝐵! exp(−𝜈) . (B.2)
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From this p.d.f. we want to project out the p.d.f. for the ratio 𝜇/𝜈. This can be done by
introducing new variables 𝑎1, 𝑎2:

𝑎1 ⋅ 𝑎2 ≡ 𝜇 ,
𝑎2 ≡ 𝜈 .

(B.3)

The Jacobian matrix for this new variables reads:

𝐽 = (
𝜕𝐴
𝜕𝑎1

𝜕𝐴
𝜕𝑎2

𝜕𝐵
𝜕𝑎1

𝜕𝐵
𝜕𝑎2

) = (𝑎2 𝑎1
0 1 ) . (B.4)

The p.d.f. of the new observables is then (using the transformation described in [Cow98]):

𝑔(𝑎1, 𝑎2) = |𝐽| = 𝑃(𝐴(𝑎1, 𝑎2), 𝐵(𝑎1, 𝑎2)) = 𝑎2
(𝑎1 ⋅ 𝑎2)𝐴

𝐴!
𝑎𝐵

2
𝐵! exp(−𝑎1 ⋅(1+𝑎2)) .

(B.5)

Since we are interested in the variable 𝐶 ≡ 𝜇/𝜈 = 𝑎1 the variable 𝑎2 has to be integrated
out:

𝑔(𝑎1) = ∫
∞

0
𝑑𝑎2𝑔(𝑎1, 𝑎2) = 𝑎𝐴

1 Γ(𝐴 + 𝐵 + 2)
𝐴! 𝐵! (𝑎1 + 1)𝐴+𝐵+2 . (B.6)

This result was actually for the first time obtained in [Ahl+02]. However, the integral in
this reference looks different and would give a different result than stated in the publi-
cation. This was a motivation for reevaluating it. The Gamma function can be replaced
by the recursive relation Γ(𝑛 + 1) = 𝑛Γ(𝑛). With the p.d.f. for the correlation function
𝐶 its mean and variance can be calculated:

• Mean: 𝐸[𝐶] = ∫∞
0 𝑑𝐶𝐶𝑃(𝐶|𝐴, 𝐵) = 𝐴+1

𝐵 .
• Variance: 𝑉 [𝐶] = ∫∞

0 𝑑𝐶(𝐶 − 𝐸[𝐶])2𝑃(𝐶|𝐴, 𝑏) = (𝐴+1)(𝐴+𝐵+1)
𝐵2(𝐵−1) .

It is interesting to see that the mean is shifted by one count. Thus it would be perhaps
more presice to do the ratio 𝐴+1/𝐵 for the construction of the experimental correlation
function.
Since the p.d.f. for the correlation function is known, the likelihood can be defined:

ℒ ≡ 𝑃(𝐶|𝐴, 𝐵) . (B.7)

Taking twice the negative logarithm of this equation and minimizing it gives the param-
eter estimates for the correlation function:

𝐿ℒ ≡ −2 log(ℒ) (B.8)

This can be used for finding the parameters for the correlation function.
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C
How to obtain projections in

out-side-long coordinate system

The projections in out-side-long-coordinates is done by filling a TH3 histogram, where
each dimension represents a direction in q-space. It is filled for same event and mixed
event separately. The TH3 object allows to project onto a certain 1D axis in a given
interval. This is done for mixed and same event on the out, side and long axis. After the
projection the ratio is build to get the correlation function in the specific direction. It is
important to perform first the projection and then the ratio.
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